ANSYS命令流学习笔记圆柱形shell单元的复合材料分析
复合材料圆柱壳轴压屈曲性能分析
图1
轴压载荷下复合材料圆柱壳结构的屈曲模态
Buckling mode of composite cylindrical shell under axial compression load
究,而试验研究主要是针对小型试件或部分柱壳结
构[1 14],对于带口盖的复合材料圆柱壳结构的力学
2
Fig.1
性能还需进一步研究。本文中以某型导弹弹体舱段 结构为原型,对轴压载荷作用下复合材料圆柱壳结 构进行试验研究与数值计算,得到圆柱壳结构的屈 曲载荷和屈曲变形。在圆柱壳结构上开口并加装口 盖,计算了开口大小以及复合材料圆柱壳的铺层方 式对圆柱壳结构屈曲载荷的影响。分析了完整、带 开口和带口盖的圆柱壳结构的失稳模态,得到了3 种结构的屈曲特性。
268 5
kN(即有限元分析的屈曲载荷的60%)时,按
kN/min载荷级别进行加载,直至达到理论载荷的
80%,即354 kN时,将加载级别改为1 kN/min,
继续进行试验,直至试件破坏。 复合材料圆柱壳结构破坏位置发生在圆柱壳结 构中部偏上部位,与有限元分析结果大致相同,如 图3所示,可以看出破坏位置处的变形复杂。 根据试验测得结构的屈曲载荷和各测量点的变 形情况,选择具有代表性的测量点的载荷一应变曲 线,对结构变形情况进行讨论: 结构的上下端部(1切面和7切面),各测量点 的载荷应变形状大致相同。图4给出了1切面左
COVer
on
the
finite
on
buckling load of the cylindrical shell with
rectan
was
installed
to
reinforce the structure,and the strength of the
ANSYS常用的工具命令流
ANSYS常用工具命令流简介:学习ANSYS有限元软件三年,积累了很多常用的命令流,适用于不同研究方向的建模,在建模过程中起到小工具的作用。
希望可以帮助到学习ANSYS 的人,之后会尽量持续更新。
为方便使用特地做了目录和简单的用途介绍如下:目录!1.查看面的法线方向:使用voffst命令面偏移创建体之前,查看面的法线方向。
!2.查看点和单元的最大编号。
!3.ansys窗口背景变白!4.ansys出结果图:所出的图位于ansys的计算文件夹中,为png文件。
!5.设置体的透明度:设置plotctrls→numbering仍看不多体单元编号时,通过设置体的透明度可看到位于体内部的编号。
!6.单位制对应表:建模之前先统一单元,局部模拟常用:mm、t、n、mpa。
!7.提取指定位置的节点的节点号:同样适用于面、体、单元等!8.提取某材料的体积:很方便的计算体的方法!9.后处理中显示塑性区!10.显示变形动画并保存:可以用来到处变形动画放在PPT中或者检查加载情况!11.设置变形放大系数:结果中的变形是夸张变形后的结果,利用此命令流可以将变形恢复,用于查看混凝土裂缝时的将变形复原。
!12.查看GUI操作的命令流:查看GUI操作对应命令流,将某些GUI操作保存为命令流可简化操作!13.查看开裂单元透明调整!14.检查形状不好的单元!15.关闭所有标识:关闭ansys右上角标识!16.单元轮廓不显示:应力云图中单元轮廓影响查看效果!17.显示壳单元厚度:壳单元在ansys中以面存在,不显示厚度。
!18.最大最小位移节点编号的提取!19.求解完后显示梁单元的截面!20.显示体、面、线、单元、点:GUI操作的简化!21. ANSYS结果窗格中DMX、SMX、SMN的含义!22.查看节点坐标系:在节点施加荷载之前必须先明确节点坐标系从而确定荷载的正负!23.查看切面应力:查看模型某个截面的应力情况!24.查看荷载列表!24.已选定节点个数统计!25.查看结构整体的质量、体积等!26.查看某个应力范围内的单元命令流!1.查看面的法线方向/PSYMB,adir,1/replot,all/PSYMB,adir,0/replot,allLDELE,215!2.查看点和单元的最大编号单元:esel,all*get,emax,elem,,num,max*get,emin,elem,,num,min点:*get,nmax,node,,num,max*get,nmax,kp,,num,max工具栏:list→ picked entities→ maximumlist→ picked entities→鼠标点选需要查看的点→OK !3.窗口背景变白/COLOR,DEFAULT/RGB,INDEX,100,100,100,0/RGB,INDEX,80,80,80,13/RGB,INDEX,60,60,60,14/RGB,INDEX,0,0,0,15/REPLOT!4.ansys出结果图!GET THE PNG IMAGE/SHOW,PNG,,0PNGR,COMP,1,-1PNGR,ORIENT,HORIZPNGR,COLOR,2PNGR,TMOD,1/GFILE,1500,!*/CMAP,_TEMPCMAP_,CMP,,SAVE/RGB,INDEX,100,100,100,0/RGB,INDEX,0,0,0,15/REPLOT/CMAP,_TEMPCMAP_,CMP/DELETE,_TEMPCMAP_,CMP/SHOW,CLOSE/DEVICE,VECTOR,0!*!5.体单元编号看不到时可设置体的透明度/trlcy,volu,1,all ! 修改所有体的透明度为100% /trlcy,defa!6.单位制对应表!查看单位/status,units!7.提取指定位置的节点的节点号nsel,s,loc,x,5nsel,r,loc,y,6nsel,r,loc,z,7*get,kcon,kp,,num,min也可用list→picked entities,这种方法更直观简便!8.提取某材料的体积vsel,s,mat, ,2vsum,all*get,v2,volu,0,volu!9.后处理中显示塑性区/post1plnsol,eppl,eqv,2!10.显示变形动画并保存GUI:Utility Menu>Plotctrls>Animate>Deformed Shape!11.设置变形放大系数/dscale,,0!12.查看GUI操作的命令流list→files→log file!13.查看开裂单元透明调整/TRLCY,elem,0.5,all!14.检查形状不好的单元check,esel,warn!15.关闭所有标识!16.单元轮廓不显示/GLINE,1,-1/GLINE,1,0 !显示!17.显示壳单元厚度主菜单——PlotCrls——Style——Size and Shape——第二项[ESHAPE],将off 改为on(必须要在划分网格之后)!18.最大最小位移节点编号的提取allselnsort,u,sum,0,0,all !根据位移矢量大小按降序排列*get,max_u,sort,0,imaxallselnsort,u,sum,0,0,all !根据位移矢量大小按降序排列*get,max_u,sort,0,imin!19.求解完后显示梁单元的截面PlotCtrls-->Style-->Size and Shape-->勾选Shape!20.显示体、面、线、单元、点eplotvplotaplotnplot!21.ANSYS结果输出中DMX、SMX、SMN的含义DMX固定指:最大位移(Displacement Max)SMX:指定的、要查看的、那个Item解的最大值(Solution Max)SMN:指定的、要查看的、那个Item解的最小值(Solution Min)!21.ANSYS结果输出中DMX、SMX、SMN的含义DMX固定指:最大位移(Displacement Max)SMX:指定的、要查看的、那个Item解的最大值(Solution Max)SMN:指定的、要查看的、那个Item解的最小值(Solution Min)!22.查看节点坐标系plotctrls>symbols>nodal coordinate system来源:https:///view/b1a458fc5901020206409c40.html!23.查看切面应力wpstyl,defawprota,0,0,90/type,1,5/cplane,1来源:https:///view/0bab0662f12d2af90242e6c7.html!24.查看荷载列表flist!24.已选定节点个数统计nsel,s,loc,y,0*get,aaa,node,0,count !令aaa=节点数后续在parameters→scalar parameters中查看!25.查看结构整体的质量、体积等preprocessor→modeling→calc geom items→of geometry!26.查看某个应力范围内的单元/cont,1,9,-32, ,-20/replot。
有限元分析软件ANSYS命令流中文说明4 4
