实际问题与一元一次方程(数字问题)
人教版七年级上册数学3 4实际问题与一元一次方程(数字问题)课时练习(含简单答案)
1 / 6人教版七年级上册数学3.4 实际问题与一元一次方程(数字问题)课时练习一、单选题1.观察下列按一定规律排列的n 个数:1,3,5,7,9,…,若最后三个数之和是99,则这列数中最大的数为( )A .17B .19C .33D .353.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则a 处对应的数字是( )A .5B .6C .7D .8 4.一个两位数,个位数字是x ,十位数字是3,把x 与3对调,新两位数比原来两位数小18,则x 的值是( )A .1-B .0C .1D .2A .9-B .15C .18-D .21 6.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A.41B.42C.43D.447.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为()A.30-D.60-C.15-B.45-8.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是x,根据题意列方程是()二、填空题252+=,“”内填上同一个数字.有一个两位数,个位上的数字比十位上的数字大对调,那么所得的新数与原数的和是三、解答题3/ 6(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?20.将连续的奇数1,3,5,7,9,…,排列成如图所示数表:(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数的和;(3)十字框中的五个数的和能等于2 015吗?能等于2 020吗?若能,请写出这五个数;若不能,请说明理由.参考答案:1.D2.B3.A4.C5.D6.B7.A8.A9.710.2111.4312.-6413.2414. 3 1015.916.10x+(x+1)+10(x+1)+x=12117.这个两位数为3618.(1)框内的4个数的和是4的倍数x+(2)12x+;14(3)36,38,48,501/ 619.(2)方框里中间数是3320.(1)十字框中的五个数的和是中间数23的5倍;(2)5a;(3)能,。
一元一次方程解决问题
一元一次方程解决问题
一元一次方程可以解决许多实际问题,以下是一些例子:
1.工程问题:已知工作效率和工作时间,求工作总量。
例如:一个工人完成一项工作需要6小时,他的工作效率为每小时完成10个项目,问他一共能完成多少项目?
2.行程问题:已知速度和时间,求路程。
例如:一个人骑自行车每小时行驶15公里,他骑行3小时,问他骑行的总路程是多少?
3.分配问题:已知总量和份数,求每份的量。
例如:有24个苹果,要分给3个孩子,每人分几个?
4.盈亏问题:已知投入和利润,求收益。
例如:一个商店购进一批商品,每个进价为10元,售价为15元,售出40个商品,问他能赚多少钱?
5.积分表问题:已知积分表中的数据,求某个特定的积分值。
6.电话计费问题:已知通话时间和通话费用,求每个月的电话费用。
7.数字问题:已知数字的倍数或比例,求这个数字本身。
(完整版)初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
七上数学实际问题与一元一次方程
七上数学实际问题与一元一次方程一、概述数学作为一门基础学科,在我们的日常生活中扮演着重要的角色。
数学知识的应用不仅仅停留在课堂上,更多的是贯穿在我们的日常生活和实际问题中。
在七年级的数学课程中,一元一次方程是一个重要的概念。
本文将通过介绍一元一次方程的实际问题,探讨其在现实生活中的应用。
二、什么是一元一次方程?一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。
一般来说,一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
通过解一元一次方程可以求出未知数的值,从而解决实际问题。
三、一元一次方程在实际问题中的应用1. 购物问题假设小明去商店买东西,他手头有一些零钱,但是不知道能不能够买到心仪的物品。
假设小明手头有5元、10元、20元三种面额的纸币各若干张,他想要买一件价值95元的物品,问他是否能够买到?这个问题可以用一元一次方程来解决。
设5元、10元、20元的钞票分别为x、y、z张,则可以得到一个一元一次方程:5x+10y+20z=95。
通过解这个方程,可以求出x、y、z 的取值范围,从而判断小明能否买到心仪的物品。
2. 分配问题假设一个班级有40个学生,老师根据学生的成绩等级分别设立了三个奖励等级:一等奖、二等奖、三等奖。
一等奖的奖品价值200元,二等奖的奖品价值100元,三等奖的奖品价值50元。
如果班级设置的奖品总价值不超过6000元,求一等奖、二等奖、三等奖分别应该设多少名学生?这个问题也可以用一元一次方程来解决。
设一等奖、二等奖、三等奖的学生数分别为x、y、z名,则可以得到一个一元一次方程:200x+100y+50z=6000。
通过解这个方程,可以求出x、y、z的取值范围,从而得出合理的分配方案。
3. 速度问题假设小明和小华分别从A地和B地同时出发,小明的速度是v1,小华的速度是v2。
他们在t小时后相遇,求A地到B地的距离。
这个问题也可以用一元一次方程来解决。
实际问题与一元一次方程--(7)数字问题
.
2
,
(a
+
a
3)
=
+
2
.
(3 a
一
1)
=
12
,
解 :设 他 共 做 对
3x
一
z
道题 根据题 意 得
,
.
解得
1
(4 0
z
=
—
z
)
.
=
88
答
2
.
口 :
的值是 1
.
解得
32
解 :设 每 个 长 方 形 地 砖 的 长 是
z
z
厘 米 则 宽 为 (4 0
,
—
答 :他 共 做 对
4
.
32
z
道题
,
)厘 米 根 据 题 意 得
,
,
.
解 :设 儿 子 赢 了
5x
+
局 根据题 意 得
,
2x
:
x % z
+
=
3 (4 0 30
=
.
—
z
)
,
l
z
:
3 [2 (7 4
.
一
z
)
+
1
]
解得
,
解得
:
(4 0
.
一
)z
300
.
答 :儿 子 赢 了 4 局
5
.
答 :每 个 长 方 形 地 砖 的 面 积 是 3 0 0 平 方 厘 米
一
.
