概率(第一课时)(优质课教案)
高中数学第五章概率教案
高中数学第五章概率教案教学目标:1. 了解概率的基本概念和定义,掌握概率计算的方法。
2. 能够在实际问题中运用概率知识解决问题。
3. 能够通过实验来验证概率的计算结果。
教学内容:1. 概率的基本概念和定义2. 概率计算的方法3. 事件的互斥与独立4. 事件的排列组合5. 概率的实际应用教学重点:1. 概率的基本概念和定义2. 概率计算的方法教学难点:1. 事件的互斥与独立2. 事件的排列组合教学准备:1. 教学课件2. 教学实验器材3. 习题集教学步骤:一、引入概率的概念(10分钟)通过一个简单的实例引导学生了解概率的概念,并引出概率的定义。
二、概率的计算方法(20分钟)1. 讲解概率计算的基本方法2. 给学生演示概率计算的步骤3. 练习相关计算题目三、事件的互斥与独立(15分钟)1. 解释事件互斥和独立的概念2. 给学生举例说明互斥和独立事件的计算方法四、事件的排列组合(20分钟)1. 介绍排列组合的概念2. 解释有放回、无放回抽样的排列组合计算方法五、概率的实际应用(15分钟)通过实际问题的练习,让学生运用概率知识解决问题,加深对概率的理解。
六、总结与展望(10分钟)对概率的学习进行总结,展望下一节课内容。
教学评估:1. 教师课堂表现评价2. 学生练习题表现评价3. 学生实验结果报告评价拓展延伸:1. 给学生布置概率实验项目,让学生通过实验来验证概率的计算结果。
2. 鼓励学生参加数学建模比赛,应用概率知识解决实际问题。
高中数学概率课时分配教案
高中数学概率课时分配教案第一课时:概率的基本概念
1. 介绍概率的概念和定义
2. 讨论随机事件、样本空间和事件的关系
3. 解释概率的常见表示方法
第二课时:概率的计算方法
1. 简单事件和复合事件的概念
2. 计算概率的基本规则和公式
3. 通过例题演示如何计算概率
第三课时:排列与组合的概率
1. 讲解排列和组合的定义和性质
2. 讨论排列和组合在概率问题中的应用
3. 练习排列和组合的计算方法
第四课时:条件概率与事件的独立性
1. 讲解条件概率的概念和计算方法
2. 探讨事件的独立性和相互关系
3. 解答相关例题,加深学生对条件概率和独立性的理解
第五课时:贝叶斯定理
1. 简要介绍贝叶斯定理的概念和应用场景
2. 讲解贝叶斯定理的推导和计算方法
3. 通过实例演示贝叶斯定理在实际问题中的应用
第六课时:概率分布和期望
1. 讨论离散概率分布和连续概率分布的概念
2. 介绍期望的定义和计算方法
3. 通过案例分析概率分布和期望的应用
第七课时:大数定律和中心极限定理
1. 简要介绍大数定律和中心极限定理的概念
2. 讨论这两个定律在概率论中的重要性和应用
3. 通过实例演示大数定律和中心极限定理的效果和实际意义
通过以上的课时安排,学生将能够全面了解和掌握概率的基本概念、计算方法和相关定理,提高他们的数学素养和解题能力。
2016年全国高中数学优质课:3.3.1随机事件的概率 教学设计(北师大版必修3)
《随机事件的概率》教学设计焦作市第十一中学李国磊《随机事件的概率》教学设计教材:北师大版高中《数学》必修3第三章第一节第一课时授课教师:焦作市第十一中学李国磊一、教学背景分析1.教材分析:新教材在教学内容的编排上,采用了模块化、螺旋上升的方式,学生在初中阶段已经接触过随机事件、不可能事件、必然事件的概念,在必修三第一章学生刚刚又学习了统计的内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时,本节课对于后面学习的古典概型、几何概型以及选修2-3离散型随机变量的分布列等内容又是一个铺垫,具有承上启下的地位。
2.学情分析:学生在初中阶段学习了概率的初步知识,对频率与概率的关联有一定的认识,对于高二的学生,他们具备了一定的观察、归纳、概括能力,但他们不知道如何利用频率去估计概率,这是教学中的一大难点;另外,随机事件发生的随机性和规律性是如何辩证统一的,这是教学中的又一大难点.二、教学目标设计1、知识与技能目标:(1)进一步认识随机现象,了解随机事件发生的不确定性和频率的稳定性;(2)正确理解概率的统计定义,明确概率与频率的区别和联系,掌握利用频率估计概率的思想方法;(3)通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,使学生对对立统一的辨证关系有进一步的认识.2、过程与方法目标:(1)通过动手试验,体会随机事件发生的随机性和规律性;(2)在试验、探究和讨论过程中,学会利用频率估计概率的思想方法.3、情感态度与价值观目标:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性与必然性的对立统一;(3)通过本节课浓厚的生活背景,指导学生形成正确的价值观和人生观.根据上述教材背景分析,结合教学大纲和学情分析,我确立了如下的教学重点、难点:三、教学重难点(1)重点:通过抛掷硬币试验了解概率的统计定义、明确其与频率的区别和联系;(2)难点:利用频率估计概率,体会随机事件发生的随机性和规律性.四、教法学法设计针对本节课的特点,在教法上,采用以教师为主导,学生为主体的探究式教学方法;在教学过程中,注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在教学手段上,我灵活运用黑板板书和多媒体展示,激发学生的创造力,活跃了气氛,加深了理解.教学用具:硬币数十枚,表格,幻灯片,计算机及多媒体教学.五、教学基本流程:六、教学情境设计:(一)创设情境,引入新知导入语:我们生活的世界充满着不确定性,从抛硬币、玩扑克等简单的游戏,到复杂的社会现象;从体育比赛,到大自然的千变万化,我们无时无刻不面临着不确定性,正因为不确定性的存在,而让我们的生活变得丰富多彩。
九年级数学概率教案
