法拉第电磁感应定律知识点及例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 法拉第电磁感应定律及其应用
一、感应电流的产生条件
1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
二、法拉第电磁感应定律 公式一: t n E ∆∆=/φ
注意: 1)该式普遍适用于求平均感应电动势。
2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
公式t
n E ∆∆=φ
中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时S t
B n E ∆∆=, 此式中的
∆∆B
t 叫磁感应强度的变化率, 若
∆∆B
t
是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率
∆∆φ
t
, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φ
t
表示磁通量变化的快慢,
公式二: θsin Blv E =
要注意: 1)该式通常用于导体切割磁感线时
, 且导线与磁感线互相垂直(l B )。
2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。
公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?
如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成
正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==
222ω, 故2
21l B E ω=。 ω2
2
1BL E =
——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。
公式三:ω···S B n
E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁
场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势m E 。
如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度
为v d
=ω·
2
(圆运动半径为宽边d 的一半)产生感应电动势 ωω····BS d BL v BL E 2
1
2===,a 端电势高于b 端电势。
cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势ωBS E 2
1
=
。c 端电势高于e 端电势。 bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为ωBS E m =。
如果线圈n 匝,则ω···S B n
E m =,M 端电势高,N 端电势低。
参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值m E ,如从图示位置转过一个
角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值θcos .m E E =.即作最大值方向的投影,θωcos ···S B n E =(θ是线圈平面与磁场方向的夹角)。 当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。
●总结:计算感应电动势公式:
为平均感应电动势。
是平均速度,则如为即时感应电动势。是即时速度,则如E v E v BLv
E =
ω2
2
1BL E =
(道理同上)
,为即时感应电动势。
应电动势。为这段时间内的平均感
是一段时间,o t E t t n
E →∆∆∆∆=φ
θωcos ···S B n E =(θ是线圈平面与磁场方向的夹角)。 ()()⎩
⎨
⎧==夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··θθωωcos S B n E BS n
E m
注意:区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感
应电流, 在∆t 内迁移的电量(感应电量)为R
n t t R n t R E t I q φ
φ∆=∆∆∆=∆=
∆=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。
例题分析
例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力的大小F ; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
解:这是一道基本练习题,要注意计算中所用的边长是L 1还是L 2 ,还应该思考一下这些物理量与速度v 之间有什么关系。
⑴v R
v L B F BIL F R E I v BL E ∝=∴===22222,,,
2