(3 2
35
一
z
岁 根据题意 得
,
实际问题与一元一次方程(二)
实际问题与一元一次方程(二)一、利润问题(1)=100% 利润利润率进价;(2)标价=成本(或进价)×(1+利润率);(3)实际售价=标价×打折率;(4)利润=售价-成本(或进价)=成本×利润率 注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
例1、某商店以每支4元的价格进100支钢笔,卖出时每支的标价6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店赢利188元,其中打9折的钢笔有几支?变式1-1、某商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,求这种商品的定价为多少元?变式1-2、某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获利270元,那么每台彩电原价是多少?变式1-3、某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金。
这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少(用四舍五入法精确到个位)?变式1-4、某厂生产一种产品,成本是每件5元,零售价为每件7元,年销售量为100万件。
为了获得更多的利润,厂里准备拿出一定的资金做广告。
根据调研,每投入1万元广告费,每年可多销售2.5万件产品。
那么投入多少万元广告费,可使年利润达到300万元?二、存贷款问题(1)利息=本金×利率×期数;(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数);(3)实得利息=利息-利息税;(4)1利息税=利息×利息税率;(5)年利率=月利率×12;(6)月利率=年利率×12例2、某公司从银行贷款20万元,用来生产某种产品,已知该贷款的年利率为15%(不计复利),每个产品成本是3.2元,售价是5元,应纳税款为销售款的10%。
人教版七年级上册数学实际问题与一元一次方程--数字问题训练
人教版七年级上册数学3.4实际问题与一元一次方程--数字问题训练一、单选题1.若某数除以4再减去2,等于这个数的13加上8,则这个数是()A.120B.120C.1207D.7272.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.数学上的“九宫图”所体现的是一个3×3表格,每一行的三个数、每列的三个数、斜对角的三个数之和都相等,也称为三阶幻方,如图是一个满足条件的三阶幻方的一部分,则图中字母m表示的数是()A.6B.7C.9D.113.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是().A.63B.70C.96D.1054.有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,则这个三位数为().A.111B.122C.123D.1245.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x,则所列方程为()A.213337x x x++=B.21133327x x x++=C.21133327x x x x+++=D.21133372x x x x++-=6.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值是()A.12B.15C.18D.217.一个两位数十位数字与个位数字的和是7,把这个两位数加上45,结果恰好等于个位与十位数字对调后组成的两位数,则这个两位数是()A.16B.25C.34D.618.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是().A.18B.27C.36D.45二、填空题9.某数的一半减去3所得的差比该数的2倍大3,若求该数为x,可列方程为____.10.一个两位数,个位上的数字比十位上的数字的2倍小3,如果把十位上的数字与个位上的数字对调,那么得到的两位数就比原两位数小9,原来的两位数是______.11.已知两个连续奇数的积是15,则这两个数是___________________.12.若代数式2﹣8x与9x﹣3的值互为相反数,则x=___.13.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等,那么如图的三阶幻方中x的值为_____.14.一个两位数,个位上的数字比十位上的数字的2倍大1;若把十位上的数字与个位上的数字对调,所得的新数比原数大45,则原来的两位数为______.15.三个连续奇数的和是153,则这三个数分别是________、________、_________.16.已知三个数的比是5∶7∶9,若这三个数的和是252,则这三个数依次是__________.三、解答题17.某学校食堂新购进了一批梯形餐桌,如图1所示,每张桌子可坐5人.(1)七(2)班41名学生同时就餐,当餐桌按如图2摆放时,至少需要多少张梯形餐桌?(2)现班级要举办一个活动,计划用4张餐桌无缝拼接,刚好能坐满10个人,请设计一个餐桌摆放的方案,并画出方案示意图.18.观察下列三行数:(1)第∶行数中的第n个数为(用含n的式子表示);(2)取每行数的第n个数,这三个数的和能否等于﹣318?如果能,求出n的值;如果不能,请说明理由;(3)如图,用一个长方形方框框住六个数,左右移动方框,若方框中的六个数之和为﹣156,求方框中左上角的数.19.将奇数1至2021按照顺序排成下表:记Pmn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P43=______;(2)若Pmn=2021,推理m=______;n=______;(3)将表格中的4个阴影格子看成一个整体并平移,所覆盖的4个数之和能否等于100.若能,求出4个数中的最大数;若不能,请说明理由.20.观察下面三行数:第一行:﹣2,4,﹣8,16,﹣32,64,…;∶第二行:﹣5,1,﹣11,13,﹣35,61,…;∶第三行:2,﹣3,10,﹣13,36,﹣59,….∶探索它们之间的关系,寻求规律解答下列问题:(1)直接写出第一行数的第7个数是,第二行数的第7个数是;(2)直接写出第二行数的第n个数是,第三行数的第n个数是;(3)取每行数的第n个数,判断是否存在这样的三个数使其中最大的数与最小的数的和为2021,若存在,请求出n的值;若不存在,请说明理由.参考答案:1.B2.B3.C4.D5.C6.D7.A8.A9.1323 2x x-=+10.2111.3和5或-3和-5.12.113.1014.4915.49515316.60、84、10817.(1)至少需要13张梯形餐桌(2)见解析18.(1)(﹣2)n;(2)能,7;(3)6419.(1)41;(2)m=169,n=3;(3)不能,20.(1)﹣128;﹣131;(2)(﹣2)n﹣3;(﹣1)n+1•2n+n﹣1;(3)存在,n=2022或n=2025答案第1页,共1页。
实际问题与一元一次方程(四)数字问题
④新数=原数-63.
借助表格
原数 新数
初中数学
十位数字 4x+1 x
个位数字 x
4x+1
两位数 10(4x+1)+x
10x+4x+1
分析:①原数=十位数字×10+个位数字;
②十位数字=4×个位数字+1;
4x+1
x
③新数=原数的个位数字×10+原数的十位数字;
④新数=原数-63. 10x+(4x+1)=10(4x+1)+x-63
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
三位数 100+10b+c 100b+10c+1
初中数学
例题讲解
例2 有一个三位数,它的百位数字是1,如果把1移 到最后,其他两位数字顺序不变,所得的三位数比 这个三位数的2倍少7,求这个三位数.
