中考数学专题训练:类比探究类问题解析版
中考数学----类比探究题练习(1)
中考数学----类比探究题练习(1)1.如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,与BA,CD的延长线分别交于点M,N,则∠BME=∠CNE(简要证明).(1)如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连接EF,分别交CD,AB于点M,N,判断△OMN的形状,并说明理由.(2)如图3,在△ABC中,,点D在AC边上,且AB=CD.E,F分别是BC,AD的中点,连接EF并延长,与BA的延长线交于点G,连接DG,若∠EFC=60°,判断△AGD形状,并说明理由2、小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:(1)问题情境:如图1,四边形ABCD中,AD∥BC,E为CD边的中点,连接AE并延长,交BC的延长线于点F,求证:(S表示面积).(2)问题迁移:如图2,在已知锐角∠AOB内有一个定点P,过点P任意作一条直线,分别交射线OA,OB于点M,N.小明在直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小?并说明理由.(3)实际应用:如图3,若在道路OA,OB之间有一村庄Q发生疫情,防疫部门计划以公路OA,OB 和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(参考数据:sin66°≈0.91,tan66°≈2.25,)3、问题发现:如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)拓展探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)问题解决:当正方形CDEF旋转到B,E,F三点共线时,直接写出线段AF的长.4、(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题:如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.5、我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明;拓展应用:(3)如图4,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.图4中考数学----类比探究题练习(1)答案 1、解题思路2、解题思路3、解:(1)BE=2AF;(2)无变化.理由如下:在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=ACBC=22. 在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=CFCE=22,∴CFCE=ACBC. ∵∠FCE=∠ACB=45°,∴∠FCE-∠ACE=∠ACB-∠ACE. ∴∠FCA=∠ECB.∴△ACF∽△BCE.∴BEAF=BCAC= 2.∴BE=2AF. ∴线段BE与AF的数量关系无变化.(3)3-1或3+1. 提示:分两种情况讨论:①当点E在线段BF上时,如图2由(1)知,CF=EF=CD= 2.在Rt△BCF中,CF=2,BC=22,根据勾股定理得BF=6,∴BE=BF-EF=6- 2. 由(2)知,BE=2AF,∴AF=3-1.②当点E在线段BF的延长线上时,如图3,∵△ABC,△CFE为等腰直角三角形.易证:△ACF∽△BCE.∴BEAF=BCAC= 2.∴BE=2AF.由(1)知,CF=EF=CD= 2.在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+ 2.由(2)知,BE=2AF,∴AF=3+1.即当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3-1或3+1. 4、解:(1) 60°;AD=BE;(2)∠AEB=90°,AE=2CM+BE.理由:∵△ACB和△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角三形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE;(3)3-12或3+12.提示:∵PD =1,∠BPD =90°.∴BP 是以点D 为圆心,以1为半径的⊙D 的切线,点P 为切点. 第一种情况:如图4,过点A 作AP 的垂线,交BP 于点P ′,可证△APD ≌△AP ′B ,PD =P ′B =1.∵CD =2,∴BD =2,BP =3,∴AM =12PP ′=12(PB -BP ′)=3-12. 第二种情况,如图5,可得AM =12PP ′=12(PB +BP ′)=3+12.5、解:(1)12;4; (2)①猜想:AD =12BC.证明:如上图3,延长AD 至点E ,使DE =AD. ∵AD 是△ABC 的“旋补中线”,∴B ′D =C ′D.∴四边形AB ′EC ′是平行四边形.∴EC ′∥B ′A ,EC ′=B ′A.∴∠AC ′E +∠B ′AC ′=180°.由定义可知∠B ′AC ′+∠BAC =180°,B ′A =BA ,AC =AC ′,∴∠AC ′E =∠BAC ,EC ′=BA.∴△AC ′E ≌△CAB(SAS ).∴AE =BC.∵AD =12AE ,∴AD =12BC. (3)存在.以AD 为边向四边形ABCD 的内部作等边△PAD ,连接PB ,PC ,延长BP 交AD 于点F , 则有∠ADP =∠APD =60°,PA =PD =AD =6.∵∠CDA =150°,∴∠CDP =90°.过点P 作PE ⊥BC 于点E ,易知四边形PDCE 为矩形.∴CE =PD =6.∴tan ∠DPC =CD PD =236=33.∴∠DPC =30°,∠EPC =60°.∴BE =12-6=6=CE. 又PE ⊥BC ,∴PC =PB ,∠BPE =∠CPE =60°.∴∠APD +∠BPC =60°+120°=180°.又PA =PD ,PB =PC ,∴△PDC 是△PAB 的“旋补三角形”.∵∠BPE =60°,∠DPE =90°,∴∠DPF =30°.∴BF ⊥AD ,AF =12AD =3,PF =3 3. 在Rt △PBE 中,PB =PE 2+BE 2=CD 2+BE 2=(23)2+62=43,∴BF =PB +PF =7 3.在Rt △ABF 中,AB =(73)2+32=239.∵△PDC 是△PAB 的“旋补三角形”,∴△PAB 的“旋补中线”长为12AB =39.。
中考几何中的类比探究解题方法分析
(2)作 EH⊥CD,EQ⊥AB,先证△EFQ∽△EGH,易得 EF EQ , EG EH
再证△AQE∽△EHC,那么 EA EQ 2 , EC EH 1
CD m
∴=
CG 2
(3)拓展迁移
第 2页,共 7页
如图 3,梯形 ABCD 中,DC//AB,点 E 是 BC 的延长线上一点,AE 和 BD 相交于点 F。
若
AB
a
BC
,
b(a
0,b 0) ,则
AF
的值是
AF
ab(用含 a,b
的代数式表示)。
CD
BE
EF
EF
E
【解析】过 E 作 EH∥AB,交 BD 延长线于点 H
∴ EA EQ 2 EG EH 1
∴ EF 2 EG
∴EF=2EG;
(3)EF=kEG.
第 6页,共 7页
【上题基本思路:过直角顶点,作横平竖直的线,找全等或相似。】
中考数学类比探题思维误区: 第一问通常是特殊的图形,题中的条件比较充分,而且一般有提示,所以学生做的时,
基本上能得心应手,但做第二、三问时,往往有部分学生,没有按照第一问的思路去思考, 而且是对着题干思考第二、三问,这样就陷入了“自己布置的陷阱”结果做不出来,把一 道题当成三道题来做了。
H
由题意可知:EH∥DC∥AB
∴ BC CD BE EH
∴CD = b EH
D
C
F
又∵ AB a CD
∴AB=a CD
数学中考类比探究解析
类比探究一.解答题(共10小题)1.(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.2.(2015•河北模拟)问题引入:如图,在△ABC中,D是BC上一点,AE=AD ,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G ,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.3.(2014•绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.4.(2014•汕头)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC 上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t >0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.5.(2014•宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.6.(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t <2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.7.(2012•昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.8.(2012•烟台)(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)9.(2014•漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.卷类比探究参考答案与试题解析一.解答题(共10小题)1.(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.考点:翻折变换(折叠问题);全等三角形的判定与性质;角平分线的性质;平行四边形的性质;矩形的性质.专题:压轴题.分析:(1)根据翻折的性质得出BE=EF,∠B=∠EFA,利用三角形全等的判定得△ECG≌△EFG,即可得出答案;(2)利用平行四边形的性质,首先得出∠C=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,进而得出∠ECG=∠EFG,再利用EF=EC,得出∠EFC=∠ECF,即可得出答案.解答:解:(1)猜想线段GF=GC,证明:连接EG,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵EG=EG,∠C=∠EFG=90°,∴△ECG≌△EFG(HL),∴FG=CG;(2)(1)中的结论仍然成立.证明:连接EG,FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD改为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.点评:此题主要考查了矩形的性质与平行四边形的性质以及翻折变换、全等三角形的判定等知识,根据已知得出EF=EC,∠EFC=∠ECF是解决问题的关键.2.(2015•河北模拟)问题引入:如图,在△ABC中,D是BC上一点,AE=AD ,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S 四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.考点:面积及等积变换.分析:问题引入:由D是BC上一点,AE=AD,根据等高三角形的面积比等于对应底的比,可得:,,继而求得答案;尝试探究:由AF⊥BC,EG⊥BC,易证得△EDG∽△ADB ,然后由相似三角形的性质,求得的值,再利用等底三角形的面积比等于对应高的比,即可求得的值,继而求得的值;类比延伸:由E为AD上的任一点,根据等高三角形的面积比等于对应底的比,即可求得=,=,继而求得答案;拓展应用:由==,同理可得=,=,继而求得答案.解答:解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.点评:此题考查了面积与等积变换的知识.此题难度较大,注意掌握数形结合思想的应用.3.(2014•绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.考点:相似形综合题;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;勾股定理;矩形的判定与性质;平行线分线段成比例;相似三角形的判定与性质.专题:压轴题.分析:(1)易得点P的坐标是(2,1),即可得到PA的长.(2)易证∠AOB=45°,由角平分线的性质可得PM=PN,然后通过证明△ANP≌△CMP即可求出PA:PC的值.(3)可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论.易证PA:PC=PN:PM,设OA=x,只需用含x的代数式表示出PN、PM的长,即可求出PA:PC的值.解答:解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).∴PA的长为2;(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°﹣∠APM=∠CPM.在△ANP和△CMP中,,∴△ANP≌△CMP.∴PA=PC.∴PA:PC的值为1:1;(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.∴FM=OA.