《等差数列》市级公开课教案及说明

合集下载

等差数列两课教案

等差数列两课教案

等差数列两课教案一、教学目标知识与技能目标:理解等差数列的定义,掌握等差数列的通项公式,能够运用等差数列的性质解决实际问题。

过程与方法目标:通过观察、分析、归纳等差数列的性质,培养学生的逻辑思维能力和数学运算能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

二、教学重点等差数列的定义,等差数列的通项公式,等差数列的性质。

三、教学难点等差数列通项公式的理解和运用,等差数列性质的推导和应用。

四、教学方法采用问题驱动法、案例分析法、小组讨论法等多种教学方法,引导学生主动探究、合作交流,从而达到对等差数列知识的理解和运用。

五、教学过程1. 导入新课:通过回顾等差数列的定义和性质,引出本节课的内容——等差数列的通项公式。

2. 自主学习:学生自主学习等差数列的通项公式,理解公式的含义和运用。

3. 案例分析:教师给出几个等差数列的实例,引导学生运用通项公式解决问题。

4. 小组讨论:学生分组讨论等差数列的性质,总结出等差数列的性质。

5. 课堂小结:教师引导学生总结本节课的主要内容和收获。

6. 课后作业:布置适量的课后练习,巩固所学知识。

教学反思:本节课通过问题驱动、案例分析和小组讨论等多种教学方法,使学生掌握了等差数列的通项公式和性质。

在教学过程中,注意引导学生主动探究、合作交流,培养了学生的逻辑思维能力和数学运算能力。

但也发现部分学生在理解等差数列通项公式时存在困难,需要在今后的教学中加强针对性辅导。

六、教学内容本节课将继续深入学习等差数列的相关知识,主要包括等差数列的前n项和公式、等差数列的求和方法以及等差数列在实际问题中的应用。

七、教学过程1. 复习导入:通过复习上节课所学的等差数列的通项公式,引导学生自然过渡到本节课的学习内容。

2. 自主学习:学生自主学习等差数列的前n项和公式,理解公式的含义和运用。

3. 案例分析:教师给出几个等差数列的前n项和实例,引导学生运用公式解决问题。

数学《等差数列》教案

数学《等差数列》教案

数学《等差数列》教案一、教学目标1.了解等差数列的定义、性质及应用。

2.掌握等差数列通项公式的推导及应用。

3.能够解决与等差数列相关的问题,提高数学推理和实际问题解决问题能力。

二、教学重点1.等差数列的定义及性质。

2.等差数列通项公式的推导及应用。

三、教学难点1.等差数列求和公式的应用。

2.实际问题的应用解决。

四、教学过程1.引入通过一些生活实例,介绍等差数列,例如:“同学们,我们一天的时间是有限的,每个人每天需要做的事情也是相似的,比如说早上起床、上学、放学、晚上睡觉等等都是我们必须要做的。

这些事情每天都要做,并且时间是依照每个人的生活规律而定的,那我们能不能通过一种方式来进行计算呢?其实我们能,那就是等差数列。

”2.讲授(1)等差数列的定义及性质设有数列a1,a2,……an,如果an+1-an=a (n=1,2,3,……)则称该数列为等差数列,其中a为公差。

等差数列的特点:每一项与前一项的差是同一值,即公差,记为d。

同学们可以看一下图表进行理解:a1 a2 a3 …... an an+1d d ….. d d(2)等差数列的通项公式由于在等差数列中,每一项与前一项的差是固定的,即公差d。

每一项可表示为:an = a1 + (n - 1)d(式①)再将式①中的an带入下面的式子:S = (a1 + an) n / 2 = (a1 + a1 + (n - 1)d) n / 2=S = (n / 2) [2a1 + (n - 1)d]其中,S为等差数列前n项的和,a1为首项,an为末项,n为项数,d为公差。

上面的公式就叫做等差数列的通项公式。

(3)等差数列的应用等差数列的通项公式,奠定了等差数列在数学中的地位,当然,在实际应用中等差数列也起到了重要的作用。

需要同学们自己在生活中开动脑筋寻找这方面的应用。

3.练习同学们可以先教师讲解例题,然后请同学们进行思考、讨论,最后集体讲解。

4.总结通过本节课的学习,我们了解了什么是等差数列,学习了等差数列的通项公式和求和公式,掌握了等差数列的求和技巧和应用方法。

等差数列教案市公开课一等奖省优质课获奖课件

等差数列教案市公开课一等奖省优质课获奖课件
(2)已知 a3+a11=10,求 a6+a7+a8 分析: a3+a11 =a6+a8 =2a7 ,又已知 a3+a11=10, ∴ a6+a7+a8= 23(a3+a11)=15
第11页
已知{an}为等差数列 且 a4+a5+a6+a7=56,a4a7=187,求公差d.
三数成等差数列,它们和为12,首尾二数 积为12,求此三数.
已知数列an中,a1
3,
1 an
1 an1
5(n
2),则an
____ .
第12页
第13页
知识回顾
定义 — 假如一个数列从第2项起,每一项与
㈠等差数列公差 —
它前一项差 d =an+1-an
.
等于同. 一. 个. 常. 数. .
几通何项意—义a—n=a等同1+(差一n-数条1)d列直各线项上.对应点都在
【说明】 ①数列{ an }为等差数列
an+1-an=d 或an+1=an+d