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
1
三位数
初中数学
例题小结
3. 未知数的选择;
原数 新数
十位数字 4x+1 x
个位数字 x
4x+1
初中数学
原数 新数
十位数字 y
(y-1)÷4
个位数字 (y-1)÷4
y
两位数 10(4x+1)+x
10x+4x+1
两位数 10y+(y-1)÷4
10y -1 4 y
例题小结
1. 逐字提取信息; 2. 两位数的表示; 3. 未知数的选择; 4. 检验的方法.
人教版七年级上册数学实际问题与一元一次方程(数字问题)同步训练带答案
人教版七年级上册数学3.4 实际问题与一元一次方程(数字问题)同步训练一、单选题1.有一个两位数,十位数字是个位数字的2倍,如果把这两个数字的位置对调,那么所得的两位数比原数小27,则原数是()A.42B.84C.36D.632.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为()A.x=-x+4B.x=-x+(-4)C.x=-x-(-4)D.x-(-x)=4 3.一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,则这个两位数是()A.26B.62C.71D.534.一个两位数的十位数字与个位数字之和是8,如果把这个两位数加上54, 那么恰好成为把个位数字和十位数字对调后组成的数,那么这两位数是()A.17B.26C.62D.715.一个两位数,把其十位数字与个位数字交换位置后,所得的数比原数多9,这样的两位数的个数有()A.0B.1C.8D.96.三个正整数的比是1 2 4,它们的和是84,那么这三个数中最大的数是() A.56B.48C.36D.127.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.4B.33C.51D.278.某月份的日历表如图.任意圈出一横行或一竖列相邻的三个数.这三个数的和不可能是()A.24B.42C.58D.66二、填空题9.一个两位数的十位数字与个位数字之和为10,如果把这个两位数加上36,所得新数恰好成为原数个位数字与十位数字对调后组成的两位数,则这个两位数是_____.10.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.11.观察一列数:1,-2,4,-8,16,-32,64,......,按照这样的规律,若其中连续三个数的和为3072,则这连续三个数中最小的数是_______12.已知两个连续奇数的平方和等于74,则这两个数为________.13.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有_____个.14.如果代数式3x-8的值与116互为倒数,则x的值为____________.15.一个两位数个位上的数是2,十位上的数是x,把2与x对调,新两位数比原两位数小27,则x是_______________16.如图,在3×3 方格内填入9 个数,使图中各行、各列及对角线上的三个数之和都相等,则x 的值是_____.三、解答题17.观察下列三行数:﹣2,4,﹣8,16,﹣32,64,…;﹣1,2,﹣4,8,﹣16,32,…;0,6,﹣6,18,﹣30,66,…;(1)第 行数中的第n个数为(用含n的式子表示)(2)取每行数的第n个数,这三个数的和能否等于﹣318?如果能,求出n的值;如果不能,请说明理由.(3)如图,用一个矩形方框框住六个数,左右移动方框,若方框中的六个数之和为﹣156,求方框中左上角的数.18.将正整数1 至2024 按一定规律排列成如图所示的8 列,规定从上到下依次为第1 行,第2 行,第3 行,…从左往右依次为第1 列至第8 列.(1)数56 在第行列;(2)平移图中带阴影的方框,使方框框住相邻的三个数,若被框住的三个数中最大的一个数为x,则被框的三个数的和能否等于2019?若能,请求出x;若不能,请说明理由.19.如图,是由一些奇数排成的数阵.(1)设框中的第一个数为x,则框中这四个数和为.(2)若这样框出的四个数的和200,求这四个数;(3)是否存在这样的四个数,使它们的和为8096?请说明理由.20.探索规律:将连续的偶2,4,6,8,…,排成如表:(1)请你求出十字框中的五个数的和;(2)设中间的数为x,请你用含x的式子表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2018吗?如能,写出这五个数,如不能,请说明理由.答案第1页,共1页 参考答案:1.D2.B3.B4.A5.C6.B7.A8.C9.3710.8411.-204812.5,7或5-,7-13.6.14.8.15.516.117.(1)(﹣2)n ;(2)n =7;(3)64.18.(1)7,8;(2)不可能.19.(1)若四个数和为420x +;(2)这四个数分别为45475355,,,;(3) 不存在20.(1)80;(2)用含x 的代数式表示十字框框住的5个数字之和为5x ;(3)不能框住五个数,和等于2018。
3.4.7实际问题与一元一次方程导学案(存款、数字问题)
3.4.7实际问题与一元一次方程----存款、数字问题学习目标:1、会用一元一次方程解决实际问题的存款和数字问题;2、在解决实际的过程中,提高分析问题、解决问题的能力。
重点难点:存款、数字问题中的一元一次方程建模。
学习过程:预备知识:1、存款问题中各量之间的关系:利息=本金×年利率×存款年数本息和=本金+利息税后利息=利息-利息税利息税=利息×20%2、数字问题:(1)多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是_______;②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是_______________;③四、五…位数依此类推。
(2)日历上的数字:在日历中用长方形框9个数字,设正中间的数为a,请填写右表中其他8个数。
探究1:小张前年存了一种年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税(利息税=利息×20%),所得利息为97.2元,问小张前年存了多少钱?探究2:某两位数,数字之和为8,将这个两位数的数字位置对换,得到的新两位数比原两位数小18,求原来的两位数。
探究3:用正方形圈出日历中的4个的和是76,这4天分别是几号?巩固练习:1、三个连续奇数的和为69,则这三个数分别是多少?2、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得到的两位数比原来两位数大36,则原两位数是多少?3、你假期外出旅行一周,这一周各天的日期之和是84,那么旅行社是_____号送你回家的.4、日历中同一竖列相邻三个数的和可以是()A .78 B.26 C.21 D. 45 ;5、你能在日历中圈出一个竖列上相邻的3个数,使得它们的和是40吗?为什么?小结:作业:课后反思:。
实际问题与一元一次方程公式总结
b、工程款=工程单价*工作时间S 总= S甲+S乙=甲单价*T甲+乙单价*T乙
c、合作类题型
S 总= S甲+S乙= V甲t甲合作时间+V乙t甲合作时间
三、和倍分差问题
