2电阻式传感器

合集下载

第2章_电阻应变式传感器1

第2章_电阻应变式传感器1
13
16
2 金属电阻应变片主要特性
一、 金属电阻应变片结构及材料
此类金属应变片的结构形式有丝式、箔式和薄膜式三种。
1) 丝式应变片
如下页图所示,基本结构由四部分组成:敏感栅、基底 和盖层、粘接剂、引线。敏感栅是应变片最重要的部分。将金 属丝按图示形状弯曲后用粘合剂贴在衬底上而成,基底可分为 纸基,胶基和纸浸胶基等。电阻丝两端焊有引出线,使用时只 要将应变片贴于弹性体上就可构成应变式传感器。它结构简 单,价格低,强度高,但允许通过的电流较小。
第2章 电阻式传感器
学习要求:
1.掌握电阻式传感器的工作原理 , 2.了解电阻式传感器的结构、分类, 3.掌握电位器式传感器、电阻应变式传感器在结构 和工作原理的相同点和不同点, 4.掌握电阻应变式传感器的测量电路形式及分析方 法, 5.了解电阻式传感器的应用。
应变片式传感器
电阻应变片的工作原理 金属电阻应变片主要特性
在金属丝的弹性范围内,灵敏系数KS 为常数,即 :
R Ksx R
线性关系
x通常很小,常用10-6表示之。例如,当 x为0.000001时,在工程 中常表示为110-6或m/m。在应变测量中,也常将之称为微应变 (με)。对金属材料而言,当它受力之后所产生的轴向应变最好不要 大于110-3,即1000m/m,否则有可能超过材料的极限强度而 10 导致断裂。
定义:电阻丝的灵敏系数(物理意义):单位应变
d dR 所引起的电阻相对变化量。其表达式为: kS R 1 2
x
x
灵敏系数ks受两个因素影响



一是应变片受力后材料几何尺寸的变化, 即1+2μ 二是应变片受力后材料的电阻率发生的变化, 即 (dρ/ρ)/εx。 ks 1 2 对金属材料:1+2μ>>(dρ/ρ)/εx 故 大量实验证明,在电阻丝拉伸极限内, 电阻的相对变 化与应变成正比,即ks为常数。 dR

第2章 应变式传感器(电阻式传感器)

第2章   应变式传感器(电阻式传感器)

工艺复杂, 将逐渐被横向效应小、 其他方面性能更优越的箔式应变计所
代替。

(a)
(b)
(c)
图 2.2金属丝式应变计常见形势
第2章 应变式传感器
箔式应变计(实验中用的)的线栅是通过光刻、腐蚀等工艺制成很薄 的金属薄栅(厚度一般在0.003~0.01mm)。与丝式应变计相比有如下优 点:
(1) 工艺上能保证线栅的尺寸正确、 线条均匀, 大批量生产时, 阻值离 散程度小。 (2) 可根据需要制成任意形状的箔式应变计和微型小基长(如基长为 0.1 mm)的应变计。 (3) 敏感栅截面积为矩形, 表面积大, 散热好, 在相同截面情况下能通过 较大电流。 (4) 厚度薄, 因此具有较好的可挠性, 它的扁平状箔栅有利于形变的传 递。 (5) 蠕变小, 疲劳寿命高
式中, 应力 l T E (金属或者半导体的弹性模量) E l 其中, ε=Δl/l为轴向应变。 则有
第2章 应变式传感器
k0
R / R

1 2 E
对金属来说, πE很小, 可忽略不计, μ=0.25~0.5, 故k
因此, 将同样长的金属线材做成敏感栅后, 对同样应 变, 应变计敏感栅的电阻变化较小, 灵敏度有所降低。 这 种现象称为应变计的横向效应。
第2章 应变式传感器
下面计算横向效应引起的误差。
图为 应变片敏感栅半圆弧部分的形状。沿轴向应 变为εX ,沿横向应变为εY 。
X
θ
dl

丝绕式应变片敏感栅半圆弧形部分
第2章 应变式传感器
k0为单根导电丝的灵敏系数, 表示当发生应变时, 其电阻变 化率与其应变的比值。 k0的大小由两个因素引起, 一项是由 于导电丝的几何尺寸的改变所引起, 由(1+2μ)项表示, 另 一项是导电丝受力后, 材料的电阻率ρ发生变化而引起, 由