有限元分析软件ANSYS命令流中文说明4 4有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型ANTYPE,Antype,status,ldstep,action其中antype表示分析类型STATIC:静态分析MODAL:模态分析TRANS:瞬态分析SPECTR:谱分析2 KBC,KEY制定载荷为阶跃载荷还是递增载荷EKY=0递增方式KEY=1阶跃方式3 SOLVE开始一个求解运算4 LSSOLVE读入并求解多个载荷步5 TIME,time设置求解时间有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法:PARSAV,ALL,PAR,TXT!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名/SOLU ANTYPE,REST,CruStep-1,,CONTINUE!ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号PARRES,NEW,PAR,TXT!PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名如果有单元生死的问题,可以这样处理:ALLSEL,ALL*GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数ESEL,S,LIVE!选中"生"的单元*GET,E_SUM_AL,ELEM,COUNT*DIM,E_POT_AL,E_SUM_MAX!单元选择的指示*DIM,E_NUM_AL,E_SUM_AL!单元编号的数组J=0!读出所选单元号*DO,I,1,E_SUM_MAX*VGET,E_POT_AL(I),ELEM,I,ESEL!对所有单元做循环,被选中的单元标志为"1"*IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I*ENDIF*ENDDO ALLSEL,ALL在重启动之后恢复单元生死状态*if,E_SUM_AL,ne,0,then*do,i,1,Num_Alive esel,a,E_NUM_AL(i)*enddo ealive,all allsel*endif/WINDOW,WN,XMIN,XMAX,YMIN,YMAX,NCOPY注意x的坐标是-1到1.67,y坐标是-1到1 Xmin=off on,FULL,LEFT,RIGH,TOP,BOT,LTOP,LBOT,RTOP,RBOT注意一个问题,除了1号窗口外,其他的不能用鼠标操作,只用先发/view 和/dist,然后用/replot。
ANSYS笔记
1、适用PLANE182和SHELL181建立单元时,旋转成体以后要手动将两个单元删除。
而是用MESH200时,系统会在运算时自动删除或关闭该单元状态。
2、EXPOPT体扫掠相关信息的定义,可用于旋转产生体,定义产生体的单元属性、单元尺寸、是否删除源面上的网格、是否自动选择源面和目标面等。
3、施加周向和径向约束需要在柱坐标系下进行。
4、柱坐标系的平面为XOY平面,在切换到柱坐标系时,要注意工作平面是哪个平面,如果图形不满足XOY平面,应建立局部坐标系,调整平面。
5.局部坐标系中蓝色代表Z轴,白色代表X轴,黄色代表Y轴。
6、转速的施加一般是按照弧度进行施加。
7、考虑预应力模态分析的求解,需要先进性预应力效应打开时静力分析,求解一次,然后点击FINISH,之后再进入求解,选择模态分析进行求解。
一、二1.1、采用三维单元分析平面问题时需要约束其Z向的全部位移。
三1、梁柱铰接可以通过两种形式设置(350):(1)梁柱连接处共用一个节点,使用梁单元弯矩释放功能,将转动自由度和平动自由度释放,可近似实现铰接。
(2)在建立模型是,梁柱不共用节点,通过约束方程,耦合节点位移实现铰接。
使用CP 命令。
2、BEAM188单元画内力图时,设置KEYOPT,1,3,3设置三次形函数可消除弯矩图出现锯齿状。
3、施加重力加速度时,方向与实际方向相反。
4、单元表中坐标系以单元坐标系为准。
四1、求解塑性极限荷载时,荷载大小未知:(1)可以通过理论求解,将大概的理论之求解出来,通过加载距离理论值相近的值进行求解,选取求解不收敛失败前最后一个荷载值作为极限荷载。
(2)通过不断试错,加一个很大的荷载,加到知道计算不收敛,将最大的荷载乘以不收敛的时刻点作为屈服极限荷载。
2、非线性求解中,时间点(TIME)可以写10也可以写1,最终数值要乘以时间点,最好填写1,方便计算。
求解完成后,打开Results Summary中TIME/FREQ列乘以施加力,可得到每一荷载子步施加的力的大小。
ansys_复合材料分析介绍
SOLID95 是 20 节点的结构实体单元,在 KEYOPT(1)=1 时,其作用与单
层的 SOLID191 单元类似,包括应用方位角和失效准则,还允许非线性材料和大
◆ 料。
5.2.2
BEAM188 和 BEAM189 为三维有限应变梁单元,其截面可以包含多种材
定义材料的叠层结构
复合材料最重要的特征就是其叠层结构。每层材料都有可能由不同的正交各 向异性材料构成,并且其主方向也可能各不相同。对于叠层复合材料,纤维的方 向决定了层的主方向。 有两种方法可用来定义材料层的配置: 通过定义各层材料的性质; 通过定义表示宏观力、力矩与宏观应变、曲率之间相互关系的本构矩阵(只 适合于 SOLID46 和 SHELL99)。
5.2.2.1 定义各层材料的性质
这种方法由下到上一层一层定义材料层的配置。底层为第一层,后续的层沿 单元坐标系的 Z 轴正方向自底向上叠加。如果叠层结构是对称的,可以只定义一 半的材料层。 有时,某个物理层可能只延伸到模型的一部分。为了建立连续的层,可以把 这些中断的层的厚度设置为零,图 5-1 显示了一个四层模型,其中第二层在某处 中断了。
1
及一个特殊的“三明治”选项, 而 SHELL99 则不能。另外 SHELL91 更适用于大 变形的情况。 3、SHELL181—有限应变壳单元 SHELL181 是四节点三维壳单元,每个节点有六个自由度。该单元支持所有 的非线性功能(包括大应变),允许有多达 250 层材料层。应该通过截面命令, 而不是实常数来定义层的信息,可以通过 FC 命令来指定失效准则。 4、SOLID46—三维层状结构体单元 SOLID46 是八节点三维实体单元 SOLID45 的一种叠层形式,其每个节点有 三个自由度(UX, UY, UZ)。它可用来建立叠层壳或实体的有限元模型,每个单元 允许有多达 250 层的等厚材料层, 或者 125 层的厚度在单元面内呈现双线性变 化的不等厚材料层。 该单元的另一个优点是可以用叠加几个单元的方式来对多于 250 层的复合材料建立模型,并允许沿厚度方向的变形斜率连续。用户也可输入 自己的本构矩阵。SOLID46 调整横向的材料特性,以允许在横向上为常应力。与 八节点壳单元相比较,SOLID46 的阶次要低些,因此,如在壳结构应用中要得到 与 SHELL91 或 SHELL99 相同的求解精度,需要更密的网格。 5、SOLID191--层状结构体单元 SOLID191 是 20 节点三维实体单元 SOLID95 的一种叠层形式,其每个节点 有三个自由度(UX, UY, UZ)。它可用以建立厚的叠层壳或实体的有限元模型,每 个单元允许有多达 100 层的材料层。与 SOLID46 类似,SOLID191 可以模拟厚度 上的不连续。SOLID46 可以调整横向的材料特性,以允许在横向上为常应力。这 个单元不支持非线性材料或大挠度。 6、其他 除上述层单元外,还有其它的一些具有层功能的单元: ◆ 挠度。 ◆ SHELL63 是四节点壳单元,可用于对“三明治”壳结构作粗糙、近似 的计算。 象两块金属片之间夹有一层聚合物的问题就很典型,此时聚合物的弯曲 刚度相对于金属片的弯曲刚度来说是一个小量。用户可以用实常数 RMI 来修正 单元的弯曲刚度, 使其等效于由金属片引起的弯曲刚度。从中面到外层纤维的距 离(实常数 CTOP 和 CBOT)可用来获得“三明治”壳的表层输出应力。这种单元 不如 SHELL91 、SHELL99 和 SHELL181 那样用得频繁,故后面不再论述。 ◆ SOLID65 是三维钢筋混凝土实体单元,可以模拟在三个用户指定方向 配筋的各向同性介质。
(完整版)ANSYS命令流总结(全)
ANSYS结构分析单元功能与特性/可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取,* 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等NSEL的意思是node select,即选择节点。
s就是select,选择。
DIM是定义数组的意思。
array 数组。
MP命令用来定义材料参数。
K是建立关键点命令。
K,关键点编号,x坐标,y坐标,z坐标。
K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。
NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。
这个命令对于重复的线面都可以用。
这个很简单,压缩关键。
Ngen 复制节点e,节点号码:这个命令式通过节点来形成单元NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。
LNSRCH激活线性搜索PRED 激活自由度求解预测NEQIT指定一个荷载步中的最大子步数AUTOTS 自动求解控制打开自动时间步长.KBC -指定阶段状或者用跳板装载里面一个负荷步骤。
SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线)*DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称)【注】Par: 数组名Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableIMAX,JMAX,KMAX各维的最大下标号Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时)/config是设置ansys配置参数的命令格式为/CONFIG, Lab, V ALUELab为参数名称value为参数值例如:/config,MXEL,10000的意思是最大单元数为10000杆单元:LINK1、8、10、11、180梁单元:BEAM3、4、23、24,44,54,188,189管单元:PIPE16,17,18,20,59,602D实体元:PLANE2,25,42,82,83,145,146,182,1833D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209弹簧单元:COMBIN7,14,37,39,40质量单元:MASS21接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178矩阵单元:MATRIX27,50表面效应元:SURF153,154粘弹实体元:VISCO88,89,106,107,108, 超弹实体元:HYPER56,58,74,84,86,158耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81, SOLID98,FLUID129,INFIN110,111,FLUID116,130 界面单元:INTER192,193,194,195 显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16杆单元(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent )等。
Ansys常用命令汇总【经典】
要计算固有频率和模态,就必须选择模态分析;可以进行下列类型的分析:结构静力分析、结构动力分析、结构屈曲分析、结构非线性分析、热力学分析、电磁场分析、声场分析、压电分析、流体动力分析。
载荷步与子步定义单位制:/UNITS定义单元类型:ET,1,BEAM4;ET,2,SHELL91定义材料属性:MP,EX,1,4.45E10(材料参考号为1的材料X方向的杨氏模量为4.45E10;MP,DENS,2,7.8E3(材料参考号为2的材料密度为7.8E3)。
若加惯性载荷(如重力),必须定义能求出质量的参数,如密度DENS若施加热载荷,必须定义温度膨胀系数ALPX进入求解器:/SOLU结构分析中,可以将随时间变化的有关变量定义为一位数组,时间作为基本变量,表格的定义:*DIM;Parameters→Array Parameters→Define/Edit位移:UX、UY、UZ、ROTX、ROTY、ROTZ集中力(FX、FY、FZ)和力矩(MX、MY、MZ)表面压力:PRES;温度载荷:TEMP;能量密度:FLUE保存:SA VE;开始求解:SOLVE;推出求解器:FINISH应力:SX、SY、SZ;应变:EPELX、EPEL Y、EPELZ表面载荷:在结构分析中,指施加的压力;体载荷:在结构分析中,有温度和流场两种;惯性载荷有加速度、角加速度、角速度等,惯性载荷只有在模型具有质量时才有效。
→Linearized Strs:用来显示薄膜单元的线性化应力。
Stress→von Mises SEQV:第四强度理论应力子模型:可以让用户把模型的一部分截取后作为一个子模型,重新细分网格,进一步分析。
General Postproc→Submodeling一般单元中的节点以字母I、J、K等表示。
结构分析可进行:静力分析、模态分析、谐波分析、瞬态动力分析、谱分析、屈曲分析、显式动力分析、断裂力学分析、复合材料分析、疲劳分析和p-Method方法。
(完整版)ANSYS命令流总结(全)
ANSYS结构解析单元功能与特征/POST1/可以构成一一些命令,一般是一种整体命令( session),三十也有特别,比方是办理 ! 是说明说明符号,,与其余软件的说明是相同的, ansys 不作为命令读取,*此符号一般是 APDL 的表记符,也就是 ansys 的参数化语言,如 *do ,,,*enddo 等等NSEL 的意思是node select,即选择节点。
s 就是 select,选择。
DIM是定义数组的意思。
array 数组。
MP 命令用来定义资料参数。
K 是建立要点点命令。
K, 要点点编号 ,x 坐标 ,y 坐标, z 坐标。
K, NPT, X, Y , Z 是定义要点点, K 是命令, NPT 是要点点编号, XYZ 是坐标。
NUMMRG , keypoint 用这个命令,要保证要点点的地点完整相同,不过要点点号不一样样的才行。
这个命令关于重复的线面都可以用。
这个很简单,压缩要点。
Ngen 复制节点e,节点号码:这个命令式经过节点来形成单元NUMCMP,ALL :压缩所有编号,这样你所有的线都会挨次次重新编号 ~你若是需要固定的线固定的标号NSUBST,100,500,50 :经过指定子步数来设置载荷步的子步LNSRCH 线性搜寻是求解非线性代数方程组的一种技巧,此法会在一段区间内,以必定的步长逐渐搜寻根,对比常用的牛顿迭代法所要耗费的计算量大得多,但它可以防备在一些状况下牛顿迭代法出现的跳跃现象。
LNSRCH激活线性搜寻PRED 激活自由度求解展望NEQIT 指定一个荷载步中的最大子步数AUTOTS自动求解控制打开自动时间步长.KBC -指定阶段状也许用跳板装载里面一个负荷步骤。
SPLINE :P1, P2, P3,P4, P5, P6, XV1 , YV1 , ZV1 , XV6 ,YV6 , ZV6 (生成分段样条曲线)*DIM , Par,Type ,IMAX ,JMAX , KMAX , Var1,Var2, Var3(定义载荷数组的名称)【注】 Par: 数组名Type: array 数组,仿佛fortran, 下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8 个字符)tableIMAX , JMAX , KMAX各维的最大下标号Var1, Var2,Var3 各维变量名,缺省为row,column,plane( 当 type 为 table 时 )/config 是设置 ansys 配置参数的命令格式为 /CONFIG, Lab, V ALUELab 为参数名称value 为参数值比方: /config , MXEL ,10000 的意思是最大单元数为10000杆单元 : LINK1、 8、 10、 11、 180梁单元: BEAM3、 4、 23、 24,44, 54, 188, 189管单元 : PIPE16, 17, 18, 20, 59, 602D实体元 : PLANE2, 25, 42, 82, 83, 145,146, 182, 1833D实体元 : SOLID45, 46, 64,65, 72, 73,92, 95, 147,148, 185, 186,187, 191壳单元 : SHELL28, 41, 43, 51, 61, 63, 91, 93, 99, 143, 150, 181,208, 209弹簧单元 : COMBIN7, 14, 37,39, 40质量单元 : MASS21接触单元 : CONTAC12, 52, TARGE169, 170, CONTA171, 172, 173, 174, 175, 178矩阵单元 : MATRIX27, 50表面效应元 : SURF153, 154粘弹实体元 : VISCO88, 89, 106, 107, 108,超弹实体元 : HYPER56, 58, 74, 84, 86, 158耦合场单元 : SOLID5, PLANE13, FLUID29, 30,38, SOLID62, FLUID79, FLUID80,81,SOLID98, FLUID129, INFIN110 , 111, FLUID116,130界面单元 : INTER192, 193, 194, 195显式动力解析单元 : LINK160, BEAM161, PLANE162, SHELL163, SOLID164, COMBI16杆单元单元名称简称节点数节点自由度特征备注LINK12D杆2Ux,Uy EPCSDGB常用杆元LINK83D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉EDGB模拟缆索的废弛及或仅受压杆缝隙LINK113D线性调理EGB模拟液压缸和大转器动LINK1803D有限应变杆EPCDFGB另可考虑粘弹塑性E- 弹性 (Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度deflection), F- 大应变 (Large strain)或有限应变(Finite strain),B-单元存亡(Birth and dead),G-化 (Stress stiffness)或几何刚度(Geometric stiffening),A-自适应降落(Adaptive descent)等。
ANSYS分析实例与工程应用命令流学习笔记