加(和)—+ 减(差)-- 乘(倍)—* 分(除)—/
四、数字问题
123= 1*100+2*10+3*1
实际问题与一元一次方程公式模型总结
一、行程问题(路程=速度*时间)
a、相遇问题
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、追击问题
S 差= S甲-S乙 S 总= S甲+S乙 S 总= (V甲-V乙)T
c、顺逆流问题
V顺=V船+V水
V逆=V船-V水
二、工程问题(a、工程总量=工作时间*工作效率)
xyz=100x+10y+z
五、利润问题
利润=售价-进价(标价-成本)
售价=标价*折数
利润金*期数*利率*(1-利息税)
本息和=本金+利息
年利率=月利率* 12
人教版七年级上册数学3 实际问题与一元一次方程 数字问题训练(含答案)
人教版七年级上册数学3.4实际问题与一元一次方程--数字问题训练一、单选题1.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能是()A.63B.70C.91D.1052.将连续的偶数2,4,6,8,…排成下图所示,若将十字框上下左右移动,可框住五个数,这五个数的和可能等于()A.123B.115C.240D.4003.观察下列按一定规律排列的n个数:1,4,7,10,13,16,…,若最后三个数之和是3000,则n等于()A.333B.334C.335D.3364.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是()A.﹣3B.0C.3D.﹣25.如果2(x+3)与3(1-x)互为相反数,那么x的值为()A.-8B.8C.-9D.9 6.若三个连续偶数的和是24,则它们的积为()A.48B.240C.480D.120 7.三个连续的整数的和是48,则这三个数中最大的数是()A.15B.20C.16D.178.一个两位数,个位数字与十位数字的和为6,若调换位置则新数是原数的47,原来的两位数是()A.24B.42C.15D.51二、填空题9.我国古代的“九宫格”是由3×3的方格构成的,每个方格内均有不同的数,每一行每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x的值应该是___.10.某数的60%减去1的差等于4,设某数为x,列出方程是__________.11.有一列数按规律排列:1,3-,9,27-,81……(这列数是整数)在这一列数中某三个相邻的和是189-,则三个数分别___________.12.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…中某三个相邻数的和是-1701,这三个数中最小的数是_________.13.三个连续的奇数的和是153,则这三个奇数中间的那个数是____;14.若某数除以4再减去2,等于这个数的13加上8,则这个数为______.15.已知四个数的和是100,如果第一个数加上4,第二个数减去4,第三个数乘以4,第四个数除以4,得到的这四个新数恰好都相等,则这四个数分别是______.16.一个两位数,个位数字比十位数字大5,如果把个位数字与十位数字对调,那么所得到的新两位数与原来两位数的和是143,则原来的两位数为___________.三、解答题17.将连续的偶数2,4,6,8……,排成如表;如图,用十字框框住五个数,我们把中间的数叫十字数,如图中的16叫做十字数.(1)若十字数是x,十字框内五个数的和是多少?(用x式子表示)(2)若将十字框上下左右移动,小明认为十字框内五个数的和可以等于2015;而小红认为这五个数的和可以等于2000.请你判断两位同学的观点是否正确,若正确请求出十字数,若不正确请说明理由.(3)若将所有的十字数按由小到大排列,第2022个十字数是.18.观察下列三行数:①1,3,5,7,9,…①5,8,11,14,17-----,…①0,5,10,15,20,…(1)第①行数中的第8个数是___________.(2)取第①行、第①行中的第n个数,用含n的式子表示这两个数的和.(3)如图,用一个长方形方框框住六个数,左右移动方框,框住的六个数之和能否等于2022?如果能,请写出这六个数,如果不能,请说明理由.19.观察下列按一定规律排列的三行数:第一行:2,-4,8,−16,32,-64…;①第二行:4,-2,10,−14,34,-62…,①第三行:1,−2,4,-8,16,-32…;①解答下列问题:(1)每一行的第8个数分别是______ ,______ ,______ ;(2)第三行中是否存在某3个相邻数的和是768?若存在,则求出这三个数;若不存在,说明理由.20.观察下列三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣1,5,﹣7,17,﹣31,65,…;①﹣1,2,﹣4,8,﹣16,32,…;①(1)第一行的第n个数为;(2)如图1,在上面的数据中,用一个长方形方框框住同一列的三个数,设a=x,则a+b+c=(用含x的式子表示);(3)如图2,在上面的数据中,用一个长方形方框框住两列共六个数,数a,b,c为第n列的三个数,若方框中的a,d,c,f这四个数之和为﹣96,求n的值.参考答案:1.C2.C3.C4.A5.D6.C7.D8.B9.010.60%14x-=--11.27,81,24312.-218713.5114.120-15.12,20,4,6416.4917.(1)5x(2)两位同学的观点都不正确(3)674818.(1)15(2)3n--(3)不能,理由见解析19.(1)−256;−254;−128(2)不存在20.(1)(2)n-;(2)512x+;(3)n=6.。
3-4 实际问题与一元一次方程(数字问题) 同步练习 2021-2022学年人教版数学七年级上册
3.4 实际问题与一元一次方程(数字问题)一、单选题1.一个两位数十位数字是个位数字的2倍,把这两个数字对换位置后,所得两位数比原数小18,那么原数是()A .21B .42C .24D .482.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .213.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是,则所列方程为()x A .B .213337x x x ++=21133327x x x ++=C .D .21133327x x x x +++=21133372x x x x ++-=4.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为y ,则列出的方程正确的是( )A .B .12530y y ⨯=+5(120)10030y y +=+C .D .5(120)30y y +=1210030y y +=+5.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( )A .2的整数倍B .3的整数倍C .5的整数倍D .9的整数倍6.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是( )A .405B .545C .2015D .20207.甲、乙、丙三数之比是,甲、乙两数之和比乙、丙两数之和大30,则甲数为( 2:3:4)A .B .C .D .30-45-15-60-8.