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴,∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴PA:PC=PN:PM=x :x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图3所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴PA:PC=PN:PM=x :x=.综上所述:PA:PC 的值为或.点评:本题考查了角平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、平行线等分线段定理、勾股定理等知识,综合性非常强.4.(2014•汕头)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC 上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t >0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.专题:几何综合题;压轴题;动点型.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF =EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10(0<t <),∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t ﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t ﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.5.(2014•宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.考点:相似形综合题;二次函数的最值;三角形的面积;全等三角形的性质.专题:几何综合题.分析:(1)利用“两角法”可以证得△PBQ与△ABC相似;(2)设BP=x(0<x<4).由勾股定理、(1)中相似三角形的对应边成比例以及三角形的面积公式列出S与x 的函数关系式,利用配方法求得二次函数的最值;(3)利用全等三角形的对应边相等得到AQ=AC,AQ=QB,即AQ=QB=AC.在Rt△ABC中,由勾股定理得BC2=AB2﹣AC2,易求得:BC=AC,则λ=.解答:解:(1)不论点P在BC边上何处时,都有∠PQB=∠C=90°,∠B=∠B∴△PBQ∽△ABC;(2)设BP=x(0<x<4),由勾股定理,得AB=5∵由(1)知,△PBQ∽△ABC,∴,即∴,S△APQ ===∴当x=时,△APQ 的面积最大,最大值是;(3)存在.∵Rt△AQP≌Rt△ACP∴AQ=AC又∵Rt△AQP≌Rt△BQP∴AQ=QB∴AQ=QB=AC在Rt△ABC中,由勾股定理得BC2=AB2﹣AC2∴BC=AC∴λ=时,Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.点评:本题综合考查了相似三角形的判定与性质,全等三角形的性质,三角形的面积公式以及二次函数的最值的求法等知识点.难度较大.注意,在证明三角形相似时,充分利用公共角,在利用全等三角形的性质时,要找准对应边.6.(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t <2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.考点:相似形综合题.专题:几何综合题;压轴题.分析:(1)分两种情况讨论:①当△BPQ∽△BAC 时,=,当△BPQ∽△BCA 时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣CM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.解答:解:(1)∵AC=6cm,BC=8cm,∴AB==10cm,①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,BM=4t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,仍有PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.点评:此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.7.(2012•昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.考点:全等三角形的判定与性质.专题:证明题;压轴题;探究型.分析:(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF 时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.解答:证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.点评:本题考查了三角形全等的判定和性质;本题中通过全等三角形来实现线段的转换是解题的关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.8.(2012•烟台)(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)考点:全等三角形的判定与性质;等边三角形的性质;正方形的性质;正多边形和圆.专题:几何综合题;压轴题.分析:(1)根据正方形的每一个角都是90°可以证明∠AHK=90°,然后利用平角等于180°以及直角三角形的两锐角互余证明∠D1CK=∠HAC,再利用“角角边”证明△ACH和△CD1M全等,根据全等三角形对应边相等可得D1M=CH,同理可证D2N=CH,从而得证;(2)①过点C作CG⊥AB,垂足为点G,根据三角形的内角和等于180°和平角等于180°证明得到∠H1AC=∠D1CM,然后利用“角角边”证明△ACG和△CD1M全等,根据全等三角形对应边相等可得CG=D1M,同理可证CG=D2N,从而得证;②结论仍然成立,与①的证明方法相同.解答:(1)D1M=D2N .证明:∵∠ACD1=90°,∴∠ACH+∠D1CK=180°﹣90°=90°,∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°,∴∠D1CK=∠HAC,在△ACH和△CD1M中,,∴△ACH≌△CD1M(AAS),∴D1M=CH,同理可证D2N=CH,∴D1M=D2N;(2)①证明:D1M=D2N成立.过点C作CG⊥AB,垂足为点G,∵∠H1AC+∠ACH1+∠AH1C=180°,∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1,∴∠H1AC=∠D1CM,在△ACG和△CD1M中,,∴△ACG≌△CD1M(AAS),∴CG=D1M,同理可证CG=D2N,∴D1M=D2N;②作图正确.D1M=D2N还成立.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,正方形的性质,正多边形的性质,读懂题意,证明得到∠D1CK=∠HAC(或∠H1AC=∠D1CM)是证明三角形全等的关键,也是解决本题的难点与突破口.9.(2014•漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF 的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH ,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.考点:圆的综合题;等边三角形的判定与性质;矩形的性质;正方形的性质;弦切角定理;相似三角形的判定与性质.专题:压轴题;探究型.分析:(1)易证:OA=OB,∠AOB=90°,直接运用阅读材料中的结论即可解决问题.(2)易证:OA=OB=OC=0D=,然后由条件PE∥OB,PF∥AO可证△AEP∽△AOB,△BFP∽△BOA,从而可得==1,进而求出EP+FP=.(3)易证:AD=BC=4.仿照(2)中的解法即可求出PE+PF=4,因而PE+PF是定值.解答:解:(1)如图2,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠ABC=∠AOB=90°.∵AB=BC=2,∴AC=2.∴OA=.∵OA=OB,∠AOB=90°,PE⊥OA,PF⊥OB,∴PE+PF=OA=.(2)如图3,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠DAB=90°.∵AB=4,AD=3,∴BD=5.∴OA=OB=OC=OD=.∵PE∥OB,PF∥AO,∴△AEP∽△AOB,△BFP∽△BOA.∴,.∴==1.∴+=1.∴EP+FP=.∴PE+PF 的值为.(3)当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图4∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴,.∴==1.∴=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.点评:本题考查了正方形的性质、矩形的性质、弦切角定理、相似三角形的判定与性质、等边三角形的判定与性质等知识,考查了类比联想的能力,由一定的综合性.要求PE+PF的值,想到将相似所得的比式相加是解决本题的关键.10.(2014•河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE 边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;压轴题;探究型.第11页(共13页)分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP 的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP 的距离为或.第12页(共13页)点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.第13页(共13页)。
中招考试几何类比探究题集锦一参考答案
中招考试几何类比探究题集锦(附参考答案)参考答案与试题解析一.解答题(共11小题)1.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α∴∠CAE+∠CAF=α∵∠BAC=2∠DAE=2α.∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,第1页(共33页)第2页(共33页)∴△ABD ≌△ACF (SAS ),(2)由(1)知,△ABD ≌△ACF (SAS ),∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB +∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,∴DE 2=BD 2+CE 2,(3)DE 2=BD 2+CE 2;理由:如图,∵∠BAC=2∠DAE=2α.∴∠DAE=α,∵点D 关于直线AE 的对称点为F ,∴EF=DE ,AF=AD ,∠DAE=∠EAF=α∴∠CAF=∠EAF +∠CAE=α+∠CAE∴∠BAD=∠BAC ﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE ﹣∠CAE )=2α﹣(α﹣∠CAE)=α+∠CAE∴∠BAD=∠CAF,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等第3页(共33页)边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.【解答】解:(1)DE=BD+CE.理由如下:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,第4页(共33页)∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)DF=EF.理由如下:由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,第5页(共33页)∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC 上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.第6页(共33页)【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,第7页(共33页)∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.第8页(共33页)4.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.【解答】证明:第一种情况:点E是线段BC上的任意一点,可作三种辅助线:方法一:如图1,在AB上截取AG,使AG=EC,连接EG,第9页(共33页)∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°.∵AG=EC,∴BG=BE,∴△BEG是等边三角形,∠BGE=60°,∴∠AGE=120°.∵FC是外角的平分线,∠ECF=120°=∠AGE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠GAE=60°+∠GAE.∵∠AEC=∠AEF+∠FEC=60°+∠FEC,∴∠GAE=∠FEC.在△AGE和△ECF中,∴△AGE≌△ECF(ASA),∴AE=EF;方法二:在CA上截取CG=CE,连结GE,证明类似方法一;方法三:延长FC到G,使CG=CE,连结EG,易证△CEG是等边三角形,第10页(共33页)∴CE=EG,∠G=∠ACB=60°,∠CEG=∠AEF=60°,∴∠CEG+∠CEF=∠AEF+∠CEF,即∠GEF=∠AEC,∴△GEF≌△CEA,∴AE=EF.