ANSYS分析实例与工程应用命令流学习笔记1大纲静力分析:2杆、3梁、5薄膜和板壳、4实体单元梁单元:简化计算,结构总体受力情况实体单元:较复杂的结构,局部细节的受力情况稳定性分析:6振动、模态分析:7简单振动和梁的振动、8膜板和实体振动2杆系结构的静力分析2.1铰接杆在外力作用下的变形二维杆单元LINK1*AFUN,DEG:三角函数默认为弧度,改为角度后处理:结构变形图、显示节点位移和杆件应力2.2人字形屋架的静力分析后处理:杆单元的轴力、轴向应力、轴向应变2.3超静定拉压杆的反力计算后处理:节点反力2.4平行杆件与刚性梁连接的热应力问题定义3点的UY为耦合自由度,即三者的UY位移相等温度(增量)后处理:寻找特定位置的节点和单元,并从单元表中提取它们的内力2.5端部有间隙的杆的热膨胀二维带厚度的平面应力单元PLANE42、二维接触单元CONTACT26温度(始、末)后处理:定义水平应力和铅直应力单元表,并提取3号单元的应力结果*Status,ParmFINISH定义数组变量,将计算结果通过数组变量输出到文件3梁的弯曲静力分析3.1单跨等截面超静定梁的平面弯曲二维弹性梁单元BEAM3后处理:定义以两端弯矩和剪力的单元表,并列出单元表数据并用单元表数据绘制剪力图和弯矩图更细的节点划分方案,更精细3.2四跨连续梁的内力计算体素建模:keypoint, line, area, volume便于细分单元3.3七层框架结构计算3.4工字形截面外伸梁的平面弯曲3.5矩形截面梁的纵横弯曲分析考虑应力强化效应后处理:迭代过程3.6空间刚架静力分析三维梁单元BEAM43.7悬臂梁的双向弯曲三维8节点耦合场实体单元SOLID5三维20节点固体单元SOLID92三维10节点耦合场实体单元SOLID98三维结构实体自适应单元SOLID147定义宏程序,对应四种工况,各种结果差别不大3.8圆形截面悬臂杆的弯扭组合变形三维直管单元PIPE16(只定义外直径,不定义内直径)3.9悬臂等强度梁的弯曲四边形壳单元SHELL63(这里用退化的三角形单元,并使用节点耦合自由度保证模型的对称变形)三维非对称锥形梁单元BEAM44(定义横截面主轴,单元宽度线性变化)计算结果都很好,但壳体单元更能模拟出等强度梁的实际几何形状,更直观,截面定义更简单。
ANSYS APDL命令流建模及模态分析实例相关内容
本文介绍了轮毂的ANSYS APDL命令流建模及模态分析实例相关内容。
ANSYS命令流及注释五个辐条的轮毂!!初始化ANSYS环境!FINISH/CLEAR !清空内存/FILNAM,WHEEL5 !文件名/TITILE,WHEEL5 PARAMETER MODELING !工作名!!定义几何尺寸参数!R1=180R2=157R3=75R4=75R5=30R6=28R7=20R8=90R9=60S_HOLE=5TH1=48TH2=23TH3=11TH4=180TH5=40TH6=45TH7=105TH8=25TH9=15TH10=25TH11=13/VIEW,1,1,1,1 !改变视图/ANG,1/PNUM,LINE,1/PNUM,AREA,1/PNUM,VOLU,1/NUMBER,1!!关键点!/PREP7k,1,r5,r7,0k,2,r4-ky(1),ky(1),0k,3,r4,0,0k,4,r1,0,0k,5,kx(4),th5-th9,0k,6,r1-th8,ky(5),0k,7,kx(6),th4/2,0k,8,kx(7)+th11,ky(7)+th10,0 k,9,kx(8),th4-th3,0k,10,kx(4),ky(9),0k,11,kx(4),th4,0k,12,r2,ky(11),0k,13,kx(12),ky(8),0k,14,kx(7)-th3,ky(7),0k,15,kx(14),th5,0k,16,r3+r6,ky(15),0k,17,kx(3),r7+th1,0k,18,kx(1),ky(17),0k,19,kx(16),ky(17),0k,20,kx(2),0,0k,21,0,0,0k,22,0,th1+r7,0*ask,s_hole,'the number of hole',5 !宏!!创建轮毂面!lstr,1,2 !连接1,2关键点,形成直线larc,2,3,20,r7 !以20点为圆心r7为半径,2,3点为端点作弧线lstr,3,4lstr,4,5lstr,5,6lstr,6,7lstr,7,8lstr,8,9lstr,9,10lstr,10,11lstr,11,12lstr,12,13lstr,13,14lstr,14,15lstr,15,16larc,16,17,19,r6lstr,17,18lstr,18,1al,allcm,an-all,area !形成组件!!创建实体模型!allsel,allvrotat,an-all,,,,,,21,22,360,S_hole, !旋转拉伸形成体cm,v-an-all,volu!!减去孔洞!vsel,nonewpro,,-90, !绕Y轴转动工作平面cswpla,11,1,1,1csys,11wpoff,r8*sin(180/s_hole),r8*cos(180/s_hole)RPR4,3,-th5,th5/2,r9,, !创建三角形adele,96LFILLT,182,181,10, , !在直线182,181间形成半径10的圆角LFILLT,182,183,10, ,LFILLT,183,181,10, ,LARC,98,100,21,144,ldele,182asel,noneal,181,184,187,185,183,186 !连接各线形成面cm,sanjiao_hole,areavext,sanjiao_hole,,,0,0,th5,,,, !以th5为厚度形成体cm,v_hole,voluvgen,s_hole,all,,,,360/s_hole,,,0 !旋转拉伸形成s_hole个体cm,v-hole,voluvsel,allvsbv,v-an-all,v-hole !布尔运算减去体,形成孔洞cm,v-an-all,voluALLSEL,ALL!!定义单元属性!et,1,solid45mp,ex,1,71000 !铝合金材料特性mp,nuxy,1,0.33mp,dens,1,2720!!划分单元创建网格模型!SMRT,5 !自由网格划分MSHAPE,1,3DMSHKEY,0FLST,5,5,6,ORDE,2FITEM,5,11FITEM,5,-15CM,_Y,VOLUVSEL, , , ,P51XCM,_Y1,VOLUCHKMSH,'VOLU'CMSEL,S,_YVMESH,_Y1finish!!保存!saveAPLOT/SOLUFLST,2,5,5,ORDE,5 !约束固定FITEM,2,19FITEM,2,38FITEM,2,57FITEM,2,76FITEM,2,95/GODA,P51X,ALL,*DEL,_FNCNAME !函数加载*DEL,_FNCMTID*DEL,_FNC_C1*DEL,_FNCCSYS*SET,_FNCNAME,'jiazai'*DIM,_FNC_C1,,1*SET,_FNC_C1(1),5*SET,_FNCCSYS,11! /INPUT,111.func,,,1*DIM,%_FNCNAME%,TABLE,6,7,1,,,,%_FNCCSYS% !! Begin of equation: 1000*{X}/cos(180/s_hole)*SET,%_FNCNAME%(0,0,1), 0.0, -999*SET,%_FNCNAME%(2,0,1), 0.0*SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%*SET,%_FNCNAME%(4,0,1), 0.0*SET,%_FNCNAME%(5,0,1), 0.0*SET,%_FNCNAME%(6,0,1), 0.0*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1000, 0, 0, 2 *SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, -1, 3, 2*SET,%_FNCNAME%(0,3,1), 0, -1, 0, 180, 0, 0, 17*SET,%_FNCNAME%(0,4,1), 0.0, -3, 0, 1, -1, 4, 17 *SET,%_FNCNAME%(0,5,1), 0.0, -1, 10, 1, -3, 0, 0 *SET,%_FNCNAME%(0,6,1), 0.0, -3, 0, 1, -2, 4, -1 *SET,%_FNCNAME%(0,7,1), 0.0, 99, 0, 1, -3, 0, 0 ! End of equation: 1000*{X}/cos(180/s_hole) FLST,2,3,1,ORDE,3 !确定加载点位置FITEM,2,37FITEM,2,54FITEM,2,354/GOF,P51X,FX, %JIAZAI%/STA TUS,SOLU !求解SOLVE/VIEW,1,1,1,1/ANG,1/REP,FAST/SOLUANTYPE,2 !模态求解MSA VE,0MODOPT,LANB,10EQSLV,SPARMXPAND,10, , ,1LUMPM,0PSTRES,0MODOPT,LANB,10,0,0, ,OFF/STA TUS,SOLUSOLVEFINISHSave模型图网格划分位移图应变图应力图应力模态(其中之一)。
ANSYS复合材料仿真分析
在ANSYS 中可以定义多种材料属性:主菜单-> preprocesser -> Material Prop -> Material Models -> 打开Define Material Model Behavior 对话框-> 顶部菜单中:Material -> New Model ... -> 弹出Define Material ID 对话框-> 定义更多的材料ANSYS复合材料仿真分析2009-05-23 23:31复合材料,是由两种或两种以上性质不同的材料组成。
