大连市高一数学上学期期末试题附答案

合集下载

辽宁省大连市2022-2023学年高一上册12月期末考试数学试卷(含解析)

辽宁省大连市2022-2023学年高一上册12月期末考试数学试卷(含解析)

辽宁省大连市2022-2023学年高一上册12月期末考试数学试卷(含解析)第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}1,2,3,4A =,集合()(){}130B x x x =+-<,则A B = ()A.{}1,0,1,2,3- B.{}1,2,3 C.{}1,2 D.{}2【答案】C2.已知向量()1,2a =r ,(),4b x =- ,且//a b r r,则实数x =()A.2B.1C.1- D.2-【答案】D3.若1x ,2x ,…,10x 的方差为2,则131x +,231x +,…,1031x +的方差是()A.18B.7C.6D.2【答案】A4.中国共产党第二十次全国代表大会于2022年10月16日在北京开幕.党的二十大报告鼓舞人心,内涵丰富.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是()A.120 B.35C.310D.910【答案】B5.下列函数中,其图像如图所示的函数为()A.13y x-= B.23y x=C.13y x = D.23y x -=【答案】A6.“北溪”管道泄漏事件的爆发,使得欧洲能源供应危机成为举世瞩目的国际公共事件.随着管道泄漏,大量天然气泄漏使得超过8万吨类似甲烷的气体扩散到海洋和大气中,将对全球气候产生灾难性影响.假设海水中某种环境污染物含量P (单位:mg L )与时间t (单位:天)间的关系为:0ektP P -=⋅,其中0P 表示初始含量,k 为正常数.令2121P P t t μ-=-为[]12,t t 之间海水稀释效率,其中1P ,2P 分别表示当时间为1t 和2t 时的污染物含量.某研究团队连续20天不间断监测海水中该种环境污染物含量,按照5天一期进行记录,共分为四期,即(]0,5,(]5,10,(]10,15,(]15,20分别记为Ⅰ期,Ⅱ期,Ⅲ期,Ⅳ期,则下列哪个时期的稀释效率最高().A.Ⅰ期B.Ⅲ期C.Ⅲ期D.Ⅳ期【答案】A7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为()A.9 B.6 C.4D.1【答案】D8.已知定义域为D 的函数()f x ,若1x D ∀∈,都2x D ∃∈,满足()122x f x a +=,则称函数()f x 具有性质()P a .若函数()f x 具有性质()1P ,则“()f x 存在零点”是“2D ∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B二、多项选择题(本大题共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若a ,b ,R c ∈,则下列命题正确的是()A.若0ab ≠且a b <,则11a b> B.若a b >,01c <<,则a bc c <C.若1a b >>,1c >,则log log a b c c<D.若1a b <<-,0c >,则c ca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BCD10.同时掷红、蓝两枚质地均匀的骰子,事件A 表示“两枚骰子的点数之和为5”,事件B 表示“红色骰子的点数是偶数”,事件C 表示“两枚骰子的点数相同”,事件D 表示“至少一枚骰子的点数是奇数”,则()A.A 与C 互斥B.B 与D 对立C.A 与D 相互独立D.B 与C 相互独立【答案】AD11.已知点P 为ABC 所在平面内一点,且230PA PB PC ++=,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A.向量PA 与PC可能平行B.点P 在线段EF 上C.:2:1PE PF =D.::1:2:3PAB PAC PBC S S S =△△△【答案】BC12.已知函数()()21350f x x x x =+->,()22e2xf x x =+-,()3ln 24f x x x =+-的零点分别为1x ,2x ,3x ,则下列结论正确的是()A.123x x x <<B.232x x +=C.()310f x <D.()()3223f x f x =【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题功4小题,每小题5分,共20分.)13.2log 522log 4+=______.【答案】714.已知向量a ,b满足()1,2a =- ,(),1b x =r ,3a b += ,则实数x =______.【答案】115.在考察某中学的学生身高时,采用分层抽样的方法抽取男生24人,女生16人,得到了男生的平均身高是170cm ,女生的平均身高是165cm ,则估计该校全体学生的平均身高是______cm .【答案】16816.函数()()()224f x xxax b =-++满足:x ∀∈R ,都有()()20222024f x f x -=-,则函数()f x 的最大值为______.【答案】16四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.如图所示,在ABC 中,D 为BC 边上一点,且2BD DC =.过D 点的直线EF 与直线AB 相交于E 点,与直线AC 相交于F 点(E ,F 两点不重合).(1)用AB,AC 表示AD;(2)若AE AB λ=,AF AC μ=,求12λμ+的值.【答案】(1)1233AD AB AC=+(2)3.【解析】【小问1详解】在ABD △中,由AD AB BD =+,又2BD DC =,所以23BD BC =,所以23AD AB BD AB BC=+=+ ()23AC ABAB =+- 2233AB ACAB =-+ 1233AB AC =+【小问2详解】因为1233AD AB AC =+ ,又AE AB λ= ,AF ACμ=所以1AB AE λ= ,1AC AF μ=,所以3231A E D A A F μλ=+,又,,D E F 三点共线,且A 在线外,所以有:12133λμ+=,即123λμ+=.18.已知集合{}13A x x =-≤≤,集合{}22,R B x m x m m =-≤≤+∈.(1)若{}03A B x x ⋂=≤≤,求实数m 的值;(2)若:p x A ∈,R :q x B ∈ð,且p 是q 的充分条件,求实数m 的取值范围.【答案】(1)2m =(2){5m m >或}3m <-.【解析】【小问1详解】因为{}03A B x x ⋂=≤≤,所以2023m m -=⎧⎨+≥⎩,所以21m m =⎧⎨≥⎩,所以2m =;【小问2详解】{R 2B x x m =<-ð或}2x m >+,:p x A ∈,R :q x B ∈ð,且p 是q 的充分条件由已知可得R A B ⊆ð,所以23m ->或21m +<-,所以5m >或3m <-,故实数m 的取值范围为{5m m >或}3m <-.19.近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种流行的营销形式.某直播平台800个直播商家,对其进行调查统计,发现所售商品多为小吃、衣帽、生鲜、玩具、饰品类等,各类直播商家所占比例如图1所示.(1)该直播平台为了更好地服务买卖双方,打算随机抽取40个直播商家进行问询交流.如果按照分层抽样的方式抽取,则应抽取小吃类、玩具类商家各多少家?(2)在问询了解直播商家的利润状况时,工作人员对抽取的40个商家的平均日利润进行了统计(单位:元),所得频率分布直方图如图2所示.请根据频率分布直方图计算下面的问题;(ⅰ)估计该直播平台商家平均日利润的中位数与平均数(结果保留一位小数,求平均数时同一组中的数据用该组区间的中点値作代表);(ⅱ)若将平均日利润超过420元的商家成为“优秀商家”,估计该直播平台“优秀商家”的个数.【答案】(1)小吃类16家,玩具类4家;(2)(i )中位数为342.9,平均数为352.5;(2)128.【解析】【小问1详解】()40125%15%10%5%5%16⨯-----=,4010%4⨯=,所以应抽取小吃类16家,玩具类4家.【小问2详解】(i )根据题意可得()0.00130.0030.0050.007501a ⨯++++⨯=,解得0.002a =,设中位数为x ,因为()0.0010.003500.2+⨯=,()0.0010.0030.007500.55++⨯=,所以()3000.0070.20.5x -⨯+=,解得342.9x ≈,平均数为()2250.0012750.0033250.0073750.0054250.0024750.0015250.00150352.5⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=,所以该直播平台商家平均日利润的中位数为342.9,平均数为352.5.(ii )4504200.0020.0010.0015080012850-⎛⎫⨯++⨯⨯=⎪⎝⎭,所以估计该直播平台“优秀商家”的个数为128.20.第56届世界乒乓球团体锦标赛于2022年在中国成都举办,国球运动又一次掀起热潮.现有甲乙两人进行乒乓球比赛,比赛采用7局4胜制,每局11分制,每赢一球得1分,选手只要得到至少11分,并且领先对方至少2分(包括2分),即赢得该局比赛.在一局比赛中,每人只发2个球就要交换发球权,如果双方比分为10:10后,每人发一个球就要交换发球权.(1)已知在本场比赛中,前三局甲赢两局,乙赢一局,在后续比赛中,每局比赛甲获胜的概率为35,乙获胜的概率为25,且每局比赛的结果相互独立,求甲乙两人只需要再进行两局比赛就能结束本场比赛的概率;(2)已知某局比赛中双方比分为8:8,且接下来两球由甲发球,若甲发球时甲得分的概率为23,乙发球时乙得分的概率为12,各球的结果相互独立,求该局比赛甲得11分获胜的概率.【答案】(1)925;(2)49.【解析】【小问1详解】设“甲乙两人只需要再进行两局比赛就能结束本场比赛”为事件A ,若两局比赛就能结束,则只能甲连胜两局,所以()3395525P A =⨯=;【小问2详解】设“该局比赛甲得11分获胜”为事件B ,甲得11分获胜有两类情况:甲连得3分,则甲11:8获胜;甲得3分,乙得1分,则甲11:9获胜,此时有三种情况,每球得分方分别为乙甲甲甲,甲乙甲甲,甲甲乙甲,所以()22112112111221143323322332233229P B =⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=.21.已知函数()14xb f x a =++的定义域为R ,其图像关于点11,22⎛⎫⎪⎝⎭对称.(1)求实数a ,b 的值;(2)求122022202320232023f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;(3)若函数()412log 22xg x f x x+⎛⎫=++ ⎪-⎝⎭,判断函数()g x 的单调性(不必写出证明过程),并解关于t 的不等式()()2121g t g t -++>.【答案】(1)2,2a b ==-(2)1011(3)103t -<<【解析】【小问1详解】有条件可知函数()f x 经过点11,22⎛⎫ ⎪⎝⎭,()()112210122f f f ⎧⎛⎫= ⎪⎪⎪⎝⎭∴⎨⎪+=⨯⎪⎩,即12112411114b a b b aa ⎧+=⎪⎪+⎨⎪+++=⎪++⎩,解得:2,2a b ==-,()2414242xx xf x -=+=++;【小问2详解】由于120222************1,1,,1202320232023202320232023+=+=+= ,1202222021101110121,1,,1202320232023202320232023f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;【小问3详解】由于42log 2x y x +=-是奇函数,根据函数平移规则,()()12h x g x =-也是奇函数,并且由于()f x 是增函数,42log 2xy x+=-也是增函数,()h x ∴也是增函数,定义域为()2,2-不等式()()2121g t g t -++>等价于()()11212022g t g t --++->,即()()2120h t h t -++>,()()()2122h t h t h t ->-+=--,由于()h x 是增函数,2122212222t t t t ->--⎧⎪∴-<-<⎨⎪-<+<⎩,解得103t -<<;综上,(1)2,2a b ==-;(2)1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++=⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)103t -<<.22.已知函数()f x 的图像与函数()31xg x =-的图像关于直线y x =对称,函数()()9log 1h x x a =-+.(1)若4a =,求()()()F x f x h x =⋅在[]0,4x ∈上的最大值;(2)设()()(){}max ,2H x f x h x =,[]0,4x ∈,求()H x 的最小值,其中{},max ,,a a ba b b a b ≥⎧=⎨<⎩.【答案】(1)()F x 在[]0,4x ∈上的最大值为12(2)()H x 的最小值()()()3min 33log 1,0log 1,082log 3,8a a a H x a a a ⎧-≤⎪⎪⎛⎫=+<<⎨ ⎪⎝⎭⎪⎪-≥⎩【解析】【小问1详解】解:因为函数()f x 的图像与函数()31xg x =-的图像关于直线y x =对称,即()f x 与()g x 互为反函数,所以()()3log 1f x x =+当4a =,有()()9log 41h x x =-+,则()()()()()3939log 1log 41log 1log 5F x x x x x =+⋅-+=+⋅-()()331log 1log 52x x =+⋅-,又[]0,4x ∈时,[][]11,5,51,5x x +∈-∈,所以()()33log 10,log 50x x +≥-≥,所以()()()()()()()()2233223333log 1log 511111log 1log 5log 15log 29222882x x F x x x x x x ⎛⎫++-⎡⎤=+⋅-≤=+-=--+≤ ⎪⎣⎦⎝⎭,当且仅当()()33log 1log 52x x x ⎧+=-⎨=⎩,即2x =时等号同时成立,所以()F x 在[]0,4x ∈上的最大值为12;【小问2详解】解:()()()9322log 1log 1h x x a x a =-+=-+,()()2f x h x <等价于11x x a +<-+,即x x a <-,因为[]0,4x ∈,当0a ≤时,x a x a x -=-≥恒成立,所以()()2f x h x ≤,则()()3log 1H x x a =-+,所以()H x 在[]0,4x ∈上单调递增,所以()()()min 30log 1H x H a ==-;当04a <<时,[)[],0,,,4a x x a x a x a x a ⎧-∈⎪-=⎨-∈⎪⎩,此时当0,2a x ⎡⎤∈⎢⎥⎣⎦时,()()2f x h x <,当,42a x ⎛⎤∈ ⎥⎝⎦时,()()2f x h x >,所以()()()33log 1,0,2log 1,42a a x x H x a x x ⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩,()H x 在0,2a x ⎡⎤∈⎢⎥⎣⎦上单调递减,在,42a x ⎛⎤∈ ⎥⎝⎦上单调递增,所以()min 3log 122a a H x H ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭;当4a ≥时,x a a x -=-,当48a ≤<时,()H x 与上一种情况相同,所以()min 3log 122a a H x H ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭;当8a ≥时,x a a x x -=-≥恒成立,所以()()2f x h x <,则()()3log 1H x a x =-+,所以()H x 在[]0,4x ∈上单调递减,所以()()()min 34log 3H x H a ==-;综上,()H x 的最小值()()()3min 33log 1,0log 1,082log 3,8a a a H x a a a ⎧-≤⎪⎪⎛⎫=+<<⎨ ⎪⎝⎭⎪⎪-≥⎩.。