②公差是 唯一 常数;
m n p q,am an ap aq.
第9页
等差数列性质1
1. {an}为等差数列
an+1- an=d
an+1=an+d
an= a1+(n-1) d an= kn + b(k、b为常数)
2. a、b、c成等差数列 b为a、c 等差中项AA
b a c 2b= a+c
③推导等差数列通项公式方法叫做 递推法.
第2页
由定义归纳通项公式
a2 - a1=d,

《等差数列》教案

《等差数列》教案

《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的定义及其性质。

2. 能够运用等差数列的通项公式和求和公式解决实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容:1. 等差数列的定义:介绍等差数列的定义,通过实例让学生理解等差数列的特点。

2. 等差数列的性质:探讨等差数列的性质,如相邻两项的差是常数,任意一项都可以用首项和公差表示等。

3. 等差数列的通项公式:引导学生推导等差数列的通项公式,并解释其意义。

4. 等差数列的前n项和公式:引导学生推导等差数列的前n项和公式,并解释其意义。

5. 等差数列的应用:通过实例让学生运用等差数列的知识解决实际问题,如计算等差数列的前n项和,求等差数列的某一项等。

三、教学重点与难点:1. 教学重点:等差数列的概念、性质、通项公式和前n项和公式的理解与运用。

2. 教学难点:等差数列通项公式和前n项和公式的推导过程。

四、教学方法:1. 采用问题驱动法,通过提问引导学生思考和探索等差数列的知识。

2. 使用多媒体辅助教学,展示等差数列的图形和实例,增强学生的直观理解。

3. 利用小组讨论法,让学生分组讨论等差数列的性质和公式,促进学生的合作学习。

五、教学准备:1. 准备PPT课件,包括等差数列的定义、性质、通项公式和前n项和公式的讲解。

2. 准备一些等差数列的实际问题,用于课堂练习和巩固知识。

3. 准备答案和解析,用于课堂讲解和解答学生的疑问。

六、教学过程:1. 导入:通过一个简单的等差数列实例,如自然数的序列,引导学生思考等差数列的特点。

2. 新课讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,结合PPT 课件和实例进行解释。

3. 课堂练习:给出一些等差数列的实际问题,让学生运用所学知识进行计算和解答,教师进行指导和解析。

4. 小组讨论:让学生分组讨论等差数列的性质和公式,分享彼此的想法和理解,教师进行指导和点评。

5. 总结与复习:对本节课的主要内容和知识点进行总结回顾,强调重点和难点,解答学生的疑问。

等差数列市公开课获奖教案省名师优质课赛课一等奖教案美术

等差数列市公开课获奖教案省名师优质课赛课一等奖教案美术

等差数列教案美术一、引言等差数列是数学中基础而又重要的概念之一。

学生在初中阶段就会接触到等差数列的概念,并学习其性质和求解方法。

然而,对于初学者来说,等差数列的概念可能有些抽象,很难理解其实际应用。

因此,在教授等差数列概念时,结合美术元素,进行艺术化的教学方法,将能够增强学生的学习兴趣,并帮助学生更好地理解等差数列的性质和应用。

二、教学目标通过本教案的学习,学生将能够:1. 理解等差数列的定义和性质。

2. 利用等差数列的求和公式计算数列的和。

3. 运用等差数列的性质和求和公式解决实际问题。

4. 通过美术元素的引入,增强对等差数列概念的理解和记忆。

三、教学步骤步骤一:导入1. 创造情境:在黑板上画出一个等差数列,并请学生观察数列的规律。

2. 引入问题:从导入数列中选择一个数字,例如3,并提问学生下一个数字是什么,如何确定的?学生可以利用等差数列的性质解答。

步骤二:引入概念1. 定义等差数列:介绍等差数列的定义,即相邻两项之间的差是一个固定的常数。

2. 解释公式:展示等差数列的通项公式和求和公式,让学生了解如何用公式计算等差数列。

步骤三:美术元素引入1. 与颜色相关的问题:举例说明等差数列可以与颜色搭配,形成一个艺术品。

例如,使用等差数列的规律,设计一幅由不同颜色块组成的画作。

2. 利用几何图形:将等差数列的规律应用到图形设计中。

画出一个具有等差数列特点的图案,例如菱形或正方形,让学生分析图案中各个元素之间的差。

步骤四:练习和应用1. 练习题:提供一些等差数列的练习题,让学生运用所学知识计算数列的通项和求和。

2. 实际问题:给出一些实际问题,例如一辆列车每分钟行驶的速度按等差数列增加,学生通过等差数列的性质和求和公式解决问题。

步骤五:总结和归纳1. 总结概念:通过回顾本课所学的等差数列的概念和性质,让学生对等差数列有一个清晰的认识。

2. 整理笔记:要求学生整理课堂笔记,将重点内容加以整理归纳。

四、教学评估1. 反馈练习:课后布置一些练习题,检查学生对等差数列的掌握程度。

等差数列说课教案

等差数列说课教案

一、教学目标:1. 理解等差数列的定义及其性质。

2. 学会等差数列的通项公式和求和公式。

3. 能够运用等差数列解决实际问题。

二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的求和公式5. 等差数列的应用三、教学重点与难点:1. 重点:等差数列的定义、性质、通项公式和求和公式。