第二种情况:点E是线段BC延长线上的任意一点如图2,可作三种辅助线:①在CF上截取CG=CE,连接GE②延长AC到G,使CG=CE,连结EG;③或延长BA到G,使BG=BE,连结EG.第②种添加辅助线的方法证明如下:证明:延长AC到G,使CG=CE,连结EG,易证△CEG为等边三角形,∴∠G=∠ECF=60°,EG=CE,又∠AEG=∠CEG+∠AEC=60°+∠AEC,∠CEF=∠AEF+∠AEC=60°+∠AEC,第11页(共33页)∴∠AEG=∠CEF,∴△AEG≌△FEC,∴AE=EF.第三种情况:点E是线段BC反向延长线上的任意一点如图3,可作三种辅助线:①延长AB到G,使BG=BE,连结EG;②延长CF到G,使CG=CE,连结EG;③在CE上截取CG=CF,连结GF现就第①种添加辅助线的方法证明如下:证明:延长AB到G,使BG=BE,连结EG,易证△BEG为等边三角形,∴∠G=∠ECF=60°,第12页(共33页)∵∠AEB+∠BAE=∠ABC=60°,∠AEB+∠CEF=∠AEF=60°,∴∠BAE=∠CEF,∵AB=BC,BG=BE,∴AB+BG=BC+BE,即AG=CE,∴△AEG≌△EFC,∴AE=EF.拓展应用:如图4:作CH⊥AE于H点,∴∠AHC=90°.由数学思考得AE=EF,又∵∠AEF=60°,∴△AEF是等边三角形,∴△ABC∽△AEF.第13页(共33页)∵CE=BC=AC,△ABC是等边三角形,∴∠CAH=30°,AH=EH.∴CH=AC,AH=AC,AE=AC,∴.∴==.5.问题情境:在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)操作发现:当点O为AC中点时:①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;第14页(共33页)(2)类比延伸:当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若=,请直接写出=.【解答】解:(1)①猜想:AE2+CF2=EF2,连接OB,如图1,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB+∠BOF=∠FOC+∠BOF.∴∠EOB=∠FOC,在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;故答案为:AE2+CF2=EF2;第15页(共33页)②成立.证明:连结OB.如图2,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC.在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;(2)=,如图3,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,第16页(共33页)∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴=,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴=,∵=,∴=,故答案为.第17页(共33页)第18页(共33页)6.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明) 提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长.解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD的长为 .【解答】(2)解:如图②中,AB与CF交于点O.由(1)可知:△BCD≌△BAE,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE==2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣EF=2﹣1.(3)解:在RT△ABC,RT△EBD中,∵∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,∴AB=BC,BE=BD,∴==,∵∠ABC=∠EBD=90°,∴∠ABE=∠DBC,∴△ABE∽△CBD,∴==,第19页(共33页)第20页(共33页)在RT △AEF 中,∵∠AFE=90°,∠EAF=45°,EF=2,∴AF=EF=2,AE=2,∴=,∴CD=.故答案为.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,请猜想(1)中S1与S2的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请求相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,第21页(共33页)∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2=×2×2=2;故答案为:S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,第22页(共33页)∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,第23页(共33页)∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×6÷cos30°=3÷=2,∴BF1=2,BF2=BF1+F1F2=2+2=4,故BF的长为2或4.8.问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN.当时,求的值.类比归纳:第24页(共33页)在图(1)中,若,则的值等于;若,则的值等于;若(n 为整数),则的值等于.(用含n的式子表示)联系拓广:如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN,设,则的值等于.(用含m,n的式子表示)【解答】解:(1)方法一:如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.第25页(共33页)设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2﹣x)2+12,解得x=,即BN=.在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,∴y2+22=(2﹣y)2+12,解得y=,即AM=(6分)∴.方法二:同方法一,BN=.如图(1﹣2),过点N做NG∥CD,交AD于点G,连接BE.∵AD∥BC,∴四边形GDCN是平行四边形.∴NG=CD=BC.同理,四边形ABNG也是平行四边形.∴AG=BN=∵MN⊥BE,∴∠EBC+∠BNM=90度.∵NG⊥BC,∴∠MNG+∠BNM=90°,第26页(共33页)∴∠EBC=∠MNG.在△BCE与△NGM中,∴△BCE≌△NGM,EC=MG.∵AM=AG﹣MG,AM=﹣1=.∴.(2)如图1,当四边形ABCD为正方形时,连接BE,=,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n﹣x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=﹣1=则:==.故当=,则的值等于;若=,则的值等于;第27页(共33页)(3)若四边形ABCD为矩形,连接BE,=,不妨令CD=n,则CE=1;又==,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故=,=,HN=,故AM=BH=BN﹣HN=,故==.故答案为:;;;.第28页(共33页)第29页(共33页)9.阅读理解:如图1,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,点P 在BC 边上,当∠APD=90°时,易证△ABP ∽△PCD ,从而得到BP•PC=AB•CD ,解答下列问题.(1)模型探究:如图2,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD 时,结论BP•PC=AB•CD 仍成立吗?试说明理由;(2)拓展应用:如图3,M 为AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=45°且DM 交AC 于F ,ME 交BC 于G .AB=,AF=3,求FG 的长.【解答】解:(1)∵∠APC=∠APD +∠CPD ,∠APC=∠BAP +∠B (三角形外角定理),∠B=∠APD (已知),∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD∴=,∴BP•PC=AB•CD;(2)∵∠AFM=∠DME+∠E(三角形外角定理),∠DME=∠A(已知),∴∠AFM=∠A+∠E(等量代换),又∠BMG=∠A+∠E(三角形外角定理),∴∠AFM=∠BMG.∵∠A=∠B,∴△AMF∽△BGM.当∠A=∠B=45°时,∠ACB=180°﹣∠A﹣∠B=90°,即AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=,AC=BC=4.又∵△AMF∽△BGM,∴,∴BG===,又∵,CF=4﹣3=1,∴.第30页(共33页)10.基本模型如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,(1)模型拓展如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?(2)模型应用①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?【解答】解:(1)成立,∵∠A=180°﹣(∠B+∠APB),第31页(共33页)∠CPD=180°﹣(∠1+∠APB),∠B=∠1,∴∠A=∠CPD,∵∠B=∠C,∴△ABP∽△PCD;(2)①∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠B=∠APQ,∴∠B=∠APQ=∠C,由(1)知,△ABP∽△PCD,∴=,∴=,∴CQ=;②设BP=x,CQ=y.∵∠B=∠APQ=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,第32页(共33页)∴当x=时,y=,最大即当P是BC的中点时,CQ最长,最长为.第33页(共33页)。
中考数学题型二 类比、拓展探究题
类型1 “手拉手”模型
如图(2),当点M,C在OA下侧重合时,在Rt△ABC 中,AB2=AC2+BC2,∴(2 )2=( x)2+(x-2)2, 解得x1=-2(不合题意,舍去),x2=3,∴AC= x=3 . 综上所述,AC的长为2 或3 .
类型1 “手拉手”模型
例2 在△ABC中,∠BAC=60°. (1)如图(1),AB=AC,点P在△ABC内,且∠APC=150°,PA=3,PC=4.以AP为一边,在AP右侧 作等边三角形APD,连接CD. ①依题意补全图(1);②直接写出PB的长. (2)如图(2),若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数. (3)如图(3),若AB=2AC,点P在△ABC内,且PA= ,PB=5,∠APC=120°,直接写出PC的长.
类型1 “手拉手”模型
(3)PC=2.
解法提示:在△ABC中,∠BAC=60°,AB=2AC,易得∠ACB=90°,∠ABC=30°.如图(3),将
AP绕点A逆时针旋转60°,得到AE,在AE上截取AD= AP,连接DP,DC,
(根据“手拉手”相似模型4补形,已知△ABC和“拉手线”BP,补充与它相似的△APD和
类型1 “手拉手”模型
(2)如图(2), 以AP为一边,在AP的左上方作等边三角形APD,连接DC,(根据“手拉手”全等模型2补形, 已知等边三角形ABC和“拉手线”BP,补充等边三角形APD和“拉手线”CD) 可得DP=AD=AP=3,∠PAD=∠DPA=60°=∠BAC, ∴∠BAP=∠CAD, 又AB=AC,∴△APB≌△ADC, ∴CD=BP=5. 在△DPC中,DP2+CP2=32+42=52=CD2, ∴∠DPC=90°, ∴∠APC=∠DPC-∠DPA=90°-60°=30°.
中考数学类比探究型几何综合题专题训练(含答案与解析)