数学教案:九年级概率教学目标:1.了解概率的概念并能够用自己的语言解释概率的意义;2.能够计算事件发生的概率;3.能够利用概率进行实际问题的解决。
教学重点:1.概率的概念;2.概率的计算方法;3.利用概率解决实际问题。
教学难点:1.概率计算方法的应用;2.实际问题的解决。
教学准备:1.教师准备投掷硬币、骰子等实物;2.准备一些有关概率的实际问题的素材;3.提前复习一下九年级概率相关的知识点,如事件的概念、计算概率的方法等。
教学过程:Step 1:导入新知教师可使用一些实物来引入概率的概念,比如投掷硬币、掷骰子等。
教师可以问学生在掷硬币时,出现正面和反面的概率是多少?掷骰子时出现一些数字的概率是多少?通过这个导入,让学生了解到概率与随机事件有关。
Step 2:引入概率的概念教师通过上述导入,引出概率的概念。
概率是指一些事件发生的可能性大小,在数学中用一个介于0和1之间的数字表示。
教师可以用数学符号来表示概率,如P(A),其中A表示一些事件。
Step 3:概率的计算方法3.1频率法:通过实验得到事件发生的频率,即事件发生的次数除以实验总数。
3.2几何概型法:对于随机试验的结果可以通过几何图形来表示,通过计算几何图形中其中一区域的面积来计算概率。
3.3等可能性原则:如果一个试验中所有可能的结果都是等可能发生的,那么事件A发生的概率等于事件A所包含的基本事件数与所有基本事件总数的比值。
Step 4:实际问题解决通过一些实际问题的解决来巩固学生对概率计算方法的应用。
Step 5:概率的应用学生通过学习概率的计算方法和解决实际问题后,了解到概率在现实生活中的应用,如信封问题、球桌问题、生日问题等。
教师可以引导学生思考更多的应用场景,并让学生自主分析和解决实际问题。
Step 6:小结对本节课的知识点进行小结和梳理。
教学延伸:通过让学生完成一些概率相关的练习题、实际问题的解决,巩固和拓展学生对概率的理解和应用能力。
概率初中试讲教案
概率初中试讲教案教学目标:1. 理解概率的基本概念,掌握概率的计算方法。
2. 能够运用概率解决实际问题,提高学生的应用能力。
3. 培养学生的逻辑思维能力和团队协作能力。
教学重点:1. 概率的基本概念2. 概率的计算方法3. 概率在实际问题中的应用教学难点:1. 概率的计算方法2. 概率在实际问题中的应用教学准备:1. PPT课件2. 教学案例和练习题教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些与概率相关的生活实例,如抛硬币、抽奖等,引发学生的兴趣。
2. 提问:同学们,你们对这些实例有什么疑问吗?3. 总结:概率是研究随机事件发生可能性的一种数学方法,接下来我们就来学习概率的基本概念和计算方法。
二、新课讲解(15分钟)1. 讲解概率的基本概念,如必然事件、不可能事件、随机事件等。
2. 讲解概率的计算方法,如古典概型、几何概型等。
3. 通过PPT课件和实例,讲解如何运用概率解决实际问题。
三、案例分析和练习(15分钟)1. 给出一个案例,如抛硬币实验,让学生分组讨论并计算概率。
2. 给出一些练习题,让学生独立完成,巩固所学知识。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结概率的基本概念和计算方法。
2. 强调概率在实际问题中的应用,提醒学生关注生活中的概率现象。
五、作业布置(5分钟)1. 布置一些有关概率的练习题,让学生巩固所学知识。
2. 鼓励学生查阅相关资料,了解概率在实际应用中的更多例子。
教学反思:本节课通过生活实例引入概率的概念,让学生感受到概率与生活的紧密联系。
在讲解概率的基本概念和计算方法时,注重引导学生主动思考、积极参与,提高了学生的学习兴趣。
课堂练习环节,学生分组讨论、独立完成,锻炼了学生的动手能力和团队协作能力。
整体教学过程中,注重培养学生的逻辑思维能力和应用能力,为后续学习打下坚实基础。
不足之处:1. 部分学生在理解概率的计算方法时仍有一定困难,需要在课后加强辅导。
25.2 用列举法求概率(第1课时)-公开课-优质课(人教版教学设计精品)
25.2用列举法求概率(第1课时)一、内容和内容解析1.内容用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法和高中分步乘法计数原理的学习中进一步运用.另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标(1)用列举法(列表法)求简单随机事件的概率,进一步培养随机观念;(2)感受分步分析对思考较复杂问题时起到的作用.2.目标解析达成目标(1)的标志是:学生清晰地知道:对于结果种数有限且每种结果等可能的随机试验中的事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地列举出来.学生能够利用列表法正确计算简单随机事件的概率,结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性大小的.目标(2)体现在学生探索、归纳列表法的过程中,学生在问题的引导下思考如何才能将涉及两个因素的试验所有可能的结果不重不漏的列举出来,体会“分步”策略对解决复杂问题起到的重要作用.三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何正确列举出试验所有可能的结果,怎样才能做到不重不漏地列举,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.学生容易出现的问题是,没有真正理解列表法的含义,虽然能够通过模仿解决一些简单问题,但是无法灵活地使用列表法解决问题.其于以上分析,本节课的教学难点是:如何使用列表法.四、教学过程设计1.复习旧知、引入列举法问题1填空,并说明理由.