向量组与矩阵的秩

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理6 n维向量组 件是矩阵
线性无关的充要条
的行列式不为零(A可逆)。此时,矩阵A的n个列向量也 线性无关。
返回
上一页 下一页
例 试证明n维列向量组α1,α2,…,αn线性无关 的充分必要条件是行列式
11 12 L D 21 22 L
M M
n1 n2 L
证 令矩阵
1n
2
n
0
M
n
n
A={α1,α2,…,αn} 则向量组α1,α2,…,αn线性无关
证 对任意的常数k1 , k2 , … , ks,
返回
上一页 下一页
上两式只是各分量的排列顺序不同,因此
当且仅当
所以

有相同的线性相关性。
返回
上一页 下一页
定理5 在 r 维向量组
的各向量添上 n - r
个分量变成n维向量组

(1)如果
线性相关,
那么 (2)如果
也线性相关。 线性无关,
那么
也线性无关。
解 α1是α1,α2,α3,α4的一个线性无关的部分组, 显然α2不能由α1线性表示, 所以α1可以扩充为一个线性无关的部分组α1,α2, 容易证明α3=α1+α2 , 但α4不能由α1,α2线性表出,
所以α1 ,α2又可扩充为一个线性无关的部分组α1 ,α2 ,α4,
从而α1,α2,α3,α4的秩为3,
可由 线性相关。
推论1 如果向量组
可由
线性表出,且
线性无关,那么 。
推论2 两个线性无关的等价的向量组必含有相 同个数的向量。
返回
上一页 下一页
§4 向量组的秩与矩阵的秩
定义9 一向量组的一个部分组称为一个极大线 性无关组,如果这个部分组本身是线性无关的,并且
从这向量组中向这部分组任意添一个向量(如果还有
解令
β=k1α1+k2α2+k3α3+k4α4
于是得线性方程组
因为
k1 k2 k3 k4 1
kk11
k2 k2
k3 k3
k4 k4
2 1
k1 k2 k3 k4 1
11 1 1
1 1 1 1
D
16 0
1 1 1 1
1 1 1 1
返回
上一页 下一页
由克莱姆法则求出
所以
5
1
每一个向量组都可以经它自身线性表出。
如果向量组 线性表出,向量组 线性表出,那么向量组
线性表出。
可以经向量组 可以经向量组 可以经向量组
返回
上一页 下一页
如果

向量组
中每一个向量都可以经向量组
线性表出。因而,向量组
可以经向量组
线性表出。
返回
上一页 下一页
向量组的等价具有下述性质:
(1)自反性:向量组
也可用矩阵形式表示: 若所给向量均为行向量,则有
若所给向量均为列向量,则有
返回
上一页 下一页
例 判断向量组
的线性相关性。
解 假设存在一组常数k1 ,k2 ,…,kn 使得
所以
即 因此
k1= k2 =…= kn= 0 线性关。
称为基本单位向量. 返回
上一页 下一页
例 判断向量组
α1=(1,1,1),α2=(0,2,5),α3=(1,3,6)
称为 的负向量,记为 。
向量的减法定义为
返回
上一页 下一页
向量的加法与数乘性质
满足(1)—(8)的 运算称为线性运算。
返回
上一页 下一页
§2 线性相关与线性无关
矩阵与向量的关系:
通常把维数相同的一组向量简称为一个向量组,n
维行向量组
可以排列成一个s×n分块矩阵
其中 为由A的第i行形成的子块,
称为A的行向量组。
的线性相关性.
解 对任意的常数k1,k2, k3都有
k1α1+k2α2+ k3α3=( k1+k3,k1+2k2+3k3,k1+5k2+6k3 ).
所以
当且仅当
k1α1+k2α2+ k3α3=0
kk11
2k2
k3 3k3
0 0
(1) (2)
k1 5k2 6k3 0
(3)
返回
上一页 下一页
由(1)得
n维列向量组
可以排成一个n×s矩阵
其中 为由B的第j列形成的子块,
称为B的列向量组。
返回
上一页 下一页
定义6 向量组
称为线性相关的,如果
有P中不全为零的数k1,k2,…,ks,使
反之,如果只有在k1=k2=…=ks=0时上式才成立,就