中考数学类比探究型几何综合题专题训练【类型1】通过位置变化(图形变换)进行类比探究〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当旋转角β为何值时,OC∥AB,并说明理由;③当A、C、D三点共线时,直接写出线段BD的长.〖例2〗现有与菱形有关的三幅图,如图:(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.〖尝试练习〗1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =14BC,请求出OC的长.3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.求证:①BE=DG;②BE⊥DG;(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.【类型2】通过形状变化进行类比探究〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.(1)求证:CE=BD;(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.(1)求证:∠PCD=∠PED;(2)连接EC,求证:EC=√2AP;(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.〖尝试练习〗4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.【自主反馈】7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.(1)求∠DFC的度数;(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.①补全图形(图2中完成);②用等式表示线段BE与CQ的数量关系,并证明.8.已知△ABC是等腰三角形.(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图②,B'E与AC交于点F,DB'∥BC.①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;(3)如图③,则△CEF的周长为.11.已知正方形ABCD,以CE为边在正方形ABCD外部作正方形CEFG,连AF,H是AF的中点,连接BH,HE.(1)如图1所示,点E在边CB上时,则BH,HE的关系为;(2)如图2所示,点E在BC延长线上,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请给出新的结论并证明.(3)如图3,点B,E,F在一条直线上,若AB=13,CE=5,直接写出BH的长.12.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.13.我们知道,平行四边形的对边平行且相等,利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且DE=12DF,又可证图中的四边形为平行四边形,可得BC与DF的关系是,于是推导出了“DE∥BC,DE=12BC”.寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=√2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.直接写出CF与BE的数量关系.类比探究型几何综合题专题训练(不用相似)答案与解析〖例1〗解:(1)如图1,∵△AOB是等边三角形,∴AO=BO=AB,∠AOB=60°,∵将OC绕点O顺时针旋转,使点C落到OB边的点D处,∴OC=OD,∠COD=∠AOB=60°=α,∴△COD是等边三角形,答案为:60°,等边;(2)①∵△COD是等边三角形,∴OC=OD,∠COD=∠AOB=60°,∴∠AOC=∠BOD,又∵AO=BO,∴△AOC≌△BOD(SAS),∴AC=BD;②如图2,当点C在点O的上方时,若OC∥AB,∴∠AOC=∠OAB=60°=β,如图2﹣1,当点C在点O的下方时,若OC∥AB,∴∠ABO=∠BOC=60°,∴β=360°﹣60°﹣60=240°,综上所述:β=60°或240°;③如图3,当点D在线段AC上时,过点O作OE⊥AC于E,∵等边△AOB的边长为4,点C为OA 中点,∴AO=AB=OB=4,OC=OD=CD=2,∵∠AOB=∠COD=60°,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∵OE⊥CD,OC=OD,∴CE=DE=1,∴OE=√OC2−CE2=√3,∴AE=√OA2−OE2=√13,∴AC=AE+CE=1+√13=BD;如图4,当点C在线段AD上时,过点O作OF⊥AD于F,同理可求DF=CF=1,AF=√13,∴AC=BD=√13﹣1,综上所述:BD=√13+1或√13﹣1.〖例2〗解:(1)感知:∵四边形ABCD是菱形,∴BC=CD=AB=2,∵E,F分别是边BC,CD的中点,∴CE=12BC,CF=12CD=1,∴CE+CF=2.故答案为:2.(2)探究:如图,连结AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.∵∠EAF=60°,∴∠BAC﹣∠CAE=∠EAF﹣∠CAE.∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA).∴BE=CF.∴CE+CF=BC=2.(3)应用:如图所示:∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠CAD=∠B=60°.∵∠EAF=60°,∴∠CAD﹣∠DAE=∠EAF ﹣∠DAE.∴∠CAE=∠DAF.∵∠ACE=∠ADF,AC=AD∴△ACE≌△ADF(ASA).∴CE=DF,AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∵EF⊥BC,∠ECF=60°,∴CF=2CE,∵CD=BC=2,∴CE=2,∴EF=√CF2−CE2=2√3,∴△AEF的周长为6√3.〖尝试练习〗1.解:(1)AD=CE,理由:∵△ABC与△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD =∠CBE , ∴△ABD ≌△CBE (SAS ),∴AD =CE ;(2)如图2,过点B 作BH ⊥AD 于H ,在Rt △BHD 中,BD >BH ,∴当点D ,H 重合时,BD =BH ,∴BH ≤BD ,∴当BD ⊥AD 时,点B 到直线AD 的距离最大,∴∠EDP =90°﹣∠BDE =30°,同(1)的方法得,△ABD ≌△CBE (SAS ),∴∠BEC =∠BDA =90°,EC =AD ,在Rt △ABD 中,BD =2,AB =2√2, 根据勾股定理得,AD =√AB 2−BD 2=2, ∴CE =2,∵∠BEC =90°,∠BED =60°, ∴∠DEP =90°﹣60°=30°=∠EDP , ∴DP =EP ,如图2﹣1,过点P 作PQ ⊥DE 于Q , ∴EQ =12DE =1,在Rt △EQP 中,∠PEQ =30°, ∴EP =EQ cos∠DEP =2√33,∴PC =2−2√33; (3)①当点D 在AE 上时,如图3,∴∠ADB =180°﹣∠BDE =120°,∴∠BDE =60°, 过点B 作BF ⊥AE 于F ,在Rt △BDF 中,∠DBF =30°,BD =2, ∴DF =1,BF =√3,在Rt △ABF 中,根据勾股定理得,AF =√AB 2−BF 2=√5,AD =AF ﹣DF =√5﹣1,∴CE =AD =√5﹣1; ②当点D 在AE 的延长线上时,如图4,同①的方法得,AF =√5,DF =1,∴AD =AF +DF =√5+1,∴CE =AD =√5+1, 即满足条件的CE 的长为√5+1和√5﹣1. 2.解:(1)①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 又∵AB=AC ,∴△DAB ≌△FAC (SAS ),∴∠ABC =∠ACF ,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ACB +∠ACF ═45°+45°=90°, 即BC ⊥CF ;②△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD , ∴BC =CF +CD ;故答案为:BC =CF +CD ;(2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC .理由如下:∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,又∵AB=AC , ∴△DAB ≌△FAC (SAS ),∴∠ABD =∠ACF , ∵∠BAC =90°,AB =AC , ∴∠ACB =∠ABC =45°.∴∠ABD =180°﹣45°=135°,∴∠BCF =∠ACF ﹣∠ACB =135°﹣45°=90°,∴CF ⊥BC . ∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .(3)过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N , ∵∠BAC =90°,AB =AC =2√2, ∴BC =4,∴CD =14BC =1,∴BD =5, 由(2)同理可证得△DAB ≌△FAC ,∴BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴OD =OF ,∵∠DCF =90°, ∴DF =√CD 2+CF 2=√26,∴OC =√262.3.证明:(1)如图2,延长DG交BE于H,∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,AG=AE,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE(SAS),∴BE=DG,∠ADG=∠ABE,∵∠C+∠CBA+∠ABE+∠BHD+∠CDH=360°,∴90°+90°+∠ADG+∠CDH+∠BHD=360°,∴∠BHD=90°,∴DG⊥BE;(2)如图3,连接BD,∵正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,∴BD=√2AD=8,GE=√2AE=6,∵BD2=DE2+BE2,∴64=(6+BE)2+BE2,∴BE=√23﹣3.〖例3〗证明:(1)∵将线段AD绕点A逆时针旋转α,∴AD=AE,∠DAE=α,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴BD=CE;(2)AC=CD+CE,理由如下:∵AB=AC,∠BAC=60°∴△ABC是等边三角形,∴AC=BC,由(1)可知:BD=CE,∴BC=BD+CD=CE+CD,∴AC=CD+CE;(3)∠ACE=45°,BD2+CD2=2AD2,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△BAD≌△CAE∴∠ACE=∠ABC=45°,∴∠BCE=∠ACE+∠ACB=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2,∴BD2+CD2=2AD2.〖例4〗(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP=45°,又∵PD=PD,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,AP=CP,∵PC=PE,∴AP=PE,∴∠PAD=∠PED,∴∠PCD=∠PED;(2)证明:∵四边形ABCD是正方形,∴∠ADC=∠EDF=90°,由(1)知,∠PCD=∠PED,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠CFP﹣∠PCD=180°﹣∠EFD﹣∠PED,即∠CPF=∠EDF=90°,∵PC=PE,∴△CPE是等腰直角三角形,∴EC=√2CP,由(1)知,AP=CP,∴EC=√2AP;(3)解:AP=CE;理由如下:∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC,∠ABP=∠CBP =60°,∠BAD=∠BCD,∠EDC=∠DAB=60°,又∵PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PC=PE,∴PA=PE,∴∠DAP=∠AEP,∴∠DCP=∠AEP,∵∠CFP=∠EFD,∴180°﹣∠CFP﹣∠PCF=180°﹣∠EFD﹣∠AEP,即∠CPF=∠EDF=60°,∴△EPC是等边三角形,∴PC=EC,∴EC=AP,〖尝试练习〗4.解:(1)AE=CG,理由如下:∵四边形ABCD和四边形DEFG都是菱形,∴DA=DC,DE=DG,又∵∠ADE=∠CDG,∴△DAE≌△DCG(SAS),∴AE=CG;(2)成立,理由如下:∵∠ADC=∠EDG,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,即∠ADE=∠CDG,又∵DA=DC,DE=DG,∴△DAE≌△DCG(SAS),∴AE=CG;(3)AE ⊥CG ,理由如下:延长线段AE 、GC 交于点H ,∵AD ∥BC ,∴∠CEH =∠DAE , 由(2)可知,△DAE ≌△DCG ,∴∠DAE =∠DCG ,∴∠CEH =∠DCG ,∵四边形ABCD 是菱形,∠ADC =90°, ∴四边形ABCD 是正方形,∴∠BCD =90°,∴∠ECH +∠DCG =90°,∴∠ECH +∠CEH =90°,∴∠CHE =90°,∴AE ⊥CG . 5.(1)证明:由折叠的性质得:△ABC ≌△△ AEC ,∴∠ACB =∠ACE ,BC =EC ,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴EC =AD ,∠ACB =∠CAD ,∴∠ACE =∠CAD ,∴OA =OC ,∴OD =OE ,∴∠ODE =∠OED ,∵∠AOC =∠DOE ,∴∠CAD =∠ACE =∠OED =∠ODE ,∴AC ∥DE ;(2)解:∵平行四边形ABCD 中,∠B =90°,∴四边形ABCD 是矩形,∴∠CDO =90°,CD =AB =√3,AD =BC =√6,由(1)得:OA =OC ,设OA =OC =x ,则OD =√6﹣x ,在Rt △OCD 中,由勾股定理得:(√3)2+(√6﹣x )2=x 2,解得:x =3√64,∴OA =3√64,∴△OAC 的面积=12OA ×CD =12×3√64×√3=9√28;(3)解:分两种情况:①如图3,当∠EAD =90°时,延长EA 交BC 于G ,∵AD =BC ,BC =EC ,∴AD =EC , ∵AD ∥BC ,∠EAD =90°,∴∠EGC =90°, ∵∠B =30°,AB =2√3,∴∠AEC =30°, ∴GC =12EC =12BC ,∴G 是BC 的中点, 在Rt △ABG中,BG =√32AB =3,∴BC =2BG =6;②如图4,当∠AED =90°时∵AD =BC ,BC =EC ,∴AD =EC ,由折叠的性质得:AE =AB ,∴AE =CD ,又∵AC=AC ,∴△ACE ≌△CAD (SSS ), ∴∠ECA =∠DAC ,∴OA =OC ,∴OE =OD , ∴∠OED =∠ODE ,∴∠AED =∠CDE , ∵∠AED =90°,∴∠CDE =90°,∴AE ∥CD , 又∵AB ∥CD ,∴B ,A ,E 在同一直线上, ∴∠BAC =∠EAC =90°, ∵Rt △ABC 中,∠B =30°,AB =2√3, ∴AC =√33AB =2,BC =2AC =4;综上所述,当△AED 是直角三角形时,BC 的长为4或6.6.