(1)掷一枚硬币,正面向上的概率是__________;(2)袋子中装有5个红球,3个绿球,这些球除了颜色外都相同,从袋子中随机的摸出一个球,它是红色的概率为__________;(3)掷一个骰子,观察向上一面的点数,点数大于4的概率为__________.师生活动:学生回答问题.师生小结:在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.设计意图:复习概率的意义,点明列举法,为探究列表法作铺垫.2.探究归纳列表法例1同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.师生活动:学生思考、交流.有些学生认为上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;有些学生不赞同,认为出现结果“正反”与“反正”应分别算作两种可能的结果,此外还有“正正”和“反反”两种可能的结果,故上述事件的概率分别为14,14和12.教师强调,使用列举法求概率的关键,是列举出试验各种可能的结果,并且确保每种结果出现的可能性大小相等.设计意图:突出用列举法求概率的使用条件,即“结果只有有限个,且各种结果出现的可能性大小相等”.问题2对于抛掷两枚硬币的问题,如何才能不重不漏地列举出试验所有可能的结果,并且保证各种结果出现的可能性大小相等?师生活动:教师引导学生设计多种方法列举抛掷两枚硬币所能产生的全部结果.学生容易想到的方法是:将两枚硬币分别记做A、B,于是可以直接列举得到(A正、B正)、(A反、B正)、(A正、B反)、(A反、B反)四种等可能的结果,从而求得概率.设计意图:鼓励学生思考、分析,列举出抛掷两枚硬币所产生的全部结果.教师追问1:“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果一样吗?师生活动:师生讨论,就例1的三个问题而言,“同时掷两枚硬币”与“先后两次掷一枚硬币”可以取同样的试验的所有可能结果.因此可以将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况;同理,第一枚为反面的情况下第二枚硬币有正、反两种情况.所有的结果共有4个,并且这4个结果的可能性相等.教师指出:与“掷一枚硬币”不同,“掷两枚硬币”的结果涉及两个因素(第一枚硬币与第二枚硬币),可以采用“分步”的策略对两个因素逐一进行分析.设计意图:用问题提示学生:当试验涉及两个因素时,可以“分步”对问题进行分析.教师追问2:能否设计出一种方式,将“分步”分析的所有结果更清晰地列举出来?师生活动:师生交流,可以设计出如下表格,将“分步”思考的结果表示出来,从而列举出所有等可能的结果.教师追问3:在设计表格时,表头的横行、竖列分别表示什么?每个格表示什么?师生活动:学生回答,设计表格时,表头的横行表示掷第一枚硬币所有可能的结果,竖列表示掷第二枚硬币所有可能的结果,表格中的每个格表示掷两枚硬币的一种可能结果;可以清晰地看到,所有结果共有4个,并且这4个结果出现的可能性相等.教师点明列表法.设计意图:用问题启发思考,让学生感受到“分步”分析对思考较复杂问题时起到的作用.学生探索、归纳得出列表法,感受到用表格更有利于不重不漏地列举出所有可能的结果,更有说服力.3.运用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.问题3 例2的试验涉及几个因素?能否直接列举出试验所有可能的结果.师生活动:师生分析得出,与例1类似,例2的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比例1多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.设计意图:分析列表法在解决如例2的问题时的优势.教师追问1:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:上述表格不重不漏地列举出了掷两枚骰子所有可能出现的结果,可以看出,可能的结果共有36个,并且它们出现的可能性相等.设计意图:明确列表法.教师追问2:如何计算上述三个事件的概率?师生活动:学生回答,根据用列举法求概率的方法,已经通过列表知道试验共有36种可能的结果,并且它们发生的可能性相等,还需弄清各事件包含其中的多少种可能结果.从表格中可以看出:两枚骰子的点数相同(记为事件A )的结果有6个(表中浅色阴影部分),所以P (A )=366=61;两枚骰子的点数和是9(记为事件B )的结果有4个(表中深色阴影部分),所以P (B )=364=91;至少有一枚骰子的点数为2(记为事件C )的结果有11个(表中蓝色方框部分),所以P (C )=3611. 设计意图:巩固用列举法求概率.教师追问3:如果把例2中的“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果有变化吗?师生活动:学生分析回答,就例3中的三个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此作此改动对所得结果没有影响.教师小结,当试验涉及两个因素时,可以“分步”对问题进行分析.设计意图:巩固“分步”分析问题的意识.4.巩固用列表法求概率练习 一个不透明的布袋子里装完全相同的四个乒乓球,上面分别标有数字1,2,3,4.小林和小华按照以下方式抽取乒乓球:先从布袋中随机抽取一个乒乓球,记下标号后放回袋内搅匀,再从布袋内随机抽取第二个乒乓球,记下标号.若两次取的乒乓球标号之和为4,小林赢;若标号之和为5,小华赢.请判断这个游戏是否公平,并说明理由.问题4 如何判断这个游戏是否公平?师生活动:师生分析,这是一个随机试验,要判断游戏是否公平,需考察标号之和为4(记为事件A )的概率与标号之和为5(记为事件B )的概率是否相同.学生列表、计算得出P (A )=163,P (B )=164=41,所以这个游戏不公平,小华获胜的可能性更大. 