辽宁省大连市高一数学上学期期末试卷(含解析)

辽宁省大连市高一数学上学期期末试卷(含解析)

辽宁省大连市2014-2015学年高一上学期期末数学试卷一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知点A(﹣3,1,5)与点B(0,2,3),则A,B之间的距离为()A.B.2C.D.2.(5分)集合A={(x,y)|y=ax+1},B={(x,y)|y=x+3},且A∩B={(2,5)},则()A.a=3 B.a=2 C.a=﹣3 D.a=﹣23.(5分)a,b,c为空间中三条直线,若a⊥b,b⊥c,则直线a,c的关系是()A.平行B.相交C.异面D.以上都有可能4.(5分)直线ax+by+c=0经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<05.(5分)两条平行线l1:3x﹣4y﹣1=0与l2:6x﹣8y﹣7=0间的距离为()A.B.C.D.16.(5分)若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是()A.B.C.D.7.(5分)若a=20.5,b=logπ3,c=log20.3,则()A.b>c>a B.b>a>c C.c>a>b D.a>b>c8.(5分)若一个水平放置的图形的斜二测直观图是一个底角为45°且腰和上底均为1的等腰梯形,则原平面图形的面积是()A.B.C.2+D.1+9.(5分)已知圆C:x2+y2=10,过点P(1,3)作圆C的切线,则切线方程为()A.x+3y﹣10=0 B.x﹣3y+8=0 C.3x+y﹣6=0 D.3x﹣y+10=010.(5分)如图所示,已知三棱柱ABC﹣A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1﹣ABC1的体积为()A.B.C.D.11.(5分)已知函数f(x)=3﹣2|x|,g(x)=x2,构造函数F(x)=,那么函数y=F(x)()A.有最大值1,最小值﹣1 B.有最小值﹣1,无最大值C.有最大值1,无最小值D.有最大值3,最小值112.(5分)若半径均为2的四个球,每个球都与其他三个球外切,另有一个小球与这四个球都外切,则这个小球的半径为()A.B.﹣2 C.﹣3 D.2﹣2二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上)13.(5分)计算(lg2)2+lg20•lg5=.14.(5分)一个几何体的三视图如图所示,俯视图为等边三角形,若其体积为8,则a=.15.(5分)已知两圆相交于两点(1,3)和(m,1),且两圆的圆心都在直线上,则m+c的值是.16.(5分)过点(2,3)且与圆(x﹣1)2+y2=1相切的直线方程.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)如图,平面α⊥平面β,在α与β的交线l上取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线l,并且AC=3,BD=12,求CD的长.18.(12分)设,其中a为常数;(1)f(x)为奇函数,试确定a的值;(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.19.(12分)圆C过点A(6,0),B(1,5),且圆心在直线l:2x﹣7y+8=0上.(1)求圆C的方程;(2)P为圆C上的任意一点,定点Q(8,0),求线段PQ中点M的轨迹方程.20.(12分)如图,菱形ABCD的边长为6,∠BAD=60°,对角线AC,BD相交于点O,将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=3.求证:(1)OM∥平面ABD;(2)平面ABC⊥平面MDO.21.(12分)已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.22.(12分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.(1)求以点A为圆心,以为半径的圆与直线l相交所得弦长;(2)设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.辽宁省大连市2014-2015学年高一上学期期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知点A(﹣3,1,5)与点B(0,2,3),则A,B之间的距离为()A.B.2C.D.考点:空间两点间的距离公式.专题:直线与圆.分析:根据空间两点间的距离公式进行计算即可.解答:解:∵A(﹣3,1,5),B(0,2,3),∴|AB|===,故选:C点评:本题主要考查空间两点间的距离的计算,比较基础.2.(5分)集合A={(x,y)|y=ax+1},B={(x,y)|y=x+3},且A∩B={(2,5)},则()A.a=3 B.a=2 C.a=﹣3 D.a=﹣2考点:交集及其运算.专题:集合.分析:根据A,B,以及两集合的交集,确定出a的值即可.解答:解:联立得:,把x=2,y=5代入得:5=2a+1,解得:a=2,故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)a,b,c为空间中三条直线,若a⊥b,b⊥c,则直线a,c的关系是()A.平行B.相交C.异面D.以上都有可能考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:根据空间直线垂直的位置关系进行判断即可.解答:解:如图满足a⊥b,b⊥c,则a,c的关系可能平行,可能相交,可能异面,故选D.点评:本题主要考查空间直线的位置关系的判断,比较基础.4.(5分)直线ax+by+c=0经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<0考点:直线的一般式方程.专题:直线与圆.分析:直线ax+by+c=0化为:,利用斜率与截距的意义即可得出.解答:解:直线ax+by+c=0化为:,∵直线ax+by+c=0经过第一、第二、第四象限,∴,<0,∴ab>0,bc<0.故选:B.点评:本题考查了直线斜率与截距的意义,属于基础题.5.(5分)两条平行线l1:3x﹣4y﹣1=0与l2:6x﹣8y﹣7=0间的距离为()A.B.C.D.1考点:两条平行直线间的距离.专题:直线与圆.分析:把两直线的方程中x、y的系数化为相同的,然后利用两平行线间的距离公式,求得结果.解答:解:两条平行线l1:3x﹣4y﹣1=0,即6x﹣8y﹣2=0,与它平行的直线l2:6x﹣8y﹣7=0,故它们之间的距离为 d==,故选A.点评:本题主要考查两平行线间的距离公式的应用,要注意先把两直线的方程中x、y的系数化为相同的,然后才能用两平行线间的距离公式,属于中档题.6.(5分)若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是()A.B.C.D.考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:设侧面展开正方形边长为a,可得底面半径r满足:2πr=a,得r=,从而算出底面圆面积S底=,由此加以计算即可算出这个圆柱的全面积与侧面积的比.解答:解:∵圆柱的侧面展开图是一个正方形,∴设正方形的边长为a,可得圆柱的母线长为a,底面周长也等于a底面半径r满足:2πr=a,得r=,因此,该圆柱的底面圆面积为S底=πr2=,圆柱的全面积与侧面积的比为=,点评:本题给出侧面展开为正方形的圆柱,求全面积与侧面积之比.着重考查了圆柱的侧面展开和圆的周长、面积公式等知识,属于基础题.7.(5分)若a=20.5,b=logπ3,c=log20.3,则()A.b>c>a B.b>a>c C.c>a>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数的单调性即可得出.解答:解:∵a=20.5>1,1>b=logπ3>0,c=log20.3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数的单调性,属于基础题.8.(5分)若一个水平放置的图形的斜二测直观图是一个底角为45°且腰和上底均为1的等腰梯形,则原平面图形的面积是()A.B.C.2+D.1+考点:斜二测法画直观图.专题:空间位置关系与距离.分析:水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解答:解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故选:C点评:本题考查水平放置的平面图形的直观图斜二测画法,也可利用原图和直观图的面积关系求解.属基础知识的考查.9.(5分)已知圆C:x2+y2=10,过点P(1,3)作圆C的切线,则切线方程为()A.x+3y﹣10=0 B.x﹣3y+8=0 C.3x+y﹣6=0 D.3x﹣y+10=0考点:圆的切线方程.专题:计算题;直线与圆.分析:判断出P在圆上即P为切点,根据圆的切线垂直于过切点的直径,由圆心和P的坐标求出CP确定直线方程的斜率,根据两直线垂直时斜率乘积为﹣1,求出切线的斜率,根据P 坐标和求出的斜率写出切线方程即可.解答:解:由点P(1,3),圆x2+y2=10,得到P在圆上,则过P作圆的切线与CP所在的直线垂直,因为CP所在直线的斜率为3,所以切线的斜率为﹣,则切线方程为:y﹣3=﹣(x﹣1)即x+3y﹣10=0.点评:此题考查学生掌握点与圆的位置关系及直线与圆的位置关系,掌握两直线垂直时斜率所满足的关系,会根据一点的坐标和直线的斜率写出直线的方程,是一道综合题.10.(5分)如图所示,已知三棱柱ABC﹣A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1﹣ABC1的体积为()A.B.C.D.考点:直线与平面垂直的性质;棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:根据题意,三棱柱ABC﹣A1B1C1是棱长均为1的正三棱柱,算出它的体积V=.再根据锥体的体积公式得三棱锥A﹣A1B1C1、三棱锥C1﹣ABC的体积都等于三棱柱ABC﹣A1B1C1体积的,由此用三棱柱ABC﹣A1B1C1体积减去两个三棱锥的体积,即可算出三棱锥B1﹣ABC1的体积.解答:解:∵三棱柱ABC﹣A1B1C1的所有棱长均为1,∴底面△ABC为正三角形,面积S△ABC==又∵AA1⊥底面AB C,AA1=1∴三棱柱ABC﹣A1B1C1的体积V=S△ABC•AA1=∵三棱锥A﹣A1B1C1、三棱锥C1﹣ABC与三棱柱ABC﹣A1B1C1等底等高∴V=V=V=由此可得三棱锥B1﹣ABC1的体积V=V﹣V﹣V=故选:A点评:本题给出棱长均为1的正三棱柱,求其中的三棱锥B1﹣ABC1体积.着重考查了正三棱柱的性质、柱体和锥体的体积公式等知识,属于中档题.11.(5分)已知函数f(x)=3﹣2|x|,g(x)=x2,构造函数F(x)=,那么函数y=F(x)()A.有最大值1,最小值﹣1 B.有最小值﹣1,无最大值C.有最大值1,无最小值D.有最大值3,最小值1考点:函数的最值及其几何意义.专题:计算题;作图题;函数的性质及应用.分析:由g(x)﹣f(x)=x2﹣3+2|x|≥0得|x|≥1,从而可得F(x)=,作函数图象求解.解答:解:由g(x)﹣f(x)=x2﹣3+2|x|≥0得,|x|≥1;故F(x)=;故作F(x)=的图象如下,故有最大值1,没有最小值.故选C.点评:本题考查了函数的图象的应用,属于中档题.12.(5分)若半径均为2的四个球,每个球都与其他三个球外切,另有一个小球与这四个球都外切,则这个小球的半径为()A.B.﹣2 C.﹣3 D.2﹣2考点:球的体积和表面积.专题:计算题;空间位置关系与距离;球.分析:将这四个球的球心连接成一个正四面体,并根据四球外切,得到四面体的棱长为2,求出外接球半径,由于这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体外接球球心重合,进而再由小球与其它四球外切,球心距(即正四面体外接球半径)等于大球半径与小球半径之和,得到答案.解答:解:连接四个球的球心,得到一个棱长为4的正四面体,可将该正四面体补成一个正方体,设正方体的边长为a,则有4=a,由正方体的对角线长即为球的直径,可得a=2r,则该正四面体的外接球半径为,若这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体的外接球球心重合,因为由小球与其它四球外切,所以球心距(即正四面体外接球半径)等于大球半径与小球半径之和,所以小球的半径为﹣2.故选B.点评:本题考查棱锥的结构特征,球的结构特征,其中根据已知条件求出四个半径为2的球球心连接后所形成的正四面体的棱长及外接球半径的长是解答本题的关键.二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上)13.(5分)计算(lg2)2+lg20•lg5=1.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算法则、lg2+lg5=1即可得出.解答:解:原式=(lg2)2+(lg2+1)•lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1.故答案为:1.点评:本题考查了对数的运算法则、lg2+lg5=1,属于基础题.14.(5分)一个几何体的三视图如图所示,俯视图为等边三角形,若其体积为8,则a=2.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体为正三棱柱,底面正三角形的边上的高为2,棱柱的高为a,即可得出该几何体的体积.解答:解:由三视图可知:该几何体为正三棱柱,底面正三角形的边上的高为2,棱柱的高为a,∴底面正三角形的边长=4,∴该正三棱柱的体积V==,解得a=2.故答案为:2.点评:本题主要考查了正三棱柱的三视图及其体积计算公式、等边三角形的边角关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力、化归与转化能力,属于中档题.15.(5分)已知两圆相交于两点(1,3)和(m,1),且两圆的圆心都在直线上,则m+c的值是3.考点:相交弦所在直线的方程;直线的一般式方程与直线的垂直关系.专题:计算题.分析:两圆的公共弦的方程与两圆连心线垂直,求出公共弦的方程,然后求出m,利用中点在连心线上,求出c,即可求出结果.解答:解:已知两圆相交于两点(1,3)和(m,1),且两圆的圆心都在直线上,所以公共弦方程为:y﹣3=﹣1(x﹣1),所以x+y﹣4=0,因为(m,1)在公共弦上,m=3;中点在连心线上,即(2,2)在连心线上,所以c=0,所以m+c=3;故答案为:3.点评:本题是基础题,考查两圆的位置关系,公共弦的方程与连心线方程的关系,考查计算能力,逻辑推理能力.16.(5分)过点(2,3)且与圆(x﹣1)2+y2=1相切的直线方程4x﹣3y+1=0或 x=2.考点:圆的切线方程.专题:计算题;分类讨论.分析:当切线的斜率不存在时,写出切线的方程;当切线的斜率存在时,设出切线的方程,由圆心到切线的距离等于半径求出斜率,从而得到切线的方程.解答:解:当切线的斜率不存在时,切线的方程为 x=2,当切线的斜率存在时,设切线的斜率为 k,则切线的方程为 y﹣3=k(x﹣2),即 kx﹣y+3﹣2k=0,由圆心(1,0)到切线的距离等于半径得∴k=,此切线的方程 4x﹣3y+1=0,综上,圆的切线方程为 x=2或4x﹣3y+1=0,故答案为:x=2或4x﹣3y+1=0.点评:本题考查求圆的切线方程的方法,点到直线的距离公式的应用,体现了分类讨论的数学思想.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)如图,平面α⊥平面β,在α与β的交线l上取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线l,并且AC=3,BD=12,求CD的长.考点:与二面角有关的立体几何综合题;平面与平面垂直的性质.专题:空间位置关系与距离.分析:连接BC.由AC⊥l,利用勾股定理可得BC=.利用面面垂直与线面垂直的判定及其性质定理可得BD⊥BC.再利用勾股定理可得CD=,即可得出.解答:解连接BC.∵AC⊥l,∴BC===5.又∵BD⊥l,α⊥β,α∩β=l,∴BD⊥α.又∵BC⊂α,∴BD⊥BC.∴CD===13.∴CD长为13cm.点评:本题考查了面面垂直与线面垂直的判定及其性质定理、勾股定理,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.18.(12分)设,其中a为常数;(1)f(x)为奇函数,试确定a的值;(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.考点:函数恒成立问题;函数奇偶性的性质.专题:综合题;函数的性质及应用.分析:(1)由奇函数定义可得f(﹣x)=﹣f(x)恒成立,由此可得a值;(2)f(x)+a>0恒成立,可化为2a>恒成立,等价于2a>()max,利用基本函数的性质可求得()max;解答:解:(1)∵f(x)为奇函数,∴f(﹣x)=﹣f(x),即a﹣=﹣a+,∴2a=+=+=2,∴a=1;(2)f(x)+a>0恒成立,即a﹣+a>0,2a>恒成立,等价于2a>()max,而2x>0,2x+1>1,∴0<<2,故2a≥2,解得a≥1,故实数a的取值范围可得函数f(x)=log4(﹣x2+2x+3)∵真数为﹣x2+2x+3>0⇒﹣1<x<3∴函数定义域为(﹣1,3)令t=﹣x2+2x+3=﹣(x﹣1)2+4可得:当x∈(﹣1,1)时,t为关于x的增函数;当x∈(1,3)时,t为关于x的减函数.∵底数为4>1∴函数f(x)=log4(﹣x2+2x+3)的单调增区间为(﹣1,1),单调减区间为(1,3)(2)设存在实数a,使f(x)的最小值为0,由于底数为4>1,可得真数t=ax2+2x+3≥1恒成立,且真数t的最小值恰好是1,即a为正数,且当x=﹣=﹣时,t值为1.∴⇒⇒a=因此存在实数a=,使f(x)的最小值为0.点评:本题借助于一个对数型函数,求单调性与最值的问题,着重考查了函数的单调性与值域和二次函数的图象与性质等知识点,属于中档题.22.(12分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.(1)求以点A为圆心,以为半径的圆与直线l相交所得弦长;(2)设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)设直线l:y=2x﹣4与圆A相交的弦为线段BC,求出圆心到直线l的距离,利用垂径定理求解即可.(2)设圆C的方程为(x﹣a)2+2=1.设点M(x,y),通过|MA|=2|MO|,化简,利用点M(x,y)在圆C上,推出|2﹣1|≤|CD|≤2+1,求解即可.解答:解:(1)设直线l:y=2x﹣4与圆A相交的弦为线段BC则圆心到直线l的距离.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意知,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为圆心在直线y=2x﹣4上,所以圆C的方程为(x﹣a)2+2=1.设点M(x,y),因为|MA|=2|MO|,所以,化简得x2+y2+2y﹣3=0,即x2+(y+1)2=4,所以点M在以D(0,﹣1)为圆心,2为半径的圆上.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由题意,点M(x,y)在圆C上,所以M 是圆C与圆D的公共点,则|2﹣1|≤|CD|≤2+1,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)即得所以点C的横坐标a的取值范围为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查圆的方程的应用,直线与圆的位置关系,考查分析问题解决问题的能力.。