2. 难点:等差数列的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列的定义和性质。

2. 利用公式推导法,引导学生发现等差数列的通项公式和求和公式。

3. 运用实例分析法,让学生学会运用等差数列解决实际问题。

五、教学过程:1. 导入:通过给学生讲一个关于等差数列的故事,引发学生对等差数列的兴趣。

2. 新课:讲解等差数列的定义和性质,引导学生通过实例发现等差数列的规律。

3. 公式推导:引导学生利用已知条件推导出等差数列的通项公式和求和公式。

4. 应用练习:让学生运用等差数列的知识解决实际问题,巩固所学内容。

6. 作业布置:布置一些有关等差数列的练习题,让学生课后巩固。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成情况,评估学生对等差数列知识的掌握程度。

3. 课后实践评价:鼓励学生将所学知识应用于实际生活,评估学生在实际问题中的解决能力。

七、教学反思:1. 反思教学内容:检查教学内容是否符合学生的认知水平,是否需要调整。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学评价:评估教学评价方法的科学性和有效性,不断完善评价体系。

八、教学拓展:1. 等差数列在实际生活中的应用:介绍等差数列在金融、统计等领域的作用。

2. 等差数列的进一步研究:引导学生深入研究等差数列的性质,探讨等差数列与其他数列的关系。

九、教学资源:1. 教材:选择适合学生水平的教材,为学生提供权威的学习资源。

等差数列市公开课获奖教案省名师优质课赛课一等奖教案小班

等差数列市公开课获奖教案省名师优质课赛课一等奖教案小班

等差数列教案小班一、教学目标1. 理解等差数列的概念和特点。

2. 学会求等差数列的通项公式。

3. 能够利用等差数列的性质解决实际问题。

二、教学准备1. 教学课件。

2. 黑板、粉笔。

3. 教材及练习册。

三、教学过程1. 导入(5分钟)老师将黑板上的标题写出来:“等差数列教案小班”。

引导学生思考什么是等差数列,并提问:你们在生活中遇到过什么样的等差数列的实例?引导学生回答。

2. 概念讲解(15分钟)通过课件呈现等差数列的定义:等差数列是指一个数列,其任意相邻两项之差相等。

也可以说,一个数列,如果从第二项开始,每一项减去前一项得到的差相等,则该数列是等差数列。

然后通过一个具体的实例,如1, 4, 7, 10, ...,引导学生找出其中的规律,即每一项都比前一项大3。

通过这个实例,教师可以进一步解释等差数列的特点。

3. 等差数列的通项公式(20分钟)教师通过课件向学生介绍等差数列的通项公式:an = a1 + (n-1)d,其中an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示等差数列的项数。

然后,教师通过具体的例子解释如何利用通项公式求解等差数列的某一项。

例如对于等差数列1, 4, 7, 10, ...,要求第10项的值,可以利用通项公式an = a1 + (n-1)d,代入a1=1,d=3,n=10,得到an= 1 + (10-1)3 = 1 + 9*3 = 28。

接着,教师通过一些练习题让学生巩固掌握等差数列的通项公式的运用。

4. 实际问题应用(15分钟)教师通过实际问题的应用,让学生将等差数列的概念和求解方法应用到实际生活中。

例如:小明每天从家里到学校的路上,每走100米就会看到一棵树。

已知第一棵树距离家500米,第二棵树距离家600米,求第10棵树距离家的距离。

通过引导,学生可以找到题目中的等差数列,并利用等差数列的通项公式解决问题。

5. 拓展练习(15分钟)教师提供一些拓展练习,让学生进一步巩固和扩展在等差数列方面的知识和技巧。

《等差数列》教案

《等差数列》教案

一、教学目标1. 知识与技能:使学生理解等差数列的概念,掌握等差数列的通项公式和前n 项和公式,能够运用等差数列的性质解决实际问题。

2. 过程与方法:通过探究等差数列的性质,培养学生抽象概括能力、逻辑思维能力和创新能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的广泛应用。