线性无关。

是行向量组时,它们线性相关就是指
有非零的1×s矩阵(k1,k2,…,ks)使
返回
上一页 下一页

为列向量时,它们线性相关就是
指有非零的s×1矩阵
,使
.
定义7 向量α称为向量组β1,β2,…,βt的一个
线性组合,或者说α可由向量组β1,β2,…,βt线
性表出(示),如果有P中(经常省略P中)常数k1,k 2,…,kt使
α=k1β1+k2β2+…+ktβt.
此时,也记
返回
上一页 下一页
(2)对称性: 如果向量组
等价,那么
也与
与它自己等价;
与 等价;
(3)传递性: 如果向量组
等价,而向量组
又与
与 等价, 那么
向量组

等价。
返回
上一页 下一页
§3 线性相关性的判别定理
称一个向量组中的一个部分向量组为原向量组的 部分组。
定理3 有一个部分组线性相关的向量组线性相关。
证 设向量组
有一个部分组线性相关。
第三章 向量组与矩阵的秩
第一节 n维向量 第二节 线性相关与线性无关 第三节 线性相关性的判别定理 第四节 向量组的秩与矩阵的秩 第五节 矩阵的初等变换 第六节 初等矩阵与求矩阵的逆 第七节 向量空间
§1 n维向量
定义 1 设P是由一些复数组成的集合, 其 中包括0与1. 如果P中任意两个数(这两个数可以 相同)的和、差、积、商(除数不为零)仍然是P 中的数, 那么P就称为一个数域.
设这个部分组为
,则有不全为零的数
k1 , k2 , … , kr,使
因此
也线性相关。
推论 含有零向量的向量组必线性相关。
返回
上一页 下一页
定理4 设p1 , p2 , …, pn为1,2,…,n的一个排列,

为两向量组,其中

是对
各分量的顺序进行重
排后得到的向量组,则这两个向量组有相同的线
性相关性。
推论 当m>n时, m个n维向量组线性相关。
练习 讨论下列矩阵的行向量组的线性相关性:
1 2 3
1 3 2
B 2
2
1 ;
C
0
2 1.
3 4 3
2 0 1
由于|B|=2≠0,因此B的行(列)向量组线性无
关;
由于|C|=0,所以C的行(列)向量组线性相关.
返回
上一页 下一页
定理8 如果向量组 线性表出且 s > t ,那么
能由向量组 的极大线性无关组可

