便桥设计及计算书
便桥施工方案及计算书
连盐铁路青口河便桥计算书一、工程概况青口河河宽近100m,青口河大桥主墩采用筑岛施工,跨距最大的两个墩间做为河道,河道上设置施工便桥,便桥每跨21m,下部采用双排1m片石混凝土桩基,桩顶预埋0.4×0.4m钢板,横梁采用双拼40cm工字钢,上部采用四排单层贝雷桁架。
二、桥位选址及布置根据施工便道位置和10年洪水位,保证与施工便道贯通根据两岸位置、地形、高差和地质等情况,测定最适宜的桥梁中线;根据主墩筑岛位置和范围,以及筑岛后河道宽度,测定推出便桥总跨径三、贝雷架结构1.桁架及销子桁架结构由上下弦杆、竖杆及斜杆焊接而成。
上下弦杆的一端为阴头,另一端为阳头。
阴阳头都有销栓孔。
两节桁架连接时,将一节的阳头插入另一节的阴头内,对准销子孔,插上销子。
弦杆焊有多块带圆孔的钢板,其中有:弦杆螺栓孔,在拼装双层或加强桥梁时,在此孔插桁架螺栓或弦杆螺栓,使双层桁架或桁架与加强弦杆结合起来;支撑架支撑架孔,用于安装支撑架。
当桁架用在桥梁上部时,使用中间两个孔;当桁架用作桥墩时,用端部的一对孔,以加固上下节桁架。
下弦杆两端钢板上的圆孔及弦杆槽钢腹板上的长圆孔叫做风构孔,用以连接抗风拉杆。
下弦杆设有4块横梁垫板,上有栓钉,以固定横梁位置。
端竖杆有支撑架孔,为安装支撑架、斜撑与联板用。
端竖杆及中竖杆的矩形孔叫做横梁夹具孔,用来安装横梁夹具。
2.加强弦杆加强弦杆是为了提高桥梁的抗弯能力,发挥桁架腹杆的抗剪作用。
便桥梁端部弯矩小,故收尾桁架均不设加强弦杆。
加强弦杆,两端设有阴阳头,中部设有支撑架孔与弦杆螺栓孔板反焊于杆件的一面,使连接加强弦杆与桁架的弦杆螺帽不至于外露,保证桥梁推出时顺利通过滚轴。
加强弦杆与桁架连接斜撑的作用在于增加桥梁的横向稳定,其两端各有一空心圆锥形套筒,上端连于桁架端竖杆支撑架孔,下端则连在横梁短柱上。
每节桥梁在桁架后端竖杆(以桥梁推出方向为前方)上各装一对斜杆,桥头端上另加一根。
斜撑与桁架和横梁的连接用斜撑螺栓。
钢便桥计算书
钢便桥设计与验算1、项目概况钢便桥拟采用18+36+21m全长共75m钢便桥采用下承式结构,车道净宽 4.0m,主梁采用贝雷架双排双层,横梁为标准件16Mn材质I28a,桥面采用定型桥面板,下部结构为钢管桩(φ529)群桩基础。
2、遵循的技术标准及规范2.1遵循的技术规范《公路桥涵设计通用规范》(JTG D60-2004)《公路桥梁施工技术规范》(JTG F50-2001)《钢结构设计规范》(GB S0017-2003)《装配式公路钢桥使用手册》《路桥施工计算手册》2.2技术标准2.2.1车辆荷载根据工程需要,该钢便桥只需通过混凝土罐车。
目前市场上上最大罐车为16m3。
空车重为16.6T混凝土重16*2.4=38.4T。
总重=16.6+38.4=55.0T。
16m3罐车车辆轴重2.2.2便桥断面2.2.3钢便桥限制速度5km/h 3、主要材料及技术参数 根据《公路桥涵钢结构及木结构设计规范》JTJ025-86,临时性结构容许应力按提高30-40%后使用,本表提高1.3计。
4、设计计算(中跨桁架) 4.1计算简图材料弹模(MP)屈服极限(MP) 容许弯曲拉应力(MP) 提高后容许弯曲应力(MP) 容许剪应力(MP) 提高后容许剪应力(MP) 参考资料 Q2352.1E+5235145188.585110.5设计规范 Q3452.1E+5345 210 273 120 156设计规范贝雷架 2.1E+5345240-245N/肢-按照钢便桥两端跨度需有较大纵横坡的实际需要,故每跨断开,只能作为简支架计算,不能作为连续梁来计算。
4.1.1中跨计算简图36.0m简支梁4.1.2边跨计算简图21.0m简支梁4.2荷载4.2.1恒载中跨上部结构采用装配式公路钢桥——贝雷双排双层。
横梁为I28a。
43.47kg/m。
单根重5*43.47=217.4kg=2.17KN;纵梁和桥面采用标准面板:宽2.0m,长6.0m,重1.8T。
便桥施工方案及受力计算书
临时便桥受力计算书1、便桥概述便桥桥跨布置为10×5m,全长共50m。
桥宽4.5m,净宽4.0m。
便桥位于施工桥南侧5m处,通航净空高度不小于1.30m。
基础:便桥基础采用15~17m长杉木,平均直径不小于20cm,每个桥墩24根。
杉木桩用斜撑进行加固和294×200H钢连接(代替原来的大、小枕木连接),形成群桩基础。
主梁:纵向主梁采用294×200×8×12H型钢,间距50cm。
桥面系:纵梁上铺设16a型工字钢作横向分配梁,分配梁间距为40cm,单根长度为4.5m,16a型工字钢顶铺设8mm花纹钢板作为桥面板,桥面板与分配梁需焊接固定。
2、计算依据①《公路桥涵设计通用规范》(JTG D60-2004)②《公路桥涵地基与基础设计规范》(JTG D63-2007)③《公路桥涵钢结构及木结构设计规范》(JTJ025-86)④《建筑桩基础技术规范》(JGJ94-2008)3、容许应力容许应力按《公路桥涵钢结构及木结构设计规范》规定:A3钢:弯曲应力[δ]=145 剪应力[τ]=85MPa4、受力计算4.1、模型计算采用midas/civil 2011对临时钢便桥上部结构进行建模计算。
桥面钢板采用板单元,其他纵梁、横梁采用梁单元建模。
荷载:最大荷载为载重60t的水泥粉罐车,自重15t,总重按80t计算,车辆沿便桥中心线行驶。
计算结果荷载组合值:自重乘以1.2荷载组合系数,活载乘以1.4荷载组合系数。