二、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。

2. 教学难点:等差数列通项公式的推导和前n项和公式的应用。

三、教学准备1. 教师准备:教材、教案、PPT、例题及练习题。

2. 学生准备:预习等差数列相关知识,准备好笔记本和文具。

四、教学过程1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。

2. 知识讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,引导学生理解并掌握相关概念。

3. 例题解析:分析并解答典型例题,让学生体会等差数列在实际问题中的应用。

4. 课堂练习:布置练习题,让学生巩固所学知识,教师及时解答疑问。

5. 总结提高:对本节课的内容进行总结,强调等差数列的重要性质和应用。

五、课后作业1. 完成课后练习题,巩固等差数列的相关知识。

2. 查找生活中运用等差数列的实例,下节课分享。

3. 预习下一节课内容,做好学习准备。

六、教学评估1. 课堂讲解:关注学生的听课情况,观察学生对等差数列概念和公式的理解程度。

2. 练习题解答:检查学生对练习题的完成情况,了解学生对知识的掌握情况。

3. 课后作业:审阅课后作业,评估学生对课堂所学知识的消化吸收程度。

七、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列在金融、统计等方面的应用,拓宽学生的知识视野。

2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别,提高学生的数学素养。

八、教学反思1. 课堂讲解:反思教学过程中是否存在讲解不清楚、学生理解困难的问题,针对性地调整教学方法。

等差数列教学设计及教案

等差数列教学设计及教案

等差数列教学设计及教案第一章:等差数列的概念1.1 等差数列的定义引导学生回顾数列的概念,理解数列的顺序性和连续性。

引入等差数列的定义,解释公差的概念。

1.2 等差数列的性质探讨等差数列的性质,如相邻两项的差为常数,首项和末项的关系等。

引导学生通过观察和归纳总结等差数列的性质。

第二章:等差数列的通项公式2.1 等差数列的通项公式的推导引导学生回顾数列的通项公式的概念,理解通项公式与数列的关系。

通过示例和引导学生推导等差数列的通项公式。

2.2 等差数列的通项公式的应用探讨等差数列的通项公式在解决实际问题中的应用,如求指定项的值等。

引导学生通过练习题目的方式,加深对通项公式的理解和应用。

第三章:等差数列的前n项和3.1 等差数列的前n项和的定义引导学生回顾数列的前n项和的概念,理解前n项和的含义。

引入等差数列的前n项和的定义,解释首项和末项的关系。

3.2 等差数列的前n项和的公式探讨等差数列的前n项和的公式,引导学生理解和记忆公式。

通过示例和练习题目,引导学生应用前n项和公式解决问题。

第四章:等差数列的求和性质4.1 等差数列的求和性质引导学生回顾数列的求和性质,如等差数列的求和与项数的关系等。

引入等差数列的求和性质,如等差数列的求和与首项和末项的关系。

4.2 等差数列的求和性质的应用探讨等差数列的求和性质在解决实际问题中的应用,如求特定项的和等。

引导学生通过练习题目的方式,加深对求和性质的理解和应用。

第五章:等差数列的综合应用5.1 等差数列在实际问题中的应用通过实际问题引入等差数列的综合应用,如人口增长模型、投资收益等。

引导学生运用等差数列的知识解决实际问题。

5.2 等差数列在数学竞赛中的应用探讨等差数列在数学竞赛中的重要性,引导学生了解等差数列在竞赛中的应用。

提供一些数学竞赛题目,引导学生挑战自我,提高解题能力。

第六章:等差数列的图像与性质6.1 等差数列的图像引导学生回顾数列图像的基本知识,如数列的点表示等。

等差数列教案(公开课)

等差数列教案(公开课)
教师活动:巡堂辅导,叫学生上黑板演练,纠正错误
思考:已知等差数列 中, , ,求d, .
【课堂小结】
通过本节学习,首先要理解与掌握等差数列的定义及数学表达式: - =d ,(n≥2,n∈N )。其次,要会推导等差数列的通项公式: , 最重要是要掌握其基本应用。
【课后作业】课本P127习题3.2第1,2题
2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10
(6)5, 5, 5, 5, 5, 5 ……是等差数列吗?
3.求等差数列 1, 4, 7,10,13,16,…的第100项。
师生一起讨论回答。
二、等差数列的通项公式
如果等差数列 的首项是 ,公差是d,则据其定义可得:
即:
即:
即:
……
【讲授新课】(16分钟)
一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。
用符号表示:
教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。
问题:1.数列(1)(2)(3)(4)的公差分别是多少?
通过实例吸引学生,提高学生的学习兴趣,培养学生的观察能力,使学生了解等差数列的特点。
通过例子,使学生进一步理解掌握等差数列的定义,并能大致了解等差数列的通项公式。
培养学生的总结归纳能力,使其了得等差数列通项公式的由来,加深记忆。
通过例1中对等差数列通项公式的应用,使学生能知三求一。
通过练习巩固知识,锻炼学生的动手能力。
由此归纳等差数列的通项公式可得:
∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项
思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是?答:

等差数列教案(多篇)

等差数列教案(多篇)