将,2,,4,…,60这60个整数分成两组,使得一组中所有数的和比另一组所有数1-3-的和小10,这样的分组方法有()A .1种B .2种C .3种及以上D .不存在9.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是,根据题意列方程是( )x A .B .21133327x x x x +++=21133327x x x ++=C .D .21133327x x x x ++=+21133327x x x x ++=-10.一个两位数的两个数字之和为6,如果将个位数字与十位数字对调后再加上18,仍得原数,则这个两位数是()A .15B .51C .24D .4211.如图所示,将正整数1至2020按一定规律排列成数表,平移表中带阴影的方框,方框中三个数的和可能是( )A .2018B .2019C .2013D .204012.数轴上一动点向左移动2个单位长度到达点,再向右移动6个单位长度到达点,若A B C 点表示的数是1,则点表示的数为()C A A .7B .3C .-3D .-213.如果2(x +3)与3(1-x)互为相反数,那么x 的值为( )A .-8B .8C .-9D .914.若三个连续偶数的和是24,则它们的积为()A .48B .240C .480D .12015.设一列数,中任意三个相邻的数之和都是20,已知,123,,,a a a 2015 a 22a x =,,那么的值是( )189a x =+656a x =-2021a A .2B .3C .4D .5二、填空题16.若代数式2﹣8x 与9x ﹣3的值互为相反数,则x =___.17.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为______.m18.已知两个有理数:-15和9.若再添一个有理数,且-15,9与这三个数的平均数恰等x x 于,则的值为______.x x 19.三个连续的奇数的和是153,则这三个奇数中间的那个数是____;20.已知四个数的和是100,如果第一个数加上4,第二个数减去4,第三个数乘以4,第四个数除以4,得到的这四个新数恰好都相等,则这四个数分别是______.三、解答题21.已知有理数-3,1,m .(1)计算-3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m 的值.22.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中,的值分别是多少?m n23.定义:对于整数n,在计算n+(n+1)+(n+2)时,结果能被15整除,则称n为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n在﹣10到10之间时,直接写出使2n+3是15的“亲和数”的所有n的值.24.一个三位数,它的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5(1)用含a的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字比原来的三位数减少了多少?24681025.如图,将连续的偶数,,,,,排成一数阵,有一个能够在数阵中上下左右T426平移的字架,它可以框出数阵中的五个数.试判断这五个数的和能否为?若能,请求出这五个数;若不能,请说明理由.答案1.B解:设原两位数的个位数字为x,则十位数字为2x,由题意得:20x+x=10x+2x+18,解得x=2,则20x+x=20×2+2=42答:这个两位数为42.故选B .2.D解:如图,由题意得:A =P -10,设C =x ,∴B =P -A -C =P -(P -10)-x =10-x ,∵B +7+E =P ,∴E =P -B -7=P -(10-x )-7=P +x -17,∵C +7+D =P ,∴D =P -C -7=P -x -7,又∵3+D +E =P ,∴3+P -x -7+P +x -17=P ,整理得:2P -21=P ,∴P =21.故选:D .3.C解:由题意可得.21133327x x x x +++=故选C4.B解:依题意得:5(120+y )=100y +30.故选:B .5.B解:由题意得:100a +10(a +1)+(a ﹣1)=111a +9.因为(111a +9)÷3=37a +3.所以这个三位数一定是3的倍数.故选:B .6.C解:设方框中间的数为x ,则方框中的5个数字之和为:,(10)(10)(2)(2)5x x x x x x +-+++-++=∵平移十字方框时,方框中间的数x 只能在第2或3或4列.∴可判断:A 、405÷5=81,在第一列,故本选项不符合题意;B 、545÷5=109,在第五列,故本选项不符合题意;C 、2015÷5=403,在第二列,故本选项符合题意;D 、2020÷5=404,数表中都是奇数,故本选项不符合题意.故选:C .7.A解:设甲数是2x ,则乙数是3x ,丙数是4x ,则2x+3x-(3x+4x )=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A .8.C解:这60个数和为:,()()()1234596011130-++-+++-+=+++= 设一组的和为x ,则另一组的和为,()10x -则有,解得,()1030x x +-=20x =所以另一组的和为10,那么分组方法有3种及以上;故选C .9.A解:设这个数是x ,依题意有,21133327x x x x +++=故选:A10.D解:设原数的个位数字是x ,则十位数字是6-x .根据题意得:10x+(6-x )=10(6-x )+x+18,解得:x=4,6-x=2故这个两位数为42.故选:D .11.C解:设中间数为x ,则另外两个数分别为x-1、x+1,∴三个数之和为(x-1)+x+(x+1)=3x .根据题意得:3x=2018、3x=2019、3x=2013、3x=2040,解得:x=672(舍去),x=673,x=671,x=680.23∵673=84×8+1,∴2019不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.∵680=85×8,∴2040不合题意,舍去;故选:C .12.C解:设点A 表示的数为x ,则由题意得:x-2+6=1,解之得:x=-3,13.D解:∵2(x +3)与3(1-x)互为相反数,∴2(x +3)+3(1-x)=0,解得x=9,故选:D .14.C解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .15.C解:由题可知,a 1+a 2+a 3=a 2+a 3+a 4∴,14a a =∵,234345a a a a a a ++=++∴a 2=a 5,∵,456345a a a a a a ++=++∴ ,36a a =……∴每三个循环一次,123,,a a a ∵ ,6318=÷∴ ,183a a =∵ ,653=212¸ ∴ ,652a a =∴2x =6-x ,∴ ,234,11a a ==∵a 1,a 2,a 3的和为20,∴ ,15a =∵267332021 =÷ ,∴ ,202124a a ==故选:C .16.1解:由题意得:,28930x x -+-=解得,1x =故1.17.1解:如图,由题意,图中①表示的数是,15726--=图中②表示的数是,15258--=则,6815m ++=解得,1m =故1.18.