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

大连市2023~2024学年度第一学期期末考试高一数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、单项选择题:1.C 2.C 3.D 4.A 5.B 6.B 7.D 8.A 二、多项选择题:9.AC 10.ACD 11.BCD 12.BC 三、填空题:13.1 14.2()f x x -=(答案不唯一) 15.8;8.7 16.四、解答题:17.(本小题满分10分)解:(1)2(2,3)2(1,2)(2,3)(2,4)(4,1)+=+-=+-=-a b …………………2分|2|+==a b …………………4分(2)方法一:由已知得(2,3)(1,2)(2,23)λλλλ+=+-=+-+a b ,(2,3)(1,2)(21,32)λλλλ+=+-=+-a b …………………6分因为与共线,所以(2)(32)(21)(23)λλλλ+-=+-+ …………………8分 解得1λ=或1λ=-. …………………10分方法二:由已知(2,3)=a ,(1,2)=-bλ+a b λ+a b因为2(2)13⨯-≠⨯,所以a 与b 不共线, …………………6分 所以a b λ+≠0,因为与共线,所以存在实数μ,使得()a b a b λμλ+=+ …………………8分即a b a b λμλμ+=+,所以1λμλμ=⎧⎨=⎩,解得1λ=或1λ=- …………………10分18.(本小题满分12分) 解:(1)由频率分布直方图可知,(0.0050.0050.00750.020.0025)201a +++++⨯=解得0.01=a . …………………3分 (2)估计80%分位数为0.80.10.10.150.41101150.01----+=. ……………6分(3)由频率分布直方图可知,得分在[50,70)分数段的人数为1000.0052010⨯⨯=人,得分在[70,90)分数段的人数为1000.00752015⨯⨯=人. …………………7分 由分层抽样可知,在[50,70)分数段抽取两人,分别记为12,a a ,在[70,90)分数段抽取三人,分别记为123,,b b b , …………………8分 因此这个试验的样本空间可记为{}12111213212223121323Ω,,,,,,,,,a a a b a b a b a b a b a b b b b b b b =, 共包含10个样本点. …………………9分方法一:记A :抽取的这2名学生至少有1人成绩在[70,90)内,则}111213212223121323{,,,,,,,,=A a b a b a b a b a b a b b b b b b b ,包含9个样本点,……………10分 所以()109=P A . …………………12分 方法二:记A :抽取的这2名学生至少有1人成绩在[70,90)内, 则A :抽取的这2名学生成绩都在[50,70)内,}12{=A a a ,包含1个样本点, …………………10分所以()101=P A , λ+a b λ+a b从而1()1()911010=-=-=P A P A . …………………12分 19.(本小题满分12分)解:设,(1,2,3)=i i A B i 分别表示甲、乙在第i 次投篮投中. (1)所求的概率为1111211()()()323==⨯=P A B P A P B . …………………4分(2)所求的概率为111211223111211223()()()()++=++P A A B A A B A B A P A P A B A P A B A B A1211212111333233232327=+⨯⨯+⨯⨯⨯⨯=. …………………8分 (3)所求的概率为11211221121122()()()+=+P A B A A B A B P A B A P A B A B2112121232332329=⨯⨯+⨯⨯⨯=. …………………12分 20.(本小题满分12分)(1)当时,01<-xx 可化为(1)0-<x x , 所以原不等式的解集(0,1)=M . …………………2分(2)①因为322a =221=,所以2221(log )log 2y x x =- ……………3分 令2log t x =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 0m =01x mx -<-{|3}MA x m x =<<综上所述,116<-m . …………………12分 ②因为313log 18log 2a =+=29log 3=,所以21(2)22x x y =-⋅ ………………3分 令2x t =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为 ()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 综上所述,116<-m . …………………12分 21.(本小题满分12分)(1)证明:令()(1)1=+-g x f x ,因为∈x R , …………………1分()()(1)(1)2g x g x f x f x +-=++-+-所以222(12)220121212x x x x-+=+-=-=+++…………………3分所以函数()g x 为奇函数, …………………4分 函数()f x 的图象关于点(1,1)对称. …………………5分 (2)解:方法一:由(1)知2()(1)1112-=+-=-+xg x f x ,任取12,x x ∈R ,且21>x x ,因为2121122121222(22)()()12122(12)(12)--+----=-=++++x x x x x x x x g x g x ,因为21>x x ,所以21220->x x ,所以21()()>g x g x ,01x mx -<-{|3}MA x m x =<<所以函数()g x 在R 上为增函数, …………………7分 因为2()(21)2+->f a f a ,所以2(11)11(221)-+->--+f a f a ,所以2(1)(22)->--g a g a , …………………9分 因为函数()g x 为奇函数,所以2(1)(22)->-+g a g a , …………………10分 因为函数()g x 在R 上为增函数,所以2122->-+a a , …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 方法二:任取12,x x ∈R ,且21>x x ,因为21211221211111224(22)()()12122(12)(12)x x x x x x x x f x f x --+----=-=++++,因为21>x x ,所以21220->x x ,所以21()()>f x f x ,所以函数()f x 在R 上为增函数, …………………7分 由(1)有()(2)2+-=f x f x …………………8分 因为2()(21)2+->f a f a ,所以22(2)(21)2--+->f a f a ,所以2(21)(2)->-f a f a , …………………10分 因为函数()f x 在R 上为增函数,所以2212a a ->-, …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 22.(本小题满分12分)解:(1)因为3x x e e -+=,所以2310x x e e -+=令=xs e ,则1s ,2s 为2310-+=s s 的两根,所以1212121+⋅=⋅==x x x xs s e e e ,得120+=x x . …………………2分(2)22()2()12x x x x g x e e a e e --=+-++ 令-=+x x t e e ,因为0>x e ,所以2-=+≥x x t e e当且仅当x x e e -=,即0=x 时等号成立. …………………3分 因为2222--=+x x t e e ,所以222212210(2)=--+=-+≥y t at t at t 的最小值为1 当2≤a 时,1441-=a ,解得134=a ,不合题意 …………………5分 当2>a 时,2101-+=a ,解得3a =±,所以3a =. …………………7分 综上所述3=a . …………………8分 (3)因为()x F x e =,所以1()ln F x x -=,所以ln 1ln()1()ln()=ln()x mx h x me mx e mx --=++ …………………9分方法一:令ln()1mx u e -=,则ln ln()1u mx =- 所以ln 12=++≥y u u ,因为ln 1=++y u u 在(0,)+∞上是增函数,且当1=u 时,2=y所以ln()11mx u e -=≥,即ln()1ln ln 10mx m x -=+-≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分方法二:令ln()v mx =,则12v y e v -=+≥,因为1v y e v -=+在R 上是增函数,且当1v =时,2=y所以1v ≥,即ln()ln ln 1v mx m x ==+≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分。