等差数列教案(精选多篇)一、教学目标:1. 理解等差数列的定义及其性质。

2. 学会运用等差数列的通项公式和求和公式。

3. 能够解决与等差数列相关的实际问题。

二、教学内容:1. 等差数列的定义:介绍等差数列的概念,解释相邻两项的差称为公差。

2. 等差数列的性质:探讨等差数列的性质,如项数与项的关系,相邻项的关系等。

3. 等差数列的通项公式:推导等差数列的通项公式,并解释其意义。

4. 等差数列的求和公式:推导等差数列的求和公式,并解释其意义。

5. 等差数列的应用:解决与等差数列相关的实际问题,如数列的前n 项和、项的值等。

三、教学方法:1. 采用讲授法,讲解等差数列的定义、性质、通项公式和求和公式。

2. 利用数列图和实例,帮助学生直观地理解等差数列的特点。

3. 运用练习题,让学生巩固所学知识,培养解题能力。

4. 鼓励学生提问和参与讨论,提高学生的思维能力和解决问题的能力。

四、教学评估:1. 课堂练习:布置相关的练习题,检查学生对等差数列的理解和运用能力。

2. 课后作业:布置综合性的习题,要求学生在课后完成,以巩固所学知识。

3. 单元测试:进行单元测试,全面评估学生对等差数列的掌握程度。

五、教学资源:1. 教案:提供详细的教案,方便教师进行教学设计和组织课堂活动。

2. PPT:制作精美的PPT,辅助教学,增加课堂的趣味性。

3. 练习题:提供丰富的练习题,满足不同学生的学习需求。

4. 教学视频:引入相关的教学视频,帮助学生更好地理解等差数列的概念和性质。

六、教学活动:1. 引入等差数列的概念:通过数列图或实际例子,引导学生认识等差数列,理解相邻两项的差称为公差。

2. 探索等差数列的性质:组织学生进行小组讨论,探讨等差数列的性质,如项数与项的关系,相邻项的关系等。

3. 推导等差数列的通项公式:引导学生运用数学归纳法或几何方法推导等差数列的通项公式。

4. 推导等差数列的求和公式:引导学生运用数列的性质和代数方法推导等差数列的求和公式。

等差数列教案第一课时市公开课一等奖教案省赛课金奖教案

等差数列教案第一课时市公开课一等奖教案省赛课金奖教案

等差数列教案第一课时一、教学目标:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和;3. 能够应用等差数列的概念和公式解决实际问题。

二、教学重点:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和。

三、教学难点:能够应用等差数列的概念和公式解决实际问题。

四、教学过程:1. 导入(5分钟)教师可以通过提问的方式导入,例如:“小明种植了一排树木,第一棵树距离大门10米,第二棵树距离第一棵树20米,第三棵树距离第二棵树30米,以此类推,你能发现什么规律?这些数之间有什么特点?”2. 概念解释(15分钟)引导学生讨论并总结出等差数列的概念:“等差数列是指数之间的差值相等的数列。

在等差数列中,我们称这个差值为公差,用d表示。

”教师可以给出示例,如1, 3, 5, 7, ...等,并解释数列中的每个数依次加上公差d就可以得到下一个数。

3. 列出通项公式(15分钟)通过示例引导学生找出等差数列的通项公式。

以示例1, 3, 5, 7, ...为例,学生可以发现每个数都可以表示为a + (n-1)d的形式,其中a为第一个数,n为项数,d为公差。

因此,该等差数列的通项公式为an = a + (n-1)d。

4. 使用通项公式求值(15分钟)教师通过例题演示如何使用通项公式求等差数列中的某一项的值。

例如:“求等差数列1, 3, 5, 7, ...中第10项的值。

”学生可以利用通项公式an = a + (n-1)d,将a设为1,d设为2,n设为10,代入公式计算得到an的值为...5. 求等差数列的和(15分钟)引导学生思考如何求等差数列的和,并给出等差数列求和的公式:Sn = n/2 (2a + (n-1)d),其中Sn表示等差数列的和。

教师通过例题演示如何使用求和公式计算等差数列的和。

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

等差数列教学设计及教案

等差数列教学设计及教案

等差数列教学设计及教案教学目标:1. 理解等差数列的定义和性质。

2. 学会求等差数列的通项公式和前n项和公式。

3. 能够运用等差数列解决实际问题。

教学重点:1. 等差数列的定义和性质。

2. 等差数列的通项公式和前n项和公式。

教学难点:1. 等差数列的通项公式的推导。

2. 等差数列前n项和公式的推导。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾等差数列的定义和性质。

