SERS表面增强拉曼
表面增强拉曼光谱
表面增强拉曼光谱引言表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,简称SERS)是一种基于表面增强效应的光谱技术,可以提高拉曼光谱的灵敏度和检测限。
在SERS技术中,分子与金属纳米颗粒表面的局域表面等离激元共振耦合,从而大大增强了拉曼信号的强度。
本文将详细介绍SERS技术的原理、应用和未来的发展前景。
原理SERS技术的实质是在金属纳米颗粒的表面,通过局域表面等离激元共振耦合效应,使分子的拉曼散射信号增强。
这种共振耦合通过增加局部电场使分子的拉曼散射截面积因子(scattering cross section)增加,并且由于表面增强效应,分子周围的电场引起其拉曼散射的增加。
这种增强效应与金属纳米颗粒的形状、大小、间距和金属纳米颗粒与分子之间的相互作用有关。
实验方法SERS实验通常使用激光作为光源,经过一个光栅或者光束分离镜,使得激光聚焦到样品表面。
此外,还需使用金属纳米颗粒作为增敏基质。
在实验过程中,样品可以是液体、固体或气体。
SERS光谱测量通常使用拉曼散射光谱仪进行。
与普通的拉曼光谱仪相比,SERS光谱仪需要更高的灵敏度和稳定性。
常用的金属纳米颗粒包括银、金、铜等,具体的选择取决于实验所需的增强效果和波长。
应用SERS技术在许多领域有着广泛的应用,包括化学分析、生物医学、环境监测等。
在化学分析领域,SERS能够提供准确的分子结构信息,可用于表征和鉴定化合物。
对于非常低浓度的物质,SERS技术是一种极其敏感的检测方法。
在生物医学领域,SERS被广泛用于生物分子的检测、肿瘤标记物的检测以及药物递送系统的研究。
由于SERS技术具有高灵敏度和高特异性,可以用于早期癌症诊断和治疗过程中药物的监测。
在环境监测领域,SERS技术可用于检测和监测环境中的微量有毒物质,例如水中的重金属离子或化学污染物。
发展前景虽然SERS技术已经取得了巨大的成功,并在许多领域得到了广泛应用,但仍然存在一些挑战需要克服。
sers表面增强拉曼光谱
sers表面增强拉曼光谱的基本原理和应用SERS(Surface-enhanced Raman Spectroscopy)表面增强拉曼光谱是一种功能强大的分析技术,用于增强和检测分子的拉曼散射信号。
它结合了拉曼光谱和表面增强效应(SERS效应),可以实现对微量样品的高灵敏度分析。
以下是SERS表面增强拉曼光谱的基本原理和应用:基本原理:1.SERS效应:SERS效应是指当分子或化合物置于具有纳米结构表面(如金属纳米颗粒)上时,它们的拉曼散射信号被显著增强的现象。
这种增强主要是由于局域表面等离激元共振的产生和电荷转移效应。
2.Raman散射:拉曼散射是一种基于光与物质相互作用的光谱技术,通过激发分子中的振动和旋转能级,从而产生特征性的散射光谱。
每种分子都有独特的拉曼散射光谱,可以用于研究分子结构、分析化学组成等。
应用:1.化学分析:SERS可以用于分析和鉴别化学物质,包括有机分子、无机化合物和生物分子等。
因其高灵敏度和选择性,可以应用于环境监测、食品安全和药品分析等领域。
2.生物医学研究:SERS在生物医学领域中具有广泛应用,如细胞成像、分子诊断、药物传递等。
可以通过利用SERS标记剂将其与生物分子(如蛋白质、核酸)结合来实现对生物分子的探测和定量。
3.表面分析:使用SERS技术可以研究材料的表面特性,包括表面催化反应、电化学过程和表面吸附等。
通过吸附在金属纳米颗粒上的分子的拉曼散射,可以获得有关表面化学反应和动力学的信息。
总之,SERS表面增强拉曼光谱是一种强大的分析技术,可用于高灵敏度和选择性的分子分析。
它在化学、生物医学和材料科学等领域中有广泛的应用前景。
SERS(表面增强拉曼散射)理论
SERS 的物理类模型物理类模型致力于阐释金属表面局域场的增强,它的主要代表包括表面电磁增强模型和镜像场模型。
1、表面电磁增强模型(Electromagnetic Enhancemant Model ,简记为EM )表面电磁增强模型[5~7]又可称为表面等离子体共振模型,它认为一个吸附在金属表面的分子的诱发偶极矩是通过金属椭球由入射场和散射场共同产生的。