第2章电阻式传感器01

第2章电阻式传感器01

2. 工作温度范围宽:常温器件适用于55℃~315℃,但大部分器件工作于25℃~125℃。
3. 体积小,使用方便:能够测量其他温度计 无法测量的空间。
4. 易加工成复杂的形状,可大批量生产,易 于集成。
热敏电阻传感器 —应用
1. NTC可以应用于仪表、家用电气设备, 以及中低温干燥箱、恒温箱等场合的温 度测量与控制。
这种传感器主要有两种形式: Pt100和Pt10。 Pt100和Pt10的电阻值在 0℃时分别为100Ω和10Ω, 它们的测温范围均为 -200℃~850℃。
Pt10是用较粗的金属铂丝制成的,耐温性能优于 Pt100 ,主要用于 650℃以上的测温。由于金属铂是 贵金属, Pt10的成本较 Pt100 高,所以在测量低于 650℃以下的温度时,以 Pt100为主,另外 Pt100的 分辨率比 Pt10的分辨率大 10倍。
热电阻式传感器 ?铂热电阻 ?铜热电阻 ?常用连接方式
热敏电阻传感器 ?热敏电阻的分类及特性 ?热敏电阻的应用
应变式传感器 ?应变式传感器工作原理 ?电阻应变片的结构 ?应变片的误差及补偿
铂热电阻传感器
以金属铂作感温元件,再与内引线和保护管一起, 就组成了铂热电阻温度传感器。它通常还与外部测 量电路、控制装置及机械装置连接在一起构成温度 传感器。
1:价格也低。 2:体积大,响应慢,稳定性差,在测量精 度要求不是很高,测量的温度较低时经常用。
铜热电阻在-50℃~150℃的使用范围内, 其电阻值与温度的关系可表示为:
R?t ?? R0 ??1? At ? Bt2 ? Ct3 ??
热电阻式传感器
——常用连接方式(两线制)
热电阻式传感器
——常用连接方式(三线制)
第二章 电阻式传感器

传感器 第二章 电阻式传感器

传感器  第二章 电阻式传感器

山东理工大学机械学院
结论: 1、将直的电阻丝绕成敏感栅之后,虽然长度相同,但应 变状态不同,其灵敏系数降低了。这种现象称横向效应。 2、当实际使用应变片时,使用条件与标定灵敏系数k时的 标定规则不同时,实际k值要改变,由此可能产生较大测 量误差。 3、为了减少横向效应产生的测量误差,一般多采用箔式 应变片,其圆弧部分尺寸较栅丝尺寸大得多,电阻值较小, 因而电阻变化量也就小得多。
山东理工大学机械学院
机械滞后产生的原因: 敏感栅、基底和粘合剂在承受机械应变后所留下的残余 变形所造成的。 减小措施: 选用合适的粘合剂;在新安装应变片后,做三次以上的 加卸载循环后再正式测量。
第二章 电阻式传感器 4、零漂和蠕变 零漂:
山东理工大学机械学院
粘贴在试件上的应变片,在温度保持恒定、不承受机械应变时,其 电阻值随时间而变化的特性,称为应变片的零漂。
第二章 电阻式传感器 ★粘结剂和粘贴技术 1、粘合剂 合理选择粘合剂:
山东理工大学机械学院
粘合剂必须适合应变片材料和被测试件材料及环境,例如工作温度、 湿度、化学腐蚀等。
对粘合剂要求:
(1)有一定的粘结强度; (2)能准确传递应变,有足够的剪切弹性模量; (3)蠕变、机械滞后小; (4)有足够的稳定性能; (5)耐湿、耐油、耐老化、耐疲劳等。
山东理工大学机械学院
制作工艺:采用真空蒸发或真空沉积等方法在薄的绝缘 基片上形成厚度在0.1μm以下的金属电阻材料薄膜敏感栅,
最后再加上保护层,易实现工业化批量生产。
特点:电阻值高于箔式,形状和尺寸更精确;散热性好,
适于较宽温度范围,应达-197~317℃;电阻值精度高,
达0.01%;无胶结,避免了分选和粘贴。
公式:
第二章 电阻式传感器

2、电阻式传感器原理与应用

2、电阻式传感器原理与应用

dA 2 dr Ar
x

dL L

y

dr r
r为金属丝半径
εx为金属丝轴向应变
εy为金属丝横向应变
➢ 轴向应变εx的数值一般很小, 常以微应变度量;
➢ μ为电阻丝材料的泊松比,一 般金属μ=0.3-0.5;
对金属材料,电阻率几乎不变:
λ为压阻系数,与材质有关;σ为应力值;E为材料的弹性模量;
由于空腔内传压介质的高度比被测溶 液的高度高,因而腰形筒微压传感器处 于负压状态。
为了提高测量的灵敏度,安装了两只 性能完全相同的微压传感器。
液位传感器: 当容器中液体多时,感压膜感受的压力大,将两只微压
传感器的电桥接成正向串联的形式,则输出电压为:
U0 U1 U2 (A1 A2 ) g h
料常用康铜和镍铬合金等。 目前使用的应变片大多是金属箔式应变片。
半导体应变片:分为体型和扩散型两种。
由于半导体(如单晶硅)是各向异性材料,因此 它的压阻效应不仅与掺杂浓度、温度和材料类 型有关,还与晶向有关(即对晶体的不同方向上 施加力时,其电阻的变化方式不同)。
半导体应变片的特性(与金属应变片相比较):
✓灵敏系数S:表示应变片变换性能的重要参数。
✓绝缘电阻:应变片与试件间的阻值,越大越好。 一般大于1010Ω。
✓其它性能参数(允许电流、工作温度、应变极限、 滞后、蠕变、零漂以及疲劳寿命、横向灵敏度 等)。
3.2 测量电路及温度补偿 电阻应变片将应变转换为电阻的变化量,测量电路
将电阻的变化再转换为电压或电流信号,最终实现被测 量的测量。
定义:电阻丝的灵敏度系数S0——表示单位应 变所引起的电阻相对变化。
电阻应变片灵敏度系数S称为“标称灵敏度系 数”,由实验测定。