2. 提问:等差数列有哪些性质?如何判断一个数列是等差数列?二、等差数列的通项公式(15分钟)1. 介绍等差数列的通项公式:an = a1 + (n-1)d。

2. 解释通项公式的含义和推导过程。

3. 举例说明如何使用通项公式求等差数列的第n项。

三、等差数列的前n项和公式(15分钟)1. 介绍等差数列的前n项和公式:Sn = n/2 (a1 + an)。

2. 解释前n项和公式的含义和推导过程。

3. 举例说明如何使用前n项和公式求等差数列的前n项和。

四、等差数列的实际应用(15分钟)1. 举例说明如何运用等差数列解决实际问题,如求等差数列的和、求等差数列中的特定项等。

2. 让学生尝试解决一些实际问题,并讨论解题思路和方法。

五、总结与作业(5分钟)1. 总结等差数列的定义、性质、通项公式和前n项和公式。

2. 布置作业:求等差数列的第n项和前n项和,以及解决一些实际问题。

教学反思:本节课通过导入、讲解、举例和实际应用等环节,让学生掌握了等差数列的定义、性质、通项公式和前n项和公式。

在教学过程中,注意引导学生主动参与,积极思考,通过练习题的解答和实际问题的解决,巩固了所学知识。

在下一节课中,可以进一步拓展等差数列的应用领域,让学生更好地理解和运用等差数列。

六、等差数列的性质深入探讨(15分钟)1. 讲解等差数列的单调性,即等差数列是递增还是递减的。

2. 解释等差数列的奇数项和偶数项的性质。

3. 举例说明等差数列的性质在解决实际问题中的应用。

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。

2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。

3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。

重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。

五、板书设计:表现重点,难点,及知识结构。

设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。

等差数列的教案

等差数列的教案

等差数列的教案《等差数列的教案》一、教学目标:1. 理解等差数列的概念和特征。

2. 掌握等差数列的通项公式和求和公式。

3. 能够应用等差数列解决实际问题。

二、教学内容:1. 等差数列的概念和特征。

2. 等差数列的通项公式。

3. 等差数列的求和公式。

4. 类型题探究及综合练习。

三、教学过程:1. 导入(5分钟)通过给学生出示一组数字:2、5、8、11、14,引导学生思考这组数字的规律,并引出等差数列的概念。

2. 概念解释及特征介绍(10分钟)解释等差数列的定义:等差数列是指一个数列中,从第二项开始,每个数都与它的前一项之差相等,这个相等的差叫做等差数列的公差。

让学生举例说明。

介绍等差数列的特征:等差数列的相邻两项之差是常数,称为公差;等差数列的任意三项按顺序相等的式子为等差数列的通项公式。

3. 计算通项公式(15分钟)通过展示一些等差数列的例子,引导学生观察规律,总结等差数列的通项公式为:an = a1 + (n-1)d,其中an表示等差数列中的第n项,a1表示等差数列的首项,d表示等差数列的公差。

通过几个实例的计算演示,让学生明确通项公式的使用方法。

4. 计算求和公式(15分钟)讲解等差数列的求和公式Sn=n/2(a1+an),其中Sn表示等差数列的前n项和。

通过实例演示,让学生掌握求和公式的使用方法。

5. 练习巩固(15分钟)让学生在教师的指导下完成一些基础的等差数列的计算练习,以检验学生的掌握情况。

6. 实际问题应用(10分钟)给学生出示一些实际问题,让学生运用等差数列的知识去解决问题,加深对等差数列的理解和应用。

7. 总结归纳(5分钟)让学生总结等差数列的特征、通项公式和求和公式,以及应用等差数列解决实际问题的方法。

四、教学反思本节课采用了导引-概念解释-公式计算-实例演示-问题应用的教学方式,循序渐进地引导学生掌握等差数列的概念和公式,能够应用等差数列解决实际问题。

同时,通过练习和问题应用的环节,巩固和检验了学生的学习成果。

等差数列教案(5篇)

等差数列教案(5篇)

等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。

数学试讲教案《等差数列》

数学试讲教案《等差数列》

数学试讲教案《等差数列》一、教学目标:1. 让学生理解等差数列的定义及其性质。

2. 培养学生运用等差数列的知识解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的前n项和公式5. 等差数列的实际应用问题三、教学重点与难点:1. 重点:等差数列的定义、性质、通项公式和前n项和公式的理解和运用。

2. 难点:等差数列的实际应用问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生主动探索等差数列的知识。

2. 通过实例分析,让学生理解等差数列的实际应用价值。

3. 利用数形结合的思想,帮助学生直观地理解等差数列的性质。

五、教学过程:1. 导入:通过引入一些实际问题,如计算工资、统计数据等,引导学生发现等差数列的规律。

2. 等差数列的定义:让学生通过观察实例,总结等差数列的定义,并进行总结。

3. 等差数列的性质:引导学生通过数学推理,得出等差数列的性质,并进行验证。

4. 等差数列的通项公式:让学生通过观察、归纳、推理等方法,得出等差数列的通项公式。

5. 等差数列的前n项和公式:让学生通过实际问题,引入等差数列的前n项和公式,并进行运用。

6. 实际应用问题:让学生通过解决实际问题,运用等差数列的知识,提高学生的应用能力。

7. 总结:对本节课的内容进行总结,强化学生对等差数列的理解。

8. 作业布置:布置一些有关等差数列的练习题,巩固所学知识。

六、教学策略:1. 案例分析:通过分析具体的等差数列案例,让学生更好地理解等差数列的概念和性质。

2. 互动讨论:鼓励学生参与课堂讨论,分享彼此对等差数列的理解和心得。

3. 问题解决:引导学生运用等差数列的知识解决实际问题,提高学生的应用能力。

4. 思维训练:通过设置一些思维题,锻炼学生的逻辑思维和数学推理能力。

七、教学步骤:1. 等差数列的定义:引导学生通过观察和分析,总结等差数列的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等差数列一》教案及设计说明课题:等差数列(一)重庆市第十八中学詹远美[教学目标]1•知识目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2•能力目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。