便桥上部结构模型图(局部模型)4.1、桥面钢板受力计算钢面板组合应力图由计算结果知:最大应力:1.29=σMPa <[]145=σMPa3.2、16a 工字钢横向分配梁受力计算16a 工字钢横向分配梁组合应力图16a 工字钢横向分配梁剪应力图由计算结果知:最大组合应力:6.60=σMPa <[]145=σMPa最大剪应力:19=τMPa <[]58=τMPa4.3、294×200H 型钢纵梁受力计算294×200H 型钢纵梁组合应力图294×200H 型钢纵梁剪应力图294×200H 型钢纵梁变位图由计算结果知:最大组合应力:2.52=σMPa <[]145=σMPa最大剪应力:5.40=τMPa <[]58=τMPa最大挠度:mm 2.2=f <[]3.86005000==f mm3.4、294×200H 型钢下横联受力计算上部结构反力图(立体视角)上部结构反力图(平面视角)最大支点反力:R=159.7kN木桩间距0.6m,按0.6m简支梁计算最大正应力图最大剪应力图最大变形图最大正应力:36=σMPa <[]5.188=σMPa最大剪应力:9.70=τMPa <[]110.5=τMPa最大挠度:mm 156.0=f <[]1600600==f mm 3.5、木桩基础计算木桩基础按照群桩基础计算,由反力计算结果知单个桥墩最大受力:R=705.7kN根据《建筑桩基础技术规范》(JGJ 94-2008)桩承载力计算公式 P pk p i A q l Q Q Q λ+=+=∑sik pk sk q u式中:u —桩身周长,u=0.2ml i —土分层厚度(m )p λ—桩端土塞效应系数,取0.8A p —桩端面积(0.0314m 2)q sik —与对应的各土层与桩侧的摩阻力标准值(kPa ) q pk —极限端阻力标准值(kPa ),根据规范取210kPa安全系数取2.0木桩入淤泥层10m ,淤泥层桩周摩阻力标准值为10kPa 。
便桥计算书
跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:I y=157.8㎝4,W y=28.2㎝3,i y=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力f y=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
便桥计算书
许家桥钢便桥计算书荷载布置情况:以两台炮车运送30m 箱梁通过便桥,箱梁自重85t ,两台炮车间距28m 。
每台炮车有两个轴,轴间距 1.4m ,每根轴的两端各安装双轮,轮胎直径Φ1.1m ,同根轴的四个轮胎间的中心间距分别为0.3m 、1.4m 、0.3m 。
进行计算时,取活荷载为100t 。
(1)桥面板验算由于面板纵肋间距为25cm ,故桥面板跨径为:L=25-7.4=17.6cm ,考虑炮车车轮作用的均布荷载,每个车轮大约承担6.25吨,作用桥面板的面积为0.2×0.3m (长×宽),将桥面板简化成相应的梁进行计算,并考虑车轮作用宽度扩散为1.5b ,则有:6.25100.3208.3/q KN m =⨯÷=22208.310000.176806.6788ql M N m ⨯⨯===∙ 322560.1205.165.1cm bh W =⨯⨯== 806.67161[]2155M MPa W σσ===<=极限 2083000.3/21.5 1.510.4[]8530010Q MPa MPa bh ττ⨯=⨯=⨯=≤=⨯ 故能够满足要求。
(2)面板纵肋验算对于顺桥向铺设的I12.6的工字钢,其跨径按1.5米进行计算,考虑炮车轮胎作用在桥面板上的分布情况,每个轮胎的着地宽度和长度为0.3m ×0.2m (按照桥涵通用设计规范取值)。
当炮车在便桥上行驶至I12.6工字钢跨中时为最不利状态。
此时有3根工字钢共同承担一个轴端的2个轮胎荷载,将荷载简化成集中力,取P=125KN ,考虑1.2的冲击系数,则一根I12.6工钢所受的集中荷载为50KN 。
建模进行计算:经建模计算得:Rmax=54.8KNQmax=29.812KN10317134[]14577M MPa W σσ===<= max max2981255.2[]851085z z z z Q S Q MPa MPa I I d d S ττ**⋅====<=⨯() 能够满足规范要求。
临时便桥计算书
可门4#、5#泊位临时便桥计算书1、设计说明因福州港可门作业区4#、5#泊位码头工程施工需要,在1#引桥的东侧需搭设一座临时钢便桥,桥长120m,宽4.0m,沿1#引桥长度方向布置。
便桥第一排桩轴线距北围堤轴线40.75m,其内侧桩中心距1#引桥边线2m。
可门4#、5#泊位码头工程临时便桥为贝雷梁钢栈桥,桥面宽度4.0m,为方面水上混凝土浇注和施工材料运输,栈桥桥面与引桥空心板安装后面标高齐平。
栈桥跨度采用8m,上部采用2榀4片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按间距布置,横向每3m间距采用10号槽钢加工支撑架连成整体;分配横梁采用25a型工字钢,间距为0.75m;桥面系采用22a型槽钢(卧放),横断面布置18根;基础采用υ630×8mm钢管桩,为加强基础的整体性,每排桥墩的钢管桩采用12号槽钢连成整体,每排墩采用2根钢管桩,墩顶横梁采用36a 型工字钢。