-3解:由题意可得:(-15+9+x )÷3=x ,解得:x=-3,故-3.19.51解:设中间的奇数为x ,则最小的为x−2,最大的为x+2,所以:x−2+x+x+2=153解得:x=51,故51.20.12,20,4,64解:设这个相等的数为x ,则第一个数为:x-4,第二个数为:x+4,第三个数为:x ,第四个数为:4x ,14根据题意得:x-4+x+4+x+4x=100,14解得x=16,经检验符合题意,则四个数分别为12,20,4,64.故 12,20,4,64.21.(1)-1;(2)8解:(1)-3,1这两个数的平均数为;312122-+-==-(2)由已知得,,解得.3123m -++=8m =22.(1)3;(2),1m =-3n =解:(1)7193-++=(2)由(1)可知:每一横行、每一竖列以及对角线上的数字之和都等于3,∴,,593m -++=13n m ++=∴,.1m =-3n =23.(1)是;(2)404个;(3)n =或-7或3或8.2-解:(1)∵(﹣16)+(﹣15)+(﹣14)=﹣45.∴﹣45能够被15整除,故﹣16是15的“亲和数”.故是.(2)根据定义若数n 是15的“亲和数”,则有:=.1215n n n ++++15n +∴当1到2021这2021个整数中,若n 是15的亲和数,n 的个位必定是4或者是9.∴1到2021这2021个整数中,是15的“亲和数”的个数为:404个.20202=10⨯(3)由(2)可得2n +3是15的“亲和数”时,则的个位数字必定是0或±5()231n ++又∵当n 在﹣10到10之间时,2n +3在-17或23之间.∴或或或或()231=0n ++()2315n ++=±()23110n ++=±()23115n ++=±()23120n ++=解得:n =或或-7或或或3或或8.2-92-192-12112又由题意n 为整数∴n 的值为-2或-7或3或824.(1)131a +490;(2)495解:(1)∵个位数字是a ,十位数字是个位数字的3倍少1,百位数字比个位数字大5,∴十位数字为3a﹣1,百位数字为a +5,∴此三位数为:100(a +5)+10(3a﹣1)+a =131a +490;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字位:100a +10(3a﹣1)+a +5=131a﹣5,131a +490﹣(131a﹣5)=131a +490﹣131a +5=495.∴新得到的三位数字比原来的三位数减少了495.25.能;,,,,7484868894解:这五个数的和能为.原因如下:426设最小数为,则其余数为:,,,.x 10x +12x +14x +20x +由题意得,,(10)(12)(14)(20)426x x x x x ++++++++=解方程得:.74x =所以这五个数为,,,,.7484868894。
3.4(6)实际问题与一元一次方程--数字问题
3.4(6)实际问题与一元一次方程--数字问题一.【知识要点】1.要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
二.【经典例题】1.填空:(1)一个两位数,十位上的数6,个位上的数是2,这个两位数是___。
(2)一个两位数,十位上的数x,个位上的数是2,这个两位是____。
(3)一个三位数,百位上的数是a,十位上的数b,个位上的数是c,这个三位数是_______。
(4)一个两位数,十位上的数x,个位上的数是十位上的数的2倍,这个两位数是______。
(5)一个两位数,十位上的数比个位上的数小2,设个位上的数是x,则十位上的数是____,这个两位数是____________。
如果把这个数的个位数字与十位数字对调,所得的新两位数是___________。
2.一个三位数,十位数字比百位数字大2,且比个位数字小2,已知这个三位数的数字之和的15倍等于原数,求这个三位数。
3.一个两位数,十位上的数字比个位上的数字4倍多1,如果把个位上的数字与十位上的数字对调,那么得到的数比原来小63,求原来的两位数。
3.一个六位数左端的数字是1,如果把左端的数字1移到右端,那么所得新的六位数等于原数的3倍,求原来的六位数.5.定义[x]表示不超过x的整数中最大的整数,如[1.91]=1,[-1.23]=-2,根据此规律解方程[2.8]x+[一3.8]=5三.【题库】【A】1.三个连续偶数的和为18,设最大的偶数为 x, 则可列方程___________________.2. 三个连续整数的和为54,则这三个数为()A.15,16,17 B.16,17,18 C.17,18,19 D.18,19,203.一个数的2倍与这个数的一半的和等于25,则这个数是________.4.若三个连续的偶数和为18,求这三个数。
9.实际问题与一元一次方程教案
◆课题名称:实际问题与一元一次方程◆教学目标:了解到一元一次方程与实际的联系,并具备运用一元一次方程的知识分析和解答相关实际问题的能力;◆重难点:重点:熟练掌握方程的解法并能运用一元一次方程的知识对所求问题进行分析和解答;难点:寻找应用题中的等量关系、列方程式并准确求解。
◆教学步骤及内容:1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,• 然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一:简单应用题例1:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?分析:1、设未知数:设这个班有x名学生2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等.3、列方程:3x+20=4x-254,解方程:解:移项,得 3x-4x=-25-20合并同类项,得 -x=-45系数化为1,得 x=45答:这个班有45个学生。
随堂练习:有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还和了一条船,正每条船坐9人,问这个班共多少同学?例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?分析:分析后发现:后面一个数是前一个数的-3倍。
解:设这三个相邻数中的第一个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x 根据这三个数的和是-1710,得x-3x+9x=-1701合并同类项,得 7x=-1701系数化为1 ,得x=-243所以-3x=729, 9x=-2187答:这三个数是-243、729、-2187随堂练习:1,三个连续的奇数的和是27,求这三个奇数。
人教版七年级数学上册-3-4-实际问题与一元一次方程-同步练习(数字、和差倍分问题)【含答案】全篇