证明:(1)∵AF 平分∠BAD ,∴∠BAF =∠DAF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴CE =CF , 又∵四边形ECFG 是平行四边形, ∴四边形ECFG 为菱形;(2)△BDG 是等边三角形,理由如下:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,AD ∥BC ,∵∠ABC =120°,∴∠BCD =60°,∠BCF =120°,由(1)知,四边形CEGF 是菱形,∴CE =GE ,∠BCG =12∠BCF =60°, ∴CG =GE =CE ,∠DCG =120°,∵EG ∥DF , ∴∠BEG =120°=∠DCG ,∵AE 是∠BAD 的平分线,∴∠DAE =∠BAE ,∵AD ∥BC , ∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴BE =CD ,∴△BEG ≌△DCG (SAS ),∴BG =DG ,∠BGE =∠DGC ,∴∠BGD =∠CGE ,∵CG =GE =CE ,∴△CEG 是等边三角形, ∴∠CGE =60°,∴∠BGD =60°,∵BG =DG , ∴△BDG 是等边三角形;(3)如图2中,连接BM ,MC ,∵∠ABC =90°,四边形ABCD 是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD=√AB2+AD2=26,∴DM=√22BD=13√2.【自主反馈】7.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠B=∠ACB=60°,又∵BD=AE,∴△ABD≌△CAE(SAS),∴∠BAD=∠ACE,∵∠BAD+∠DAC=60°,∴∠DFC=∠ACE+∠DAC=60°;(2)①根据题意补全图形如图2所示:②线段BE与CQ的数量关系为:CQ=12BE;理由如下:∵CE绕着点C逆时针旋转120°,得到CP,∴CE=CP,∠ECP=120°,∵∠DFC=60°,∴AD∥CP,∴∠ADC=∠DCP,∵△ABD≌△CAE,∴CE=AD,∴AD=CP,∴△ADQ≌△PCQ(AAS),∴CQ=DQ=12CD,∵AB=BC,BD=AE,∴BE=CD,∴CQ=12BE.8.解:(1)∵△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS);(2)①∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,由旋转知,AC=AD,∠CAD=90°,∴AB=AD,∠BAD=∠BAC+∠CAD=150°,∴∠D=12(180°﹣∠BAD)=15°,∵AE是∠BAC的平分线,∴∠CAE=12∠BAC=30°,∴∠DAE=∠CAD+∠CAE=120°,∴∠AED=180°﹣∠D﹣∠DAE=45°;②BD=2CE+√2AE;证明:如图,∵△ABC是等边三角形,∴AB=AC,∵AE是∠BAC的角平分线,∴∠BAE=∠CAE,∵AE=AE,∴△BAE≌△CAE(SAS),∴BE=CE,过点A作AF⊥AE交DE于F,∴∠EAF=90°,由旋转知,∠CAD=90°,∴∠CAE=∠DAF,由①知,∠AED=45°,∴∠AFE=45°=∠AEF,∴AE=AF,∴EF=√2AE,∵AC=AD,∴△ACE≌△ADF(SAS),∴DF=CE,∴BD=BE+EF+DF=CE+√2AE+CE =2CE+√2AE.9.解:(1)∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=75°,∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)连接BF,∵点F是边AC中点,∴BF=AF=12AC,∵∠BAC=30°,∴BC=12AC,∴∠FBA=∠BAC=30°,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,CB =DE ,∠DEA =∠ABC =90°, ∴DE =BF ,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°, ∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形,∴DF =BE ; (3)∵点B 、C 的坐标分别是(0,0),(0,2), ∴BC =2,∵∠ABC =90°,∠BAC =30°, ∴AC =4,AB =2√3,若∠QMA =90°,CQ =MQ 时,如图3,设CQ =QM =x ,∠CAB =30°,∴AQ =2x ,AM =√3x , ∴AC =x +2x =3x =4,∴x =43,∴AM =43√3,∴BM =AB ﹣AM =2√3﹣4√33=2√33,∴点M (2√33,0);若∠AQM =90°,CQ =QM 时,如图4, 设CQ =QM =x ,∠CAB =30°, ∴AQ =√3x ,AM =2x , ∴AC =x +√3x =4,∴x =2√3﹣2,∴AM =4√3﹣4, ∴BM =2√3﹣(4√3﹣4)=4﹣2√3, ∴点M (4﹣2√3,0);综上所述:M (2√33,0)或(4﹣2√3,0).10.(1)解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴CD =12AB =5(2)①证明:由折叠的性质得:B 'D =BD ,B 'E =BE ,∠B 'DE =∠BDE ,∵DB '∥BC ,∴∠B 'DE =∠BED ,∴∠BDE =∠BED ,∴BD =BE ,∴B 'D =BE ,∴四边形BDB 'E 是平行四边形,又∵B 'D =BD ,∴四边形BDB 'E 为菱形;②解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,∴CD =12AB =BD , 由折叠的性质得:B 'D =BD ,∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∵∠ACB =90°,∴AC ⊥BC ,∵DB '∥BC ,∴DB '⊥AC ,∴∠ACB '=90°﹣∠DB 'C ,由①得:四边形BDB 'E 为菱形, ∴AB ∥B 'E ,∵CD ⊥AB ,∴CD ⊥B 'E , ∴∠EB 'C =90°﹣∠DCB ',∴∠ACB '=∠EB 'C , ∴FB '=FC ,即△B 'FC 为等腰三角形;(3)解:连接B 'C ,如图③所示:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴BC =√22AB =5√2,∠B =45°,CD =12AB =BD ,∠ACD =12∠ACB =45°,由折叠的性质得:B 'D =BD ,∠B '=∠B =45°, ∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∴∠FCB '=∠FB 'C ,∴CF =B 'F ,∴△CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =5√2; 11.解:(1)BH ⊥HE ,BH =HE ;理由如下: 延长EH 交AB 于M ,如图1所示: ∵四边形ABCD 和四边形CEFG 是正方形,∴AB ∥CD ∥EF ,AB =BC ,CE =FE ,∠ABC =90°,∴∠AMH =∠FEH ,∵H 是AF 的中点,∴AH =FH ,∴△AMH ≌△FEH (AAS ), ∴AM =FE =CE ,MH =EH ,∴BM =BE ,∵∠ABC=90°,∴BH⊥HE,BH=12ME=HE;(2)结论仍然成立.BH⊥HE,BH=HE.理由如下:延长EH交BA的延长线于点M,如图2所示:∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ABE=∠BEF=90°,AB=BC,AB∥CD∥EF,CE=FE,∴∠HAM=∠HFE,∴△AHM≌△FHE(ASA),∴HM=HE,AM=EF=CE,∴BM=BE,∵∠ABE=90°,∴BH⊥EH,BH=12EM=EH;(3)延长EH到M,使得MH=EH,连接AH、BH,如图3所示:同(2)得:△AMH≌△FEH(SAS),∴AM=FE=CE,∠MAH=∠EFH,∴AM∥BF,∴∠BAM+∠ABE=180°,∴∠BAM+∠CBE=90°,∵∠BCE+∠CBE=90°∴∠BAM=∠BCE,∴△ABM≌△CBE(SAS),∴BM=BE,∠ABM=∠CBE,∴∠MBE=∠ABC=90°,∵MH=EH,∴BH⊥EH,BH=12EM=MH =EH,在Rt△CBE中,BE=√CB2−CE2=12,∵BH=EH,BH⊥EH,∴BH=√22BE=6√2.12.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=94.∴GC=94;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.13.解:(1)∵AE=CE,DE=EF,∠AED=∠CEF,∴△AED≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC,(2)证明:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°,即∠ABE+∠CBE=90°∵△BEH是等腰直角三角形,∴EH=2BE=2BH,∠BEH=∠BHE=45°,∠EBH=90°,即∠CBH+∠CBE=90°∴∠ABE=∠CBH,∴△ABE≌△CBH(SAS),∴AE=CH,∠AEB=∠CHB,∴∠CHE=∠CHB﹣∠BHE=∠CHB﹣45°=∠AEB﹣45°,∵四边形AEFG是正方形,∴AE=EF,∠AEF=90°,∴EF=HC,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=225°﹣∠AEB,∴∠CHE+∠FEH=∠AEB﹣45°+225°﹣∠AEB=180°,∴EF∥HC且EF=HC,∴四边形EFCH是平行四边形,∴CF=EH=√2BE;(3)CF=√3BE,如图,过点B作BH,使∠EBH=120°,且BH=BE,连接EH、CH,则∠BHE=∠BEH=30°,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH,∵AB=BC,BE=BH,∴△AEB≌△CHB(SAS),∴CH=AE=EF,∠CHB=∠AEB,∵∠CHE=∠CHB﹣∠BHE=∠AEB﹣30°,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=210°﹣∠AEB,∴∠CHE+∠FEH=180°,∴CH∥EF且CH=EF,∴四边形EFCH是平行四边形,∴CF=EH,过B作BN⊥EH于N,在△EBH中,∠EBH=120°,BH=BE,∴∠BEN=30°,EH=2EN,BE,∴EN=√32∴EH=√3BE,∴CF=EH=√3BE.。
中考数学专题复习《类比探究题》
典例解析:(2015' 河南)
如图1,在RtΔABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的
中点,连接DE.将ΔDEC绕点C按顺时针方向旋转,记旋转角为ɑ.
(1)问题发现 AE
①当ɑ=0°时,BD
;
②当
ɑ=180°时,
AE BD
.
(2)拓展探究
AE
试判断:当0°≤ ɑ <360°时,BD 的大小有无变化?请仅就图2的情形
给出证明.
(3)问题解决
当ΔDEC旋转至A、D、E三点共线时,直接写出线段BD的长.
A E
A
E
D
B 图1 D
CB
图2
C
A
A B
B
C
E
D
D
E
C
解决类比探究问题的一般方法:
1.根据题干条件,结合分支条件,先解决第 一问; 2.用解决第一问的方法类比解决第二问,如 果不能,两问结合起来分析,找出不能类比 的原因和不变特征,依据不变的特征,探索 新的方法; 3.如果有第三问,要充分利用第二问的结论 以及前两问的方法类比解决第三问.
证ΔAFG≌
,故EF,BE,DF之间的数量关系
为
.
B
A
E
CF
DG
图1
(2)类比引申:如图2,点E,F分别在正
方形ABCD的边CB,DC的延长线上, ∠EAF=45°,连接EF,试猜想EF,BE,DF 之间的数量关系,并给出证明.
E
B
A
F
C
GD
图2
(3)联想拓展:如图3,在∆ABC中,
∠BAC=90°,AB=AC,点D,E均在边BC
中考数学类比探究(一)(讲义及答案)
B
A
A
E
D
CB 图1
CA
D
图2
BE C 图3
3
3. (1)问题发现 如图 1,△ABC 和△CDE 均为等边三角形,直线 AD 和直线 BE 交于点 F. 填空:①∠AFB 的度数是________; ②线段 AD,BE 之间的数量关系为__________. (2)类比探究 如图 2,△ABC 和△CDE 均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线 AD 和直线 BE 交于点 F.请判断∠AFB 的度数及线段 AD,BE 之间的数量关系,并说明理由. (3)解决问题 如图 3,在平面直角坐标系中,点 A 坐标为(4,0),点 B 为 y 轴上任意一点,连接 AB,将 BA 绕点 B 逆时针 旋转 90°至 BC,连接 OC,请直接写出 OC 的最小值.