考虑水上小型施工船只能够自由出入,桩顶标高设计为+3.9m。
栈桥设计荷载采用8m3混凝土搅拌运输车(满载),混凝土搅拌运输车活载计算时采用荷载冲击系数1.15及偏载系数1.2,钢管桩按摩擦桩设计。
根据现场调查及钻探资料,施工区水深约为3.5~20m,淤泥厚度12~30m,第一层土为灰黄色淤泥混砂,厚度1~4m,第二层土为深灰色淤泥,厚度26~29m。
计算时,上述土层的摩擦力均按15Kpa取值。
2、贝雷纵梁验算栈桥总宽4m,计算跨径8m,栈桥自上而下分别为υ630×8mm钢管桩、36a 型工字钢下横梁、“321”军用贝雷梁、25a型工字钢分配横梁(间距0.75m)及22a型槽钢桥面。
单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3[M]=788.2kn·m,[Q]=245.2kn则4EI=2.004×106 kn·m22.1荷载布置2.1.1上部结构恒载(按4m宽计)(1)22a槽钢:18×24.99×10/1000=4.50 kn/m(2)25b型工字钢分配横梁:42×6×10/1000/0.75=3.36 kn/m(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑梁、销子等):287×6×10/3/1000=5.74 kn/m(4)36a型工字钢下横梁:6×60×10/1000=3.6 kn/m2.1.2活载(1)8m3混凝土搅拌运输车(满载):车重20t,8m3混凝土20t(2)人群:不计考虑栈桥实际情况,同方向车辆间距大于15m。
(整理)便桥计算书.
一、荷载布置图2.2.2 100T履带吊车荷载的纵向排列和横向布置(重力单位:kN;尺寸单位:m)(一)、施工荷载及人群荷载4KN/m2二、上部结构内力计算(一)、桥面横梁内力(20#槽钢)纵向工字钢间距50cm,作用在桥面横梁上的均布荷载受力简图如下:50 50 50 50工况2、履带—100作用荷载分析(计算宽度取1.0m):(1)、自重均布荷载:q1=1.0×0.2×17.23×25=0.86KN/m(2)、施工及人群荷载:5 KN/m(3)、履带—100轮压:q2=1000/4.5/2×1/0.7=158.7KN/m由荷载分析可确定,自重荷载及施工人群荷载可忽略不计。
q=q2=158.7KN/mI12.6工轮迹7035 35 35跨中弯矩M= ql2/8=158.7×0.352/8=2.43KN·mW=bh2/6=1.0×0.012/6=16.7×10-6m3σ=M/W=145.5MPa<1.3[σ] =1.3×145=188.5Mpa,满足强度要求。
结论:通过以上计算分析,桥面板采用δ10的钢板满足受力要求。
(二)、I12.6纵向分配梁内力工况1、重车550KN作用单边车轮作用在跨中时,I12.6弯矩最大,轮压力为简化计算可作为集中力。
荷载分析:1)自重均布荷载:忽略不计2)施工及人群荷载:不考虑与汽车同时作用3)汽车轮压:最大轴重为140kN,每轴2组车轮,则单组车轮荷载为70kN,车轮着地宽度和长度为0.6m×0.2m,单组车轮作用在2根I12.6上(两根工字钢净距20cm),则单根I12.6受到的荷载为:Q=1/2×70kN =35kN则单边车轮布置在跨中时布载示意图及受力简图如下:W=77.5cm3则σ=M/W=84.7MPa<1.3[σ] =1.3×145=188.5 Mpa,满足强度要求。
钢便桥计算书
42米跨贝雷梁钢便桥计算资料一、设计概况根据现场提供资料,桥跨为40米,贝雷片每片长度为3米,因此本次设计按42米计算,设计荷载为60吨,桥面宽度为3.5米,便桥采用321型三排双层加强型贝雷片装配主梁,桁架上面采用I28a工字钢作横向连接(间距1米,共42根,3.5米/根),再在横梁上面设置I10工字钢作纵梁(共3根,桥长通长布置),使受力均匀,桥面采用10mm花纹钢板满铺。
二、贝雷桥的设计1、荷载(1)、静荷载321贝雷片每片自重270kg,横梁每米自重43kg,纵梁每米自重11.26kg,桥面采用15mm厚花纹钢板,按均布荷载,考虑加强弦杆螺栓和桁架销,取跨中恒载弯矩:梁端恒载剪力:(取单侧取8.5KN/m计算)(2)、活荷载计算跨径为42m,桥面净宽3.5m,本设计采用汽车600KN集中荷载进行验算。
跨中有最大弯矩;梁端剪力,按前后轮之间距离3.65米计,后后轮之间1.35米计,则:冲击系数:总荷载作用:(横向分配系数K取0.6计算)最大弯矩:梁端最大剪力:2、贝雷架结构验算根据规范要求,桥梁采用三排双层加强型,允许弯矩满足强度要求。
桁架加强桥梁三排双层加强型,允许剪力满足强度要求。
3、整体挠度计算对于钢桥的设计,为了使车辆能比较平稳的通过桥梁,因此“桥规”要求桥跨结构均应设预拱度。
另外要使钢桥能正常使用,不仅要对桁架进行强度验算,以确保结构具有足够的强度及安全储外,还要计算梁的变形(通常指竖向挠度),以确保结构具有足够的刚度。
因为桥梁如果发生过大的变形,将导致行车困难,加大车辆的冲击作用,引起桥梁剧烈振动。
简支梁容许挠跨比取,则容许最大挠度由活载引起的跨中挠度由静载引起的跨中挠度满足要求此处在计算钢梁的跨中挠度时,未计算由销、孔间隙引起的非弹性挠度变形,此部分变形与钢梁的使用时间及加工制作的精度有关。