主要组分是增强材料和基体材料。
复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。
复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。
目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。
飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。
板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。
此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。
一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。
采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。
在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。
复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。
这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。
有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。
Ansys复合材料结构分析操作指导书
Ansys复合材料结构分析操作指导书Ansys10.0 复合材料结构分析操作指导书第⼀章概述复合材料是两种或两种以上物理或化学性质不同的材料复合在⼀起⽽形成的⼀种多相固体材料,具有很⾼的⽐刚度和⽐强度(刚度和强度与密度的⽐值),因⽽应⽤相当⼴泛,其应⽤即涉及航空、航天等⾼科技领域,也包括游艇、风电叶⽚等诸多民⽤领域。
由于复合材料结构复杂,材料性质特殊,对其结构进⾏分析需要借助数值模拟的⽅法,众多数值模拟软件中Ansys是个不错的选择。
Ansys软件由美国ANSYS公司开发,是⽬前世界上唯⼀⼀款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,⽬前已经发展成集结构⼒学、流体⼒学、电磁学、声学和热学分析于⼀体的⼤型通⽤有限元分析软件,是⼀款不可多得的⼯程分析软件。
Ansys在做复合材料结构分析⽅⾯也有不俗的表现,此书将介绍如何使⽤该款软件进⾏复合材料结构分析。
在开始之前有以下⼏点需要说明,希望⼤家能对有限元法有⼤体的认识,以及Ansys软件有哪些改进,最后给出⼀些学习Ansys软件的建议。
1、有限元分析⽅法应⽤简介有限元法(Finite Element Method,简称FEM)是建⽴在严格数学分析理论上的⼀种数值分析⽅法。
该⽅法的基本思想是离散化模型,将求解⽬标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相连构成整个有限元模型,⽤该模型代替实际结构进⾏结构分析。
在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想⼀下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的⾃由度),节点位移通过求解⼀系列代数⽅程组得到,在求得节点位移后,利⽤节点位移和应⼒、应变之间的关系矩阵就可以求出各个节点上的应⼒、应变,应⽤线性插值便可以获得单元内任意位置的位移、应⼒、应变等信息。
ansys 复合材料分析
第五章复合材料5.1 复合材料的相关概念复合材料作为结构应用已有相当长的历史。
在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。
复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。
在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。
ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。
利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。
对于热、磁、电场分析,目前尚未提供层单元。
5.2 建立复合材料模型与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。
由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。
本节主要探讨如下问题:选择合适的单元类型;定义材料层;确定失效准则;应遵循的建模和后处理规则。
5.2.1 选择合适的单元类型用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。
但 ANSYS/Professional 只能使用 SHELL99 和SHELL46 单元。
具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。
所有的层单元允许失效准则计算。
1、SHELL99--线性层状结构壳单元SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。
该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。
对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。
SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。
如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。
还可以通过一个选项将单元节点偏置到结构的表层或底层。
2、SHELL91--非线性层状结构壳单元SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。
ansys命令流语法
ansys命令流语法ANSYS命令流语法是使用ANSYS软件进行仿真分析的关键部分。
它是一种将命令以特定顺序组合在一起的方式,以实现特定的分析目标。
本文将介绍ANSYS命令流语法的基本语法规则和常用命令,以及如何使用它们进行仿真分析。
一、ANSYS命令流语法的基本语法规则1. 命令的基本格式:命令[选项] [参数1, 参数2, ...]2. 命令的执行顺序:ANSYS命令流是按照命令的顺序逐条执行的。
如果需要改变执行顺序,可以使用条件语句、循环语句等控制结构。
3. 注释:可以在命令流中添加注释,以"!"开头。
注释部分不会被执行,可以用于解释命令的用途或添加说明。
4. 变量和参数:可以使用变量和参数来存储和传递数据。
变量以"$"开头,参数以"%"开头。
二、常用命令1. Preprocessor命令:用于定义和准备分析模型的预处理操作。
- /PREP7:进入预处理器界面。
- ET,MP,REAL等:定义单元类型、材料属性、实数等。
- K,L,A等:创建节点、单元、区域等。
2. Solution命令:用于设置和运行分析求解器。
- /SOLU:进入求解器界面。
- SOLVE,ANTYPE等:设置分析类型、求解选项等。
- D,S等:定义边界条件、加载条件等。
3. Postprocessor命令:用于后处理和分析结果的可视化。
- /POST1:进入后处理器界面。
- PLOT,PDEF等:绘制图形、定义图形属性等。
- PRINT,*VWRITE等:输出结果数据。
三、使用ANSYS命令流语法进行仿真分析使用ANSYS命令流语法进行仿真分析的一般步骤如下:1. 导入几何模型:使用CAD软件创建几何模型,并将其导入ANSYS 中。
2. 定义材料属性:根据实际材料的物理特性,使用MP命令定义材料属性。
3. 网格划分:使用网格划分命令划分几何模型,生成有限元网格。
Ansys学习记录(问题及解决办法)
Ansys学习记录(问题及解决办法)Ansys学习笔记1.导⼊SolidWorks⽂件:1.打开SolidWorks⽂件,将其另存为para格式,出现**.x_t⽂件。
2.打开ansys软件,执⾏Utility menu>file>import>para...选择刚才保存的**.x_t⽂件即可3.导⼊的⽂件都是线条。
执⾏Utility menu>poltctrls>style>solid model facets>normal faceting(意思为多⾯体)>ok。
然后执⾏Utility menu>plot>replot2.查找各节点坐标的⽅法1.选择Utility menu>poltctrls>numbering,出现对话框,将KP和LINE选中,按OK,显⽰图形节点号。
2.选择Utility menu>list>keypoint> coordinate only,出现列表,即可看见⾃⼰想要节点号的坐标。