G M
A
F C
N
D (E)
B
A
图1
G
C M
N
D (E)
B
图2
F
G
C
F
N
M
A
ED
B
图3
4
5. (1)观察猜想 如图 1,点 B,A,C 在同一条直线上,DB⊥BC,EC⊥BC 且∠DAE=90°,AD=AE,则 BC,BD,CE 之间 的数量关系为_______________;
D E
B
A
C
图1
(2)问题解决 如图 2,在 Rt△ABC 中,∠ABC=90°,CB=4,AB=2,以 AC 为直角边向外作等腰 Rt△DAC,连接 BD,求 BD 的长;
类比探究(一)(讲义)
知识点睛
1. 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决 思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.
中考数学专题之类比探究实战演练(含答案)
三、解答题22. (10分)问题背景:如图1,在四边形ADBC 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,并且△CDE 是等腰直角三角形,所以CECD ,从而得出结论:AC +BCCD .图1图2 简单应用:(1)在图1中,若AC ,BC =CD =__________.(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长.拓展延伸:(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长(用含m ,n 的代数式表示).图4图5(4)如图5,∠ACB =90°,AC =BC ,点P 为AB 的中点,若点E 满足AE = 13AC ,CE =CA ,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是_____. DC BADCBBAE DCBA三、解答题22. (10分)如图1,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D ,E 分别在AC ,BC 边上,DC =EC ,连接DE ,AE ,BD ,点M ,N ,P 分别是AE ,BD ,AB 的中点,连接PM ,PN ,MN . (1)BE 与MN 的数量关系是___________;(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6,CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B ,E ,D 三点在一条直线上时,请直接写出MN 的长.中考数学类比探究实战演练(三)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若AB =13,CE =5,请画出图形,并直接写出MF 的长.图1PNM EDCBA图2PNME D CBA备用图E DCBA中考数学类比探究实战演练(四)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,连接EF.(1)探究发现:如图1,若n=1,点E在线段AC上,则tan∠EFD=____.(2)数学思考:①如图2,若点E在线段AC上,则tan∠EFD=_______(用含n的代数式表示).②当点E在直线AC上运动时,①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.从“点E是线段AC延长线上的任意一点”或“点E是线段AC反向延长线上的任意一点”中,任选一种情况,在图3中画出图形,给予相应的证明或理由.(3)拓展应用:若ACBC=DF=CE的长.图1ABCDE FGM图2MGF EDCBA图1E DCBA图2E DA图3DCBAABCD备用图【参考答案】中考数学类比探究实战演练(一)22.(1)3;(2)CD的长为2;(3)CD的长为)2n m-;(4AC=AC=.中考数学类比探究实战演练(二)22.(1)BE MN;(2)成立,理由略;(3)MN11.中考数学类比探究实战演练(三)23.(1)DM=EM,DM⊥EM;(2)(1)中的结论仍成立,证明略;(3)MF,图形略.中考数学类比探究实战演练(四)22.(1)1;(2)①1n;②成立,证明略;(3)CE或中考数学类比探究实战演练(五)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在菱形ABCD中,∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图1,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA 三条线段之间的数量关系;(2)如图2,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=CF=1时,请直接写出BE的长.图1F ENM (O )D C B A图2FENMO DC BA备用图DCBA【参考答案】22.(1)CA=CE+CF;(2)CF-CE=43AC,理由略;(3)BE的长为3,5或1.中考数学类比探究实战演练(六)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M,点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM 交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时.①求证:△BCM≌△ACN;②求∠BDE的度数.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是__________(用含α的代数式表示);(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长.B C DAEM N GBA GC备用图1备用图2AB CG中考数学类比探究实战演练(七)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知在Rt △ABC 中,∠BAC =90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连接AB′,BB′,延长CD 交BB′于点E ,设∠ABC =2α(0°<α<45°). (1)如图1,若AB =AC ,求证:CD =2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连接EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12SS (用含α的式子表示).中考数学类比探究实战演练(八)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题图1ABCDEB′图22αABCD E B′B′E D CB A2α图3OF22. (10分)在Rt △ABC 中,∠ACB =90°,AB,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C (点A ,B 的对应点分别为A′,B′),射线CA′,CB′分别交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数.(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长.(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形P A′B′Q 的面积是否存在最小值.若存在,求出四边形P A′B′Q 的最小面积;若不存在,请说明理由.图1QmB′A′ (P )BC AM图2A′AC B P B′mQ备用图AC Bm中考数学类比探究实战演练(九)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)问题背景:如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D为BC 的中点,∠BAD =21∠BAC =60°,于是2BC BDAB AB==迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD . ①求证:△ADB ≌△AEC ;②请直接写出线段AD ,BD ,CD 之间的等量关系式.拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①求证:△CEF 是等边三角形; ②若AE =5,CE =2,求BF 的长.图1图2图3D B AEDBA FEMDCBA中考数学类比探究实战演练(十)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF =∠CEF =45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG (如图1). 求证:△AEG ≌△AEF .(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N (如图2). 求证:EF 2=ME 2+NF 2.(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.中考数学类比探究实战演练(十一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日图1G FE D CB A N图2M FE D CB A 图3FED CBA三、解答题22. (10分)【操作发现】(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =30°,连接AF ,EF . ①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由. 【类比探究】(2)如图2,△ABC 为等腰直角三角形,∠ACB =90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于45°).旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =45°,连接AF ,EF .请直接写出探究结果:①∠EAF 的度数;②线段AE ,ED ,DB 之间的数量关系.图1图2中考数学类比探究实战演练(十二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD =120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段AB ,AD 于点E ,F (不包FDE CBAABCEF D括线段的端点). (1)初步尝试如图1,若AD =AB ,求证:①△BCE ≌△ACF ;②AE +AF =AC . (2)类比发现如图2,若AD =2AB ,过点C 作CH ⊥AD 于点H ,求证:AE =2FH . (3)深入探究如图3,若AD =3AB ,探究得:3AE AFAC的值为常数t ,则t =_______.图1 图2 图3F EDC B A HF EDBAF EDCB A三、解答题22. (10分)小华遇到这样一个问题:在菱形ABCD 中,∠ABC =60°,边长为4,在菱形ABCD 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC 绕点C 顺时针旋转60°,恰好旋转至△DEC ,连接PE ,BD ,则BD 的长即为所求.(1)请你写出在图1中,PA +PB +PC 的最小值为________. (2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC 中,∠ACB =30°,BC =6,AC =5,在△ABC 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.②如图3,在正方形ABCD 中,AB =5,P 为对角线BD 上任意一点,连接PA ,PC ,请直接写出PA +PB +PC 的最小值(保留作图痕迹).图1PADBECB CPA图2P图3DCBA三、解答题22.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)如图1,若点D与点C重合,AB=AC,探究线段BE与FD的数量关系.(2)如图2,若点D与点C不重合,AB=AC,探究线段BE与FD的数量关系,并加以证明.(3)如图3,若点D与点C不重合,AB=kAC,求BEFD的值(用含k的式子表示).图1图2图3CB(D)AFECB DAFECB DAFE三、解答题22. (10分)问题背景:已知∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与A ,B 重合),DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N ,记△ADM 的面积为S 1,△BND 的面积为S 2.(1)初步尝试:如图1,当△ABC 是等边三角形,AB =6,∠EDF =∠A ,且DE ∥BC ,AD =2时,则S 1·S 2=_____________.(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使AD =4,再将∠EDF 绕点D 旋转至如图2所示位置,求S 1·S 2的值.(3)拓展延伸:当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图3,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1·S 2的表达式(结果用a ,b 和α的三角函数表示);②如图4,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1·S 2的表达式,不必写出解答过程.