人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入的方格内,使得处于同一横行、同33⨯一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母所表示的数是( )mA .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是()A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字使得其中任意四个相邻“○”中所填数字之和都等于,1231000,,,m m m m 10-已知,,则的值为( )251m x =-9992m x =-xA .1B .C .2D .1-2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队,如果设应13从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =(72﹣x )B .(96﹣x )=72﹣x 1313C .(96+x )=72﹣x D .×96+x =72﹣x13137.课外兴趣小组的女生人数占全组人数的,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有13多少人?若设原有x 人,则下列方程正确的是( )A .B .C .D .1132x x =11+632x x =11+632x x =11(6)23x +=8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .B .C .D .()4x 12x 8-=+()4x 12x 8+=-x x 8142++=x x 8142--=9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .B .5(211)6(1)x x +-=-5(21)6(1)x x +=-C .D .5(211)6x x +-=5(21)6x x+=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是()A .8x+3=7x-4B .8x-3=7x+4C .8(x-3)=7(x+4)D .x+4=x-31718二、填空题11.已知m ,n 都是质数,若关于的方程的解是3,则__________..x 597mx n +=4m n -=12.小明分发一堆水果分给好朋友,第个朋友取走一半加个,第个朋友取走剩下的一半加个,第个朋友再取走11213剩下的一半加个,……,直到第个朋友再取走剩下的一半加个时,恰好给小明留下了个水果,则这堆水果一共有1711_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.x 15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )==37n n '+;315537852=3737+(1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中,若要使甲处植树的人数仍然是乙处植树人数的90100m <<3倍,则应调往甲,乙两处各多少人?21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离;(4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:时段8:00~9:0010:00~11:0012:00~13:0014:00~15:00 16:00~17:00 客流量(人)-21+33-12 +21+54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =或-7或3或8.2-22.(1)0.5;(2);(3)余下的数学课本高出地面的距离为cm ;(4)23或27850.5x +() 980.5a -23.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
实际问题与一元一次方程--数字和图形问题
§3.4.实际问题与一元一次方程1、圆柱的底面半径为4,体积为80,若设圆柱的高为x,可列出方程为:2、已知梯形的高为4,面积为6,上底比下底的1/3多0﹒5,则梯形的上底为3、长方形的长与宽之比为3∶2,周长为170cm,求长方形的面积.4、圆环形状如图所示,它的面积是2002cm,外沿大圆的半径是10cm,内沿小圆的半径是多少?5、在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形容器里,圆柱形容器中的水有多高?6、要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多少长?7、长为5cm的长方形的面积与底为14cm的三角形的面积相等,且长方形的宽比三角形的高多1cm,求长方形的宽.8、把12的两个数字对调,得到21,一个两位数,个位上的数是a,十位上的数字是b,把他们对调,得到另一个数,用式子分别表示这两个数及它们的差,这样的差能被9整除吗?为什么?9、一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个数是多少?10、一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原来的三位数的和是1171,求这个三位数。
11、有一些分别标有5,10,15,20,25……的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数之和为240。
(1)小明拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?12、(选作)希腊数学家丢番图(公园3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了。
实际问题与一元一次方程
60+60-48-80=-8(元)
答:卖这两件衣服总的亏损了8元。
巩固训练
某商场把进价为1980元的商品按标价的八 折出售,仍获利10%, 则该商品的标价为 _____ 元. 解:设该商品的标价为x元.
80%x-1980=1980×10%
解得 x=2722.5
答:设该商品的标价为2722.5元.
损,或是不盈不利?
两件衣服的进价是 x + y
=_1_2_8_元,而两件衣服的售
价是60+60=120元,进价
__大___于售价,由此可知卖
这两件衣服总的盈亏情况是
¥60
¥60
_亏__损__了__8__元_.
解:设盈利25%的那件衣服的进价是x元, 另一件的进价为y元,根据题意,得
x+0.25x=60 解得 x=48 y-0.25y=60
解 方 程
实际问题 的答案
检验
一元一次方程 的解(x = a)
四、尝试合作, 探究方法
商品销售中的盈亏问题。
成本
标价
实际售价
利润 = 售价-进价
利润
利润率
利润 利润率 =
进价
x
打 x 折的售价= 原价×
10
1.某商品原来每件零售价是a元, 现在每 件降价10%,降价后每件零售价 是 0.9a ;
利润 = 售价-进价
利润率 =
利润 进价
打 x 折的售价=
原价×
x 10
探究二:球赛积分表问题
某次篮球联赛积分榜如下:
队名
比赛 场次
胜 场
负 场
积 分
前进 14 10 4 24
问题1:你能从表格中 东方 14 10 4 24 了解到哪些信息?