第2章---电阻式传感器

第2章---电阻式传感器

eebbay
Uxmax / Uxm a x
n
100 %
1 n
100
%
图2-5 理想阶梯特性曲线
电阻式传感器
理论直线:
过中点并穿过阶梯线的直线。 阶梯曲线围绕其上下跳动,从 而带来一定的误差,这就是阶 梯误差。
j
(1 Umax) 2n Umax
1 2n
100%
图2-5 理想阶梯特性曲线
二、非线性电位器
电阻式传感器
2.2 电阻应变式传感器--应变片
电阻应变片工作原理是基于金属导体的应变效应,即金 属导体在外力作用下发生机械变形时,其电阻值随着所 受机械变形(伸长或缩短)的变化而发生变化。
电阻式传感器 一、 电阻应变片的工作原理
提出问题
金属丝受拉或受压时,l、r 和 R 将如
何变化?
电阻式传感器
一.线性电位器的空载特性
当被测量发生变化时,通过电刷触点在 电阻元件上产生移动,该触点与电阻元 件间的电阻值就会发生变化,即可实现 位移(被测量)与电阻之间的线性转换。
电阻式传感器
Ux
Байду номын сангаас
Rx Rmax
U max
x xmax
U max
Rx
Rmax xmax
x kRx
Ux
U max xmax
x
ku x
电阻式传感器 二、 电阻应变片的主要特性
例 如果将100 的电阻应变片贴在弹性
试件上,试件受力横截面积S=0.5×10-4 m2, 弹性模量E=2×1011 N/m2,若有F=5×104 N的
拉力引起应变片电阻变化为1 。试求该应变 片的灵敏系数。
电阻式传感器
二、 电阻应变片的主要特性

第2章 电阻式传感器习题

第2章 电阻式传感器习题

{6、电子秤中所使用的应变片应选择应变片;为提高集成度,测量气体压力应选择;一次性、几百个应力试验测点应选择应变片。

A. 金属丝式B. 金属箔式C. 电阻应变仪D. 固态压阻式传感器7、应变测量中,希望灵敏度高、线性好、有温度自补偿功能,选择的测量转换电路。

AA 单臂半桥 B 双臂半桥C全桥四臂全桥8、测量温度不可用传感器。

A. 热电阻B. 热电偶C. 电阻应变片D.热敏电阻A 提高测量灵敏度B 减小非线性误差C 提高电磁兼容性D 减小引线电阻影响、9、MQN型气敏电阻使用时一般随氧气浓度增加,电阻。

灵敏度。

A.减小B. 增大C. 不变10、TiO2型气敏电阻使用时一般随气体浓度增加,电阻。

A.减小B. 增大C. 不变11、湿敏电阻使用时一般随周围环境湿度增加,电阻。

A.减小B. 增大C. 不变12、MQN型气敏电阻可测量的浓度,TiO2型气敏电阻的浓度。

A. CO2B. N2C. 气体打火机间的有害气体D 锅炉烟道中剩余的氧气。

…13、湿敏电阻利用交流电作为激励源是为了。

A 提高灵敏度B 防止产生极化、电解作用C 减小交流电桥平衡难度14、使用测谎器时,被测人员由于说谎、紧张而手心出汗,可用传感器来测量A应变片B热敏电阻 C 气敏电阻D湿敏电阻15、某NTC的特性如图曲线1所示。

将它与电视机的显像管的灯丝串连,求:(1)指出各曲线代表的电阻。

(2)在室温(25℃)时的阻值为_____Ω,在150℃时的阻值为_____Ω。

(3)电视机上电的瞬间,流过显像管灯丝的电流接近于_____。

当该PTC的温度上升到150℃(PTC与一个专用加热电阻封装在一个壳体内),显像管的【灯丝电流显著_____(增大/减小)。

采用该电路,可以达到使显像管_____(快/慢)启动的目的。

三、问答题1、解释应变效应、压阻效应。

2、电阻应变传感器在单臂电桥测量转换电路在测量时由于温度变化产生误差的过程。

电阻应变式传感器进行温度补偿的方法是什么四、分析与计算题1、有一等截面圆环受力如图所示,为测压力在环内表面贴有四个同类型的应变片,请在图上随意画出环上四应变片的位置编号,并说明各自产生的应变类型及对应变片阻值的影响2、采用阻值R=120 灵敏度系数K=的电阻金属应变片与阻值R=120 的固定电阻组成电桥,供桥电压为10V。