辽宁省大连市2019-2020学年高一上学期期末考试 数学(含答案)

辽宁省大连市2019-2020学年高一上学期期末考试 数学(含答案)
1 d log2 x d 3
log2
1 2
d
log2
x
d
log2
8
育学院 1 d x d 8 教2
大连 院 ­
育学 为
®x ¯
1 2
d
x
d
½
8¾ ¿
…..4

大连教 (Ⅱ) f x
log2
2a x
x log2 8
(log2 2a log2 x)(log2 x log2 8)
育学院 (log2 x a)(log2 x 3)
大连 中抽出 20 人,打分 小于 4 的人数为 4 人, 作 A, B,C, D .
大连教育学院 在 6 人中任意抽取两人,所得样本空 为:
: {ab, aA, aB, aC, aD,bA,bB,bC,bD, AB, AC, AD,BC,BD,CD} ,共 包含 15 个样本点. …..9 分
把两人性别恰好 同 个事件 作 M ,
大 院 3
3
教育学 AF AB BF AB 3 BC a 3 b …..6 分
大连 4
4
大连教育学院 (Ⅱ)因为
AD AO OD AO DO y AF xDE
§ ¨©
y

2 3
x
· ¸¹
a

§ ¨©
3 4
y

x
·¸¹ b
b . …..9 分
y
§ ¨©
a

3 4
b
· ¸¹

x
§ ¨©
大连教 院 log2 x 2 a 3 log2 x 3a …..6
x

ª «¬

辽宁省大连市21-22学年高一上学期期末数学试卷(含答案解析)

辽宁省大连市21-22学年高一上学期期末数学试卷(含答案解析)

辽宁省大连市21-22学年高一上学期期末数学试卷班级:_________ 姓名:_________ 分数:_________一、单选题(本大题共2小题,共10分)1、在△ABC 中,P 、Q 分别在AB ,BC 上,且AP ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,BQ ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,若AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,则PQ ⃗⃗⃗⃗⃗ =( )A. 13a ⃗ +13b ⃗B. −13a ⃗ +13b ⃗C. 13a −13b ⃗D. −13a ⃗ −13b ⃗ 2、神舟十二号载人飞船搭载3名宇航员进入太空,在中国空间站完成了为期三个月的太空驻留任务,期间进行了很多空间实验,目前已经顺利返回地球.在太空中水资源有限,要通过回收水的方法制造可用水.回收水是将宇航员的尿液、汗液和太空中的水收集起来经过特殊的净水器处理成饮用水,循环使用.净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为(参考数据:lg2=0.3010.)( )A. 10B. 12C. 14D. 16二、填空题(本大题共2小题,共10分)3、某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10,那么n = .4、如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ +μAP ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为 .三、解答题(本大题共1小题,共12分)5、(本小题12.0分)已知函数f(x)=log a (x −a2)+log a (x −a)(a >0且a ≠1).(1)当a =2时,解不等式f(x)>1;(2)∀x ∈[2a,4a],f(x)≤1,求实数a 的取值范围;(3)在(2)的条件下,是否存在α,β∈(a,+∞),使f(x)在区间[α,β]上的值域是[log aβ,log aα]?若存在,求实数a的取值范围;若不存在,试说明理由.参考答案及解析1.答案:A解析:本题考查了平面向量的线性运算,属于基础题.直接利用向量的线性运算即可PQ ⃗⃗⃗⃗⃗ =BQ ⃗⃗⃗⃗⃗⃗ −BP ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ −23BA ⃗⃗⃗⃗⃗ =13(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23AB ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ =13a ⃗ +13b ⃗ ,所以选:A .2.答案:C解析:本题主要考查了函数的实际应用,考查了对数的运算性质,是中档题.设过滤的次数为n ,原来水中杂质为1,则(1−20%)n <5%,两边同时取常用对数可得lg0.8n <−lg20,结合对数的运算性质即可求出n 的最小值.设过滤的次数为n ,原来水中杂质为1,则(1−20%)n <5%,即0.8n <120, ∴lg0.8n <−lg20,∴nlg0.8<−lg20,∴n >−lg20lg0.8=lg201−3lg2=1+lg21−3lg2≈13.4,又∵n ∈N ∗,∴n 的最小值为14,即至少需要过滤14次,所以选:C .3.答案:45解析:本题考查样本容量的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题. 利用分层抽样的性质列出方程,由此能求出n 的值.∵某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10, ∴n 400+300+200=10200, 解得n =45.所以答案为:45.4.答案:3 解析:本题主要考查向量在几何中的应用,向量的运算,建立坐标系,将问题转化为坐标运算,是解答的关键.建立直角坐标系,把向量用坐标表示出来,根据P 的坐标表示出λ+μ的表达式,求其最大值即可. 以A 为原点,以AB 、AD 分别为x ,y 轴建立直角坐标系,设正方形的边长为2,则C(2,2),B(2,0),D(0,2),P(x,2),x ∈[0,2]∴AC⃗⃗⃗⃗⃗ =(2,2),DB ⃗⃗⃗⃗⃗⃗ =(2,−2),AP ⃗⃗⃗⃗⃗ =(x,2), ∵AC ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ +μAP⃗⃗⃗⃗⃗ , ∴{2λ+xμ=2−2λ+2μ=2,∴{λ=2−x 2+x μ=42+x, ∴λ+μ=6−x 2+x ,令f(x)=6−x2+x =−1+82+x ,(0≤x ≤2) ∴易判断f(x)在[0,2]上单调递减,∴f(x)max=f(0)=3.所以答案为:3.5.答案:(1)当a=2时,f(x)=log2(x−1)+log2(x−2)=log2[(x−2)(x−1)],由f(x)=log2[(x−2)(x−1)]>1得(x−2)(x−1)>2且x−2>0,x−1>0,即x2−3x>0且x>2,解得x>3,故不等式f(x)>1的解集(3,+∞);(2)f(x)=loga(x2−3ax2+a22),因为∀x∈[2a,4a],f(x)≤1,令t=x2−3ax2+a22=(x−3a4)2−a216,则t在[2a,4a]上为增函数,当0<a<1时,结合复合函数单调性可知f(x)在[2a,4a]上单调递减,∴f(2a)≤1,则(2a−3a4)2−a216≥a,整理得a(3a2−1)≥0,解得a≥23或a≤0,因为0<a<1,所以23≤a<1,当a>1时,f(x)在[2a,4a]上单调递增,则f(4a)=(4a−3a4)2−a216≤a,整理得a(21a2−1)≤0,解得0≤a≤221,因为a>1,此时a不存在,综上23≤a<1,∴a的取值范围是[23,1);(3)假设存在α,β∈(a,+∞),使f(x)在区间[α,β]上的值域是[log aβ,log aα],由(2)知f(x)在(a,+∞)上单调递减,则{f(α)=log a αf(β)=log a β, 即{α2−32aα+a 22=αβ2−32aβ+a 22=β, 即α,β是方程x 2−3a 2x +a 22=x 的大于a 的两个不等根,设ℎ(x)=x 2−(3a 2+1)x +a 22,对称轴x =12+3a 4, 由题意得{ 12+3a 4>a△=(1+3a 2)2−4×12a 2>0ℎ(a)=−a >0, 解{a <2a >4√2−6或a <−6−4√2a <0,又23≤a <1,此时a 不存在.解析:本题主要考查了对数函数单调性及定义域,还考查了复合函数的单调性,还考查了二次函数的性质,体现了转化思想及分类讨论思想的应用,属于较难题.(1)把a =2代入,然后结合对数函数的单调性即可求解不等式;(2)由已知不等式恒成立转化为最值成立,结合复合函数的单调性即可求解;(3)结合对数函数单调性代入后,结合已知等式特点构造函数,结合二次函数性质可求.。

2020-2021学年辽宁省大连市高一(上)期末数学试卷(附答案详解)

2020-2021学年辽宁省大连市高一(上)期末数学试卷(附答案详解)