通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3•情感目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:(1 )对等差数列中“等差”两字的把握;(2 )对等差数列函数特征的理解;(3)用不完全归纳法推导等差数列的通项公式。

[教学过程]一.课题引入1.复习回顾:(上节课我们学习了数列的定义及通项公式,那么什么叫数列?什么是数列a n的通项公式)从函数的观点看,数列可看成是定义域为N*(或它的子集1,2,|||, n )的函数,当自变量从小到大的依次取值时,所对应的一列函数值。

数列的通项公式a n f n是该函数的解析式。

2.创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)①德国数学家高斯八岁时计算1+2+3+•…+100=?时,所用到的数列:1 , 2, 3, 4, ... , 100②姚明刚进NBA —周里每天训练发球的个数依次是:6000, 6500, 7000 , 7500, 8000, 8500, 9000③匡威运动鞋(女)的尺码(鞋底长,单位是cm): 22- 23 23丄24 24- 25 25- ,262 ' 2' ' 2' ' 2引导学生观察:上面的数列①、②、③有什么共同特点?对于数列(1),从第2项起,每一项与前一项的差都等于 ________________________ ;对于数列(2),从第2项起,每一项与前一项的差都等于 ________________________ ;对于数列(3),从第2项起,每一项与前一项的差都等于 ________________________ ;发现这些数列有一个共同特点:从第二项起,每一项与前一项的差等于同一个常数,我们把有这一特点的数列叫做等差数列(板书课题)。

二、新课探究(一)等差数列的定义1、(完善黑体字形成)等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。

这个常数叫做等差数列的公差,通常用字母d来表示。

上面三个数列都是等差数列,公差依次是_______________ , ______ , ______ 。

《等差数列一》教案及设计说明a n a n 1 d你觉得在理解等差数列的定义时应注意什么?强调:① “从第二项起”(这是为了保证“每一项”都有“前一项”);② 每一项与它的前一项的差必须是同一个常数(因为“同一个常数”体现了等差数列的基本特征); 在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:2、等差数列定义的数学表达式(在理解概念的基础上,引导学生将等差数列的文字语言转化为数学语 言,归纳出数学表达式):a n a n 1 d (d是常数,n N 且n 2)试一试:(加深对概念的理解)① 9 , 8, 7, 6, 5, 4,……是等差数列吗? ② 常数列3,3,…,3,…是等差数列吗? ③ 数列1 , 4, 7, 11, 15, 19是等差数列吗?可见,公差d 可以是正数、负数,也可以是 0;当d 0,是递增数列;当d 0,是递减数列;当d 0,是常数列.④ 若数列a n 满足:a n 1 a n d (d 是常数,n N 且n 2),则数列a n 是等差数列吗?(此题易判断 错,强调理解定义必须准确,也为后续内容埋下伏笔)(二)等差数列的通项公式 1、公式推导一探究活动一如果等差数列 a n 首项是a 1 ,公差是d ,那么这个等差数列 a 2,a 3,a 4如何表示? a .呢?(步步为营, 层层推进) 根据等差数列的定义可得:a 2a 1d , a 3a 2d ,a 4a 3 d,所以:a 2a 1d ,a 3 a 2 d a 1 dd a 1 2d , a 4 a 3 d a 2dd a 1 3d ,由此完成a n a 1 ( )d 填空(学生易归纳填出),得 a n 印(n 1)d …(*),这是等差数列的通 项公式吗?(让学生回答)当n 1时,对(*)式两边均为a 1,即等式也成立,说明(*)式对n N *都成立,因此等差数列的通 项公式就是:a n a 1(n 1)d , n N *(至此指出)上面求通项公式的方法叫不完全归纳法,这种导出公式的方法不够严密,因此我们有必要寻求更为严密的推导方法。

根据等差数列的定义可得:a 1 a 1 a 2 a 1 d a 3 a 2 df将以上n 个式子相加得 a na 1 (n 1)d (该过程应体现探索)。

这种求通项公式的方法叫叠加2、公式理解三、应用与探索①请与出a 20 , a na n a m (n m)d a “ 為 (n m)d (证实并非巧合)比较a n a 1 (n 1)d 与a m a n m n d 发现,前式是后式的特例,后式是前式的推广。