第二章 电阻式传感器

第二章 电阻式传感器

4 1
3
4
5
2
3
图1薄膜型半导体应变片 1–锗膜 2--绝缘层
3–金属箔基底 4--引线
2
1
图2扩散型半导体应变片 1--N型硅 2--P型硅扩散层 3--二氧化硅绝缘层 4–铝电极 5--引线
型号的编排规则
电阻应变计型号的编排规则如下:类别、基底材料种类、标准电阻---敏感栅 长度、敏感栅结构形式、极限工作温度、自补偿代号(温度和蠕变补偿)及接 线方式。如B F 350 -- 3 AA 80 (23) N6 – X的含义是:
而引起的(称“压阻效应”)。 εx
对金属材料,以前者为主,则KS≈ 1+2μ;对半 导体, KS值主要由电阻率相对变化所决定。实验 表明,在金属丝拉伸比例极限内,电阻相对变化与
轴向应变成正比。其它金属或合金,KS在1.8~4.8
范围内。
dR R
KS
x
(2) 半导体应变片的工作原理
的片状小条,经腐蚀压焊粘贴在基片上而成的应变片,其 结构如图所示。
2)薄膜型半导体应变片 这种应变片是利用真空沉积技术将半导体材料沉积在带有
绝缘层的试件上而制成,其结构示意图见图1。 3)扩散型半导体应变片 将P型杂质扩散到N型硅单晶基底上,形成一层极薄的P型
导电层,再通过超声波和热压焊法接上引出线就形成了扩散型 半导体应变片。图2为扩散型半导体应变片示意图。这是一种 应用很广的半导体应变片。
半导体应变片是利用半导体
材料的压阻效应而制成的一种纯
1
电阻性元件。
2 3
对一块半导体材料的某一轴 12 3
向施加一定的载荷而产生应力时,
它的电阻率会发生变化,这种物 理现象称为半导体的压阻效应。

《传感器与自动检测技术(第4版)》教学教案(模块2)

《传感器与自动检测技术(第4版)》教学教案(模块2)

《单元1 电阻应变式传感器》教案《单元2 电位器式传感器》教案课题单元2 电位器式传感器教学目的1、理解电位器式传感器的工作原理2、了解电位器式传感器的应用场合及应用案例教学重点电位器式传感器的工作原理、应用案例教学难点电位器式传感器的工作原理教学资源多媒体教学课件、电位器式传感器实物教学手段多媒体课堂教学、实物演示教学教学过程及教学内容教学方法引入单元2 电位器式传感器电位器式传感器具有结构简单、输出信号大、使用方便、价格低廉、测量位移范围适中、测量精度尚可、动态响应一般等特点,大量用于普通机械、注塑机等行程测量与控制中。

【图例】注塑机行程检测图示及动画【实物演示】电位器式传感器实物演示提纲挈领法图例展演法实物展演法概念分析一、电位器式传感器的工作原理【动画】电位器式传感器工作原理动画电位器式传感器是一种把机械的线位移和角位移输入量转换为与它成一定函数关系的电阻和电压输出的传感器。

推到可得:U0与x的非线性关系完全是由负载电阻RL的接入而引起的。

二、电位器式传感器的应用场合电位器式传感器常常应用在注塑机、压铸机、吹瓶机、制鞋机、木工机械、印刷机械、包装机械、纸品机械、机械手、飞机操舵、船舶操舵、IT设备等自动化控制领域。

一般此类传感器行程从10mm至2500mm。

根据使用场合电位器式传感器可分为:KTC型、KTF型、KPC型、KPM型、KTM型、KTR型和KFM型。

动画展演法图示推演法循序渐进法案例分析【应用案例1】电子油门控制系统【图示】电子油门控制系统主要由油门踏板、踏板电位器角位移传感器、ECU(电控单元)、数据总线、伺服电动机和节气门执行机构组成。

电子油门系统可以设置各种功能来改善驾驶的安全性、舒适案例教学法图示讲演法iO xmxxU U-11)(+=《单元3 热电阻传感器》教案4.各类热电阻【图示】小型铂热电阻;防爆型铂热电阻;汽车用水温传感器;可设定温度的温度控制箱。

二、热电阻的接线方式热电阻的引线主要有二线制、三线制和四线制三种接线方式。

第二章 电阻传感器 电阻式传感器的基本原理是将被测量的变化转换成传感元件电阻值的变化,再经过转换电路变

第二章 电阻传感器 电阻式传感器的基本原理是将被测量的变化转换成传感元件电阻值的变化,再经过转换电路变

第二章 电阻式传感器
哈尔滨工业大学
5. 导电玻璃釉电位器 以合金(如钯银)、合金氧化物(如二硅化钼)、 难溶化合物(如碳化钨)等为电阻材料,以玻璃釉 粉为粘合剂烧结在陶瓷或玻璃基体上制成。 特点:分辨力很高、耐磨、耐高温、抗湿、阻值范 围广、电阻温度系数小(约±2.5×10-4/℃);精度 不高、接触电阻大。 6. 光电电位器 是一种非接触式电位器, 一光束代替常规的电刷。 一般采用氧化铝作基体, 在其上蒸发一条带状电阻 薄膜(镍铝合金或镍铁合 金)和一条导电极(鉻合 金或银)。
IL RL C
Uo
R3
R4
当电桥平衡时, Uo=0, 则有:
R1 R3 R1R4 = R2R3 或 R2 R4
D - U +
—— 电桥平衡条件
结论:
欲使电桥平衡, 其相邻两臂电阻的比值应相等, 或相对两臂电阻的乘积相等。
第二章 电阻式传感器 b. 电压灵敏度 分析:
A R3 R4 B R1 R2 IL RL C
哈尔滨工业大学
Uo
D -U +
( 1)
R1为电阻应变片 R2, R3, R4为电桥固定电阻
这就构成了单臂电桥。
第二章 电阻式传感器 b. 电压灵敏度
哈尔滨工业大学
分析:
R3 R1 U0 U ( ) R1 R2 R3 R4
IL
R1 R1 B R2
A R3 R4
C
RL
Uo
(2)当R1产生应变时, 若 应变片电阻变化为ΔR1,其 它桥臂固定不变, 电桥输 出电压Uo≠0 电桥不平衡输出电压为:
n——直线部分栅丝的数目;
n-1——弯角部分的个数。
可见 K K0 ,即应变片存在横向效应使应变 片的灵敏度系数小于电阻丝的应变灵敏度系数。