设计意图:复习巩固用列表法求概率,培养学生应用概率知识解决问题的意识,渗透随机观念.5.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)用列举法求概率应该注意哪些问题?(2)列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?设计意图:归纳小结,巩固知识.6.布置作业教科书P138练习.五、目标检测设计假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果两枚卵全部成功孵化,则两只雏鸟都为雄鸟的概率是多少?设计意图:考查学生对投两枚硬币模型的理解.1.一个不透明的口袋中有五个完全相同的小球,上面分别标有数字1,2,3,4,5.随机摸出一个小球记下标号后放回搅匀,再随机摸出一个小球记下标号.用列表法求下列事件的概率:(1)两次摸出的小球标号的和为奇数;(2)两次摸出的小球标号的和为3的倍数.设计意图:考查学生对用列表法求概率的理解.3.如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).小聪和小明分别拨动A,B两个转盘上的指针,使之旋转,指针自由停止后所指数字较大的一方为获胜者(若箭头恰好停留在分界线上,则重转一次).请用列表法说明小聪与小明谁获胜的可能性更大?A B设计意图:考查学生在实际情景中运用列表法解决问题的能力.。
优质课教学设计《概率》公开课教案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的. 例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明. 这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13. 五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
新北师大版七年级数学下册第6章 概率初步《等可能事件的概率》优质课件
P(小明获胜)= 17 。
小明和小颖做摸牌游戏,他们先后从这
副去掉大、小王的扑克牌中任意抽取一
张牌(不放回),谁摸到的牌面大,谁
就获胜。
现小明已经摸到的牌面为A,然后小颖摸
牌,
P(小颖获胜)= 0
。
请举出一些事件,它们发生的概率都是 3
4
小明和小刚都想去看周末的足球赛,但 却只有一张球票,小明提议用如下的办 法决定到底谁去看比赛: 小明找来一个转盘,转盘被等分为8份,随 意的转动转盘,若转到颜色为红色,则小刚 去看足球赛;转到其它颜色,小明去。 你认为这个游戏公平吗?如果你是小明,你 能设计一个公平的游戏吗?
小明所在的班有40名同学,从中选出一名 同学为家长会准备工作。
请你设计一种方案,使每一名同学被选中 的概率相同。
随堂小结
我学到了…… 我收获了……
课后作业
1.设计两个概率为-13 的游戏。 2.预习下一课。
等可能事件的概率 (第2课时)
小组合作讨论:
小明和小凡一起做游戏。在一个装有2 个红球和3个白球(每个球除颜色外都 相同)的盒子中任意摸出一个球,摸到 红球小明获胜,摸到白球小凡获胜,这 个游戏对双方公平吗?
1
率是 4 。
一副扑克牌,任意抽取其中的一张,
(1)P(抽到大王)=
1 54
(2)P(抽到3)=
2 27
(3)P(抽到方块)=
13 54
请你解释一下,打牌的时候,你摸到大 王的机会比摸到3的机会小。
任意掷一枚均匀的骰子。
1
(1)P(掷出的点数小于4)= 2
1
(2)P(掷出的点数是奇数)= 2
(3)P(掷出的点数是7)=
0
(4)P(掷出的点数小于7)= 1
人教版九年级数学上册《概率》概率初步PPT优质课件
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
相互事件同时发生的概率 第一课时 教案 及其说课 优质课比赛
相互事件同时发生的概率第一课时2012-4-6一、教学目标1.1 教材分析《相互独立事件同时发生的概率(一)》是高中数学第二册(下)第十一章第三节的第一课时。
这节课是在学生学习了排列、组合、等可能性事件概率、互斥事件概率的基础上进行的。
通过本节学习不仅要让学生掌握相互独立事件的定义及其同时发生的概率乘法公式和公式的应用,为后面学习独立重复试验等概率知识以及今后升入高一级院校学习相关知识奠定良好基础,更重要的是培养学生关爱人文、虚心求教的精神与从正反两个方面考虑问题的辩证思想。
1.2 学情分析由于在我执教的高二班级中,农村学生较多,他们的特点是勤学好问,基础知识相对扎实,但是知识面较窄。
为了拓展学生知识面,锻炼学生的探究能力,我在课堂上一般采取以探究为主导策略的教学模式。
经过一个多学期的锻炼,学生基本上能适应这种教学模式,并对探究性课题的学习有较大的兴趣。
1.3教学目标根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:认知目标:理解相互独立事件的意义,掌握相互独立事件同时发生的概率乘法公式,并能应用该公式计算一些独立事件同时发生的概率,进一步理解偶然性与必然性之间的辩证关系。
能力目标:培养学生的动手能力、探究性学习能力、创新意识和实践能力,发展学生“用数学”的意识和能力。
情感目标:培养学生关注人文、虚心求教的情感,帮助学生体验数学学习活动中的发现与快乐,激发他们的学习兴趣。
二、重点、难点2.1教学重点:相互独立事件的定义和相互独立事件同时发生的概率公式.理论依据:本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把相互独立事件的概念的教学作为本节课的教学重点2.2教学难点:对相互独立事件的判定,以及能正确地将复杂的概率问题分解转化为几类基本的概率模型.理论依据:为了防止互斥事件对相互独立事件的负迁移作用,避免学生盲目地套用公式,本节课准备突破以上教学难点三、教学方法与教学手段3.1教学方法:探究法、讲授法、启发式教学。