图1 图2 图3图4中考数学类比探究实战演练(十六)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日F三、解答题22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.图1 图2 图3中考数学阅读理解问题实战演练(一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”. (1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形,请说明理由.mnAF CB EmnA F E CBB CEF A nm(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A′BC ,连接AA′交直线BC 于点D .若点B 是 △AA′C 的重心,求BCAC的值. (3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C ,A′C 所在直线交l 2于点D ,求CD 的值.中考数学阅读理解问题实战演练(二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题 22. (10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”. 理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中,∠ABC =80°,∠ADC =140°,对角线BD 平分∠ABC .求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG = 30°,连接EG ,若△EFG的面积为FH 的长.图1ABC图2DA′AB C图3l 2l 1A′D B′ABC【参考答案】中考数学类比探究实战演练(六)22.(1)①证明略;②∠BDE的度数为90°;(2)α或(180°-α);(3)CF中考数学类比探究实战演练(七)22.(1)证明略;(2)CD=2BE·tan2α;(3)12sin(45)S Sα=︒-.中考数学类比探究实战演练(八)22.(1)∠ACA′的度数为60°;(2)线段PQ的长为72;(3)四边形P A′B′Q的最小面积为3.中考数学类比探究实战演练(九)22.(1+BD=CD;(2)①证明略;②BF的长为图1ABC图2AB CD图3EF GH中考数学类比探究实战演练(十)22. (1)证明略;(2)证明略;(3)EF 2=2(BE 2+DF 2).中考数学类比探究实战演练(十一)22. (1)①∠EAF =120°;②DE 与EF 相等,理由略;(2)①∠EAF =90°;②DB 2+AE 2=ED 2.中考数学类比探究实战演练(十二)22. (1)证明略;(2)证明略;(3.中考数学类比探究实战演练(十三)22. (1)(2)①PA +PB +PC ;②PA +PB +PC (. 中考数学类比探究实战演练(十四)22. (1)12BE FD =; (2)12BE FD =,证明略;(3)2BE k FD =.中考数学类比探究实战演练(十五)22. (1)12;(2)S 1·S 2的值为12;(3)①22121()sin 4S S ab α⋅=;②22121()sin 4S S ab α⋅=.中考数学类比探究实战演练(十六)22. (1)EF =EB ,证明略; (2)不成立,1EF EB k=;(3)EF =EB ,证明略.中考数学阅读理解问题实战演练(一)22. (1)△ABC 是“等高底”三角形,理由略;(2)2AC BC =;(3)CD的值为3,2.中考数学阅读理解问题实战演练(二)22.(1)图略;(2)证明略;(3)FH的值为.21。
2020年九年级数学备战中考,类比探究专练(带图解答案)
类比探究专练训练1、(2020年辉县,一摸)问题发现:如图,在正方形ABCD中,点E 是BC上的动点,点F是CD上的动点,∠EAF=45°,则线段BE,EF,DF 之间的数量关系是()(截长补短)延长CB到G,使得BG=DF,再证全等(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,点E是1∠BAD,则线段BE,EF,DF BC上的动点,点F是CD上的动点,∠EAF=2之间有什么数量关系?并说明理由(3)①如第二个图,点E在CB的延长线上,F是直线CD上的动点,(2)中的其他条件不变,请直接写出线段BE,EF,DF之间的数量关系是()②如下图,若∠B+∠D≠180°(2)中的其他条件不变,请直接写出线段BE,EF,DF之间的数量关系是()旋转结构1、在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE=α,点E在△ABC的内部,连接EC,EB,EA,BD,并且∠ACE+∠ABE=90°观察猜想:(1)如图,当α=60°时,线段BD和CE的数量关系为(),线段EA,EB,EC的数量关系为()(2)如图,当α=90°时,(1)中的结论是否成立?若成立,给出证明,若不成立,请说明理由(3)在(2)的条件下,当点E在线段CD上时,若BC=52,请直接写出△BDE 的面积222102522121=∴=∴=→===∴===∴BD m AB BC AD EC DE DE BD AE AD EC BD AEC ADB ΘΘΘ又∽△△/2(2019年郑州一中三模)等腰直角三角形ABC 中,AC=BC=24,E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED , (1)观察猜想:如图,过点D 作DF ⊥AE 于点F ,交AB 于点G ,线段CD 与BG 的关系为( )延长CD交AB于点H,CD⊥BG,且CD=BG(2)如图,将△CDE绕点C顺时针旋转到如图所示位置,过点D作DF⊥AE于点F,过点B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由过点C作GH⊥CE,交ED的延长线于点H,△BCH和△ACE属于旋转全等,易证BH⊥AE,∵DF⊥AE,∴BH∥DF,∵BG∥HE,∴BHDG是平行四边形,∴CD⊥BG,且CD=BG(3)拓展延伸:如图所示,点E,D,G共线时,直接写出DG的长度3、(2019年周口二模)在△ABC中,∠ABC是锐角,点M在射线AB上运动,连接CM,将线段CM绕点C逆时针旋转90°,得到CN,连接MN.(1)问题初现:若BC=A C,∠ABC=90°,当M在线段AB上时(不与点A重合),如图1所示,请你直接写出线段BN和AM的位置关系是________,数量关系是__________;(2)深入探究:当M在线段AB的延长线上时,如图2所示,请你判断(1)中结论是否成立,并证明你的判断;(3)类比拓展:如图,∠ACB≠90°,点M在线段AB上运动且不与点A重合,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=24,当BM=()时,BP的最大值为()/4、在△ABC中,若AB=AC,∠BAC=90°,D为直线BC上一动点(不与点B,C重合),以AD为腰作等腰直角三角形DAE,使∠DAE=90°,连接CE(1)观察猜想:如图1所示,当D在线段B C上时,BC和CE 的位置关系是(),CE,DC,BC之间的数量关系为()EDCBA(2)数学思考:当D 在线段CB 的延长线上时,请你判断(1)中结论是否成立,并证明你的判断;(3)拓展延伸:当点D 在线段BC 的延长线上时,将△DAF 沿线段DE 翻折,使得点A 与点E 重合,连接CE,CF,若4CD=BC ,AC=22,请直接写出线段CF 的长CF235、在菱形ABCD中,∠ABC=60°,点P在射线BD上,以AP为边向右侧作等边△APF,点F的位置随着点P的位置变化而变化(1)当点F在菱形ABCD内部或边上时,连接CF,BP与CF的数量关系是()CF与AD的位置关系是()当点F在菱形ABCD外部时,(1)中的结论是否还成立?若成立请证明;若不成立,请说明理由(3)当点P 在线段BD 的延长线上时,连接BF ,若AB=32,BF=192,求四边形ADPF 的面积6、如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为射线BC 上任意一点,将线段AD绕点A逆时针旋转90°得到线段AE,连接CE(1)如图,当点D在BC边上(不与点B,C重合)时,请直接写出∠BCE的度数(2) 如图,当点D 在BC 的延长线上时,(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由(3)如图,在(2)的条件下,连接ED 并延长,交AC 的延长线于点F,若AC=4,AD=6,请直接写出线段CF 的长594661353135324541=∴=∴==∴︒=∠+∠︒=∠+∠︒=∠=∠FC FA DC FDAC DA DA FA DACFAD F ∽△△,7、(2015年河南中考卷22题)如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当︒=0α时,_____________=BD AE; ②当︒=180α时,__________AEBD=. BCA图1D E2545252,4548,4==∴====∴=∴==BD AE EC AE DC BD AC BC AB251256125652,54==∴==∴==BD AE BD AE CE AC(2)拓展探究试判断:当0°≤α<360°时,DBAE的大小有无变化?请仅就图2的情况给出证明.EDAC图225854212154,8,4524,2===∴∴⎪⎪⎩⎪⎪⎨⎧=∠=∠=====∴==BC AC BD AE BCD ACE CA CE BCD ACE BC CD AC BC AB CE DC DE ∽△△Θ(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.备用图AC541181,41815421,41==∴∴∴====∴=====AC BD ABCD BC AD CD AB AD AC E D CD AB 是矩形由勾股定理算出/8、(2019年南阳模拟)(1)在等腰直角三角形ABC 和等腰直角三角形CFE 中,∠BAC=∠EFC=90°,当点E,A 重合时,BE,AF 的数量关系是( )(2)将△CEF 绕点C 旋转,连接BE,AF ,线段BE 和AF 的数量关系有无变化?仅就下图给出证明22121==∴∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=∠=∠=ACBCAF BE ACF BCE CFCE ACF BCE BC AC ∽△△ (3)当AB=AC=2,△CEF 旋转到B,E,F 三点共线时,直角写出线段AF 的长⎪⎩⎪⎨⎧+=-=∴=⎪⎩⎪⎨⎧+=-==∴===∴131322626622222121AF AF AF BE BE BE BF BC EF CF ACF BCE 相似比是∽△△Θ最小时,底当且仅当PQ mm m m S S s ABCPQC A PQB 33213311=-⨯⎪⎭⎫ ⎝⎛+⨯=-= ()m m m m b a abb a 32302222•≥+∴≥-≥+Θ9、(2019年焦作一模)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,BE ,点P 为DC 的中点.(1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.PEDA BC 图1()BE AP BE CD AP ⊥==,21211()BE AP BE AP ⊥=,212倍长中线法:延长AP 到F ,使得PF=AP 易证AD=CF=AEACF BAE AC AB ACF BAE CF AE ςς≌∴⎪⎩⎪⎨⎧=∠=∠= ()410410213+≤≤-=BE BEAP/10、(2019年镇平三模)如图,已知直角三角形ABC ,∠ACB=90°,∠BAC=30°,点D 是AC 边上一点,过点D 作DE ⊥AB 于点E ,连接BD ,点F 是BD 的中点,连接EF,CF(1)发现问题:线段EF,CF 之间的数量关系为( );∠EFC 的度数为( ) (2)拓展与探究:若将△AED 绕点A 按顺时针方向旋转α角(0°<α<30°)如图所示,(1)中的结论还成立吗?请说明理由取AB,AD 的中点M,N ,易证ANFM 是平行四边形 ∴MF=AN=NE=ND NF=AM=MB=MC∠BMF=∠MAN=∠FND∴∠ENF=60°-∠FND=∠FMC=60°-∠BMFFCEF ENF FMC NFMC ENF FMC NE MF =∴∴⎪⎩⎪⎨⎧=∠=∠=ςς≌ ()()︒=∠+∠+∠+∠=∠+∠+∠+∠=∠+∠+∠=∠+∠+∠=∠120FBC ABD FCB MCF FCB FBC ABD MCF DFCABD MCF DFC NFD EFN EFC (3)拓展与运用:如图所示,将△AED 绕点A 旋转的过程中,当点D 落在AB 边上时,AB 边上另有一个点G ,AD=DG=GB,BC=3,连接EG ,请直接写出EG 的长度()735.05.222=+=EG11、(2019年新乡模拟)在等腰直角三角形ABC 和等腰直角三角形ADE 中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC 固定,△ADE 绕点A 做旋转,点F,M,N 分别为线段BE,BC,CD 的中点,连接MN,NF(1)问题提出:如图,当AD 在线段AC 上,∠MNF 的度数为( )线段MN 和NF 的数量关系为( )辅助线作法:连接CE,BD,并延长BD交CE于点G易证△BAD≌△CAE,得到BD=CE,BD⊥CE由中位线定理知:MN和MF相等且垂直,∴∠MNF=45°(2)深入讨论:如图,当AD不在线段AC上时,请求出∠MNF的度数,线段MN和NF的数量关系辅助线作法:连接CE,BD,易证△BAD≌△CAE,得到BD=CE,BD⊥CE由中位线定理知:MN和MF相等且垂直,∴∠MNF=45°(3)拓展延伸:如图,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为()以点A为圆心AD长为半径作圆,当PB与圆相切时,点P到BC的距离最小,△BCP的面积最小△ABD≌△ACE可证出ADPE为正方形12、(2019年宛城一模)已知在△ABC中,CA=CB,0°<∠ACB≤90°。