第2章2 电阻式传感器

第2章2  电阻式传感器

R4 R1
U0U(R1R 1 R 1R 1R2R3R 3R4)
U
R3 R1
(1 R1 R2 )(1 R4 )
R1 R1
R3
R4 R1
根据 Uo U
R3 R1
(1 R1 R2 )(1 R4 )
R1 R1
R3
设桥臂比n = R2/R1, 由电桥平衡条件可知R4/R3 =R2/R1=n ,并且忽略分母中ΔR1/R1得到:
dKU dn
U(11nn)23
0
故 n=1时,即R1=R2,R3=R4 ,KU取得最大值。
从上面的讨论可知:当R1=R2,R3=R4时, 电桥电压 灵敏度最高, 此时有:
U0

U 4

R1 R
KU

U 4
n=1时的电桥,称为对称电桥,实际应用中常采用 这种电桥的形式。
直流电桥的优点:
高稳定度直流电源易于获得; 电桥调节平衡电路简单; 传感器及测量电路分布参数影响小等。
U 0U ( R 1 R R 11 R R 21 R 2R 3R 3R 4)
设初始时有: R1=R2=R3=R4=R, 且应变量相同即
ΔR1=ΔR2,则得:
U0
Hale Waihona Puke U 2R1 R
结论:差动电桥(半桥差动电路)消除了非线性 误差(输出电压表达式的分母不含ΔR1/R1 ), 灵敏度比单臂电桥提高了一倍。且具有温度补偿 作用。
(三)机械滞后、零漂和蠕变
加载和卸裁特性曲线之间的最大 差值称为应变片的滞后值(也就 是回程误差)。
粘贴在试件上的应变片,在温度 保持恒定没有机械应变的情况下, 电阻值随时间变化的特性称为应 变片的零漂(零点漂移)。

西北工大-传感器技术应用课后习题答案

西北工大-传感器技术应用课后习题答案

项目2电阻式传感器原理与应用1.什么是应变效应?利用应变效应解释金属电阻应变片的工作原理。

答:应变效应是指金属丝的电阻值随着它所受的机械形变的大小而发生相应变化的现象。

现有如图2.1.1所示的一根金属电阻丝,其电阻值设为R,电阻率为ρ,截面积为S,长度为l则电阻值的表达式为R=ρlS当电阻丝受到拉力作用时将沿轴线伸长,伸长量设为△l,横截面积相应减小△S,电阻率的变化设为△ρ,则电阻的相对变化量为∆R R=∆ρρ+∆ll−∆SS2. 金属电阻应变片与半导体应变片的工作原理有何区别?各有何优缺点?答:金属电阻应变片性能稳定、精度较高,至今还在不断地改进和发展,并在一些高精度应变式传感器中得到了广泛的应用。

这类应变片的主要缺点是应变灵敏系数较小。

半导体应变片灵敏度高,其灵敏系数比金属电阻应变片约高50倍,但稳定性差,容易受到外界温度的干扰。

3.有一金属电阻应变片,其灵敏度K=2.5,R=120Ω,设工作时其应变为1200με,则△R是多少?若将此应变片与2V直流电源组成回路,试求无应变时和有应变时回路的电流。

解:∆R=RKε=120×2.5×1200×10−6=0.36Ω,无应变时:电流I=VR =2120=0.01667安培,有应变时:电流I=VR+∆R =2120+0.36=0.01661安培,4.应变片称重传感器,其弹性体为圆柱体.直径D=100mm,材料弹性模量E=205×109N/m2,用它称500kN的物体,若用电阻丝式应变片,应变片的灵敏系数K=2,R=120Ω,问电阻变化多少?解:直径D=100mm, 应变ε=FSE =500KNπ10042×10−6×205×109=22050π,∆R=RKε=120×2×22050π=0.0746Ω5.试述应变片温度误差的概念、产生原因和补偿办法。

答:)温度误差由于测量现场环境温度改变而给测量带来的附加误差,称为应变片的温度误差。

第二章电阻式传感器

第二章电阻式传感器

R1 R4 =R2 R3 或
R1 /R2 =R3 /R4
(2-22)
2.电压灵敏度
若R1由应变片替代,当电桥开路时,不平衡电桥
输出的电压为:
R3 R1 R4 R2 R3 RR4 R1 R1 U0 E( ) E R1 R1 R2 R3 R4 ( R1 R1 R2 )( R3 R4 ) R`1 R4 R1 R3 R1 R4 E E R1 R2 R4 ( R1 R1 R2 )( R3 R4 ) (1 )(1 ) R1 R1 R3
1 Uo 2 n ei Uo 1 100% 100% 2n
3.非线性线绕电位器结构
(1) 用曲线骨架绕制的非线性变阻器; (2) 三角函数变阻器;
D L