对于椭球比光波波长小的情况,在频率与偶极表面等离子体共振时,散射场比入射场大,这可以看作是椭球外部空间的场密度的影响。
因此拉曼散射场会与金属颗粒的强散射场引起的金属颗粒表面的等离子体振荡发生共振,这种共振的结果使振荡分子产生了非常大的能量。
如图2-1所示,把一个可以看成经典电偶极子的分子放在球形金属颗粒外的r 'ρ处,以频率为ω0的平面波照射,分子偶极子会产生频率为ω的拉曼散射,其偶极矩为:),(),(00ωαωr E r P P ρρρρ•'=' (2-1)这里的α'是分子的拉曼极化率而P E ρ包括两部分:),(),(),(000ωωωr E r E r E LM i P '+'='ρρρρρρ (2-2)其中i E ϖ是入射场的场强,LM E ρ是用Lorenz-Mie 理论计算获得的散射场场强。
在观察点r ρ处与拉曼散射相关的电场由下式给出),(),(),(ωωωr E r E r E sc dip R ρρρρρρ+=(2-3)图2-1 纳米颗粒表面增强散射示意图其中,dip E ρ是球形颗粒不存在时振荡偶极子P ρ发射的场,sc E ρ是由球形颗粒产生的必须满足频率ω的边值问题的散射场。
拉曼散射的强度R I 是远场振幅R E ρ的平方:2/)ex p(),(lim r ikr r E I R kr R ωϖϖ∞→=,增强因子G 定义为0R R I I G =,其中0R I 是在金属球形颗粒不存在时的拉曼强度。
SERS(表面增强拉曼散射)理论
SERS 的物理类模型物理类模型致力于阐释金属表面局域场的增强,它的主要代表包括表面电磁增强模型和镜像场模型。
1、表面电磁增强模型(Electromagnetic Enhancemant Model ,简记为EM )表面电磁增强模型[5~7]又可称为表面等离子体共振模型,它认为一个吸附在金属表面的分子的诱发偶极矩是通过金属椭球由入射场和散射场共同产生的。
对于椭球比光波波长小的情况,在频率与偶极表面等离子体共振时,散射场比入射场大,这可以看作是椭球外部空间的场密度的影响。
因此拉曼散射场会与金属颗粒的强散射场引起的金属颗粒表面的等离子体振荡发生共振,这种共振的结果使振荡分子产生了非常大的能量。
如图2-1所示,把一个可以看成经典电偶极子的分子放在球形金属颗粒外的r ' 处,以频率为ω0的平面波照射,分子偶极子会产生频率为ω的拉曼散射,其偶极矩为:),(),(00ωαωr E r P P ∙'=' (2-1)这里的α'是分子的拉曼极化率而P E包括两部分: ),(),(),(000ωωωr E r E r E LM i P '+'=' (2-2)其中i E 是入射场的场强,LM E 是用Lorenz-Mie 理论计算获得的散射场场强。
在观察点r 处与拉曼散射相关的电场由下式给出),(),(),(ωωωr E r E r E sc dip R +=(2-3)图2-1 纳米颗粒表面增强散射示意图其中,dip E 是球形颗粒不存在时振荡偶极子P 发射的场,sc E 是由球形颗粒产生的必须满足频率ω的边值问题的散射场。
拉曼散射的强度R I 是远场振幅R E 的平方:2/)exp(),(lim r ikr r E I R kr R ω ∞→=,增强因子G 定义为0R R I I G =,其中0R I 是在金属球形颗粒不存在时的拉曼强度。
那么在小颗粒的限制下,增强因子可由下式给出:[]230333033303)(3)1/()1/()(3i n n r g a r i r g a g a r i i n n g a i G ⋅+'+'-'+'-⋅+= (2-4) 这里的i 指入射场在r '处的偏振态,也就是()i E r E i 00,='ω,r r n ''=/ ,g和g 0是表达式()()21+-εε在ω和ω0处的值,其中ε是胶体颗粒与周围物质的复合介电函数的比值。
表面增强拉曼光谱的基本原理和应用
表面增强拉曼光谱的基本原理和应用表面增强拉曼光谱(Surface Enhanced Raman Spectroscopy,SERS)是一种先进的拉曼光谱技术,能够对化学物质进行高灵敏度和高分辨率的表征。