用频率估计概率优质课教学设计一等奖及点评 (2)
25.3 用频率估计概率一、内容和内容分析1.内容:人教版《义务教育教科书·数学》九年级上册“25.3用频率估计概率”第一课时.2.内容解析:用频率估计概率属于“统计与概率”领域,统计的学习是在实际问题中通过经历统计全过程,根据统计结果做出简单的判断和预测.概率是刻画随机事件发生可能性大小的数值,通过获得随机事件发生的概率可以解决一些实际问题.通过下面的知识结构图可以看出,随机事件发生的频数和频率是可以通过统计的方法得到的,需要统计的知识,本节内容就是在运用统计的方法进一步研究概率.本节课是《概率初步》这一章的第三节,从整个单元的教学上看是学生学习了随机事件与概率,初步了解了概率的意义,能用列举法求一些简单等可能事件的概率之后,对概率的进一步研究.本节课将从统计试验结果频率的角度研究一些随机试验中事件的概率,让学生从频率的角度进一步认识概率的意义,概率反映的规律是针对大量重复试验而言.用频率估计概率不受随机试验中结果种数有限和各种结果发生等可能的限制,适用的范围比列举法更广.本节的研究内容是频率和概率,频率是随机的,在试验前不能确定,概率是确定的数,是客观存在的.随机事件发生的频率呈现出规律性,随着试验次数的增加.一个事件出现的频率总是在一个固定数的附近摆动,显示出一定的稳定性.因此,可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.从知识类型上看属于原理性知识,频率与概率的关系是学生认同能够用频率估计概率,并能够在遇到简单问题时主动想到要用频率估计概率解决问题的基础.基于此分析本节的教学重点是:探究频率与概率的关系.二、目标和目标解析1.目标(1)通过抛掷硬币、摸球等随机试验,了解频率与概率的联系与区别,知道通过大量重复试验,可以用频率估计概率.(2)会用频率估计概率的方法解决简单问题.2.目标解析达成目标(1)的标志是:学生能够运用统计知识分析数据,感受频率具有随机性,在大量重复试验时显示出稳定性;结合具体试验感受频率与概率的区别与联系.明确地知道除了用列举法求概率,还可以用频率估计概率,这种方法得出的概率与用列举法求出的概率不矛盾,并且相对于列举法适用范围更广.达成目标(2)的标志是:学生在面对无法直接求得概率的问题时,能主动想到通过试验用频率估计概率,在设计试验并实施的过程中能关注到大量、重复这两个关键点,并能根据统计的频率合理地估计概率.三、学生学情分析知识储备:学生已经了解了随机事件和概率的有关概念,能用列举法求试验结果种数有限且各种结果等可能的随机事件的概率.学习情况调查:对往届九年级学生进行调研.(问卷后附)从学习效果的测试结果看,发现约70%的学生对于概率的含义,频率的特点,频率与概率的关系认识不清,导致此现象的原因在于学生经历的试验不够充分,对两个概念的关系讨论不足.本节内容的难点来自两个角度,一是知识本身,频率的随机性和稳定性并存,学生同时理解存在障碍;二是学生的学习经验,以往的学习都是对确定性的分析,此内容是对不确定性的分析,学生的认知方式需要转变.基于此教学中学生在对试验数据进行分析的基础上,参与合作讨论探究问题,对于频率和概率反复交替认识,逐层对频率的随机性和稳定性进行分析,进而强化对概率含义的认识.充分经历各种简单试验,在过程中加深对用频率估计概率方法的理解.基于以上分析本节课的教学难点设定为:正确理解频率和概率的关系.四、教学策略分析学生经历抛硬币的试验,通过概率含义的追问引出通过试验探索频率与概率的关系,学生亲自动手试验获得数据,从数据中发现规律,初步感受频率呈现的随机性和规律性(围绕概率值波动).通过随机模拟大量重复试验,试验次数增加频率越来越稳定,进一发现频率与概率的关系.通过比对试验结果,加深对稳定性和随机性的理解.频率与概率两个概念始终交替出现,分散难点,达成目标.通过设计试验解决摸球的问题,加深认同频率与概率的关系,又能进一步理解用频率估计概率的过程,对于这个未知概率的问题试验次数少时频率波动大,试验次数增加稳定性出现的可能性较大,检验结果后发现概率与估计值相同,进而形成用频率估计概率的方法.在理性分析的前提下进行试验操作,再回归到理性分析,既有思考又有实践,动手与动脑相结合更有助于学生理解频率与概率的关系.设计投掷图钉的试验解决问题,对于这个未知概率的问题,且概率不能通过列举法求出,学生能够主动应用新学习的方法,独立设计试验解决问题,进一步培养学生的随机观念和统计意识.五、教学过程设计教学流程:【环节一】分析数据,发现关系活动1 收集各组课前预习作业的数据并进行整理分析.问题1 抛掷一枚质地均匀的硬币,“正面向上”的概率为0.5,是否意味着抛掷一枚硬币50次时,就会有25次“正面向上”呢?抛掷一枚硬币100次时,各组的“正面向上”的频数是50吗?请各组汇报试验数据.师生活动:统计各组试验数据,利用Excel形成各组抛一枚硬币50次和100。
高中数学概率微课教案
高中数学概率微课教案
一、微课导入(5分钟)
1. 引入概率的概念,让学生了解概率在日常生活中的应用。
2. 提出一个问题:如果一枚硬币抛掷100次,出现正面的次数有可能有多少次?请学生发表自己的看法。
二、概率基础知识(10分钟)
1. 定义概率:事件发生的可能性大小。
2. 计算概率的方法:概率=事件发生的次数/总次数。
3. 介绍基本概率公式:P(A) = n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A
发生的次数,n(S)为总次数。
三、概率计算实例分析(15分钟)
1. 通过实例演示如何计算概率。
2. 让学生参与计算,巩固概率计算方法。
3. 提出一个实际问题:一副52张扑克牌,从中任取一张,那么取到红桃牌的概率是多少?