2020-2021学年辽宁省大连市高一(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.“a⃗=b⃗ ”是“|a⃗|=|b⃗ |”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.若A=(−1,3),B={x|y=log2(2−x)},则A∩(∁R B)=()A. {x|3≤x}B. {x|−1<x<2}C. {x|2≤x<3}D. {x|x<3}3.若样本平均数为x.,总体平均数为μ,则()A. x.=μB. x.≈μC. μ是x.的估计值D. x.是μ的估计值4.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则AF⃗⃗⃗⃗⃗ =()A. 34AB⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗⃗B. 14AB⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗⃗C. 12AB⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗D. 34AB⃗⃗⃗⃗⃗ +12AD⃗⃗⃗⃗⃗⃗5.幂函数y=x−1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=x12的图象经过的“卦限”是()A. ④⑦B. ④⑧C. ③⑧D. ①⑤6.从含有两件正品a1,a2和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,则取出的两件产品中恰有一件次品的概率是()A. 34B. 23C. 12D. 147. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT.有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为( )(ln2≈0.69)A. 1.2天B. 1.8天C. 2.5天D. 3.5天8. 已知函数f(x)={e x ,x ≥0lg(−x),x <0,若关于x 的方程f 2(x)+f(x)+t =0有三个不同的实根,则t 的取值范围是( )A. (−∞,−2]B. [1,+∞)C. [−2,1]D. (−∞,−2]∪[1,+∞)二、多选题(本大题共4小题,共20.0分)9. 设A ,B ,C 为三个事件,下列各式意义表述正确的是( )A. A −BC 表示事件A 不发生且事件B 和事件C 同时发生 B. A +B +C −表示事件A ,B ,C 中至少有一个没发生 C. A +B 表示事件A ,B 至少有一个发生D. A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生10. 已知正数a ,b ,则下列不等式中恒成立的是( )A. a +b ≥2√abB. (a +b)(1a +1b )≥4 C. (a +b)2≥2(a 2+b 2)D. 2aba+b >√ab11. 下列结论正确的是( )A. 一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底B. 若a e 1⃗⃗⃗ +b e 2⃗⃗⃗ =c e 1⃗⃗⃗ +d e 2⃗⃗⃗ ,(a,b ,c ,d ∈R ,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是单位向量),则a =c ,b =dC. 向量a ⃗ 与b ⃗ 共线⇔存在不全为零的实数λ1,λ2,使λ1a ⃗ +λ2b ⃗ =0⃗ D. 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,则x +y =1 12. 已知函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2),若f(x)=a 有四个解x 1,x 2,x 3,x 4满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A. 0<a <1B. x 1+2x 2∈(3,+∞)C. x 1+x 2+x 3+x 4∈(10,212)D. x 3∈[2,+∞)三、单空题(本大题共4小题,共20.0分) 13. lg2+lg5+2log 23的值为______ .14. 设a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线,则k = ______ .15. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓放粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为______石;(结果四舍五入,精确到各位). 16. 已知定义在R 上函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,已知定义在R 上函数y =g(x)满足g(x)+g(−x)=2,设函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),(x n ,y n ),则f(2)+f(−2)的值为______ ;∑(n i=1x i +y i )的值为______ .(用n 表示) 四、解答题(本大题共6小题,共70.0分)17. 如图,已知M ,N ,P 是△ABC 三边BC ,CA ,AB 上的点,且BM ⃗⃗⃗⃗⃗⃗=14BC ⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ ,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,试用基底{a ⃗ ,b ⃗ }表示向量NP ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ .18. 我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照[0,1),[1,2),[2,3),[3,4),[4,5]分成5组,制成了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)假设同组中的每个数据都用该组区间的中值点代替,估计全市家庭月均用水量的平均数.19. 已知函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断函数f(x)的奇偶性,并证明.20. 某项选拔共有四轮考核.每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)21.定义满足性质“y=f(x)(x∈D),对任意x,y,x+y2∈D均满足f(x+y2)≥12[f(x)+f(y)],当且仅当x=y时等号成立”的函数叫M函数.(Ⅰ)下列函数(1)g(x)=−x2;(2)m(x)=x2;(3)ℎ(x)=e x;(4)g(x)=log2x是M 函数是_____(直接写出序号).(Ⅱ)选择(Ⅰ)中一个M函数,加以证明;(Ⅲ)试利用M函数解决下列问题:若实数m,n满足2m+2n=1,求m+n的最大值.22.已知函数f(x)=2log a(mx+b)−log a x,其中b∈R.(Ⅰ)若m=b=2,且x∈[14,2]时,f(x)的最小值是−2,求实数a的值;(Ⅱ)若m=2,0<a<1,且x∈[14,2]时,f(x)≤0恒成立,求实数b的取值范围;(Ⅲ)若a=2,b=1,∀t∈[12,1],函数g(x)=f(x)−log2x在区间[t,t+1]上的最大值与最小值的差不大于2,求正数m的取值范围.答案和解析1.【答案】A【解析】解:a ⃗ =b ⃗ 时,有|a ⃗ |=|b ⃗ |成立,是充分条件; |a ⃗ |=|b ⃗ |时,a ⃗ =b ⃗ 不一定成立,不是必要条件; 所以“a ⃗ =b ⃗ ”是“|a ⃗ |=|b ⃗ |”的充分不必要条件. 故选:A .分别判断充分性和必要性是否成立即可.本题考查了平面向量的基本概念与充分、必要条件的判断问题,是基础题.2.【答案】C【解析】解:B ={x|y =log 2(2−x)}={x|2−x >0}={x|x <2}, 则∁R B ={x|x ≥2},则A ∩(∁R B)={x|2≤x <3}, 故选:C .求出集合B 的等价条件,结合集合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件,结合集合的基本运算是解决本题的关键.比较基础.3.【答案】D【解析】解:样本平均数为x .,总体平均数为μ, 统计学中,利用样本数据估计总体数据, ∴样本平均数x .是总体平均数μ的估计值. 故选:D .统计学中利用样本数据估计总体数据,可知样本平均数是总体平均数的估计值. 本题考查了利用样本数据估计总体数据的应用问题,是基础题.4.【答案】D【解析】本题主要考查了平面向量的基本定理的简单应用,属于基础题.根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ),结合向量加法的四边形法则及平面向量的基本定理可求. 【解答】解:根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ), 又AC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ , 所以AF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ . 故选D .5.【答案】D【解析】解:取x =12得y =(12)12=√12=√22∈(0,1),故在第⑤卦限;再取x =2得y =212=√2∈(1,2),故在第①卦限 故选:D .结合幂函数的五种形式,再代入12和2验证即可. 本题考查幂函数的图象,考查对函数图象的分析和理解.6.【答案】B【解析】解:从含有两件正品a 1,a 2和一件次品b 的3件产品中, 按先后顺序任意取出两件产品,每次取出后不放回, 基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4, 则取出的两件产品中恰有一件次品的概率是P =m n=46=23.故选:B .基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4,由此能求出取出的两件产品中恰有一件次品的概率.本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.【解析】【分析】根据所给模型求得r=0.38,令t=0,求得I,根据条件可得方程e0.38t=2,然后解出t即可.本题考查函数模型的实际运用,考查学生阅读理解能力,计算能力,属于中档题.【解答】解:把R0=3.28,T=6代入R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,≈1.8.两边取对数得0.38t=ln2,解得t=ln20.38故选:B.8.【答案】A【解析】解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=−2,此时由m2+m−2=0得m=1或m=−2,满足f(x)=1有两个根,f(x)=−2有1个根,满足条件当m≠1时,设ℎ(m)=m2+m+t,则ℎ(1)<0即可,即1+1+t<0,则t <−2, 综上t ≤−2, 故选:A .利用换元法设m =f(x),将方程转化为关于m 的一元二次方程,利用根的分布建立不等式关系进行求即可.本题主要考查方程根的个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合以及换元法是解决本题的关键.9.【答案】ACD【解析】解:根据题意,依次分析选项:对于A ,A −BC 表示事件A 不发生且事件B 和事件C 同时发生,A 正确,对于B ,A +B +C 表示事件A 、B 、C 至少一个发生,则A +B +C −表示事件ABC 都没有发生,B 错误,对于C ,A +B 表示事件A ,B 至少有一个发生,C 正确,对于D ,A −B −C 表示事件A 、B 不发生且事件C 发生,A −BC −事件A 、C 不发生且事件B 发生,AB −C −事件B 、C 不发生且事件A 发生,则A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生, 故选:ACD .根据题意,依次分析选项是否正确,综合即可得答案. 本题考查对立,互斥事件的定义以及概率性质,10.【答案】AB【解析】解:A :当a >0,b >0时,由基本不等式得,a +b ≥2√ab ,当且仅当a =b 时取等号,A 成立;(a +b)(1a +1b )=2+b a +a b ≥2+2√a b ⋅ba =4,当且仅当a =b 时取等号,B 成立;2(a 2+b 2)−(a +b)2=a 2+b 2−2ab =(a −b)2≥0,则(a +b)2≤2(a 2+b 2),C 不恒成立;因为a +b ≥2√ab ,所以2ab ≤(a +b)√ab ,所以2aba+b ≤√ab ,当且仅当a =b 时取等号,D 不恒成立. 故选:AB .由已知结合基本不等式及不等式的性质分别检验各选项即可判断. 本题主要考查了基本不等式,不等式的性质的应用,属于中档题.11.【答案】CD【解析】 【分析】本题主要考查基底的概念、平面向量共线的充要条件、平面向量共线定理,属于中档题. 根据基底的概念即可判断选项A ;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时即可判断选项B ;根据向量共线定理即可判断选项C ,D . 【解答】解:根据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底,故A 错误;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时,结论不一定成立,故B 错误;若a ⃗ 与b ⃗ 均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得λ1a ⃗ +λ2b ⃗ =0⃗ ; 若a ⃗ ≠0⃗ ,则由两向量共线知,存在λ,使得b ⃗ =λa ⃗ ,即λa ⃗ −b ⃗ =0⃗ ,符合题意,故C 正确;由于A ,B ,P 三点共线,所以AB ⃗⃗⃗⃗⃗ ,AP⃗⃗⃗⃗⃗ 共线, 由共线向量定理可知,存在实数λ使得AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ), 所以OP ⃗⃗⃗⃗⃗ =(1−λ)OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ , 故x =1−λ,y =λ, 所以x +y =1,故D 正确. 故选:CD .12.【答案】AC【解析】 【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象,由图象可得x 1⋅x 2=1,x 3+x 4=8;从而逐项判断各选项即可得答案. 【解答】解:作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象如下,f(x)=a 有四个解,即y =a 与f(x)的图象有4个交点,x 1<x 2<x 3<x 4, 可得0<a <1,可知选项A 正确; 图象可得x 1⋅x 2=1, 则1x 1=x 2∵12<x 1<1,且1<x 2<2,∴1=x 1⋅x 2=1⋅x 1⋅2x 2≤1⋅(x 1+2x 2)2 令y =x 1+2x 2=x 1+2x 1,根据函数单调性可得y ∈(3,4.5).可知选项B 错误;∵12<x 1<1,且1<x 2<2,得1=x 1⋅x 2<(x 1+x 22)2,可得x 1+x 2>2,当且仅当x 1=x 2=1时,取等号. ∵x 3+x 4=8;∴x 1+x 2+x 3+x 4∈(10,212),可知选项C 正确; 从图象可知x 3∈[2,+∞)不正确; 故选:AC .13.【答案】4【解析】解:原式=lg10+3=1+3=4, 故答案为:4.根据对数的运算法则计算即可.本题考查了对数的运算法则,考查了运算能力,属于基础题.14.【答案】−2【解析】解:∵a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线, ∴AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , ∴42=k −1,解得k =−2.故答案为:−2.由A ,B ,C 三点共线,得AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,由此能求出k 的值.本题考查利用三点共线求参数的值,向量平行的性质等基础知识,考查运算求解能力,是基础题.15.【答案】169【解析】解:由题意,这批米内夹谷约为1534×28254≈169石, 故答案为:169.根据254粒内夹谷28粒,可得比例,即可得出结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.16.【答案】2 2n【解析】解:函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,那么f(−x)=2+1+x)+e x −e −xe x +e −x −2x +1,则f(x)+f(−x)=2,∴f(2)+f(−2)=2,g(x)+g(−x)=2, 可知f(x)与g(x)的图象都关于点(0,1)对称,函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可得这些交点也关于(0,1)对称;∴∑(n i=1x i +y i )=x 1+y 1+x 2+y 2+⋯+x n +y n =2n ; 故答案为2;2n .由f(x)+f(−x)=2,可知f(2)+f(−2)的值为2,g(x)+g(−x)=2,可知f(x)与g(x)的图象都关于点(0,1)对称,即可求解∑(n i=1x i +y i )的值.本题考查函数与方程的应用,函数的对称性的应用,考查分析问题解决问题的能力,属于中档题.17.【答案】解:因为CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,所以AN ⃗⃗⃗⃗⃗⃗ =34AC ⃗⃗⃗⃗⃗ , 所以NP ⃗⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AN ⃗⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ −34AC ⃗⃗⃗⃗⃗ =14a ⃗ −34b ⃗ , AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =34a ⃗ +14b ⃗ .【解析】根据向量运算的三角形法则及共线向量定理,即可求得结论.本题主要考查向量加法的三角形法则和共线向量定理以及平面向量基本定理,属于基础题.18.【答案】解:(Ⅰ)由频率和为1,得a =1−0.12−0.22−0.36−0.12=0.18.(Ⅱ)计算平均数为x −=0.5×0.12+1.5×0.22+2.5×0.36+3.5×0.18+4.5×0.12=2.46(t),估计全市家庭月均用水量的平均数为2.46t .【解析】(Ⅰ)由频率和为1求出a 的值;(Ⅱ)利用该组区间的中值点代替同组中的数据,计算月均用水量的平均数即可. 本题考查了频率求值问题,也考查了平均数计算问题,是基础题.19.【答案】解:(Ⅰ)函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).所以函数f(x)经过(ln2,32),即当x =ln2时,f(ln2)=32,所以a =1, 所以f(x)=e x −e −x .(Ⅱ)由(1)知f(x)=e x −e −x ,则函数为奇函数.证明如下:因为f(x)的定义域为R ,且f(−x)=e −x −e x =−(e x −e −x )=−f(x). 所以函数f(x)为奇函数.【解析】(Ⅰ)直接利用原函数和反函数的关系式,求出a 的值,进一步得到f(x)的解析式;(Ⅱ)利用函数的奇偶性的定义进行判断即可.本题考查的知识要点:原函数和反函数的关系,函数的奇偶性的判断与证明,主要考查运算能力,属于基础题.20.【答案】解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3,4),则P(A 1)=45,P(A 2)=35,P(A 3)=25,P(A 4)=15, ∴该选手进入第四轮才被淘汰的概率P 1=P(A 1A 2A 3A 4−) =P(A 1)P(A 2)P(A 3)P(P 4−) =45×35×25×45=96625.(Ⅱ)该选手至多进入第三轮考核的概率P 2=P(A 1−+A 1A 2−+A 1A 2A 3−)=P(A 1−)+P(A 1)P(A 2−)+P(A 1)P(A 2)P(A 3−) =15+45×25+45×35×35=101125【解析】(1)该选手进入第四轮才被淘汰,表示前三轮通过,第四轮淘汰,则该选手进入第四轮才被淘汰的概率P =P(A 1A 2A 3A 4−)=P(A 1)P(A 2)P(A 3)P(P 4−),根据已知条件,算出式中各数据量的值,代入公式即可求解.(2)求该选手至多进入第三轮考核表示该选手第一轮被淘汰,或是第二轮被淘汰,或是第三轮被淘汰,则该选手至多进入第三轮考核的概率P =P(A 1−+A 1A 2−+A 1A 2A 3−),根据已知条件,算出式中各数据量的值,代入公式即可求解.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.21.【答案】(Ⅰ)(1)(4).(Ⅱ)若选(1)g(x)=−x2,那么任取x,y∈R,则g(x+y2)=−(x+y2)2,g(x)+g(y)2=−x2+(−y2)2,所以g(x+y2)−g(x)+g(y)2=−(x+y2)2−−x2+(−y2)2=−2xy+x2+y24=(x−y)22≥0,当且仅当x=y时,取等号,所以g(x+y2)≥g(x)+g(y)2.若选(4)g(x)=log2x,任取x,y∈(0,+∞),则g(x+y2)=log2x+y2,g(x)+g(y)2=log2x+log2y2=log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy,因为x+y2≥√xy,(当且仅当x=y时,取等号),所以log2x+y2≥log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy≥0,所以g(x+y2)≥g(x)+g(y)2.(Ⅲ)利用g(x)=log2x,设x=2m,y=2n,则m=log2x,n=log2y,由(Ⅱ)知,log2x+y2≥log2√xy,(当且仅当x=y时,取等号),所以log212≥12(m+n),(当且仅当m=n时,取等号),所以−1≥12(m+n),所以m+n≤−2,所以m+n的最大值为−2.【解析】(Ⅰ)(1)(4).(Ⅱ)分别选(1)(4),结合M 函数的定义,即可得出证明. (Ⅲ)利用g(x)=log 2x ,设x =2m ,y =2n ,由(Ⅱ)知,log 2x+y 2≥log 2√xy ,(当且仅当x =y 时,取等号),推出log 212≥12(m +n),(当且仅当m =n 时,取等号),即可得出m +n 的最大值.本题考查“M 函数”的新定义,解题关键是对“M 函数”定义的理解,属于中档题.22.【答案】解:(Ⅰ)若m =b =2,则f(x)=2log a (2x +2)−log a x =log a (2x+2)2x=log a (4x +4x +8),当0<a <1时,f(x)在[14,1]上单调递增,(1,2]上单调递减,此时f(x)min =f(14)=−2,即log a (4×14+414+8)=log a 25=−2,∴a =±15,又∵0<a <1,∴a =15,当a >1时,f(x)在[14,1]上单调递减,(1,2]上单调递增,此时f(x)min =f(1)=−2,即log a (4+4+8)=log a 16=−2,解得a =±14,又a >1,故不符合题意, 综上所述,a 的值为15;(Ⅱ)若m =2,f(x)=2log a (2x +b)−log a x =log a (4x +b 2x+4b)=log a(2x+b)2x,由题意可知当x ∈[14,2]时,f(x)≤0恒成立,即(2x+b)2x≥1,即4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立, 令ℎ(x)=4x 2+(4b −1)x +b 2,1°{−4b−18≤14ℎ(14)≥0ℎ(2)≥0,解得b ≥0,2°{−4b−18≥2ℎ(14)≥0ℎ(2)≥0,解得b ≤−4−√2,而2x +b >0,故不符合题意,3°{14<−4b−18<2△≤0,无解,综上所述:b ≥0;(Ⅲ)若a =2,b =1,f(x)=2log 2(mx +1)−log 2x =log 2(m 2x +2m +1x ), g(x)=f(x)−log 2x =log 2(m 2+2m x+1x 2)=2log 2mx+1x,令p(x)=mx+1x,则原问题转化成p(x)在区间[t,t +1]上的最大值与最小值的比不大于2,p(x)=mx+1x,x ∈[t,t +1],故p(x)max =m +1t ,p(x)min =m +1t+1, 故m +1t ≤2(m +1t+1),即m ≥1t −2t+1,t ∈[12,1], 令H(t)=1t −2t+1,H′(x)=−1t 2+2(t+1)2=t 2−2t−1t 2(t+1)2<0, 所以H(t)max =H(12)=23,故m ∈[23,+∞). 解得:m 的取值范围为[23,+∞).【解析】(Ⅰ)先利用对数的运算法则化简函数解析式,讨论a ,根据函数的单调性建立方程,解之即可;(Ⅱ)要使x ∈[14,2]时,f(x)≤0恒成立,转化成4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立,利用二次函数的性质进行求解即可;(Ⅲ)利用函数的单调性求出函数g(x)在[t,t +1]的最大值和最小值,然后建立不等式解之即可.本题主要考查了函数恒成立问题,解题的关键是转化成利用函数单调性研究函数的最值,同时考查了学生运算求解的能力.。