3.信息输出窗⼝⽤来以⽂本格式显⽰软件对所⽤命令的响应信息4.图形⽤户界⾯5.⽂件说明⽂件后缀类型⽂件说明DB ⼆进制数据库⽂件(⼀般保存为DB⽂件SA VE DB)DBB 数据备份(当保存为DB⽂件时,原来DB⽂件则备份为DBB⽂件)ELEM ⼆进制单元定义⽂件EMAT ⼆进制单元矩阵⽂件ESA V ⼆进制单元数据存储⽂件FULL ⼆进制组集的整体刚度矩阵和质量矩阵⽂件LNN ⼆进制载荷⼯况⽂件LOG ⽂本⽇志⽂件(ANSYS命令⼀经执⾏,则被记录到该⽂件,形成命令流,将其复制到命令⾏,即命令输⼊窗⼝中执⾏,可得到ANSYS分析数据)MODE ⼆进制模态矩阵⽂件MP ⽂本材料特性定义⽂件NODE ⽂本结点定义⽂件OUT ⽂本ANSYS输出⽂件RST ⼆进制结构和耦合场分析的结果⽂件RTH ⼆进制温度场分析的结果⽂件SNN ⽂本载荷步⽂件⽂件名⽂件类型内容plane.db ⼆进制数据库⽂件plane.dbb ⼆进制数据库备份⽂件(当⾮线性分析不正常终⽌时产⽣)plane.emat ⼆进制单元矩阵plane.err ⽂本错误或警告信息plane.esav ⼆进制单元存储数据(当⾮线性分析不能向上兼容时产⽣)plane.full ⼆进制装配的整体刚度和质量矩阵plane.ldhi ⽂本载荷步中载荷和边界条件plane.log ⽂本命令⾏输⼊历史记录plane.mntr ⼆进制监视⽂件plane.opt ⽂本优化数据plane.osav ⼆进制单元存储⽂件的备份plane.rdb ⼆进制第⼀载荷步第⼀⼦步起始时的数据状态plane.rst ⼆进制结构或耦合场分析得到的结果⽂件⽂件名.ext是由ANSYS定义的扩展名,⽤于区分⽂件的⽤途和类型,默认的⼯作⽂件名是file。
ANSYS命令流学习笔记3-Solid单元的接触分析
!ANSYS命令流学习笔记3-Solid 单元的接触分析背景说明:两个半径均为100mm,的正交圆柱体发生正接触,作用在两圆柱接触体法线方向上的压力总和1000N,两圆柱体均为钢制分析两圆柱的接触情况。
分析思路:对模型进行对称约束,施加载荷后要进行节点自由度耦合,使加载面的所有节点能在承载后具有相同的Y方向位移,并且在变形后仍然保持为水平平面。
总结:1. 如果不进行节点耦合,结构变形会产生刚性位移,造成不收敛。
但是节点耦合造成了变形不符合实际情况,即忽略了施力面的泊松比造成的影响。
2. 由面网格生成体网格,几何只有面,有限元模型是体,需要定义网格单元,定义拉伸的目标单元,对拉伸选项做出设置。
3. 接触部分的细分十分重要,也是收敛的影响因素。
可以把下列文字,直接粘贴到TXT文档修改,更为方便。
! 本次学习重点:!1、命令流的复杂建模!重点学习下建模。
因为前处理尽可能用WB,所以这里也是规则模型。
还是太不好用了。
我选择狗带。
!2、接触的定义。
!Ansys 依据实常数识别接触对,接触对要具有同样的实常数定义。
而且命令流是根据选择的单元来定义接触单元。
GUI 操作,也不麻烦。
!3、分析步数的设定!非线性分析时步数设置,线性搜索,自动步长,定义子步。
!求解解析解finish/clearf=1000e=200r=100 ! 命令不区分大小写,参数也不区分大小写。
p=2.45*(f*e**2*((r+r)/(r*r))**2)**(1/3) !接触应力的解析解61.73,有限元法结果59.9MPa!正式分析命令流finish/clear/prep7 !进入前处理et,1,solid185et,2,mesh200keyopt,2,1,6 !查看help 中关于mesh200 和keyopt 的解释,KEYOPT, ITYPE, KNUM, VALU。
E 此处意思为定义了mesh(2)为4 nodes 的四边形单元(1,6)。
ansys 复合材料添加分析流程
ansys 复合材料添加分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!ANSYS复合材料分析流程详解在现代工程设计中,复合材料因其独特的性能组合而被广泛应用于航空、航天、汽车和能源等领域。
钢混凝土组合柱子ANSYS分析建模命令流
!注参数命名:h(高度),w(宽度),t(厚度),sec(代表截面信息)!单位:mm!柱截面尺寸HW300(截面高度)*300(翼缘宽度)*10(腹板厚度)*15(翼缘厚度) hw_sec_h = 300hw_sec_w = 300hw_sec_t1 = 10hw_sec_t2 = 15!梁截面尺寸HN250*125*6*9hn_sec_h = 250hn_sec_w = 125hn_sec_t1 = 6hn_sec_t2 = 9!T型肋加强板尺寸HT75*125*6*9ht_sec_h = 75ht_sec_w = 125ht_sec_t1 = 6ht_sec_t2 = 9ht_l = 1000 !长度!混凝土板厚度尺寸con_sec_t = 120 !(修改)!模型整体尺寸mod_h = 3000 !模型的高mod_w1 = 640 !模型横向宽度原3000mod_w2 = 5100 !模型纵向宽度!其他参数rebar_vr = 0.014 !体积率(配筋率)为1.4%(修改)!横向钢筋???6@200??nail_dis = 100 !栓钉间距为100mm (修改)gridding = 100 !网格steelbar = 200 !钢筋间隔concrete.mac!-------------------------------------------------------------------!model1,钢筋全部由实常数定义的配筋率!先运行参数定义命令define.mac/FILNAME,model,0/prep7!定义属性et,1,solid65,,,,,,3 !定义混凝土板单元KEYOPT(6) 混凝土非线性解输出控制:3 -- 同时还给出积分点的解et,2,SHELL181 !定义钢梁单元et,3,combin39,,,0 !定义弹簧单元combin39et,4,solid45 !定义垫板单元(增加垫块以消除混凝土单元的应力集中)et,5,link8 !定义link8单元mp,ex,1,3E4 !定义混凝土板的弹性模量N/mm2mp,prxy,1,0.2 !定义混凝土板的泊松比mp,dens,1,2.6e-9 !定义混凝土板的密度mp,ex,2,2.06E5 !定义钢梁的弹性模量mp,prxy,2,0.3 !定义钢梁的泊松比mp,dens,2,7.8e-9mp,ex,3,2.0E5 !定义钢筋的弹性模量mp,prxy,3,0.3 !定义钢筋的泊松比mp,dens,3,7.85e-9mp,ex,4,2.02E5 !定义垫板材料特性mp,prxy,4,0.3tb,miso,1 !混凝土屈服准则*do,i,1,17,1*if,i,LE,7,THENx=0.0001*2*iy=(2.07*(x/1.58e-3)+(3-2*2.07)*(x/1.58e-3)*(x/1.58e-3)+0.07*(x/1.58e-3)*(x/1.58e-3)*(x/1.58e-3))*26.1*ELSExtemp=0.0001*2*i/1.58e-3x=0.0001*2*iy=xtemp*26.1/(1.13*(xtemp-1)*(xtemp-1)+xtemp)*ENDIFtbpt,,x,y*enddotbpt,,0.0002,6!该处将0.0033改为了0.0035tbpl,miso,1tb,concr,1 !混凝土破坏准则tbdata,,0.6,1.0,2.61,-1!混凝土材料的前四个实常数的含义!1 裂缝张开剪力传递系数.!2 裂缝闭合剪力传递系数!3 单轴抗拉强度!4 单轴抗压强度! 当变量3(4)被设为-1时表示混凝土无开裂(无压碎)tb,bkin,2,1,2 !激活钢梁的温度特性???mkintbdata,,235,2000tbpl,bkin,2tb,bkin,3,1,2 !激活钢筋的温度特性tbdata,,335,2000 !320屈服应力,10代表屈服后的切线模量tbpl,bkin,3r,1,3,rebar_vr,0,0,0,0 !体积率,方向角3是什么意思?!r,1,3,0.0089,90,90,3,0.007819rmore,0,0 !定义混凝土板实常数(三个方向的钢筋)!定义钢梁腹板厚度r,2,hw_sec_t1,hw_sec_t1,hw_sec_t1,hw_sec_t1 !定义钢梁腹板厚度(柱子)r,3,hn_sec_t1,hn_sec_t1,hn_sec_t1,hn_sec_t1 !定义钢梁腹板厚度(水平梁)!定义钢梁上下翼缘的厚度r,4,hw_sec_t2,hw_sec_t2,hw_sec_t2,hw_sec_t2 !定义钢梁上下翼缘的厚度(柱子) r,5,hn_sec_t2,hn_sec_t2,hn_sec_t2,hn_sec_t2 !定义钢梁上下翼缘的厚度(水平梁)r,6,0,0,0.02,4607.0,0.04,6765.5 !定义弹簧的荷载变形曲线rmore,0.05,7651.1,0.06,8457.1,0.07,9201.7rmore,0.08,9896.9,0.09,10551.2,0.1,11170.8rmore,0.2,16154.6,0.3,19890.4,0.4,22932.2rmore,0.5,25506.4,0.6,27734.7,0.7,29692.3rmore,0.8,31430.3,0.9,32985.4,1,34385.1rmore,2,43095.0,4,100000,!3,46937.7,4,50000,r,7,12 !定义link8单元的面积!