SERS在材料科学、化学、生物学等领域得到广泛应用。
本文将介绍SERS的基本原理,示例其应用以及未来可能的发展趋势。
一、SERS的基本原理SERS是一种表面增强光谱技术,它利用特定的纳米表面结构(称为SERS基底)增强Raman散射信号,进而实现对分子结构和化学键信息的高灵敏度和高分辨率检测。
SERS的基本原理是将分子置于金属表面的“热点”位置,而这些热点通常是金属表面结构的几何形态特征(如孔洞、纳米颗粒、纳米线等)所导致的。
金属表面和分子之间的相互作用被称为表面等离子共振(Surface Plasmon Resonance),这种相互作用能够在分子表面产生一个电磁场增强效应,大量提高分子Raman信号的强度。
而这个效应的大小是与金属表面形态、材料种类、入射光强度、激发波长等因素有关。
SERS的显著优势是能够检测微量分子,因此被广泛应用于化学物质检测。
例如,SERS可以检测到化学物质的痕量,包括药物、污染物和微生物等。
此外,SERS还可以对分子在空间和时间尺度上的行为进行分析,帮助科学家了解化学反应、催化机制等问题。
二、SERS的应用1. 化学物质检测SERS已被广泛应用于化学物质检测。
例如,SERS可以检测到二氧化碳、二硫化碳、氯仿、水中的有机物等化学物质。
由于SERS技术能够在极低浓度下检测到目标物质,因此非常适用于环境监测、食品检测和生物诊断等领域。
2. 生物医学检测SERS技术可以用于生物医学检测,例如检测癌症标志物、病原体和细胞等。
SERS还可以帮助科学家研究生物分子在细胞膜和基质中的相互作用。
SERS在肿瘤、心血管、神经学等领域的研究也有很大的发展空间。
3. 材料表征SERS技术也可以用于材料表征,例如检测材料中的缺陷、化学键、晶格结构等。
表面增强拉曼光谱综述
表面增强拉曼光谱综述表面增强拉曼光谱(Surface-Enhanced Raman Spectroscopy, SERS)是一种强大的分析技术,用于提高拉曼散射的灵敏度。
这种技术自1974年被发现以来,已经成为化学、物理、生物学和材料科学领域的重要工具。
以下是对SERS的一个综述:1. 基本原理●拉曼散射:基于分子振动能级变化的非弹性散射过程,可提供分子结构信息。
●表面增强机制:将样品放置在特殊的金属表面(通常是纳米结构的银或金)上,可以显著增强拉曼信号。
2. 增强机制●电磁机制:最主要的机制,涉及金属纳米结构上的局域表面等离子体共振(LSPR),导致拉曼散射信号的强烈增强。
●化学机制:与样品和金属表面间的化学作用有关,可能导致电子转移,影响拉曼散射的强度。
3. 材料和方法●金属纳米结构:银和金是最常用的材料,但也有使用铜、铂等其他金属。
●制备方法:包括化学还原法、电化学沉积、纳米刻蚀技术等。
4. 应用●化学分析:用于检测极低浓度的化学物质,包括环境污染物、食品添加剂、药物成分等。
●生物医学:在细胞成像、疾病诊断、生物标记物检测等方面的应用。
●材料科学:用于研究纳米材料、催化剂、能源材料等。
5. 发展趋势和挑战●灵敏度和选择性的提高:研究人员致力于提高SERS的灵敏度,以检测更低浓度的样品。
●标准化和可重复性:由于SERS受到许多因素的影响,实验结果的可重复性是一个挑战。
●新材料和新技术:包括二维材料、异质结构的探索等。
6. 未来展望SERS作为一种高度灵敏的分析技术,有望在环境监测、疾病早期诊断、新材料开发等领域发挥更大作用。
随着纳米技术和光谱学的不断发展,SERS技术的应用范围和效率都有望进一步提升。
表面增强拉曼光谱
在生物分子检测中的应用
蛋白质结构分析
表面增强拉曼光谱可以用于蛋白质二级结构的分析,有助于理解 蛋白质的功能和生物学意义。
生物分子相互作用研究
通过观察生物分子间的拉曼光谱变化,可以研究生物分子间的相互 作用和识别,有助于发现新的药物靶点和生物标记物。
生物分子定量分析
表面增强拉曼光谱可以实现生物分子的高灵敏度检测和定量分析, 有助于疾病诊断和治疗监测。
表面增强拉曼光谱
• 介绍 • 表面增强拉曼光谱的实验方法 • 表面增强拉曼光谱在生物医学中的应
用 • 表面增强拉曼光谱在环境科学中的应
用 • 表面增强拉曼光谱的未来发展
01
介绍
什么是表面增强拉曼光谱?