辽宁省大连市高一上学期数学期末考试试卷(a卷)

辽宁省大连市高一上学期数学期末考试试卷(a卷)

辽宁省大连市高一上学期数学期末考试试卷(a卷)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020高一下·宣城期末) 已知全集,集合,集合,则 =()A .B .C .D .2. (2分) (2017高一下·惠来期末) 点在直线l:ax﹣y+2=0上,则直线l的倾斜角为()A . 30°B . 45°C . 60°D . 120°3. (2分) (2016高三上·连城期中) 若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A . [0,+∞)B . [0,3]C . (﹣3,0]D . (﹣3,+∞)4. (2分)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A .B .C .D .5. (2分)设,则()A . a>b>cB . c>a>bC . b>a>cD . b>c>a6. (2分)直线2x-3y-6=0在x轴上的截距为a,在y轴上的截距为b,则()A . a=3,b=2B . a=3,b=-2C . a=-3,b=2D . a=-3,b=-27. (2分) (2016高三上·山西期中) 已知函数,若m<n,且f(m)=f(n),则n﹣m的取值范围是()A . [3﹣2ln2,2)B . [3﹣2ln2,2]C . [e﹣1,2]D . [e﹣1,2)8. (2分)(2017·河南模拟) 下列命题正确的是()A . ∃x0∈R,sinx0+cosx0=B . ∀x≥0且x∈R,2x>x2C . 已知a,b为实数,则a>2,b>2是ab>4的充分条件D . 已知a,b为实数,则a+b=0的充要条件是 =﹣19. (2分) (2017高二下·都匀开学考) 已知f(x)=x2﹣3,g(x)=mex ,若方程f(x)=g(x)有三个不同的实根,则m的取值范围是()A .B .C .D . (0,2e)10. (2分)直线l与直线y=1,直线x=7分别交于P,Q两点,PQ中点为M(1,﹣1),则直线l的斜率是()A .B .C . -D . -11. (2分)(2017·潮南模拟) 某几何体的三视图如图所示,则该几何体的体积是()A .B .C .D . π12. (2分)方程的根所在区间为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高二上·吉林月考) 已知函数的定义域是R,则实数k的取值范围是________.14. (1分) (2018高一上·深圳月考) 幂函数的单调增区间是________15. (1分)(2019·天津) 已知四棱锥的底面是边长为的正方形,侧棱长均为 .若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.16. (1分) (2019高一下·泰州月考) 设两直线,与轴构成三角形,则m的取值范围为________.三、解答题 (共6题;共60分)17. (10分) (2016高一上·松原期中) 设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.(1)求∁U(A∩B);(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.18. (5分)设函数f(x)=ax+(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k值;(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范围;(3)若f(1)=,设g(x)=a2x+a﹣2x﹣2mf(x),g(x)在[1,+∞)上的最小值为﹣1,求m的值.19. (5分)在平面直角坐标系中,已知A(﹣1,2),B(2,1),C(1,0).(Ⅰ)判定三角形ABC形状;(Ⅱ)求过点A且在x轴和在y轴上截距互为倒数的直线方程;(Ⅲ)已知l是过点A的直线,点C到直线l的距离为2,求直线l的方程.20. (15分) (2017高二下·安徽期中) 如图,在直二面角D﹣AB﹣E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且BF⊥平面ACE;(1)求证:AE⊥平面BCE;(2)求二面角B﹣AC﹣E的正弦值;(3)求点D到平面ACE的距离.21. (10分) (2016高一上·上杭期中) 某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?22. (15分) (2016高一上·张家港期中) 设函数f(x)的解析式满足.(1)求函数f(x)的解析式;(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;(3)当a=1时,记函数,求函数g(x)在区间上的值域.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:。

2022-2023学年辽宁省大连市第二十四中学高一上数学期末达标检测试题含解析

2022-2023学年辽宁省大连市第二十四中学高一上数学期末达标检测试题含解析

(1)DE∥平面 PBC; (2)CD⊥平面 PAB 19.已知函数 f (x) lg(2 x) x 1 的定义域为 A . (1)求 A ;
(2)设集合 B {x a2x7 a4xa (a 0,且a 1)},若 A B ,求实数 a 的取值范围.
20.已知集合 A
x
a
x a3
,集合 B
x
x 1 x5
0 ,集合 C
x 6x2 7x 2 0
.
(1)若 A B B ,求实数 a 的取值范围;
(2)命题 p : x A,命题 q : x C ,若 p 是 q 的必要不充分条件,求实数 a 的取值范围.
21.已知函数 g(x) loga (x a)(a 0,a 1) .
f x 的图象如图所示,由二次函数的对称性,可得 x3 x4 4 .因为1 2x1 2x2 1,
2x1 2x2 1
所以 2x1 2x2 2 ,故
x3 x4
2
故选:D
二、填空题(本大题共 5 小题,请把答案填在答题卡中相应题中横线上)
11、 2 3
【解析】利用指数的运算法则和对数的运算法则即求.
故答案为 3 17 17
【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的
点的坐标和角的三角函数值联系到一起, sin a
1.在平面直角坐标系中,动点 M 在单位圆上按逆时针方向作匀速圆周运动,每12 分钟转动一周.若 M 的初始位置坐
标为 (1 , 3 ) ,则运动到 3 分钟时, M 的位置坐标是 ( )
22
A ( 3 ,1) 22
B. ( 3 , 1) 22
C. ( 1 , 3 ) 22

大连高一上学期数学期末试卷(有答案)

大连高一上学期数学期末试卷(有答案)

2016-2017学年度上学期期末考试高一数学试卷考试时间:120分钟 试题分数:150分参考公式:球的表面积公式 24S R π=,其中R 为球半径. 锥体体积公式Sh V 31=,柱体体积公式V Sh =,其中S 为底面面积,h 为高 第Ⅰ卷一.选择题本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}{}R x y y B R x x y y A x ∈==∈+==,2,,1,则A B ⋂等于 A. ()+∞,0 B. {}1,0 C. {}1,2 D. {})2,1(),1,0(2.函数23212---=x x x y 的定义域 A. ]1,(-∞ B. ]2,(-∞ C. ]1,21()21,(-⋂--∞ D. ]1,21()21,(-⋃--∞ 3.若直线10mx y +-=与直线230x y -+=平行,则m 的值为A. 2B. 2-C. 12D. 12- 4.直线0ax by c ++=经过第一、第二、第四象限,则,,a b c 应满足A .ab >0,bc >0B .ab >0,bc <0C .ab <0,bc >0D .ab <0,bc <05.已知两条不同的直线n m ,,两个不同的平面βα,,则下列命题中正确的是A.若,,//,βαβα⊥⊥n m 则n m ⊥B.若,,,//βαβα⊥⊥n m 则n m //C.若,,,βαβα⊥⊥⊥n m 则n m ⊥D.若,//,//,//βαβαn m 则n m //6. 已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为A 1B .2 C7. 两条平行线1l :3x -4y -1=0,与2l :6x -8y -7=0间的距离为A.12B. 35C. 65D .1 8.在梯形ABCD 中,o ABC 90=∠,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为 A.23π B.43π C.53π D.2π 9.设c b a ,,均为正数,且a a 21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则 A .c b a << B .a b c << C . b a c << D . c a b <<10.某三棱锥的三视图如右图所示,该三棱锥的表面积是A.56+.60+C.30+ D .28+11.已知函数2)(|,|23)(x x g x x f =-=,构造函数⎩⎨⎧>≥=)()(),()()(),()(x f x g x f x g x f x g x F ,那么函数)(x F y =A. 有最大值1,最小值1-B. 有最大值1,无最小值C. 有最小值1-,无最大值 D .有最大值3,最小值112. 已知球的直径4SC =,B A ,是球面上的两点2AB =, 045BSC ASC ∠=∠=,则棱锥S ABC -的体积是A. 335B. 334C. 332D. 33 第Ⅱ卷二.填空题 本大题共4小题,每小题5分,共20分.13.过点)2,1(且与直线3450x y +-=垂直的直线方程_______________.14.长方体的一个顶点上三条棱长分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是_______________.15.函数log (1)8a y x =-+(0a >且1)a ≠的图象恒过定点P ,P 在幂函数()f x 的图象上, 则(3)f =___________.16.如图,已知四棱锥ABCD P -,底面ABCD 为正方形, ①AC PB ⊥;②平面PAB 与平面PCD 的交线与AB 平行;③平面⊥PBD 平面PAC ;④PCD ∆为锐角三角形.其中正确命题的序号是_______________. (写出所有正确命题的序号)三.解答题本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)已知点)1,2(-P ,求:(Ⅰ)过点P 且与直线032=+-y x 平行的直线方程;(Ⅱ)过点P 且与原点距离为2的直线方程.18. (本小题满分12分)设U R =,}{}{13,24A x x B x x =≤≤=<<,}{1C x a x a =≤≤+(a 为实数) (Ⅰ)分别求A B ,()U A C B ;(Ⅱ)若B C C =,求a 的取值范围.19. (本小题满分12分)如下的三个图中,分别是一个长方体截去一个角所得多面体的直观图以及它的主视图和左(侧)视图(单位:cm )(Ⅰ)按照给出的尺寸,求该多面体的体积;不用注册,免费下载!。