四、概率的应用(10分钟)
1. 介绍概率在日常生活中的应用。
2. 通过实例讨论:抽奖活动的概率计算。
五、微课总结(5分钟)
1. 总结概率基础知识和计算方法。
2. 提醒学生在日常生活中注意概率的应用,培养逻辑思维和数学分析能力。
六、作业布置(5分钟)
1. 布置相关练习题,巩固学生所学知识。
2. 提醒学生预习下节课内容。
25.1.2--概率(优质课件)
2、必然事件A,则P(A)=1; 不可能事件B,则P(B)=0; 随机事件C,则0< P(C) <1。
赠送精美图标
1、字体安装与设置
2满意,可进行批量替换,一次性更改各页面字体。 1. 在“开始”选项卡中,点击“替换”按钮右侧箭头,选择“替换字体”。(如下图)
让PPT进行循环播放 1.单击”幻灯片放映”选项卡中的“设置幻灯片放映”,在弹出对话框中勾选“循 环放 映,按ESC键终止”。
30
模板中的图片展示页面,您可以根据需要
方法一:更改图片
2. 在图“替换”下拉列表中选择要更改字体。(如下图)
1.选中模版中的图片(有些图片与其他对 而不是组合)。
2.单击鼠标右键,选择“更改图片”,选
3. 在“替换为”下拉列表中选择替换字体。 4. 点击“替换”按钮,完成。
PPT放映 设置
PPT放映场合不同,放映的要求也不同,下面将例举几种常用的放映设置方式。 让PPT停止自动播放 1. 单击”幻灯片放映”选项卡,去除“使用计时”选项即可。
随堂检测
3.明天下雨的概率为95%,那么下列说法错误
的是
( D)
(A)明天下雨的可能性较大
(B)明天不下雨的可能性较小
(C)明天有可能是晴天
(D)明天不可能是晴天
综合提高
4.小华用电脑设计了一个小猫
跳转的实验,如图所示,图形
由黑白两种颜色的20块方砖组
成,方砖的大小完全一样,小
猫在方砖上可自由走动并随意
6
探索新知
可以发现以上试验有两个共同点: 1.每一次试验中,可能出现的结果是有限个; 2.每一次试验中,出现的结果可能性相等.
探索新知
一般地,如果一次试验中,有n种可能的结果,
高中数学新课概率教案
高中数学新课概率教案课程名称:高中数学概率
教学目标:
1. 了解基本概率概念及相关计算方法;
2. 能够解决实际生活中的概率问题;
3. 培养学生的逻辑思维和数学推理能力。
教学内容:
第一部分:概率基本概念
1. 概率的定义及表示方法;
2. 事件的分类(必然事件、不可能事件、随机事件);
3. 事件的并、交、差、逆等基本运算。
第二部分:概率计算方法
1. 加法法则;
2. 乘法法则;
3. 条件概率及贝叶斯定理。
第三部分:实际问题解决
1. 排列组合的概率计算;
2. 生活中的概率问题解决。
教学步骤:
第一节:概率基本概念
1. 引入概率概念,让学生了解什么是概率;
2. 讲解事件的分类及基本运算方法;
3. 练习相关题目,巩固概念。
第二节:概率计算方法
1. 讲解加法法则及乘法法则;
2. 介绍条件概率及贝叶斯定理;
3. 练习相关题目,巩固概念。
第三节:实际问题解决
1. 讲解排列组合的概率计算方法;
2. 演示生活中的概率问题解决;
3. 练习相关题目,培养学生解决实际问题的能力。
教学工具:黑板、彩色粉笔、课件
评估方式:课堂练习、作业、小测验
教学反馈:及时纠正学生的错误,鼓励学生积极参与讨论,加深对概率概念的理解。
教学延伸:鼓励学生进行实际生活中的概率问题研究,拓展思维,提高解决问题的能力。
初中数学概率问题教案
初中数学概率问题教案一、教学目标1. 知识与技能目标:学生能够理解随机事件的定义,掌握概率的基本计算方法,能够运用概率知识解决实际问题。
2. 过程与方法目标:通过观察、实验、分析等方法,培养学生对概率问题的探究能力,提高学生的逻辑思维能力。
3. 情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的合作意识。
二、教学重难点1. 重点:随机事件的定义,概率的基本计算方法。
2. 难点:如何运用概率知识解决实际问题。
三、教学过程1. 导入:教师通过抛硬币、掷骰子等实验,引导学生观察和思考随机事件的发生,从而引出概率的概念。
2. 新课导入:教师介绍随机事件的定义,并通过实例解释随机事件的概念。
同时,教师讲解概率的基本计算方法,如计算一个事件的概率、计算两个事件的联合概率等。
3. 案例分析:教师给出几个实际问题,如抛硬币实验中出现正面的概率、掷骰子实验中出现点的概率等,引导学生运用概率知识解决问题。
4. 课堂练习:教师布置几道有关概率的练习题,让学生独立完成,巩固所学知识。
5. 总结:教师引导学生总结本节课所学内容,巩固随机事件和概率的基本概念及计算方法。
6. 拓展延伸:教师给出一些有关概率的拓展问题,如如何计算多个事件的概率、如何求事件的补事件等,引导学生进行思考和探究。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对概率知识的掌握程度。
3. 拓展延伸:评估学生在拓展延伸环节的表现,了解学生的探究能力和逻辑思维能力。
五、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处进行改进,以提高教学效果。