三、桥台的设计与计算为防止洪水冲刷桥台,威胁到便桥安全,采取拉森Ⅳ型钢板桩做承台基础围护,钢板桩露出地面2米,埋入地面下13米,内填筑砂石,承台基础采用扩大基础,第一层基础结构尺寸为:3.80m×6.40m×0.5m,承台尺寸为:2.80m×5.40m×0.5m ,背墙厚度为0.8m,高度为3.68米。
便桥计算
贝雷梁便桥设计检算书一、工程概况为满足跨货场特大桥施工要求,需在百水河上设一座施工便桥,桥长24m 、净宽4.5m 限载80t 。
具体位置、结构设计及尺寸见附图。
二、检算书(一)基本数据及说明1、便桥允许通行能力及载重在同一时间只允许一辆车位于便桥上,车辆自重加装载重量总计不超过80t ,限速20km / h ,严禁在便桥范围内急刹车,取Q1 =800kN 。
2、便桥基本数据(1)自重:贝雷片纵梁:P1=7.095KN/m×24m=170.28KN槽钢横梁:P2=10kg/m×88×4.5m×10kg/m3 =39.6KN 桥面:P3=4.5m×24m×0.02m×7.85kg/m3×10kg/m3=169.56 KN桥台及基础:P4=(2m×4.5m×0.2m×2500kg/m3+39.3m3×1800 kg/m3)×10 kg/m3 =(45+707)KN=752KN(2)跨度:便桥采用贝雷片纵梁六排下加强的组拼形式,两桥台支点中心距22m ,纵梁总长24m ,采用8 节贝雷架拼装成6排加强型,其容许弯矩[M ] =10125kN m., 容许剪力[Q] =1471.2kN自重荷载集度q1 =7.095kN / m。
(3)桥面系荷载集度q =( p2 +p3)/24 =8.715kN / m(二)便桥检算1、横梁强度检算工况:当满载车行于跨中时(最不利状况)荷载Pmax =kQ1 =1.2 ×800kN =960kN式中k 动载系数,取1.2Q1 满载车辆总重计算(按最不利情况并结合现场实际情况组合)及结果如下:Qmax= Pmax+ql/2=960+104.58=1064.58KN<0.9[Q]=1324.08Mmax= Pmax×l/4+ql2/8=5760+627.48=6387.48<0.9[M]=9112.5满足要求!2、便桥在走车过程产生的最大挠度f =f1 +f2 +f3式中:f1自重W 引起的挠度;f2为外荷载引起的挠度;f3为销孔间隙引起的挠度;销孔间隙△L=0.159cm 珩高h=150cmf1=5ql4/384EI=5×15.81×244/384×2.1×577.4×6=9.38mmf2=pl3/48EI=960×243/48×2.1×6×577.4=38mmtanθ=2n△L/h=2×8×0.159/150=0.01696θ=0°58′17.92″R=h(L-n△L)/2n△L=150×(2400-8×0.159)/2×8×0.159=141434.4cm f3=(R+h)(1-cosθ/2)=51mmf =f1 +f2 +f3=95.28mm满足要求!3、基础承载力检算工况:当满载车行于桥头时(最不利状况)Qmax= ( p1 + p2+ p3) ÷ 2 + Q1+ p4=(170.28+39.6+84.78)/2+960+752 =1859.33KNσ= Qmax/A=123.95<150kpa满足地基承载力要求。
72米钢便桥科学计算书
^`钢便桥受力计算书 (1)1.1概述 (1)1.2计算范围 (1)1.3主要计算荷载 (1)1.4便桥主要控制计算工况 (1)1.5计算过程(手算) (1)§1.5.1活载计算 (2)§1.5.2桥面板计算 (2)§1.5.3 I12.6工字梁纵梁计算 (2)§1.5.4 I25a工字梁横梁计算 (3)§1.5.5 贝雷主梁计算 (5)§1.5.6 2根I32b桩顶横梁计算 (6)6电算复核 (7)钢便桥受力计算书1.1概述根据本便桥施工荷载要求,参照《公路桥涵设计通用规范》(JTGD60-2004)及《港口工程荷载规范》(JTJ254一98)。
由于本便桥使用时间较短,受自然条件影响较小,所以直接计算工作状态下荷载,风、雨等影响条件忽略。
便桥承受的荷载为自重、车辆荷载。
1.2计算范围计算范围为便桥的基础及上部结构承载能力,主要包括:桥面板→I12.6工字梁纵梁→I25a工字梁横梁→顺桥向贝雷梁→横桥向I32b工字钢→钢管桩。
1.3主要计算荷载恒载:结构自重;活载:9立方混凝土罐车荷载;冲击系数:汽车(1.1)荷载组合:1、恒载+汽车荷载1.4便桥主要控制计算工况①跨径为12m钢便桥在活载工况下的整体刚度、强度和稳定性;1.5计算过程(手算)本便桥主要供混凝土罐车、各种小型农用车走行,因而本便桥荷载按9立方米混凝土罐车荷载分别检算。
本便桥恒载主要为型钢桥面系、贝雷梁及墩顶横梁等结构自重。
并按以下安全系数进行荷载组合:恒载1.2,活载1.3。
根据《公路桥涵钢结构及木结构设计规范》规定:临时结构容许应力可提高 1.3(组合Ⅰ)、1.4(组合Ⅱ~Ⅴ)。
本便桥弯曲容许应力取MPa 2031454.1=⨯,容许剪应力取MPa 119854.1=⨯。
§1.5.1活载计算活载控制设计为9m3砼运输车(按车与载总重35t 计),参考国内混凝土运输车生产厂家资料及规范汽车-20级荷载布置,单辆砼运输车荷载为3个集中荷载70kN 、140kN 和140kN ,轮距为4.0m 、1.4m ,计入冲击系数1.1后,其集中荷载为77kN 、154kN 和154kN 。
便桥结构计算书