为此我们不妨把a m a nm n d 叫做等差数列的变通式好了。

(在a n a m (n m )d 后板书:等差数列的变通式) 请用变通式再解例2。

解法二:由 q 54。

10d 即 25 10 10d 得 10d 15,所以 a 25 a 15 10d 25 15 40。

发现:5, 15, 25成等差,a 5,a 15,a 25也成等差;在等差数列 a .中,也飞2飞3 成等差数列,那么a k1,a k2,a^ 成等差数列吗?(课后思考)练一练:(强化通项公式与变通式的应用)(1)在等差数列a n 中,已知a 5 10 , a 12 31 ,则a. ____________ ;通项公式含有a 1 ,d ,n, a n 这4个量,程就可以求出第4个量。

即利用方程的思想 已知三个量,第4个量就是未知数,通项公式就是方程,解方"知三可求一”。

例1.已知等差数列18,15,12, 9,公式的简单应用②-279是否是这个数列中的项, 如果是,是第几项?解:①申 a 1 18, a 2 15,a 20 q 20 1 d②解 3n 21279得n 100,即18 3 1915 1839, a n q 279是该数列的第18 3 n 1 3n 21;100 项。

说明:要判断-279是不是数列的项,关键是求出通项公式,并判断是否存在正整数 n ,使得a n 279成立,实质上是要求方程a n 例2.已知等差数列279的正整数解。

a n中,a 510, a 15 25,求 a 25 的值。

公式的深化与推广”a 5 a 1 4d解: 51ai 5 a 114da 1a 2540。

解方程组比较麻烦,可否避免? 发现:a 15 a 510d (15 5)d是一种巧合,还是对任意的两项差都满足?请同学们思考:探究活动二在公差为d 的等差数列 a n 中,a n 与a m 有何关系?C a 1 (n 1)d Q (m1)d(2)若d 2,a20397,则a n(3)5、.3是数列.,3, 7, 11, 15,的第项;(4)_____________________________________________________________ 在等差数列a n 中,已知②-,a2 a5 4耳33,则n的值为 ______________________________________ ;3例3:(由等差数列通项公式得a n a! (n 1)d dn S d)(d,b是常数),当d 0的时候,通项公式是关于n的一次式,一次项的系数是公差。

等差数列通项可以写成a n pn q形式)反之如果数列a n的通项公式为a n pn q (其中p,q是常数),那么这个数列是等差数列吗?分析:判定a n是不是等差数列,也就要看a n a n1n 1是不是与n无关的常数。

解:对数列a n中的任意两项a n与a n 1 n 1 ,a n a n 1 pn q p n 1 q p为常数,二a n是等差数列,首项a1=p+q,公差为p。

由些得出:数列{a n}为等差数列的充要条件是其通项a n pn q (p、q是常数)。

探究活动三:(1)在直角坐标系中,画出a n 3n 21的图象。

这个图象有什么特点?(无穷多个孤立点。

)(2)在同一坐标系下,画出函数y 3x 21的图象。

你发现了什么?一一实例展示(a n3n 21的图象是直线y 3x 21上均匀排开的无穷多个孤立点。

)(3)等差数列a n pn q与函数y px q图象间的有什么关系?(当p 0时,a n pn q也是关于n的一次式;a. pn q的图象是直线y px q上均匀排开的无穷多个孤立点。

)四、归纳小结提炼精华本节课主要学习了:一个定义:a n a n1 d(d是常数,n N且n 2)两个公式:a n a1(n 1)d,a n a m(n m)d两种思想:方程思想、函数的思想。

三种方法:不完全归纳法、迭代法、叠加法(此条不板书)。

五、课后作业运用巩固必做题:A.课本P114习题3.2第1,2,6题B.补充:1•在等差数列a n中,已知a i=-2,a10是第一个大于1的项。

求公差d的取值范围。

2•我国古代算书《孙子算经》卷中第25题记有:“今有五等诸侯,共分橘子六十颗。

人分加三颗。

问:五人各得几何?选做题:在等差数列a n中,已知a7 16,求下列各式的值:(为下节课研究等差数列的性质做铺垫)(1)a6 a8 ;(2)a3 an教案说明一、本课时的数学本质与教学目标定位1本课时内容的本质:“等差”是等差数列这一现象中最一般的东西,“等差”是等差数列的最根本的性质。

从知识内在联系函数的度看,等差数列的通项公式是非0自然n的一次式,其图象是一条直线上的一群孤立的、均匀排开的点。

从等差数列概念的形成到通项公式的运用这一过程看,它让学生经历了“从特殊入手,研究对象的性质,再逐步扩大到一般”这一常用数学研究方法的完整过程。

从思想与方法提炼的维度看,在等差数列第一课时的教学过程中不仅渗透了函数的思想和方程的观点,还提炼出了“不完全归纳法”、“叠加法”等数学方法。

2、本课时教学目标定位:从教纲、教材层面看:本节的重点是等差数列的概念及其通项公式的推导和应用。

相关文档
最新文档