*KEYOPT,3,1,0KEYOPT,3,2,0KEYOPT,3,3,2KEYOPT,3,4,0KEYOPT,3,6,0!*!********************************************************************** !开始建立几何模型!********************************************************************** !先建柱子!********************************************************************** wpcsys,-1,0csys,4 !在局部坐标系中建立柱子模型wpoffs,-(mod_w1+hw_sec_w*0.5),-mod_w2*0.5,0wprota,,90 !(positive Y toward Z)wpoffs,,,-hw_sec_h*0.5blc4,0,0,hw_sec_w,mod_h+con_sec_twpoffs,,,hw_sec_hblc4,0,0,hw_sec_w,mod_h+con_sec_twprota,,,90 !(positive Z toward X)wpoffs,,,hw_sec_w*0.5blc4,0,0,hw_sec_h,mod_h+con_sec_taptn,allasel,allwpcsys,-1,0wpoffs,,,mod_h-hn_sec_t2*0.5asbw,allwpoffs,,,-hn_sec_hasbw,all!!!!!纵梁wpcsys,-1,0csys,4 !在局部坐标系中建立纵梁模型asel,invert !反选wpoffs,-mod_w1,-mod_w2*0.5,mod_h-hn_sec_t2*0.5blc4,-hn_sec_w*0.5,-hw_sec_h*0.5,hn_sec_w,(mod_w2+hw_sec_h)*0.5wpoffs,,,-hn_sec_hblc4,-hn_sec_w*0.5,-hw_sec_h*0.5,hn_sec_w,(mod_w2+hw_sec_h)*0.5 wprota,,,-90 !(positive Z toward X)blc4,0,-hw_sec_h*0.5,hn_sec_h,(mod_w2+hw_sec_h)*0.5cm,hn_temp,areawpcsys,-1,0!agen,3,hn_temp,,,mod_w1aptn,allasel,all!!切割梁wpcsys,-1,0wpoffs,-mod_w1,-(mod_w2+hn_sec_w)*0.5,mod_h-hn_sec_t2*0.5 wpro,,90wpro,,,90wpoffs,,,-hn_sec_w*0.5asbw,allwpoffs,,,hn_sec_wasbw,allaptn,all!混凝土板wpcsys,-1,0csys,4 !在局部坐标系中建立柱子模型wpoffs,-mod_w1,-(mod_w2+hw_sec_h)*0.5,mod_hblc4,-mod_w1*0.5,0,mod_w1,(mod_w2+hw_sec_h)*0.5,con_sec_t!切体wpcsys,-1,0wpoffs,-mod_w1,-mod_w2*0.5,mod_h-hn_sec_t2*0.5wpro,,90!vsbw,all!wpoffs,,,-hw_sec_h*0.5!vsbw,allwpro,,,90vsbw,allwpoffs,,,-hn_sec_w*0.5vsbw,allwpoffs,,,hn_sec_wvsbw,all!!!付属性ALLSEL,BELOW,VOLUasel,invertcm,gangjiegou,areawpcsys,-1,0wpoffs,-mod_w1,-(mod_w2+hn_sec_h)*0.5,mod_h-hn_sec_t2*0.5 asel,r,loc,z,wpoffs,,,-hn_sec_hasel,a,loc,z,cm,hnsect2,areaAA TT, 2, 5, 2, 0, !!!!梁翼缘cmsel,s,gangjiegou,areacmsel,u,hnsect2,areawpcsys,-1,0wpoffs,-mod_w1,-mod_w2*0.5,mod_h-hn_sec_t2*0.5asel,r,loc,y,hw_sec_w*0.5+0.001,mod_w2cm,hnsect1,areaAA TT, 2, 3, 2, 0, !!!!!梁腹板cmsel,s,gangjiegou,areacmsel,u,hnsect2,areacmsel,u,hnsect1,areacm,hwall,areaasel,r,loc,x,cm,hwsect1,areaAA TT, 2, 2, 2, 0, !!!!!柱子腹板cmsel,s,hwall,areacmsel,u,hwsect1,areaAA TT, 2, 4, 2, 0, !!!!!柱子翼缘!!!!钢结构网格cmsel,s,gangjiegou,areaESIZE,gridding,0,AMESH,allnummrg,all!!!!!!!选钢筋切体wpcsys,-1,0allsel,allKWPA VE, 33wpoffs,,,-20vsbw,allwpcsys,-1,0KWPA VE, 33wpoffs,20,wpro,,,90vsbw,all*do,i,1,mod_w1/steelbar,1 wpoffs,,,steelbar !!!!!!改了vsbw,all*enddo!!!!!!!!!!!!!!!!!!!!!体模型save.amesh!!!!!!!!!!!!!!!!!!!!!选钢筋的线wpcsys,-1,0allsel,allKWPA VE, 33wpoffs,20,,-20lsel,r,loc,zcm,ltemp,line !选出那一层的线lsel,r,loc,x,0cm,ltemp1,linecmsel,s,ltemp,line*do,i,1,mod_w1/steelbar,1lsel,r,loc,x,i*steelbarcmsel,a,ltemp1,linecm,ltemp1,linecmsel,s,ltemp,line*enddocmsel,s,ltemp1,lineLATT,3,7,5, , , ,ESIZE,gridding,0,LMESH,all!!!!!!!!!!!!!!!!!体单元allsel,allESIZE,gridding,0,V ATT, 1, 1, 1, 0 !体属性vmesh,all!**************************************************** !加弹簧、耦合!上混泥土板!***************************type,3 !设定弹簧单元real,6wpcsys,-1,0wpoffs,-mod_w1,nsel,s,loc,xnsel,r,loc,y,0,-(mod_w2-hw_sec_w)*0.5 !!1400nsel,r,loc,z,mod_h-0.001,mod_h+0.001cm,enod,node*get,max0,node,0,count !max1=15*dim,ojd0,,max0*dim,jd0,,max0*get,nod0,node,0,num,minojd0(1)=nod0*do,i,2,max0ojd0(i)=ndnext(ojd0(i-1))*enddoallsel,allnsel,allcmsel,u,enod*do,i,1,max0nod0=ojd0(i)j0=nnear(nod0)jd0(i)=j0*enddonsel,all*do,i,1,max0e,ojd0(i),jd0(i)*enddoallsel,all!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!node(x,y,z) !返回最近节点的编号!nnear(n) !返回最接近n的节点编号!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!耦合纵梁节点wpcsys,-1,0wpoffs,-mod_w1,!nsel,r,loc,y,0,-2400 !!1400nsel,r,loc,z,mod_h-0.001,mod_h+0.001nsel,r,loc,x,-hn_sec_w*0.5,hn_sec_w*0.5cm,cmljnod,node*get,max1,node,0,count !max1=15*dim,ojd,,max1*dim,jd,,max1*get,nod1,node,0,num,minojd(1)=nod1*do,i,2,max1ojd(i)=ndnext(ojd(i-1))*enddoallsel,allnsel,allcmsel,u,cmljnod*do,i,1,max1nod1=ojd(i)j=nnear(nod1)jd(i)=j*enddonsel,allji = 1*do,i,1,max1cp,ji,ux,ojd(i),jd(i)cp,ji+1,uz,ojd(i),jd(i)ji=ji+2*enddoallsel,all!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!node(x,y,z) !返回最近节点的编号!nnear(n) !返回最接近n的节点编号!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!