Uo
D L sin 2 UO L 1 1 Ui D 2 2
x
dx
b
Ui
Ui U O sin 2
碳膜电位器:是目前使用最多的一种电位器。其电 阻体是用碳黑、石墨、石英粉、有机粘合剂等配制的混合
物,涂在马蹄形胶木板或玻璃纤维板上制成的。
优点:分辨率高、阻值范围宽;缺点:滑动噪声大、耐 热耐湿性不好。
金属膜电位器:其电阻体是用金属合金膜、 金属氧化膜、金属复合膜、氧化钽膜材料通过真空 技术沉积在陶瓷基体上制成的,如铂铜、铂锗、铂铑 金等。 优点:温度系数小、分辨率高、滑动噪声较合 成碳膜电位器小;缺点:阻值范围小、耐磨性不好
出电压阶梯的最大值与最大输出电压之比的百分数。 具有理想阶梯特性线绕电位
Uo 1 Re n 100% 100% Uo n
计,其理想的电压分辨率为
电位器的电刷行程来说,又 有行程分辨率,其表达式为

传感器与检测技术第二章电阻式传感器.ppt

传感器与检测技术第二章电阻式传感器.ppt

11
2.1 电位器式传感器
二、阶梯特性、阶梯误差、分辨率 电刷在与一匝导线接触过程中,虽有小位移,
但阻值无变化 当电刷离开这一匝,接触下一匝时,电阻突然
增加,特性曲线出现阶跃
其阶跃值即视在分辨率为
U Umax n
12
2.1 电位器式传感器
在移动过程中,会使得临近的量匝短路,电位器 总匝数从n减小到(n-1),总阻值的变化使得在视 在分辨率之中还产生了次要分辨脉冲,即一个小 的阶跃。
U max•Umax
9
2.1 电位器式传感器
线性电位器的骨架截面此处处相等、并且由材料 均匀的导线按相等的节距绕成。对某一匝节距为 t线圈来说,电阻变化量为:
Rl2(bh)
AA
10
2.1 电位器式传感器
电阻灵敏度:
kR
R max X max
nR2(bh)
nt At
电压灵敏度:
kuU Xm ma a x xIX R m maax xI2(bA h)t
16
xmax
eby
n xmax
1 100% n
2.1 电位器式传感器
从图2-5中可见,在理想情况下,特性曲线每个 阶梯的大小完全相同,则通过每个阶梯中点的直 线即是理论直线(灵敏度),阶梯曲线围绕它 上下跳动,从而带来一定误差,这就是阶梯误
差。电位器的阶梯误差γj通常以理想阶梯特性
曲线对理论特性曲线的最大偏差值与最大输出 电压值的百分数表示,即
所示。这时,电位器(理想阶梯特性的线绕电位器)的电压分辨
率定义为:在电刷行程内,电位器输出电压阶梯的最大值与最
大输出电压Umax之比的百分数,即为:
Umax
eba
n Umax

2电阻应变式传感器

2电阻应变式传感器

根部沿〈110〉和〈110〉晶向各 扩散两个P型电阻,并接成电桥。 当悬臂梁自由端的质量块受加速 度作用时,悬臂梁受弯矩作用产 生应力,其方向为梁的长度方向。 从而使四个电阻中两个电阻的应 力方向与电流一致,另两个

电阻的应力方向与电流垂直。
图2.24 压阻式加速度传感器原理结构

1-基座;2-扩散电阻;3-硅梁;4-质量块
1.测力传感器
应变计式传感器的最大用武之地 还是称重和测力领域。这种测力 传感器的结构由应变计、弹性元 件和一些附件所组成。视弹性元 件结构型式(如柱形、筒形、环形、 梁式、轮幅式等)和受载性质(如拉、 压、弯曲和剪切等)的不同,它们 有许多种类。
2.压力传感器
压力传感器主要用来测量流体的 压力。视其弹性体的结构形式有 单一式和组合式之分。单一式是 指应变计直接粘贴在受压弹性膜 片或筒上。膜片式应变压力传感 器的结构、应力分布及布片,与
第二章 电阻应变计式 传感器
第五节 电阻应变计式 传感器 第六节 压阻式传感器
一.原理和特点
综上所述,电阻应变计有两
方面的应用:一是作为敏感元件, 直接用于被测试件的应变测量; 另一是作为转换元件,通过弹性 元件构成传感器,用以对任何能 转变成弹性元件应变的其它物理 量作简接测量。用作传感器
传感器灵敏度的温漂是由于 压阻系数随温度变化而引起的。 当温度升高压阻系数减小, 传感器的灵敏度要减小;反之灵 敏度增大,零位温度一般可用串 联电阻的方法进行补偿,如图 2.25。
串联电阻Rs 主要起调节作 用,并联电阻 Rp则主要起 补偿作用。
图2.25温漂补偿电路
例:温度上升,R s的增量较大, 则A点电位高于C点电位,VA-VC 就是零位漂移。再R2上并联一负 温度系数的阻值较大的电阻R p, 可约束的R s变化,而实现补偿, 以消除此温度 差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-12 电位器式压力传感器
2、电位器式加速度传感器
图为电位器式加速度传感器,惯性质量块在被测加速度 的作用下,使片状弹簧产生正比于被测加速度的位移,从 而引起电刷在电位器的电阻元件上滑动,输出一与加速 度成比例的电压信号。
电位器传感器结构简单,价格低廉,性能稳 定,能承受恶劣环境条件,输出功率大,一 般不需要对输出信号放大就可以直接驱 动伺服元件和显示仪表;其缺点是精度不 高,动态响应较差,不适于测量快速变化量。
j
1Umax 2 n
1
10% 0
Umax
2n
阶梯误差和分辨率的大小都是由线绕电位器 本身工作原理所决定的,是一种原理性误差,它 决定了电位器可能达到的最高精度。在实际设 计中,为改善阶梯误差和分辨率,需增加匝数,即 减小导线直径(小型电位器通常选0.5mm或更 细的导线)或增加骨架长度(如采用多圈螺旋 电位器)。
2