一元一次方程与实际问题的多种题型
一元一次方程与实际问题的多种题型实际问题与一元一次方程(1)一、数字问题1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.2.日历的12月份上,爷爷生日那天的上、下、左、右4个日期的和为80,你能说出爷爷生日是几号吗?3.有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数.二、人员分配问题4.某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?5.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?三、追击相遇问题6.甲、乙两车划分从相距XXX的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?7.A、B两地相距31千米,甲从A地骑自行车去B地,1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙动身后多少小时追上甲;(2)若乙抵达B地后立刻返回,则在返回路上与甲相遇时距乙动身多长工夫?8.某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.9.某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时抵达.已知小货车的速度是36千米/时,求两地间路程.四、工程问题10.一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?11.检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?5、方案计划题目12.某中学组织初一同砚春游,原打算租用45座客车若干辆,但有15人没有坐位;如果租用同样数目的60座客车,则多出一辆,且其余客车正好坐满.已知45座客车日房钱为每辆220元,60座客车日房钱为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?13.XXX和XXX在课外研究中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖正好做成一个包装盒,为了充裕利用资料使做成的盒身和底盖恰好配套,他们设想了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?实际题目与一元一次方程(2)一、销售与利润问题1.在商品销售经营中,触及的基本干系式:(1)商品的原销售价、提价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.商品的原销售价、降价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.(2)商品的实际售价、商品的进价与商品的利润之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(3)商品的利润、商品的进价与商品的利润率之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(4)在打折销售中,商品的标价、折扣数与商品打折后的实际售价之间的干系是__________________________________________________ ____________________.2.在我国银行储蓄存款计较利息的基本干系式首要有:(1)主顾存入银行的钱叫做______,银行付给主顾的酬金叫做______,它们的和叫做____,即__________________.(2)顾客将钱存入银行的时间叫做______.每个期数内的______与____的比叫做利率.这样,本金、利率、期数、利息这四个量的关系是____________.3.商店中某个玩具的进价为40元,标价为60元.(1)若按标价出售这个玩具,则所得的利润及利润率分别是多少?(2)顾客在与店主砍价时,店主为了保住15%的利润率,出售这个玩具的售价底线是多少元?(3)店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打八八折的告示,则这个玩具的实际售价是多少元?(4)若店主设法将进价降低10%,标价不变,而贴出打八八折的告示,则出售这个玩具的利润及利润率划分是多少?4.(1)某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?(2)想一想,如果(1)中该商品的进价没有具体给出,这时该题目怎样办理?5.某经销商经销一种商品,由于进货价降低了5%,售价不变,使得利润率由k%提高到(k+7)%,求k.〔售价=进货价×(1+利润率)〕6.XXX和XXX相约到图书城去买书,请你根据他们的对话内容,求出XXX上次所买书籍的原价.7.下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.甲商场商品进货单供货单位品名与规格商品代码商品所属进价(商品的进货代价)标价(商品的预售价格)折扣利润(实际销售后的利润)乙单位P4200DN—63D7电脑专柜元5850元8折210元保修终生,三年内免收任何费用,三年后收取材料费,五日售后效劳快修,周起色备用,免费投诉,回访实际问题与一元一次方程(测试)一、选择题1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为().(A)13.4元(B)13.5元(C)13.6元(D)13.7元2.一市肆把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为().(A)3200元(B)3429元(C)2667元(D)3168元3.某市肆将彩电按原价提高40%,然后在广告上写“大酬宾,八折优待”,结果每台彩电仍获利270元,那么每台彩电原价是()(A)2150元(B)2200元(C)2250元(D)2300元4.一个市肆以每3盘16元的代价购进一批灌音带,又从别的一处以每4盘21元的代价购进比前一批数目加倍的灌音带.如果两种合在一起以每3盘k元的代价全部出售可得到所投资的20%的收益,则k值等于()(A)17(B)18(C)19(D)20二、解答题5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水.若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算).6.某市居民生活用电基本代价为每度0.4元,若每月用电量跨越a度,跨越部分按基本电价的70%收取.(1)某户5月份用电84度,共交电费30.72元,求a是多少;(2)若6月份的电费平均为每度0.36元,求该户6月份共用多少度电,应交纳多少电费?7.八年级三班在召开期末总结表彰会前,班主任放置班长XXX去市肆买奖品,下面是XXX与售货员的对话:XXX说:阿姨好!售货员:同砚,你好,想买点甚么?XXX说:我只要100元,请您帮忙放置买10支钢笔和15本笔记本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程(数字问题)
【学习目标】
1.掌握“数字问题”的解决策略;
2.能运用“方程模型”解决实际问题.
【活动设计】
例题1:在如图所示的2016年6月的日历表中,任意框出表中竖列上三个相邻的数这三个数的和不可能是()
A.27 B.51C.69D.72
例题2:学校组织一次知识竞赛,共有20道题,每小题答对得5分,答错或不答都扣1分,(1)小明最终得了82分,那么他答对了多少道题?
(2)这次竞赛中有得90分的同学吗?为什么?
例题3:一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,求这个两位数.
例题4:2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,求广州恒大胜的场数.
【课堂测试】
1.小明同学在某月的日历上圈出了三个相邻的数a、b、c,并求出了它们的和为42,则这三个数在日历中的排列位置不可能的是()
A.B.C.D.
2.一个两位数,十位数字比个位数字大5,且这个两位数比两个数位上的数字之和的8倍还大5.求这个两位数.
3.有一列数按一定规律排列为1,﹣3,5,﹣7、9,…,如果其中三个相邻的数之和为﹣201,求这三个数;
4.学校组织了一次知识竞赛,共有25道题,每一道题答对得5分,答错或不答都扣3分,小明得了85分,求他答对的题数.
5.解答下列问题:
(1)某月的月历如图(1),用1×3的长方形框出3个数.
①如果任意圈出一竖列上下相邻的三个数,设最小数为a,用含a的式子表示这三个数的和
为;
②如果任意圈出一横行左右相邻的三个数,设最小数为b,用含b的式子表示这三个数的和
为;
(2)若将连续的自然数1到150按图(2)的方式排列长方形阵列,然后用一个2×3的长方形框出6个数,你能让框出的6个数之和为255吗?如果能,请求出这个长方形框中最小的数;如果不能,请说明理由.
实际问题与一元一次方程(数字问题作业)
1.如图1,是2010年11月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )
A .a d b c +=+
B .a d b c -=-
C .2a c b d ++=+
D .14a b c d ++=+
2.有一列数,按一定规律排列成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和
是﹣1701,求这三个数中最小的数.
3.一个两位数,十位数字比个位数字的2倍少3,若把十位数字与个位数字互换,所得的数比原数小18,求这个两位数.
4.把2011个正整数1,2,3,4,…,2010,2011按如图方式排列成一个表.
(1)如图,用一个正方形框在表中任意框出4个数,在左上角的一个数记为x ,则另三个数用含x 的式子表示出来,从大到小依次是 , , ,这四个数的和是 .
(2)当(1)中被框住的四个数之和等于416时,x 的值为多少?
(3)从左到右,第1至第7列各列数之和分别记为1a ,2a ,3a ,4a ,5a ,6a ,7a ,则这7个数中,最大数与最小数之差等于 (直接写出正确答案).
5.某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分;3道抢答题,
每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.
(1)甲队必答题答对了多少道?乙队必答题得了多少分?
(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队啦啦队队员小
黄说:“我们甲队输了!”小汪说:“小黄的话不一定对!”请你举一例说明“小黄的话”有何不对.。