便桥结构计算书1、便桥长度的确定根据目前的测量结果,河面宽度为35米,按内河准七级航道设计,通航宽度12m,通航净高2.5m,直线段通航转弯半径不小于100m。
钢便桥初定位置为施工主便道线路中心线,其长度拟定为36m (3*12m),桥面标高+7.5m,水面标高+4.38m,通航净高2.5m,占用水域面积1.57㎡。
详见钢便桥一般构造图。
2、便桥宽度的确定便桥宽度的确定需满足施工机械设备通行要求,实际最大通行车辆为15m挂车,最大轮胎宽度为2.86m。
结合吊车(25T)和振动桩锤在施工时对便桥宽度的要求等综合因素,确定便桥总宽度为5米(桥面净宽4m),单墩插打单排钢管桩4根,共4个墩,水中2个墩。
3、钢便桥荷载设计结合现场实际情况,现场最大荷载运输车辆为钢筋运输车,综合考试超载因素,钢便桥荷载设计小于等于100T。
4、钢便桥的施工方法及验算钢便桥采用下承式,下部均采用φ50、δ=8mm的钢管桩,钢管顶部布设I32b “工”字钢。
便桥上部采用I32b “工”字钢横梁,贝雷梁组合成纵梁,最上部铺I18 “工”字钢纵梁,桥面板铺设1.0cm钢板。
4.1横梁验算4.1.1载荷情况荷载考虑最大受荷情况,即100吨钢筋运输车通行。
恒载荷有:横梁“工”字钢重量、纵梁重量、钢板重量,动荷载有:钢筋车总重量、人行荷载等。
横梁间距1.5m一道,验算单跨跨径4.5m,验算对象I32b “工”字钢,应力分布为均布荷载。
纵梁14根,单根验算长度1.5m;钢板1.5×4×0.015m。
最不利点受力分析为当钢筋运输车后轮垂直轴线范围内(按后八轮计算),单支点处三根横梁同时承受后轴重量。
恒载:横梁“工”字钢I32b重量:4.5×57.7×1×10 /1000= 2.6KN桥面纵梁“工”字钢I18重量:1.5×24.1×14×10/1000=5.06 KN钢板重量: 0.01×4×1.5×7.85×103×10/1000=4.71 KN动载:钢筋运输车:1000KN不确定荷载(包括人群荷载):7.5 KN应力布置图及弯矩、剪力图如下:(1)、计算模型基本参数:设长L =4.5 M(2)、设定恒载分项系数γG =1.2 活载分项系数γQ =1.4(3)、集中力:P g=(2.6+5.06+4.71)/4.5=2.75 KN/mP q=(1000/2+7.5)/(4.5×3)=37.6KN/m标准值P k= P g + P q =2.75+37.6=40.35KN/m设计值P d=P g ×γG + P q ×γQ=2.75×1.2+37.6×1.4=55.94KN/m(4)、选择受荷截面1、截面类型:工字钢:I32b2、截面特性:I x= 11620cm4W x= 726cm3S x= 426.1cm3G= 57.7kg/m 翼缘厚度tf= 15mm 腹板厚度t w=11.5mmE=2.1×105MPa(5)、相关参数1、材质:Q2352、x轴塑性发展系数γx:1.053、梁的挠度控制[v]:L/250(6)、内力计算结果1、A点支座反力R A = P d L / 2 =125.865KN2、B点支座反力R B = R A =125.865 KN3、跨中最大弯矩Mmax = P d L2 / 8 =142 KN.m(7)、强度及刚度验算结果1、弯曲正应力σmax = M max / (γx W x)=162.67 N/mm22、A处剪应力τ A = R A S x / (I x t w)=30.77 N/ mm23、B处剪应力τB = R B S x / (I x t w)=30.77 N/ mm24、最大挠度f max = 5P k L4 / (384E I )=8.83 mm5、相对挠度v = f max / L =1/ 510﹤1/400弯曲正应力σmax=162.67 N/ mm2 <抗弯设计值 f : 215N/mm2符合设计要求。
便桥计算书
便桥计算书湾里2号便桥孔跨布置为3-12m ,桥面净宽4.5m 。
便桥基础均采用扩大基础,墩柱采用混凝土实体墩形式,混凝土标号为普C30。
主梁采用贝雷架结构,每孔设置等间距三片主梁,每两片用花窗加强,用膨胀螺栓将其固定在墩台身上,贝雷架底部铺垫2cm 厚橡胶垫。
采用工22b 工字钢作为分布横梁,间距为1.3m ,用U 型卡固定在贝雷架的下缘。
采用槽20b 槽钢纵作为分配纵梁,每隔12m 设置一道2.0cm 伸缩缝。
一、荷载:本桥最大荷载混凝土搅拌运输车荷载,按55t 计算。
其荷载如下图所示:二、桥面板验算:布置:桥面板采用槽20b 槽钢,轴心间距20cm 纵向满布。
架在间距1.3m 的分布横梁上。
荷载:因为中后轮宽为0.6m ,故同时有3根槽钢受力。
则:根数轴载 p =3110kn =36.67kN 因为单根槽钢长度为5.0m ,故最不利荷载位置如下图所示:查表得:B 点弯矩最大,其系数为0.175C 点左侧剪力最大,其系数为-0.675第一跨挠度最大,其系数为0.990对该结构进行强度验算:M max =0.175PL=0.175×36.67×1.3=8.34KN*mQ max =-0.675P=-0.675×36.67=24.75KN剪应力:τ=A Q =83cm2.3224.75KN =7.53MPa <[τ]=85MPa 弯曲正应力:σ=W M =7.7334.8=108.74MPa <[σ]=145MPa 换算应力: √(σ2+3τ2)= √(108.742+3×7.532)=109.52MPa <1.1[σ]=159.5MPa 刚度验算:f=0.99×Pl 3/(100EI)=0.99×36.67×103×1.33/(100×2.1×105×106×143.6×10-8)=2.64mm <1500/400=3.75mm故:采用槽20b 槽钢作为桥面板符合强度及刚度要求。