单击此处添加副标题内容
第2章 电阻式传感器
电阻式传感器是把被测量转换为电阻变化的一种 传感器,再经过转换电路变成电信号输出。
常用来测量力、压力、位移、加速度、 应变、扭矩、温度等。
按工作的原理可分为:电位器式、电阻应变 式、压阻式
2.1 电位器式电阻传感器
可用于测压力、高度、加速度、航面角等参数
非线性电位器的主要功用为:
1)获得所需要的非线性输出,以满足测控系统的一 些特殊要求;
2)由于测量系统有些环节出现了非线性,为了修正、 补偿非线性,需要将电位器设计成非线性特性,使 测量系统的最后输出获得所需要的线性特性;
3)用于消除或改善负载误差。对于线绕式电位器, 其非线性特性的实现可以采用三种不同的绕线方法 实现非线性电位器:变骨架方式、变绕线节距方式 和变电阻率方式。
图2-9带负载的电位器电路
RxRL ULRR xxRR LR Lx R Rm LaxRxUURLRmR ax xR R xR LmaxRx2
设电阻相对变化为:
r
Rx R max
电位器的负载系数为: m R m ax
Rf
相对输出电压为: YUL r U 1rm(1r)
而理想空载特性为:
Y0
U0 U
非线性电位器输出与电刷行程 之间是非线性函数关系
三、负载特性与负载误差
上面讨论的电位器空载特性相当于负载开路或 为无穷大时的情况,而一般情况下,电位器接有 负载,接入负载时,由于负载电阻和电位器的比 值为有限值,此时所得的特性为负载特性,负载 特性偏离理想空载特性的偏差称为电位器的负载 误差,带负载的电位器的电路如图2-9所示。电 位器的负载电阻为Rf,则此电位器的输出电压为
Umax xm ax
I
2b h
At
图2-3 线性线绕电位器示意图
图2-3 线性线绕电位器示意图
式中,k R 、kU 分别为电阻灵敏度、电压灵敏 度;ρ为导线电阻率;A为导线横截面积;n为线绕 电位器绕线总匝数。
由上式可以看出,线性线绕电位器的电阻灵 敏度和电压灵敏度除与电阻率ρ有关外,还与骨架 尺寸h和b、导线横截面积A(导线直径d)、绕线节 距t等结构参数有关;电压灵敏度还与通过电位器的 电流I的大小有关。
二、 非线性电位器
非线性电位器是指在空载时其输出电压(或电阻) 与电刷行程之间具有非线性函数关系的一种电位器。 它可以实现指数函数、三角函数、对数函数等,也称 函数电位器。因此可以满足控制系统的特殊要求,也 可满足传感、检测系统最终获得线性输出的要求。 常用的非线性线绕电位器有变骨架式、变截距式、分 路电阻式及电位给定式
位半位数字式欧姆表(分辨率为 1/2000),记下其初始阻值(图中为 10.01)。当我们用力将该电阻丝拉 长时,会发现其阻值略有增加(图中增 加到为10.05)。测量应力、应变、 力的传感器就是利用类似的原理制作的 。
一、 工作原理:
电阻应变片工作原理是基于电阻应变效应,即 金属导体在外力作用下发生机械变形时,其电阻值 随着所受机械变形(伸长或缩短)的变化而发生变化。
一、 工作原理:
金属应变片的电阻R为
R l
S
上述任何一个参数变换均会引起电阻变化,求导数
dR Sd l S l2dSS l d
代入 R l
S
dRRdl lRdSSRd
有:
dRdldSd Rl S
在弹性范围内,金 属丝受拉力
金属丝: Sr2
时,沿轴向伸长, 沿径向缩短
dRRdl l明部何2显分尺rd可组寸r以成变d看:化(1出引+,2起u电的轴变)表阻,向的示丝应关受灵力变系/敏表后系和 为示材数径 :由料k向0材的由应料几两
案例:煤气包储量检测
钢丝
煤气包
原理:钢丝->收线圈数
->电位器
->电阻
案例:玩具机器人
原理:电机->转角 ->电位器 ->电阻
2.2 应变片式电阻传感器
电应阻变式片应式电变阻传传感感器器作是为以应测变力片与为应传变感的元件主的要传传感感器器。,它具测 有力以范下围优小点到:肌肉纤维(5×10-17N),大到登月火箭 (1、5×精1度07高N,),测精量范确围度广可到0.01-0.1%,有10年以上的 校2准、适稳用定寿性命。长可,用性于能稳应定变可力靠、压力、转矩 、位移、加 速3度、结。构据简统单计、日尺本寸小力,传重感量器轻中,应因此变在片测占试7时0,%对,工美件国工占 4、作频状率态响及应应特力性分好析。影应响变小9片0%响。应时间约是10-7s