辽宁省大连市高一数学上学期期末考试试题新人教A版

辽宁省大连市高一数学上学期期末考试试题新人教A版

本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.参考公式:球的体积公式343V R π=,球的表面积公式24S R π=. 第I 卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列图形中,表示集合N M ⊆关系的韦恩图是 ( )2.已知直线10x my +-=与直线220x y -+=平行,则m 的值为( ) A. 2- B.12-C. 2D.123.函数3()f x x =的图像关于( )A .y 轴对称B .坐标原点对称C .直线x y =对称D .直线x y -=对称4.直线l 的方程是5x =,圆C 的方程是22(2)9x y -+=,则直线l 与圆C 的位置关系是( )A. 相离B. 相切C. 相交D. 相交或相切5.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是 ( )A. 91B. 41 C. 4 D. 96.如图为函数ln y m x =+的图像,其中m 、n 常数,则下列结论正确的是 ( ) A .0,1m n <> B .0,1m n >> C .0,01m n ><< D .0,01m n <<<7.在用二分法求方程3210x x --=的一个近似解时,现已经确定一根在区间(1,2)内,则下一步可断定该根所在的区间为( )A .(1.4,2)B .(1,1.4)C .3(1,)2D .3(,2)28.已知函数22log (2)y x kx k =-+的值域为R,则k 的取值范围是( )A .01k <<B 01k ≤< C.0k ≤或1k ≥ D.0k =或1k ≥ 9.在下列正方体中,有AB CD ⊥的是( )ACAA C O 1 xyA B C D10. 若过点(4,0)A 的直线l 与曲线22(2)1x y -+=1)2(22=+-y x 有公共点,则直线l 的斜率的取值范围为( )A .[B .(C . [33-D .(33- 11.点(4,2)P -与圆224x y +=上任一点连线的中点轨迹方程是 ( )A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-= D .22(2)(1)1x y ++-= 12.已知函数()y f x =的定义域为D ,若对于任意的1x ,2x D∈()12x x ≠,都有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为( )A .2log y x =B .y =C .3y x =D .2y x =第 Ⅱ 卷(非选择题,共90分)二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设2.03=a ,π21log =b ,3..021⎪⎭⎫ ⎝⎛=c ,则c b a ,,从大到小的顺序为 .14.过点()1,2P 引一直线,使其倾斜角为直线:l 30x y --=的倾斜角的两倍,则该直线的方程是_________________.15.给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线垂直于这个平面;②若直线与平面内的任意一条直线都垂直,则这条直线垂直于这个平面; ③若直线l α平面,直线m α平面,则l m ; ④若直线a 直线b ,且直线l a ⊥,则l b ⊥.其中正确命题的序号是 .16.从点P 出发三条射线,,PA PB PC 两两成60°角,且分别与球O 相切于,,A B C 三点,若球的体积为43π,则OP 的距离为 . 三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)定义在R 上的函数()y f x =是偶函数,当x ≥0时,2483f x x x =-+-(). (Ⅰ)当0x <时,求()f x 的解析式;(Ⅱ)求()y f x =的最大值,并写出()f x 在R 上的单调区间(不必证明).. 18.(本小题满分12分)如图, 在底面是菱形的四棱锥P ABCD -,60ABC ∠=︒,PA AC a ==,2PB PD a ==,点E 是PD 的中点.证明: (Ⅰ)PA ⊥平面ABCD ;(Ⅱ)PB ∥平面EAC .19. (本小题满分12分)如图所示是一个几何体的直观图及它的三视图(其中主视图为直角梯形,俯视图为正方形,左视图为直角三角形,尺寸如图所示),(Ⅰ)求四棱锥P ABCD -的体积;(Ⅱ)若G 为BC 的中点,求证:AE PG ⊥.20.(本小题满分12分)已知2()3g x x =--,()f x 是二次函数,当[1,2]x ∈-时,()f x 的最小值为1,且()()f x g x +为奇函数,求函数()f x 的表达式.21.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在20x y +-=上.(1)求圆M 的方程;(2)设P 是直线3480x y ++=上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边44242222主视图左视图俯视图形PCMD 面积的最小值. 22.(本题满分12分)定义:对于任意x ∈[0,1],函数()0f x ≥恒成立,且当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立,则称()f x 为G 函数.已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数.(1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,利用函数图象讨论方程(2)(21)xg h x m +-+=(R)m ∈解的个数情况.高一期末测试卷数学参考答案与评分标准一.选择题1. C ;2.A ;3.B ;4.B ;5.A ;6.D ;7.D ;8.C ;9.A ;10.C ;11.A ;12.D . 二.填空题13.a c b >>;14.1x =;15.②,④;16.3. 三.解答题17.解:(Ⅰ)设x <0,则0x ->,22()4()8()3483f x x x x x -=--+--=---, ············· 2分∵()f x 是偶函数,∴()()f x f x -=,∴0x <时, 2()483f x x x =---. ················· 5分(Ⅱ)由(Ⅰ)知224(1)1(0)()4(1)1(0)x x f x x x ⎧--+≥⎪=⎨-++<⎪⎩, ············ 6分 ∴()y f x =开口向下,所以()y f x =有最大值(1)(1)1f f =-=. ···· 8分函数()y f x =的单调递增区间是(-∞,-1]和[0,1];单调递减区间是 [-1,0]和 [1,+∞). ·············· 10分18.证明:(1)底面ABCD 为菱形,60ABC ∠=,AB BC CD DA AC a ∴=====. ··················· 2分PA AC =,PA AB a ∴==,PB =,PA AB ∴⊥,同理可证PA AD ⊥,···················· 4分 又AB AD A =,PA ∴⊥平面ABCD . ················ 6分 (2)连结AC BD ,相交于O ,则O 为BD 的中点.E 为PD 的中点,PB OE ∴∥. ···················· 8分 又OE ⊂平面EAC ,PB ⊄平面EAC , ··············· 10分 PB ∴∥平面EAC . ························· 12分19.解(Ⅰ)由几何体的三视图可知,底面ABCD 是边长为4的正方形, ······· 2分PA ⊥面ABCD ,PA ∥EB ,且PA =42,BE =22,AB =AD =CD =CB =4, .... 4分∴V P -ABCD =13PA x S ABCD =13×42×4×4=6423. .......................... 5分(Ⅱ)连BP ,∵EB AB =BAPA=12,∠EBA =∠BAP =90°, .................. 7分 ∴△EBA ∽△BAP ,∴∠PBA =∠BEA , ............................... 8分 ∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . ................. 10分又∵BC ⊥面APEB ,∴BC ⊥AE ,∴AE ⊥面PBG ,∴AE ⊥PG . ............ 12分 20. 解:设()(),02≠++=a c bx ax x f则()()()312-++-=+c bx x a x g x f . ················ 2分又()()x g x f +为奇函数,∴3,1==c a . ················ 4分∴(),32++=bx xx f 对称轴2bx -= .当22≥-b时,()f x 在[]2,1-上为减函数 ∴()f x 的最小值为()13242=++=b f ∴3-=b 又4-≤b ,∴此时无解. ····························· 6分当221<-<-b 时,()14322min =-=⎪⎭⎫⎝⎛-=b b f x f ∴22±=b ∵2224-=∴<<-b b ,此时(),3222+-=x x x f ········· 8分当12-≤-b时,()f x 在[]2,1-上为增函数∴()f x 的最小值为()141=-=-b f ∴3=b ,又满足2≥b ∴(),332++=x x x f ············· 10分综上所述,(),3222+-=x x x f 或()332++=x x x f ········· 12分21.解:(1)法一:线段AB 的中点为(0,0),其垂直平分线方程为0x y -=. ···· 2分 解方程组0,20.x y x y -=⎧⎨+-=⎩所以圆M 的圆心坐标为(1,1).故所求圆M 的方程为:22(1)(1)4x y -+-=. ············· 4分 法二:设圆M 的方程为:222()()x a y b r -+-=,根据题意得222222(1)(1),(1)(1),20.a b r a b r a b ⎧-+--=⎪--+-=⎨⎪+-=⎩·················· 2分解得1,2a b r ===.故所求圆M 的方程为:22(1)(1)4x y -+-=. ············· 4分 (2)由题知,四边形PCMD 的面积为1122PMC PMD S S S CM PC DM PD ∆∆=+=+. ············ 6分 又2CM DM ==,PC PD =,所以2S PC =,而PC ==即S = ························· 8分 因此要求S 的最小值,只需求PM 的最小值即可,即在直线3480x y ++=上找一点P ,使得PM 的值最小,所以min3PM==, ················· 10分所以四边形PCMD 面积的最小值为S ===················· 12分22.解:(1) 当[]0,1x ∈时,总有2g x x 0()=≥,满足条件①, ········ 1分当12120,0,1x x x x ≥≥+≤时,22222121212121212g x x x x x x 2x x x x g x g x ()()()()+=+=++≥+=+,满足条件② ································ 3分 (2)∵()21xh x a =⋅-是G 函数,∴210xa ⋅-≥,∴12x a ≥恒成立. ······ 4分 ∴a 1≥. ······························· 5分 由1212g x x g x g x ()()()+≥+ ,得1212x x x x a 21a 21a 21+⋅-≥⋅-+⋅-,即12xx a 121211[()()]---≤, ······················· 6分因为 12120,0,1x x x x ≥≥+≤所以 1x0211≤-≤ 2x0211≤-≤ 1x 与2x 不同时等于 1 11xx021211()()∴≤--<,11x x 0121211()()∴<---≤,11x x 1a 12121()()∴≤--- ·························· 7分当12x x 0==时,11x x 1112121min ()()()=--- ,a 1∴≤, ··········· 8分综合上述a 的值为1. ··························· 8分(3)根据⑵知: a=1,方程为x 2x 1421m -++-=, ············· 9分 令x4tt 14[,]=∈ 方程为2t m 1t+=+ 图(略) ································ 10分 由图形可知:当7m 122{}(,]∈⋃时,有一解;当m 12(,]∈ 时,有二不同解;当7m 12(,)(,)∈-∞⋃+∞时,方程无解. ················ 2分。

辽宁大连市2023届数学高一上期末质量检测试题含解析

辽宁大连市2023届数学高一上期末质量检测试题含解析
17、
【解析】因为 和 关于 轴对称,所以 ,那么 , (或 ),
所以 .
【考点】同角三角函数,诱导公式,两角差 余弦公式
【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若 与 的终边关于 轴对称,则 ,若 与 的终边关于 轴对称,则 ,若 与 的终边关于原点对称,则 .
18、(1) ;(2)
(2)分别计算两种方案的最值可得 ,讨论 的符号,研究不同的方案所投资的产品及最大利润.
【小问1详解】
设年销售量为 件,按利润的计算公式生产 、 两产品的年利润 、 分别为:
, 且 ;
, 且 .
【小问2详解】
因为 ,则 ,故 为增函数,又 且 ,
所以 时,生产 产品有最大利润 : (万美元).
又 , 且 ,
16.已知函数 ,方程 有四个不相等的实数根
(1)实数m的取值范围为_____________;
(2) 的取值范围为______________
三、解答题(本大题共6小题,共70分)
17.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若 ,则 =___________.
选项B, ,为相同函数;
选项C,函数 定义域为 ,函数 定义域为 ,因此不为相同函数;
选项D, 与函数 对应法则不同,因此不为相同函数
故选:B
2、C
【解析】利用和差公式,二倍角公式等化简 ,再利用正弦函数的单调性比较大小.
【详解】 ,
, ,
因为函数 在 上是增函数, ,
所以
由三角函数线知: , ,因为 ,
【详解】由不等式“ ”,解得 ,
则“ ”是“ ”成立的必要不充分条件
即“ ”是“ ”成立的必要不充分条件,

2020-2021大连市高一数学上期末试题(带答案)

2020-2021大连市高一数学上期末试题(带答案)

2020-2021大连市高一数学上期末试题(带答案)一、选择题1.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭2.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>3.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-14.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.96.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >7.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 10.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-1211.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 15.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 16.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.17.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________18.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.19.设是两个非空集合,定义运算.已知,,则________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数()10()mf x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.22.已知函数()f x 对任意实数x ,y 都满足()()()f xy f x f y =,且()11f -=-,()1279f =,当1x >时,()()0,1f x ∈. (1)判断函数()f x 的奇偶性;(2)判断函数()f x 在(),0-∞上的单调性,并给出证明; (3)若()1f a +≤,求实数a 的取值范围.23.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。