施工便桥(170M跨吊桥)计算书
施工便桥(170M跨吊桥)设计计算书施工便桥(170M跨吊桥)设计计算资料一、基础资料1、该便桥设计为单跨跨径为170M,两锚跨分别为60M和55.2M的单跨简易吊桥。
桥面宽4.5M,(包括人行道)2、主承重索:上下游各为8Φ56MM,单根破断拉力为245T的钢丝绳。
钢丝绳结构为8T*36WS+IWR3、骑马采用南宁永和大桥及湘潭湘江四大桥用四门缆索吊装用骑马,墙板采用δ=16mm厚钢板,上下轴直径分别为Φ60mm和Φ100mm。
跑车轮采用Φ320mm*76mm.每个骑马之间的水平间距为5m.4、骑马下的吊带及骑马之间的距离限位装置均采用δ=10mm厚钢板。
5、钢横梁采用I63B工字钢,在端头100CM范围内,两侧加焊10mm厚加劲钢板,与钢吊带联接的耳板采用δ=30mm厚钢板。
6、钢纵梁采用6I45B工字钢,间距为90cm。
7、分配梁采用I14b型槽钢,间距为25cm 。
8、桥面采用δ=10mm厚防滑花纹钢板,宽度考虑3*152cm。
9、桥面栏杆采用Φ48mm*2.5mm钢管,栏杆高度为1.2m,立柱间距2.5m,水平联接设两道,间距为60cm.二、荷载1、桥面恒载:Q1(δ=10mm厚钢板)Q1=(170-2.5*2)*1.52*0.01*7.85*3=59.1T2、栏杆恒载:Q2(Φ48mm*2.5mm钢管)Q2=(170-2.5*2)*4*2.81+1.2*2.81*67*2=2306Kg=2.3T3、分配梁恒载 Q3(I14b槽钢)Q3=0.0617*6*661=66.2T4、钢纵梁恒载Q4(I45b工字钢)Q4=0.0874*6*6*33=103.8T5、钢横梁下翼缘辅助联接恒载Q5(3I20b工字钢+[20b槽钢)Q5=(31.1*5*3+25.8*4.6)*33=19311Kg=19.3T6、钢横梁恒载Q6(I63b工字钢)此恒载由钢横梁自身恒载Q61和两端头1m范围内的加劲板和耳板横载Q611组成。
便桥设计检算书
一、说明本施工便桥设桥全长24m,桥跨23m,分为2跨,每跨12m,净宽4m,限载80t。
钢便桥纵梁由三排单层上下加固(首尾节不设)贝雷组成,共8节,每节6片贝雷片;分配横梁采用28a型工字钢,间距为0.75m;桥墩采用Φ529螺旋管单排三根布置,主横梁采用双拼32a工字钢;桥面系采用20a型槽钢(卧放),横断面布置20根。
便桥与河流正交布置。
具体结构设计及尺寸见便桥设计图。
二、便桥纵梁计算1、设计说明⑴便桥在使用期间主要用于运输混凝土、钢筋等,设计计算以挂车运送钢筋这种最不利的情况作为计算模型,最大载重车辆按80t考虑,不计冲击力。
⑵本计算书拟对进行如下简化检算:按单跨纵、横梁均按正交简支梁进行计算,连接件、斜撑等起稳定作用的附属构件不作受力计算。
⑶行车要求:车辆通过表情时必须限速匀速前行,不得在便桥上急刹车;便桥上同时只能通行一辆车,行车必须沿指定路线,车轮不得超出标示界限。
2、便桥检算⑴荷载确定①桥梁上部自重由《桥涵》手册可知贝雷桁架主要部件重量如下:桁架节(贝雷片)270kg,支撑架21kg共36个,贝雷梁由左右各三排8节共48片贝雷片,该部分构件自重为:270×48+21×36=13716kgI28a工字钢横梁每根长度6.5m,每米重:43.4kg,全桥共32根,总重量:6.5×32×43.4=9027kg桥面铺设20槽钢,槽钢重:20根×24m×25.77kg/m=12370kg主横梁I32a每根长7m,每米重52.7kg,共2根,重量:7×2×52.7=738kg 桥梁上部结构自重共:P1=13716+9027+12370+738=35851kg换算成均布荷载:q=35851/12=29.88KN/m②挂车―80荷载等效为方便计算,按三角形影响线等代荷载,挂车―80荷载等效见下图,横向分部系数为0.5。
工字钢便桥计算书
工字钢便桥设计计算书一、便桥设计便桥上部采用10根I40a工字钢的作为承重主梁,每5根分为一组,每组中工字钢间距40cm,两组间距80cm;横梁采用[20a槽钢,其中底横梁纵向布置间距1m,采用Φ20mm的U型钢筋连接,顶横梁(兼做桥面板支撑)纵向间距50cm,同样采用Φ20mm的U型钢筋连接,桥面板采用δ=10mm厚的防滑钢板纵向铺设,钢板宽度50cm,布置式错开U型连接筋。
桥墩、桥台均采用φ600×10mm的钢管,钢管顶部设置I36a双拼工字钢作为横梁,桥墩采用[20槽钢斜向连接。
二、荷载分析根据便桥使用情况分析,承受荷载主要由桥梁上部结构自重荷载q,及车辆荷载P两部分组成,其中车辆荷载为主要荷载。
如图1所示:为简化计算,桥梁自重荷载q按均布荷载考虑,车辆荷载按集中荷载考虑。
以单片工字钢受力情况分析确定q、P值。