专题13几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)
专题13几何类比探究题型题型解读|模型构建|通关试练几何的类比探究题型是近年中招解答题的必考题型,该题型往往以压轴题的形式出现,有一定的难度。
探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。
由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.模型01图形旋转模型模型一、A字形(手拉手)及其旋转D模型二、K字型及其旋转CC手拉手模型是有两个等腰的三角形或者两个等边的三角形,他们有一个共同的顶点,且两个等腰三角形的顶角是相等的,那么就可以用角的和差求得共顶点的另外两个角相等等,然后利用等腰的边对应相等,可证明两个三角形全等(边角边)组成这样的图形模样的我们就说他是手拉手模型。
在类比探究题型中,往往会对等腰三角形或者等边三角形进行演变,变成一般三角形进行旋转,通常全等三角形变为相似三角形。
模型特征:双等腰;共顶点;顶点相等;绕着顶点作旋转解题依据:等腰共顶手拉手,旋转全等马上有;左手拉左手,右手拉右手,两根拉线抖一抖,它们相等不用愁;拉线夹角与顶角,相等互补答案有。
模型02图形平移模型探究1.四边形平移变换四边形的平移变换题型中主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平移几何性质、三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形全等或相似的判定方法,画出相应的图形,注意分类讨论.2.三角形平移变换三角形平移变换主要利用三角形全等和三角形相似的判定和性质,勾股定理,矩形的判定和性质,平移性质、平行线的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.3.其它图形平移类比探究问题综合考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.模型03动点引起的题型探究动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目。
中考数学专题训练:类比探究类问题解析版
类比探究类问题解析版1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连结EM并延长交线段CD的延长线于点F.(1) 如图1,求证:AE=DF;(2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;2,过点M作 MG⊥EF交线段BC的延长线于点G.(3) 如图3,若AB=3①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。
∵AM=DM,∴△AEM≌△DFM(ASA)。
∴AE=DF。
(2)△GEF是等腰直角三角形。
理由如下:过点G作GH⊥AD于H,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。
∴GH=AB=2。
∵MG⊥EF,∴∠GME=90°。
∴∠AME+∠GMH=90°。
∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。
又∵AD=4,M是AD的中点,∴AM=2。
∴AN=HG。
∴△AEM≌△HMG(AAS)。
∴ME=MG。
∴∠EGM=45°。
由(1)得△AEM≌△DFM,∴ME=MF。
又∵MG⊥EF,∴GE=GF。
∴∠EGF=2∠EGM =90°。
∴△GEF是等腰直角三角形。
(3)①233<AE≤23。
②△GEF是等边三角形。
理由如下:过点G作GH⊥AD交AD延长线于点H,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。
∴GH=AB=23。
∵MG⊥EF,∴∠GME=90°。
∴∠AME+∠GMH=90°。
∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。
又∵∠A=∠GHM=90°,∴△AEM∽△HMG。
∴MG GH EM AM=。
在Rt△GME中,∴tan∠MEG=MG GH233EM AM2===。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比探究类问题解析版1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连结EM并延长交线段CD的延长线于点F.(1) 如图1,求证:AE=DF;(2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;2,过点M作 MG⊥EF交线段BC的延长线于点G.(3) 如图3,若AB=3① 直接写出线段AE长度的取值范围;② 判断△GEF的形状,并说明理由.【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。
∵AM=DM,∴△AEM≌△DFM(ASA)。
∴AE=DF。
(2)△GEF是等腰直角三角形。
理由如下:过点G作GH⊥AD于H,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。
∴GH=AB=2。
∵MG⊥EF,∴∠GME=90°。
∴∠AME+∠GMH=90°。
∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。
又∵AD=4,M是AD的中点,∴AM=2。
∴AN=HG。
∴△AEM≌△HMG(AAS)。
∴ME=MG。
∴∠EGM=45°。
由(1)得△AEM≌△DFM,∴ME=MF。
又∵MG⊥EF,∴GE=GF。
∴∠EGF=2∠EGM =90°。
∴△GEF是等腰直角三角形。
(3)①233<AE≤23。
②△GEF是等边三角形。
理由如下:过点G作GH⊥AD交AD延长线于点H,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。
∴GH=AB=23。
∵MG⊥EF,∴∠GME=90°。
∴∠AME+∠GMH=90°。
∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。
又∵∠A=∠GHM=90°,∴△AEM∽△HMG。
∴MG GH EM AM=。
在Rt△GME中,∴tan∠MEG=MG GH233EM AM2===。
∴∠MEG=600。
由(1)得△AEM≌△DFM.∴ME=MF。
又∵MG⊥EF,∴GE=GF。
∴△GEF是等边三角形。
2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS)。
∴CE=CF。
(2)证明:如图,延长AD至F,使DF=BE.连接CF。
由(1)知△CBE≌△CDF,∴∠BCE =∠DCF 。
∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠ECF =∠BCD =90°。
又∠GCE =45°,∴∠GCF =∠GCE =45°。
∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG (SAS )。
∴GE =GF ,∴GE =DF +GD =BE +GD 。
(3)如图,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°。
又∠CGA =90°,AB =BC ,∴四边形ABCD 为正方形。
∴AG =BC 。
已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG 。
∴10=4+DG,即DG=6。
设AB =x ,则AE =x -4,AD =x -6,在R t△AED 中,∵DE 2=AD 2+AE 2,即102=(x -6)2+(x -4)2。
解这个方程,得:x=12或x=-2(舍去)。
∴AB=12。
∴ABCD 11S AD BC AB 6121210822=+⋅=⋅+⋅=梯形()()。
∴梯形ABCD 的面积为108。
3、在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B ),∠BPE=12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G .(1) 当点P 与点C 重合时(如图①).求证:△BOG≌△PO E ;(4分)(2)通过观察、测量、猜想:BF PE= ▲ ,并结合图②证明你的猜想;(5分) (3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BF PE的值.(用含α的式子表示)(5分)【答案】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP ,∠BOC=∠BOG=90°。
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO。
∴∠GBO=∠EPO 。
∴△BOG≌△POE(AAS)。
(2)BF1PE2=。
证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB。
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB。
∴NB=NP。
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE。
∴△BMN≌△PEN(ASA)。
∴BM=PE。
∵∠BPE=12∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF。
∵PF⊥BM,∴∠BFP=∠MFP=900。
又∵PF=PF,∴△BPF≌△MPF(ASA)。
∴BF=MF ,即BF=12 BM。
∴BF=12PE,即BF1PE2=。
(3)如图,过P作PM//AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900。
由(2)同理可得BF=12BM,∠MBN=∠EPN。
∵∠BNM=∠PNE=900,∴△BMN∽△PEN。
∴BM BN PE PN=。
在Rt△BNP中,BNtan=PNα,∴BM=tanPEα,即2BF=tanPEα。
∴BF1=tanPE2α。
4、如图1,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=_____(用含α的代数式表示);(2)当AB=AD时,猜想线段ED、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图2),求EBEF的值(用含m、n的代数式表示)。
【答案】解:(1)180°-2α。
(2)EB=EF。
证明如下:连接BD交EF于点O,连接BF。
∵AD∥BC,∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α。
∵AB=AD,∴∠ADB=12(180°-∠A)=α。
∴∠BDC=∠ADC-∠ADB=180°-2α。
由(1)得:∠BEF=180°-2α=∠BDC。
又∵∠EOB=∠DOF,∴△EOB∽△DOF。
∴OE OB=OD OF,即OE OD=OB OF。
∵∠EOD=∠B OF,∴△EOD∽△BOF。
∴∠EFB=∠EDO=α。
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB。
∴EB=EF。
(3)延长AB至G,使AG=AE,连接BE,GE,则∠G=∠AEG=()1801802180A==22αα︒-︒-︒-∠。
∵AD∥BC,∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC。
∴∠EDF=∠G。
∵∠BEF=∠A,∴∠BEF=∠GBC。
∴∠GBC+∠EBC=∠DEB+∠BEF,即∠EBG=∠FED。
∴△DEF∽△GBE。
∴EB BG=EF DE。
∵AB=mDE,AD=nDE,∴AG=AE=(n+1)DE。
∴BG=AG-AB=(n+1)DE-mDE=(n+1-m)DE。
∴EB n1m DE==n1m EF DE+-+-()。
5、探索发现:已知:在梯形ABCD中,CD∥AB,AD、BC的延长线相交于点E,AC、BD相交于点O,连接EO并延长交AB于点M,交CD于点N。
(1)如图①,如果AD=BC,求证:直线EM是线段AB的垂直平分线;(2)如图②,如果AD≠BC,那么线段AM与BM是否相等?请说明理由。
学以致用:仅用直尺(没有刻度),试作出图③中的矩形ABCD的一条对称轴。
(写出作图步骤,保留作图痕迹)【答案】解:(1)证明:∵AD=BC,CD∥AB,∴AC=BD,∠DAB=∠CBA。
∴AE=BE。
∴点E在线段AB的垂直平分线上。
在△ABD和△BAC中,∵AB=BA,AD=BC,AC=BD,∴△ABD≌△BAC(SSS)。
∴∠DBA=∠CAB。
∴OA=OB。
∴点O在线段AB的垂直平分线上。
∴直线EM是线段AB的垂直平分线。
(2)相等。
理由如下:∵CD∥AB,∴△EDN∽△EAM,△ENC∽△EMB,△EDC∽△EAB。
∴DN DE CN CE DE CEAM AE BM BE AE BE===,,。
∴DN CNAM BM=。
∴BM CNAM DN=。
∵CD∥AB,∴△OND∽△OMB,△ONC∽△OMA,△OCD∽△OAB。
∴DN OD CN OC OD OCBM OB AM OA OB OA===,,。
∴DN CNBM AM=。
∴AM CNBM DN=。
∴BM AMAM BM=。
∴AM2=BM2。
∴AM=BM。
(3)作图如下:作法:① 连接AC,BD,两线相交于点O1;② 在梯形ABCD外DC上方任取一点E,连接EA,EB,分别交DC 于点G,H;③ 连接BG,AH,两线相交于点O2;④ 作直线EO2,交AB于点M;⑤ 作直线MO1。
则直线MO1。
就是矩形ABCD的一条对称轴。