的极大线性无关组线性表出。
因此
的秩不超过
的秩。
定理9 向量组的任意线性无关的部分组都可
扩充为一个极大线性无关组。
推论 秩为r的向量组中任意含r个向量的线
性无关的部分组都是极大线性无关组。
返回
上一页 下一页
例 求向量组α1=(1,-1,0,3) ,α2=(0,1,-1,2) , α3 =(1,0,-1,5),α4=(0,0,0,2)的一个极大线性无关组及秩.
向量组的极大线性无关组具有的性质:
性质1 一向量组的极大线性无关组与向量组本 身等价。
性质2 一向量组的任意两个极大线性无关组都 等价。
性质3 一向量组的极大线性无关组都含有相同
个数的向量。
返回
上一页 下一页
定义10 向量组的极大线性无关组所含向量 的个数称为这个向量组的秩。
如果向量组 线性表出,那么
1
k1 4 , k2 4 , k3 k4 4
ቤተ መጻሕፍቲ ባይዱ
5 4
1
1 4
2
1 4
3
1 4
4
,
即β能由α1,α2,α3 , α4线性表出.
返回
上一页 下一页
例 设α=(2,-3,0),β=(0,-1,2),γ=(0,-7,-4),试问γ能 否由α,β线性表出?
解设 于是得方程组
γ=k1α+k2β
2k1 3k1
的话),所得的部分组都线性相关。
例 在向量组
中, 为它的一个极大线性无关组。
首先,由 与 的分量不成比例, 线性无关。
再添入 以后,由
可知所得部分组线
性相关,不难验证
也为一个极大线性无关组。
返回
上一页 下一页
定义9' 一向量组的一个部分组称为一个极大 线性无关组,如果这个部分组本身是线性无关的, 并且这向量组中任意向量都可由这部分组线性表出。
α1,α2,α4是它的一个极大线性无关组.
返回
上一页 下一页
定义11 矩阵的行秩是指它的行向量组的秩,矩
阵的列秩是指它的列向量组的秩。
定义12 在一个 sn 矩阵A中任意选定k行和k列,
显然, 全体有理数组成的集合、全体实数 组成的集合、全体复数组成的集合都是数域。这
三个数域一般分别用字母Q、R、C来表示. 全体
整数组成的集合不是数域.
返回
上一页 下一页
定义2
数域P中n个数组成的有序数组
(a1,a2,…,an)
行向量
列向量
称为P上一个n维向量,简称向量。
用小写的粗黑体字母来表示向量 。
k2
0 7
2k2 4
由第一个方程得k1=0,代入第二个方程得k2=7,
但k2不满足第三个方程,故方程组无解.
所以γ不能由α,β线性表出.
返回
上一页 下一页
定理1 向量组
(s≥2)线性相关的充
要条件是其中至少有一个向量能由其他向量线性表出。
证 充分性:设
中有一个向量能由其
他向量线性表出,不妨设
所以
证 对列向量来证明定理。
这里 A1 是列向量
构成的 r× s矩阵.
返回
上一页 下一页
如果
线性相关,就有一个非零的s1矩阵X,使
因此,
也线性相关,即(1)式成立。
利用(1)式,用反证法容易证明(2)式也成立。
返回
上一页 下一页
引理1 n阶方阵A的行列式等于零的充分必要条 件是A的行(列)向量组线性相关。
行列式|A|≠0. 由于
返回
上一页 下一页
1
A
2
M
1
2
L
n
11 12 L
n
21
M
22
M
L
n1 n2 L
在上式两端取行列式,得
1n
2
n
M
n
n
|A|2=|A′||A|=D
故|A|≠0
D≠0,
所以α1,α2,…,αn线性无关
D≠0.
返回
上一页 下一页
定理7 n+1个n维向量组
必线性相关。
返回
上一页 下一页
数a1,a2,…,an称为这个向量的分量。ai称为这个 向量的第i个分量或坐标。分量都是实数的向量称
为实向量;分量都是复数的向量称为复向量。
n维行向量可以看成1×n矩阵,n维列向量 也常看成n×1矩阵。
设k和l为两个任意的常数, 维向量,其中
为任意的n
返回
上一页 下一页
定义3 如果 和 对应的分量都相等,即
线性相关。
必要性:如果
零的数k1 ,k2 ,…,ks,使 设k1≠0,那么
线性相关,就有不全为
即 能由
线性表出。
返回
上一页 下一页
例如,向量组
是线性相关的,因为
显然,向量组α1,α2线性相关就表示α1=kα2或者 α2=kα1. 此时,两向量的分量成正比例.
在三维的情形,这就表示向量α1与α2共线. 三个 向量α1,α2,α3线性相关的几何意义就是它们共面.
l1=h1 , l2=h2 , …,lt=ht
因此表示式是唯一的。
定理 2′ 若α 可由向量组β1,β2,…,βt 线性表出,
且表示式是唯一的, 则β1,β2,…,βt 线性无关.
返回
上一页 下一页
定义8 如果向量组
中每个向量都
可以由
线性表出,就称向量组
可由
线性表出,如果两个向量组互相
可以线性表出,就称它们等价。
上一页 下一页
例 设向量组
线性无关,

,试证向量组
线性无关。 证 对任意的常数x1 , x2 , x3 都有
设有k1,k2,k3,使

线性无关,故有
, 也
由于上述方程组的解只有 k1=k2=k3=0
所以
线性无关。
返回
上一页 下一页
α4=(1例,-1设,-1α,1)1,β=(=1,(11,,12,,11,)1,α).试2问=(1β,1能,-1否,-1由),αα31=,(α1,-21,,α1,-31, ), α4线性表出?若能,写出具体表达式.
kk11
2k2
k3 3k3
0 0
(1) (2)
k1 5k2 6k3 0
(3)
k1 k3,
将其分别代入(2)和(3)得 k2 k3.
取定
k3 1,
得方程组的一组解为:
因此
k1=1,k2=1,k3= -1
1α1+1α2+(-1)α3=α1+α2-α3=0. 所以α1,α2,α3线性相关.
返回
ai=bi,i=1,2,…,n
就称这两个向量相等,记为

定义4 向量
(a1+b1 ,a2+b2 ,…,an+bn)
称为 与 的和,记为
。称向量
(ka1,ka2,…,kan) 为 与k(k∈P)的数量乘积,简称数乘,记为
返回
上一页 下一页
定义5 分量全为零的向量 (0,0,…,0)
称为零向量,记为0。 与-1的数乘 (-1) =(-a1,-a2,…,-an)
返回
上一页 下一页
定理2 设向量组
线性无关,而向量组
线性相关,则 能由向量组
线性表出,且表示式是唯一的。
证 由于
线性相关,就有不全为
零的数k1 , k2 ,…, kt , k,使

线性无关有k≠0。(否则,
线
性相关)因此
即 可由
线性表出。
返回
上一页 下一页
设 为任意两个表达式。 由

线性无关
得到
相关文档
最新文档