六、教学资源1. 教学课件:教师制作课件,展示随机事件和概率的基本概念及计算方法。
2. 练习题:教师准备一些有关概率的练习题,帮助学生巩固所学知识。
3. 拓展问题:教师提供一些有关概率的拓展问题,激发学生的思考和探究。
概率(第一课时)(优质课教案)
概率(第一课时)(优质课教案)课程目标•了解概率的基本概念•掌握常见的概率计算方法•培养学生的思维逻辑和分析问题的能力教学内容1.概率的定义与基本原理2.事件与样本空间3.概率的计算方法:古典概型、几何概型、计数法等教学步骤第一步:导入介绍概率的概念,引导学生思考日常生活中的概率问题,激发学生的学习兴趣。
第二步:概率的定义与基本原理1.讲解概率的定义:概率是指某一事件发生的可能性大小。
2.引导学生思考事件的分类:必然事件、不可能事件、可能事件等。
3.介绍概率的基本原理:概率的范围在0到1之间,概率为1的事件一定发生,概率为0的事件一定不发生。
第三步:事件与样本空间1.定义事件:事件是样本空间的子集。
2.引导学生通过例子理解事件和样本空间的概念。
3.总结事件的运算法则:并运算、交运算、补运算等。
第四步:概率的计算方法1.介绍古典概型:在一次试验中,样本空间的元素个数相等的概率模型。
2.通过例子讲解古典概型的应用。
3.引入几何概型:以几何位置为基础的概率计算方法。
4.通过几何概型的例子,让学生熟悉如何计算概率。
5.引入计数法计算概率:通过计数方法计算概率。
第五步:练习与总结1.给学生提供一些简单的概率计算练习题,巩固所学知识。
2.总结本节课所学的重点内容和方法。
教学重点•概率的基本概念和基本原理•事件与样本空间的关系与运算•古典概型、几何概型和计数法的概率计算方法教学拓展•引导学生在日常生活中寻找更多的概率问题,并尝试用所学方法解决。
教学评估•通过课堂练习及时了解学生的学习情况,根据学生的表现进行针对性的辅导和指导。
•课后布置相关的概率计算作业,检验学生的学习效果。
参考资料•《数学课程标准实验教科书·数学九年级上册》,人民教育出版社•《数学教学课程标准·初中数学》,人民教育出版社。
概率小学数学教案
概率小学数学教案
教学内容:概率基础知识
教学目标:学生能够理解并运用概率的基本概念,能够求解简单的概率问题
教学重点:概率的定义、概率的计算方法
教学难点:复杂概率问题的解决
教学准备:教学课件、教学实验器材、课堂练习题、教学录音
教学过程:
1.导入:通过一个简单的实例引导学生了解概率的概念,并提出问题,让学生思考如何解决。
2.概率定义:讲解概率的定义,引导学生理解什么是概率,概率的取值范围等。
3.概率计算方法:介绍几种简单的概率计算方法,如等可能性事件的概率计算、事件的互斥和独立等。
4.实例讲解:通过几个实际的问题讲解概率的计算方法,帮助学生掌握概率的应用。
5.课堂练习:布置课堂练习题,让学生独立解决问题,巩固所学内容。
6.总结:对本节课所学内容进行总结,强调概率的重要性,激发学生对数学学习的兴趣。
教学反思:教学过程中,要注重引导学生自主思考和探索,提高他们的实际操作能力和解决问题的能力,激发他们对数学的兴趣和学习热情。
初中概率校内试讲教案
初中概率校内试讲教案教学目标:知识与技能目标:学生理解概率的基本概念,学会用概率来描述随机事件的可能性,掌握用列举法求概率的方法,能够灵活运用。
过程与方法目标:通过实例分析和小组讨论,培养学生解决问题的能力,提高学生的逻辑思维和数据分析能力。
情感态度与价值观目标:培养学生对数学的兴趣,体会数学与生活的联系。
教学重难点:重点:学生理解概率的基本概念,学会用概率来描述随机事件的可能性,掌握用列举法求概率的方法。
难点:学生能够根据不同的情况灵活运用列举法求概率。
教学过程:一、导入新课利用多媒体展示一些日常生活中的随机事件,如抛硬币、抽奖、骰子等,引导学生思考:如何用数学来描述这些随机事件的可能性呢?从而引入概率的概念。
二、探究新知1. 利用直接列举法求概率以抛硬币为例,抛掷两枚硬币,落地后一正一反的情况有几种?两枚硬币都正面的情况有几种?引导学生用列举法写出所有可能的情况,并计算各种情况的概率。
2. 利用列表法求概率继续以上面的抛硬币为例,引导学生将所有可能的情况列成表格,方便观察和计算概率。
3. 利用树状图法求概率以掷骰子为例,掷出一个特定点数的情况有几种?引导学生画出树状图,展示所有可能的情况,并计算概率。
三、巩固练习出示一些练习题,让学生运用所学的列举法、列表法和树状图法求概率,巩固所学知识。
四、课堂小结本节课我们学习了概率的基本概念,用概率来描述随机事件的可能性,以及用列举法、列表法和树状图法求概率的方法。
引导学生总结本节课的重点和难点,巩固所学知识。
五、课后作业布置一些课后作业,让学生进一步巩固本节课所学的知识,提高学生的实际应用能力。
教学反思:本节课通过实例分析和小组讨论,让学生掌握了概率的基本概念和求概率的方法。
在教学过程中,注意引导学生积极参与,培养学生的逻辑思维和数据分析能力。
对于教学中的难点,通过具体的例子和反复讲解,帮助学生理解和掌握。