耦合端部节点wpcsys,-1,0wpoffs,-mod_w1,nsel,s,loc,x,-hn_sec_w*0.5,hn_sec_w*0.5nsel,r,loc,y,-(mod_w2+hw_sec_w)*0.5 ,-(mod_w2-hw_sec_w)*0.5 !!1400nsel,r,loc,z,mod_h-0.001,mod_h+0.001cm,egnod,node*get,max2,node,0,count !max1=15*dim,ojd2,,max2*dim,jd2,,max2*get,nod2,node,0,num,minojd2(1)=nod2*do,i,2,max2ojd2(i)=ndnext(ojd2(i-1))*enddoallsel,allnsel,allcmsel,u,egnod*do,i,1,max2nod2=ojd2(i)j2=nnear(nod2)jd2(i)=j2*enddonsel,allji2 = ji + 1*do,i,1,max2cp,ji2,uy,ojd2(i),jd2(i)ji2=ji2+1*enddoallsel,all!!!!!!!!!!!载荷wpcsys,-1,0nsel,s,loc,z,D,all, , , , , ,ALL, , , , ,!ACEL,0,0,0,nsel,s,loc,y,D,all, , , , , ,UY, , , , ,allsel,allwpcsys,-1,0wpoffs,-mod_w1,-(mod_w2-hw_sec_h)*0.5,mod_h-hn_sec_t2*0.5 nsel,r,loc,z,nsel,r,loc,x,nsel,r,loc,y,0,mod_h-hn_sec_t2*0.5cm,N_load,nodeallsel,allwpcsys,-1,0!cmsel,s,N_load,node!*get,Nnod,node,0,count!*Dim,Nodes,array,Nnod!*get,Nd,node,0,num,min!*do,I,1,Nnod,1! Nodes(I)=Nd! F,Nd,FZ,-11000 !!!!!2000-20000 ! Nd=NDNEXT(Nd)!*ENDDO!!SFTRAN!allsel,all!wpcsys,-1,0!!/sol!cnvtol,f,,0.05,2 !定义收敛条件,使用缺省的V ALUE!!nsubst,50 !定义子步数!outres,all,all !输出每一子步的结果!autots,1 !打开自动时间步控制!lnsrch,1 !打开线性搜索!ncnv,2 !如果不收敛时结束而不退出!!neqit,50 !每一子步中方程的迭代次数限值!pred,on !打开预测器!!ANTYPE,0!NLGEOM,1!NSUBST,100,0,0!OUTRES,ERASE!OUTRES,ALL,LAST!AUTOTS,-1.0!PSTRES,1!TIME,20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A N S Y S命令流学习笔记圆柱形s h e l l单元的
复合材料分析
Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-
! ANSYS命令流学习笔记15-圆柱形shell单元的复合材料分析
!学习重点:
!1、熟悉单元坐标系下的铺层
当零件形状为规则圆筒时,如何进行铺层建立局部的柱坐标系,将需要铺层单元坐标设置为局部坐标系,进行铺层即可。
譬如圆筒铺层的单元坐标系要建立局部圆柱坐标系。
如果还使用笛卡尔坐标系,铺层也能进行,但是铺层方向有很大不同,求解结果也会异常。
所以划分网格时,确认单元坐标系选择,划分网格之后,检查单元坐标系情况。
确认铺层方向符合预期要求。
本例中要特别注意横向(即Y向)是否符合要求。
!2、熟悉圆面的建模和局部坐标系建立
不解释
!3、熟悉利用MPC施加扭矩
APDL如何对一个圆周施加扭矩在圆心处建立一个节点,然后用MPC单元连接圆心节点和圆周节点,然后在圆心节点上施加一个扭矩即可。
注意将MPC单元的属性改为刚性梁。
注意这里MPC单元的利用,也是自己的一些理解。
很多细节也不知道如何在APDL 实现。
!问题描述
! 传动轴长度为1m,壁厚,直径,铺层共十层,角度为-45/45/-45/45/-45/45/-
45/45/-45/45。
一端固定,一端圆周施加扭矩M=2000N·m。
复合材料为横向正交各向异性Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz分别为195e9Pa, 35e9Pa, 35e9Pa,, , , 15e9Pa, , 15e9Pa。
应力失效参数:+X:767E6Pa; -X:392E6Pa; +Y:20E6Pa; -Y:70E6Pa; +Z:30E6Pa; -Z:55E6Pa; Sxy: 41E6Pa; Syz: 30E6Pa; Sxz: 41E6Pa。
应变失效参数:+X:; -X:; +Y:; -Y:; +Z:; -Z:; Sxy: ; Syz: ; Sxz:。
!APDL命令:
finish
/clear
/title, composite shaft
/prep7
et,1,shell181 !选择单元181
keyopt,1,8,1 !保存每一层的数据
et,2,184
keyopt,2,1,1 !定义MPC184单元,利用其施加扭矩。
将其属性定义为刚性梁
mptemp,1,0
mpdata,ex,1,,195e9
mpdata,ey,1,,35e9
mpdata,ez,1,,35e9
mpdata,prxy,1,,
mpdata,pryz,1,,
mpdata,prxz,1,,
mpdata,gxy,1,,15e9
mpdata,gyz,1,,
mpdata,gxz,1,,15e9 !定义各向同性材料
fc,1,s,xten,767e6
fc,1,s,yten,20e6
fc,1,s,zten,30e6
fc,1,s,xcmp,-392e6
fc,1,s,ycmp,-70e6
fc,1,s,zcmp,-55e6
fc,1,s,xy,41e6
fc,1,s,yz,30e6
fc,1,s,xz,41e6 !定义应力失效准则
fc,1,epel,xten,
fc,1,epel,yten,
fc,1,epel,zten,
fc,1,epel,xcmp,
fc,1,epel,ycmp,
fc,1,epel,zcmp,
fc,1,epel,xy,
fc,1,epel,yz,
fc,1,epel,xz, !定义应变失效准则
!用到Tasi-Wu失效准则还需定义应力耦合系数,默认为-1,-1,-1。
实际值需要通过双轴试验测定,较难得到。
sectype,1,shell,, !sectype, secID,type,subtype,name,refinekey,定义截面类型
secdata, 3e-4,1,-45,3 !积分点为3个
secdata, 3e-4,1,45,3
secdata, 3e-4,1,-45,3
secdata, 3e-4,1,45,3
secdata, 3e-4,1,-45,3
secdata, 3e-4,1,45,3
secdata, 3e-4,1,-45,3
secdata, 3e-4,1,45,3
secdata, 3e-4,1,-45,3
secdata, 3e-4,1,45,3 !定义铺层
secplot,1 !查看ID为1的section
n,1,0,0,1 !建立一个node,为MPC做准备
cylind,, ,0,1,0,360 !在坐标原点,创建一个圆柱体
vdele,all, , ,0
asel,s,loc,z,0,1
asel,u,loc,z,
adele,all, , ,1
allsel !通过加减乘除,得到最终的面
local,11,1,0,0,0 !定义局部圆柱坐标系,原点000,ID=11
type, 1
mat, 1
esys, 11
secnum, 1
esize,
amesh,all !网格划分属性设置,主要选择单元坐标系。
csys,0
type,2
mat,2
e,1,21
*do,i,1,18
e,1,163+i
*enddo
*do,i,1,17
e,1,2754+i
*enddo
!不知道怎么设置MPC连接。
出此下策。
!如果直接GUI操作,不需要指定MPC单元,直接用contact manage中的contact wizard生成约束方程,约束自由度即可。
f,1,mz,2000
nsel,s,loc,z,0
d,all,all
allsel
finish
!##################------------------------
/solu
solve !会提示两个警告,一个说是没开大变形,一个说是没定义MPC单元材料属性,可忽略
finish !求解完成
!##################------------------------
/post1
asel,s,loc,z,, , ,1 !仅仅查看面部分,不看MPC单元。
layer,0
plnsol,u,sum
plnsol,s,eqv !查看整体结构
layer,2 !查看第2层结果
plnsol,s,eqv
layer,0 !切换回查看整体结果
plnsol,fail,emax
plnsol,fail,smax
plnsol,fail,twsr !校核三种准则下的危险系数,均小于1,则合格。
finish。