2019学年辽宁省大连市高一上学期期末考试数学试卷【含答案及解析】

2019学年辽宁省大连市高一上学期期末考试数学试卷【含答案及解析】

2019学年辽宁省大连市高一上学期期末考试数学试卷【含答案及解析】姓名___________ 班级______________ 分数____________一、选择题1. 设集合/: - i ' ■ , 「m • ;.!-l ,贝()A. I;:/1B.C. I;;:';D. : i I2. 在空间直角坐标系中,点| •关于轴的对称点坐标为()A.门总:rB. 7 ;…"勺C. F :汕.VD. )3. 若;• ‘I是两条不同的直线,h 是三个不同的平面,则下列为真命题的是()A. 若_i ,则十I.;.,B. 若“¥一:「5〉,则4 时C. 若7 1- . ■ -1 .■,贝V - LD. 若,则忙-■術视團A. ;:、B. [ -:C.厂■:■•:》派D. 氐5. 设■-■: ?:,用二分法求方程在:「“ ;丨内近似解的过程中,-丨丨,则方程的根落在区间()A. B. - i.<;>c. Lid D. 不能确定D.过点;匚'<1且与直线恰卢|「 y ::、・一虫 B .6. A.垂直的直线方程为( C.C.8. 已知圆::.I + =1,圆I 与圆IK关于直线..丨对称,则圆的方程为()A. +■ ' =1B. ' +■- =1C. I"- 4 疔I+' =1D. 「八1+m :计=19. 已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A B' C' D'(如图2所示),其中A D =2 , B' C =4 , A B =1 ,则直角梯形DC边的长度是10. 已知, be- 2呵,厂bg* ,则a, b, c的大小关系为()JA. c > b> aB. b > c> aC. a > b> cD. c > a> b11. 对于每个实数x,设「I取jlw」,i I-, 两个函数中的较小值 .若动直线y=m与函数弋的图象有三个不同的交点,它们的横坐标分别为x 1 、x 2 、x 3 ,贝V x 1 + x 2 + x 3 的取值范围是()A. (2, L:r.削) _________B. (2,黔可) ____________C. (4, •-)_______ D. (0, ■:)12. 已知两点「I , he加I到直线n的距离分别为1和2,这样的直线H条数为()A. 1 条___________B. 2 条 __________C. 3 条____________D. 4 条13. 已知正四棱锥的底面边长为4cm,高与侧棱夹角为斗計,则其斜高长为_____________ (cm).二、填空题14. 已知圆C:以.,过点P (3,1 )作圆C的切线,则切线方程为__________________________15. 若函数“:在区间上单调递增,则实数P的取值范围是16. 已知正三棱柱的棱长均为2,则其外接球体积为________________三、解答题17. 已知函数;;::=Jx- + 1(I )求I , I •;(II )求忙寸值域.18. △ ABC三个顶点坐标为A ( 0, 1) , B (0,- 1), C (- 2, 1).(I )求AC边中线所在直线方程;(II )求厶ABC的外接圆方程.19. 如图,正方体ABCD-A 1 B 1 C 1 D 1 , 0是底面ABCD寸角线的交点.求证:(I ) C 1 O//面AB 1 D 1 ;(II )面 A 1 C 丄面AB 1 D 1 .20. 如图,有一个正三棱锥的零件,P是侧面ACD上的一点.过点P作一个与棱AB垂直的截面,怎样画法?并说明理由.21. 已知函数I ,(I)证明:|为奇函数;(D)判断单调性并证明;(III)不等式寸一心打|对于-rjn ■?]!恒成立,求实数t的取值范围22. 平面内有两个定点A (1, 0), B (1,- 2),设点P到A B的距离分别为且I ■(I )求点P的轨迹C的方程;(0为坐(II )是否存在过点A的直线与轨迹C相交于E、F两点,满足,.标原点)•若存在,求出直线的方程;若不存在,请说明理由.参考答案及解析第1题【答案】AU B- { 1』丄2}、故选帕【解析】点睛:u用描述法表示集合,首先es;i集合中代表元素的含义,再看元素元素的限制条件,明确集合的娄型,是数爲罡点■集还星其它集合。

辽宁省大连市2018-2019学年高一上学期期末考试数学试题 Word版含解析

辽宁省大连市2018-2019学年高一上学期期末考试数学试题 Word版含解析

辽宁省大连市2018-2019学年高一上学期期末考试数学试题(解析版)一、选择题(本大题共12小题,共60.0分)1.设集合,3,,则正确的是A. 3,B. 3,C. D.【答案】D【解析】【分析】根据集合的定义与运算法则,对选项中的结论判断正误即可.【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确.故选:D.【点睛】本题考查了集合的定义与运算问题,属于基础题.2.命题P:“,”的否定为A. ,B. ,C. ,D. ,【答案】B【解析】【分析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可.【详解】解:命题P:“,”的否定是:,.故选:B.【点睛】本题考察了“全称命题”的否定是“特称命题”,属于基础题.3.下列函数在上是增函数的是A. B. C. D.【答案】A【解析】【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,为反比例函数,在区间上单调递减,不符合题意;故选:A.【点睛】本题考查函数单调性的判断,属于基础题.4.函数的单调递减区间为A. B. C. D.【答案】A【解析】【分析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果.【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选:A.【点睛】本题考查二次函数的性质,属于基础题.5.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为()A. , B. ,C. ,D. ,【答案】D【解析】试题分析:均值为;方差为,故选D.考点:数据样本的均值与方差.6.函数的零点所在的区间为A. B. C. D.【答案】B【解析】【分析】根据对数函数单调性和函数单调性的运算法则,可得在上是增函数,再通过计算、的值,发现,即可得到零点所在区间.【详解】解:在上是增函数,,,根据零点存在性定理,可得函数的零点所在区间为.故选:B.【点睛】本题考查基本初等函数的单调性和函数零点存在性定理等知识,属于基础题.7.已知,,则a,b,c的大小关系为A. B. C. D.【答案】D【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】解:,,.又,.故选:D.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.8.函数的图象可能是A. B.C. D.【答案】D【解析】【分析】排除法:利用奇函数排除A、C;利用x∈(0,1)时,f(x)<0排除B.【详解】解:因为f(-x)=-xlg|-x|=-xlg|x|=-f(x),所以f(x)为奇函数,图象关于原点对称,排除A、C,又当x∈(0,1)时,f(x)<0,据此排除B.故选:D.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9.从含有两件正品,和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为A. B. C. D.【答案】B【解析】试题分析:该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为考点:本小题主要考查独立重复试验的概率计算公式的应用和学生的运算求解能力.点评:只要有“恰好”字样的用独立重复试验的概率计算公式计算更简单.10.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】若,则,故不充分;若,则,而,故不必要,故选D. 考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.11.已知函数在上的值域为R,则a的取值范围是A. B. C. D.【答案】A【解析】【分析】利用分段函数,通过一次函数以及指数函数判断求解即可.【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:.故选:A.【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.12.已知与分别是函数与的零点,则的值为A. B. C. 4 D. 5【答案】D【解析】【分析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解.【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选:D.【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.二、填空题(本大题共4小题,共20.0分)13.已知,则______.【答案】10【解析】【分析】由已知化指数式为对数式得到a,代入,再由对数的运算性质求解.【详解】解:由,得,再由,得,即.故答案为:10.【点睛】本题考查指数式与对数式的互化,属于基础题.14. 甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.【答案】1800【解析】试题分析:由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连市2015年高一数学上学期期末试题
(附答案)
2015—2016学年度上学期期末考试
高一数学
考试时间:120分钟试卷分数:150分
卷Ⅰ
一、选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.已知,为集合I的非空真子集,且,不相等,若,则()
A.B.C.D.
2.与直线的斜率相等,且过点(-4,3)的直线方程为() A.=32B.=32
C.=32D.=-32
3.已知过点和的直线的斜率为1,则实数的值为()
A.1B.2C.1或4D.1或2
4.已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半
径为()
A.B.2C.D.
5.在空间中,给出下面四个命题,则其中正确命题的个
数为()
①过平面α外的两点,有且只有一个平面与平面α垂直;
②若平面β内有不共线三点到平面α的距离都相等,则α∥β;
③若直线l与平面内的无数条直线垂直,则l⊥α;
④两条异面直线在同一平面内的射影一定是两平行线;A.3B.2C.1D.0
6.已知函数定义域是,则函数的定义域是()A.B.C.D.
7.直线
在同一坐标系中
的图形大致是图中的()
8.设甲,乙两个圆柱的底面面积分别为,体积为,若它
们的侧面积相等且,则的值是()
A.B.C.D.
9.设函数,如果,则的取值范围是()
A.或
B.
C.
D.或
10.已知函数没有零点,则实数的取值范围是() A.B.C.D.
11.定义在R上的偶函数满足:对任意的,有.则()
A.B.
C.D.
12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各个面中,直角三角形的个数是()
A.1
B.2
C.3
D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)..
13.已知增函数,且,则的零点的个
数为
14.已知在定义域上是增函数,则的取值范围是
15.直线恒过定点
16.高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD 的中心与顶点S之间的距离为
三、解答题(17题10,其余每题12分)
17.已知一个空间组合体的三视图如图所示,其中正
视图、侧视图都是由半圆和矩形组成,请说出该组合
体由哪些几何体组成,并且求出该组合体的表面
积和体积
18.已知偶函数的定义域为,且在上是增函数,试比较与的大小。

19.已知方程++6-=0().
(1)求该方程表示一条直线的条件;
(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线在轴上的截距为-3,求实数的值;
20.已知函数,判断函数的奇偶性,单调性,并且求出值域
21.如图,长方体﹣中,,,,点分别在上,.过点的平面α与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(说明画法和理由)
(2)求平面α把该长方体分成的两部分体积的比值. 22.如图,三棱锥P-ABC中,平面PAC平面ABC,ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//面PBC.
(1)证明:EF//BC.
(2)证明:AB平面PFE.
(3)若四棱锥P-DFBC的体积为7,求线段BC的长.
一、ACACD,BCBDA,DB
13、1个14、15、(-2,3)16、1
17、解:解:由一个半球和一个圆柱组成的…2分
表面积是:…6分
体积是:…10分
18、解:…5分
因为函数为偶函数,且在上是增函数,所以在是减函数…8分
所以…12分
19、解:解:(1)当x,y的系数不同时为零时,方程表示一条直线,
令m2―2m―3=0,解得m=-1或m=3;
令2m2+m-1=0,解得m=-1或m=.
所以方程表示一条直线的条件是m∈R,且m≠-1. (4)

(2)由(1)易知,当m=时,方程表示的直线的斜率不存在,
此时的方程为x=,它表示一条垂直于轴的直线. (8)
(3)依题意,有=-3,所以3m2-4m-15=0.
所以m=3,或m=-,由(1)知所求m=-.…12分20、解:函数的定义域是,…2分
因为,所以函数是奇函数。

…4分
,设,则
当时,,所以,所以在上是减函数;
…8分
当时,,所以,
所以在上也是减函数。

由,,所以或…12分
21、解:
(Ⅰ)交线围成的正方形EHGF如图:在面ABCD中做HG 平行于BC,连接EH,FG且HB=GC=6,则EF平行且等于HG,所以四边形EFGH是平行四边形,EF平行于,所以EF垂直面,所以EF垂直于EH,且经过计算可知EH=FG=10,所以EFGH是正方形
…6分
(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,
EM=AA1=8.
因为EHGF为正方形,所以EH=EF=BC=10.
于是MH=.
因为长方体被平面分为两个高为10的直棱柱,
所以其体积的比值为(也正确)…12分
22、(1)证明:EF//面PBC.EF面ABC,面PBC面ABC=BC, 所以根据线面平行的性质可知EF//BC.…4分
(2)由DE=EC,PD=PC可知:E为等腰PDC中DC边的中点,故PEAC,又平面PAC平面ABC,
平面PAC面ABC=AC,PE平面PAC,PEAC,
所以PE平面ABC,
所以PEAB,因为ABC=,EF//BC.所以ABEF
所以AB面PEF…8分
(3)设BC=,在直角三角形ABC中,AB=,

EF//BC知AFE相似于ABC,所以
由AD=AE,,
从而四边形DFBC的面积为,
由(2)可知PE是四棱锥P-DFBC的高,PE=,所以V=
所以,所以或者,
所以BC=3或BC=…12分。

相关文档
最新文档