在课后作业的布置上,注重培养学生的实际应用能力,让学生能够将所学知识运用到生活中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率(第一课时)(优质课教案)
教学任务分析教学目标
知识与技能目标1、
通过分析正确认识必然事件、不可能事件、随机事件2、通过观察理解三种事件的异同。
过程与方法目标1、通过师生游戏,会判断游戏规则的公平性。
以及对规则进行修改合游戏具有公平性。
情感与态度目标1、通过师生活动、游戏增进师生、生生之间的配合,同时培养学生的严谨的数学推理能力。
重点1、
正确理解随机事件的意义。
2、
通过探究活动初步了解随机事件可能性的变化规律。
难点探究随机事件可能性的变化规律。
课前准备教
具
学
具
补充材料
扑克牌
乒乓球
骰
子
教学过程设计问题与情境师生行为设计意图[活动1]在篮球比赛前,有这样一位裁判员想以抽签方式决定两支球队的进攻方向,他准备了三根形状、大小相同纸签。
上面分别写有1、0、0数字,在看不到纸签上的数字情况下。
让其中一方队长从三根纸签中任意地取一根。
抽到数字是1的纸签则拥有选择权,抽到数字是0的纸签选择权给对方。
结合图片及对话引出问题;双方队长思考后都不愿意抽,为什么呢?如果你是队长会抽吗?让学生谈谈自己想法。
教师引导学生学完这节课后方可找到答案。
从篮球比赛中创设情境引出问题,让学生思考。
可以激发学生求知欲望。
[活动2]猜牌游戏1、
展示红桃A、黑桃A、方块A、梅花A各一张,然后洗牌抽出一张,猜这张是什么A?教师发问,引导学生用生活经验判断。
1、先猜是什么A,然后得出四种“可能”。
然后问可能是红桃k吗?(不可能)通过师生互动游戏引导学生观察、思考并归纳出在一定条件下判断事件发生的结果有三种情况:
问题与情境师生行为设
计意图2、
展示四张红桃A,然后洗牌抽出一张,让学生猜这张是什么A?2、先猜是什么A得出定论,然后问可能是黑桃A吗?
(不可能)可能不可能一定(必然发生)[活动3]投掷一个质地均匀的正方体骰了。
骰子六个面上分别刻有1到6的点数。
每位学生掷10次并进行统计回答下列问题:(1)可能出现哪些点数?(2)
出现的点数大于0。
(3)
出现的点数会是7。
(4)
出现的点数会是4。
在(2)(3)(4)三种结果中哪些是必然(一定)发生的;哪些是不可能发生的;哪些是可能发生,也有可能不发生的?教师与学生一起做数学实验,通过实验让学生得出以下结论:(1)可能出现1、2、3、4、5、6的点数,共有六种可能。
(2)出现的点数大于0是必然发生的,称为必然事件;出现点数会是7是不可能发生的,称为不可能事件;出现点数是4,是可能发生,也有可能不发生的,称为随机事件。
通过师生共同游戏及参与的广度让学生在感性认识基础上解决数学问题,引出三个概念:(1)必然事件(2)不可能事件(3)随机事件[活动4]游戏:你说我判断1、
让学生在生活中举出随机事件,并写出来。
2、
教师质疑:在一个袋中有4个黄球,2个白球,摸出白球是随机事件吗?1、
由学生提出问题,教师引导学生论证答案。
2、
实验论证:(1)袋中每个白球都有一个小洞的前提下摸
白球是必然事件。
(2)在形状、大小、质地等相同的情况下,让学生看到摸出白球,也是必然事件。
在引导学生动手操作中发现原题中存在的问题,并不断完善题目,得出一个结论:随机事件必须要在一定条件下才可能发生。
培养学生严谨的逻辑思维能力和语言表达能力。
[活动5](1)袋子中装有4个黄球,2个白球。
这些球的形状、大小、质地等完全相同。
在看不到球的条件下,随机地从袋子中摸出一个球。
教师让一部分学生动手实验并把摸出白、黄球分成两类。
让学生通过它们数量差异归纳结论;:摸到白球的可能性小。
让出学生自己概括出所感知的知识,有利于深究生在实践中感悟知识的生成过程。
并能培养学生的语言表达能力。
得出结论:随机事件的可能性是有大小的,不同的问题与情境师生行为设计意图(2)问题:你能告诉大家怎样才能使摸到黄球和白球的可能性相同吗?让学生思考回答。
建议课后操作确认。
(关键:黄、白球数目相同)随机事件发生的可能性大小有可能不同。
[活动6]练习:1、
说一说:下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)
地球上抛向空中的球会下落。
(2)
度量三角形的内角和,结果360度。
(3)
经过城市中一有交通信号灯的路口,遇到红灯。
2、
想一想:已知地球上陆地面积与海洋面积之比为3:7,
如果宇宙中飞来一块陨石落在地球上,可能性大的是“落在海洋里”还是“落在陆地上”。
3、
议一议:在[活动1]中为了使抽签对双方公平,你能帮助裁判改进方法吗?
学生口答,教师要注意学生分析问题的进程。
巩固新知[活动7]
砸蛋游戏
在三个蛋中隐藏一幅田园风光图,让学生积极参加活动:蛋1:小结谈谈这节课学到了什么蛋2:一幅田园风光图。
蛋3:一幅漫画。
让学生自由选择每个蛋,在砸蛋游戏中回答问题。
1、小结使学生知识系统化。
2、结合田园风光图对学生进行情感教育,陶冶情操。
3、在漫画中隐藏了一个数学问题,把课堂引申到课外,培养学生自主学习的习惯和能力。
板书设计详见大屏幕。