Pq图1-荷载布置示意图1、q值确定根据设计图得出桥梁上部结构自重g:(以一跨为单位进行验算),⑴主梁(I40a):g1=67.598×10=675.98(N/m)=0.676(KN/m)⑵横梁([20):g 2=4.5×25.77×26×1010×9 =335.01(N/m)=0.335(KN/m)⑶防护栏杆:g 3=49.36×3.33×109×10 =18.26(N/m)=0.018(KN/m)⑷锚固筋:g 4=1.62×2.47×3×8×109×10 =10.667(N/m)=0.011(KN/m)⑸桥面钢板:g 5=4.404×80.278×9×109×10 =353.54(N/m)=0.354(KN/m)恒载q:q=g 1+g 2+g 3+g 4+g 5=1.394(KN/m) 为安全计算时按q=1.5KN/m 考虑。
混凝土便桥计算书
附件:天河潭2标大道7米跨便桥计算书1、便桥概述便桥梁体总长度5.7m,宽度4m, 两侧桥台各搭0.35m,采用C40混凝土。
计算长度5m,取一块板宽度1m来计算。
2、荷载分析根据现场施工需要,便桥按最大载荷90t,通过速度1.5km/h设计。
便桥承受荷载主要由桥梁自重荷载q,及车辆荷载F两部分组成,其中车辆荷载为主要荷载。
如图1所示:图1为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。
以单片混凝土板受力情况分析确定q、F值。
⑴q值确定查表可知C40混凝土为2.5×103kg/m3,估算单片混凝土板需要约10×103kg,则q=20KN/m2。
⑵F值确定根据施工需要,便桥按能通过单侧履带(或车轮)重为90t的重卡,单侧履带全部作用在单个板上,则单个板压力为F=450KN。
由于便桥设计通过车速低于5km/h,故车辆对桥面的冲击荷载较小,故取冲击荷载系数为0.2,计算得到F=450KN×(1+0.2)=540KN。
3、结构强度检算已知q=20KN/m2,F=540KN,混凝土桥计算跨径L=5m,计算宽度1.0m。
⑴、计算最大弯矩及剪力Mmax=(ql2/8)+(FL/4)=(20×52/8)+(540×5/4)=737.2(KN.m)Vmax=(ql/2)+F/2=(20×5/2)+540/2=320KN(2)混凝土板尺寸、配筋设计及正截面抗弯承载力验算根据实际情况本次设计采用C40混凝土,HRB335钢筋,直径为30mm,混凝土保护层厚度为40mm。
根据《路桥施工计算手册》查得C40混凝土抗压强度设计值为fc=19.1N/mm2,抗拉强度设计值ft=1.71 N/mm2,HRB335钢筋抗拉强度设计值为fy=300 N/mm2。
假设板宽度b=1m,高度h=0.8m,配筋率为ρ=0.011。
根据以上条件得:板实际面积A=1.0 ×0.8=0.8m2板有效面积Ay=1.0 ×(0.8-0.04-0.016)=0.744 m2钢筋截面As=Ay*ρ=0.744×0.011=0.008184m2力的平衡方程:fy*As=fc*b* X ①力矩方程:M=fy*As*(h-0.04-0.016-X/2)≥Mu=1412.5(KN.m) ②由①计算得X=300000*0.008148/19100/1=0.128mξ=X/( h-0.04-0.016)=0.172≦ξb=0.550,所以不会超筋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工字钢便桥设计及荷载验算书
一、工程概况
为保证通往炸药库及主洞洞口施工便道畅通,并保证五里沟河排水的需要,决定在五里沟河上修建2座跨河便桥。
从结构可靠性、经济性及施工工期要求等多方面因素综合考虑,炸药库方向8m跨径,宽4m便桥采用30片I32b工字钢满铺作为主梁;洞口方向10m 跨径,宽5m便桥采用22片I32b工字钢,间距10cm铺设作为主梁;每片工字钢分别由Ф22钢筋横向连接为一整体,保证工字钢整体受力,工字钢上铺5mm厚防滑钢板,便于安全行车。
二、炸药库方向便桥受力分析及计算
荷载分析
根据现场施工需要,便桥承受荷载主要由桥梁自重荷载q,及车辆荷载P 两部分组成,其中车辆荷载为主要荷载。
如图1所示:
P
q
图1
为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。
以单片工字钢受力情况分析确定q、P值。
1、q值确定
由资料查得I32b工字钢延米重57.7kg,重力常数g取10N/kg。
q=57.7*10/1000=0.6KN/m,加上护栏和连接钢筋,单片工字钢承受的力按1.0 KN/m ,即q=1.0KN/m。
2、P 值确定
根据施工需要,并通过调查,便桥最大要求能通过重50吨的大型车辆,即单侧车轮压力为500KN 。
单侧车轮压力由5片梁同时承受,其分布如图3:
单侧车轮压力非平均分配于5片梁上,因此必须求出
车轮中心点处最大压力m ax f ,且车轮单个宽25cm ,
32b 工字钢翼板宽13.2cm ,工字钢满铺,因此单侧车
轮至少同时直接作用于两片工字钢上。
而f 按图3
所示转换为直线分布,如图4: f max
max
f f
f
f
图4 由图4可得到m ax f =F/2,单片工字钢受集中荷载为m ax f /2=125KN 。
由于便桥设计通过车速为5km/小时,故车辆对桥面的冲击荷载较小,故取冲击荷载系数为0.2,计算得到P=125*(1+0.2)=150KN 。
结构强度检算
由图1所示单片工字钢受力图示,已知q=1KN/m ,P=150KN ,工字钢计算跨径l =8m ,根据设计规范,工字钢容许弯曲应力[]w σ=210MPa ,容许剪应力
[]τ=120MPa 。