• 缺点:温度稳 定性和可重复 性不如金属应 变片。
二、金属电阻应变片主要特性
其中敏感栅是应变片中最重要的部分,一般采用栅丝直
金属径电为阻0.0应15变-0片.05结mm构,、L材为栅料长,a为基宽,根据不用用 1、结途构,栅长可为0.2-200mm,基底用以保持敏感栅及引线
有的丝几何状形应状变和片相和对位箔置状,应并变将片被测如件图上所的示应,变迅它速们准确 均由敏0地感.4传m栅递m,到,盖敏基层感底起栅保,上护盖,作层因用此,.引基引线底线常做和用的直粘很径薄结为,剂0一.等1般-0组为.1成05.m0。2m-
2、阶梯特性、阶梯误差和分辨率
图2-4所示为绕n匝电阻丝的线性电位器的局部剖面和 阶梯特性曲线图。电刷在电位器的线圈上移动时,线圈一 圈一圈的变化,因此,电位器阻值随电刷移动不是连续地 改变,导线与一匝接触的过程中,虽有微小位移,但电阻 值并无变化,因而输出电压也不改变,在输出特性曲线上 对应地出现平直段;当电刷离开这一匝而与下一匝接触, 电阻突然增加一匝阻值,因此特性曲线相应出现阶跃段。这 样,电刷每移过一匝,输出电压便阶跃一次,共产生n个电 压阶梯,其阶跃值亦即视在分辨脉冲为
图2-10 δf与m、X的关系曲线
但是有时负载满足不了这个条件,一般可以 采取限制电位器工作区间的办法减小负载误差; 或者由于电位器的负载特性相对于其空载特性 下凹,将电位器的空载特性设计为某种上凸的 曲线,即设计出非线性电位器也可以消除负载 误差,此非线性电位器的空载特性曲线2与线性 电位器的负载特性曲线1,两者是以特性直线3 互为镜像的,如图2-11所示。
图2-11 负载误差的补偿方式
二、电位器的结构与材料
1、电阻丝 2、电刷 3、骨架
三、电位器式传感器举例
1、电位器式压力传感器
电位器式压力传感器如图2-12所示,弹性敏感元件膜 盒的内腔,通入被测流体,在流体压力作用下,膜盒硬中心产 生弹性位移,推动连杆上移,使曲柄轴带动电位器的电刷在 电位器绕组上滑动,因而输出一个与被测压力成比例的电 压信号。该电压信号可远距离传送,故可作为远程压力表。
变骨架式非线性电位器 变骨架式电位器是利用改变骨架高度或宽度的方法 来实现非线性函数特性。图2-6所示为一种变骨架 高度式非线性电位器。
图 2-6 变 骨 架 高 度 式 线 性 电 位
骨架变化的规律
变骨架式非线性电位器是在保持电位器结构参数ρ、A、t 不变时,只改变骨架宽度b或高度h来实现非线性函数关 系。这里以只改变h的变骨架高度式非线性线绕电位器 为例来对骨架变化规律进行分析。在图2-6所示曲线上 任取一小段,则可视为直线,电刷位移为Δx,对应的电阻 变化就是ΔR,因此前述的线性电位器灵敏度公式仍然成 立,即
U U max n
图2-4 局部剖面和阶梯特性
实际上,当电刷从j匝移到( j+1)匝的过程中, 必定会使这两匝短路,于是电位器的总匝数从n 匝减小到(n-1)匝,这样总阻值的变化就使得在 每个电压阶跃中还产生一个小阶跃。这个小电压 阶跃亦即次要分辨脉冲为
UnUma(xn111n)j
UUmUn
工程上常把图2-4那种实际阶梯曲线简化成理想阶梯曲线, 如图2-5所示。这时,电位器的电压分辨率定义为:在 电刷行程内,电位器输出电压阶梯的最大值与最大输出 电压Umax之比的百分数,对理想阶梯特性的线绕电位 器,电压分辨率为
kR
Rm ax xm a x
2b h
At
ku
Umax xm ax
I
2b h
At
当Δx→0时,则有
dR 2(b h)
dx
At
dU I 2(b h)
dx
At
由上述两个公式可求出骨架高度的变化规律为
h At dR b
2 dx
h 1 At dR b
I 2 dx
h是电刷位移x 的函数,且与 特性曲线的导 数dRx/有关。
结构简单、 尺寸小、 重量轻
精度高、 输出信号大 性能稳定
要求输入能量大 电刷与电阻元件 之间容易磨损
按结构形式不同,可分为线饶式、薄膜式、光电式等,按 特性不同,可分为线性电位器和非线性电位器
一、线性电位器
1、线性电位器的空载特性
相关文档
最新文档