1、计算最大弯矩及剪力
最大弯距(图1所示情况下):
图3F f
m KN m m KN m m KN Pl ql M ⋅=⨯+⨯=+=3084
8/1508)8(/14822max 最大剪力(当P 接近支座处时)
KN KN m m KN P ql V 1541502
8/12max =+⨯=+= 2、验算强度
正应力验算:
[]MPa MPa cm m KN w M 2104.42726308/3max =<=⋅==σσ
(w 为32b 工字钢净截面弹性抵抗矩,查表得到为726cm 3)
剪力验算:
由于工字钢在受剪力时,大部分剪力由腹板承受,且腹板中的剪力较均匀,因此剪力可近似按d S I V )//(=τ计算。
)/(S I 为惯性矩与半截面的静力矩的比值,d 为腹板厚度,可直接查规范得,即I/S=27.1cm ,d=11.5mm 。
计算得到:
[]MPa MPa mm m KN t h V w
w 1204.49)5.11m 271(154max =<=⨯==ττ 3、整体挠度验算
工字钢梁容许挠度[]cm cm l f 2400/800400/===,而梁体变形为整体变形,由30片工字钢为一整体进行验算,计算得到:
EI Fl ql f ⎥⎦
⎤⎢⎣⎡+=48384534 其中已求得:q=1.0KN/m F=150KN 经查规范得:E= 2.06×105Mpa I=11600cm 4
()4
534116001006.248)8(150384)8(/0.15cm Mpa m KN m m KN f ⨯⨯⎥⎦⎤⎢⎣⎡⨯+⨯⨯= =cm 69.0 即[]cm f cm f 269.0=<= 满足。
4、验算结果分析
辆统计,一般车重不超过50吨,因此次设计可以完全满足使用要求。
三、洞口方向便桥受力分析及计算
荷载分析
根据现场施工需要,便桥承受荷载主要由桥梁自重荷载q ,及车辆荷载P 两部分组成,其中车辆荷载为主要荷载。
如图1所示: P
q
图1
为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。
以单片工字钢受力情况分析确定q 、P 值。
1、q 值确定
由资料查得I32b 工字钢延米重57.7kg ,重力常数g 取10N/kg 。
q=57.7*10/1000=0.6KN/m ,加上护栏、连接钢筋和钢板,单片工字钢承受的力按1.2 KN/m ,即 q=1.2KN/m 。
2、P 值确定
根据施工需要,并通过调查,便桥最大要求能通过重50吨的大型车辆,即单侧车轮压力为500KN 。
单侧车轮压力由3片梁同时承受,其分布如图3:
图3F f
压力m ax f ,且车轮单个宽25cm ,32b 工字钢翼板宽13.2cm ,工字钢净距10cm ,因此单侧车轮至少同时直接作用于两片工字钢上。
而f 按图3所示转换为直线分布,如图4: f max
max
f f f
f
图4
由图4可得到m ax f =F/2,单片工字钢受集中荷载为m ax f /2=125KN 。
由于便桥设计通过车速为5km/小时,故车辆对桥面的冲击荷载较小,故取冲击荷载系数为0.2,计算得到P=125*(1+0.2)=150KN 。
结构强度检算
由图1所示单片工字钢受力图示,已知q=1.2KN/m ,P=150KN ,工字钢计算跨径l =10m ,根据设计规范,工字钢容许弯曲应力[]w σ=210MPa ,容许剪应力[]τ=120MPa 。
1、计算最大弯矩及剪力
最大弯距(图1所示情况下):
m KN m m KN m m KN Pl ql M ⋅=⨯+⨯=+=3904
10/1508)10(/2.14822max 最大剪力(当P 接近支座处时)
KN KN m m KN P ql V 1561502
10/2.12max =+⨯=+= 2、验算强度
[]MPa MPa cm m KN w M 2107.53726390/3max =<=⋅==σσ
(w 为32b 工字钢净截面弹性抵抗矩,查表得到为726cm 3)
剪力验算:
由于工字钢在受剪力时,大部分剪力由腹板承受,且腹板中的剪力较均匀,因此剪力可近似按d S I V )//(=τ计算。
)/(S I 为惯性矩与半截面的静力矩的比值,d 为腹板厚度,可直接查规范得,即I/S=27.1cm ,d=11.5mm 。
计算得到:
[]MPa MPa mm m KN t h V w
w 1201.50)5.11m 271(156max =<=⨯==ττ 3、整体挠度验算
工字钢梁容许挠度[]cm cm l f 5.2400/1000400/===,而梁体变形为整体变形,由22片工字钢为一整体进行验算,计算得到:
EI Fl ql f ⎥⎦
⎤⎢⎣⎡+=48384534 其中已求得:q=1.2KN/m F=150KN 经查规范得:E= 2.06×105Mpa I=11600cm 4
()4
534116001006.248)10(150384)10(/2.15cm Mpa m KN m m KN f ⨯⨯⎥⎦⎤⎢⎣⎡⨯+⨯⨯= =cm 37.1 即[]cm f cm f 5.237.1=<= 满足。
4、验算结果分析
根据以上验算,可见本便桥完全满足通行50吨车辆,但根据进出工地车辆统计,一般车重不超过50吨,因此次设计可以完全满足使用要求。
四、结论
通过以上计算验证,说明两座便桥设计合理,完全满足施工现场车辆安全通行的要求。