表面增强拉曼光谱(Surface Enhanced Raman Spectroscopy,简称SERS)是一种先进的分子光谱技术,通 过在金属表面上的特定结构或粗糙表面上的金属纳米结构,实 现对拉曼散射的显著增强。
在环境科学领域,它可以用于 污染物和环境毒物的检测和分 析。
02
表面增强拉曼光谱的实验方法
实验设备与材料
01
02
03
拉曼光谱仪
用于检测拉曼散射信号, 通常配备有激光光源和光 谱检测系统。
表面增强剂
如金属纳米颗粒或金属薄 膜,用于增强拉曼散射信 号。
样品
需要进行表面增强拉曼光 谱测定的物质,可以是分 子、纳米材料或生物样品 等。
实验结果分析
信号增强效果评估
通过对比增强前后的拉曼光谱 信号强度,评估表面增强剂的
增强效果。
分子结构分析
根据拉曼光谱的特征峰位置和 峰形,分析待测样品的分子结 构。
分子相互作用研究
通过分析拉曼光谱的变化,研 究分子与表面增强剂之间的相 互作用。
表面增强拉曼光谱的原理与应用
表面增强拉曼光谱的原理与应用概述:表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,简称SERS)是一种利用金属纳米结构表面增强共振的拉曼散射信号的方法。
本文将详细介绍SERS的原理和其在化学、生物、材料等领域的应用。
一、SERS的原理SERS的基本原理源于两个关键因素:共振增强效应和电场增强效应。
1. 共振增强效应金属纳米结构的表面存在共振精细结构,当激光与共振精细结构相匹配时,可以实现高度增强的拉曼散射峰。
这种共振增强效应是通过表面等离子体共振(Surface Plasmon Resonance,简称SPR)实现的。
2. 电场增强效应金属纳米结构的表面存在极强的电场增强效应。
当分子与金属表面接触时,分子中的电荷会受到金属表面局域电场的强烈影响,从而导致拉曼散射信号的增强。
这种电场增强效应可以极大地提高拉曼散射信号的灵敏度。
二、SERS的应用领域SERS作为一种高灵敏度的分析技术,已经在多个领域得到了广泛应用。
以下是SERS在化学、生物和材料领域的应用。
1. 化学领域SERS可以用于分子结构鉴定、化学反应动力学研究和分子吸附等方面。
通过SERS技术,可以获得很高的分子识别能力,从而在化学反应的机理研究中发挥重要作用。
2. 生物领域SERS广泛应用于生物分子的检测、生物传感和生物成像等方面。
由于SERS技术对生物分子的高灵敏度,可以用于检测低浓度的蛋白质、DNA和药物等生物分子,有助于生物医学研究和临床诊断。
3. 材料领域在材料科学领域,SERS可以用于表面增强光催化、纳米材料的表征和表面等离子体共振等方面的研究。
SERS技术不仅可以提供材料的化学组成信息,还可以揭示材料的结构和光学性质,对材料的表征提供了有力的手段。
三、SERS的发展前景与挑战虽然SERS在分析领域具有广泛的应用前景,但仍然面临着一些挑战。
首先,SERS在实际应用中需要制备高度可重复和稳定的金属纳米结构,这对技术的推广应用提出了要求。
(完整word版)表面增强拉曼光谱学SERS综述
《表面增强拉曼光谱学SERS 综述,简史,原理,实验,展望》本文回顾表面增强拉曼光谱学SERS,surface Enhanced Raman Scattering。
作者出身物理,主要关注器件和技术,尽可能简单平实,少用公式。
SERS结合灵敏的Raman谱,表面科学甚至电化学,是重要的灵敏特异检测技术。
目录1.简史2.定义3.理论3.1 电磁增强理论3。
2 化学增强理论4 实验4。
1 总的实验结构4.2 衬底制造4。
3 谱的解读5 应用6 展望简史欲说SERS先说Raman谱,欲说Raman先说散射光散射的核心含义是散射中心,如微粒,吸收辐射并再次辐射电磁波的过程,据此定义,磷光和荧光都可视为散射。
传统的散射暗示了入射波的传播方向和散射光的方向有偏折,甚至完全反向,即背散射,实际上,受激散射的散射波的方向和入射波是一致的,受激性使然.故散射的散只有历史意义了。
最早被系统研究的光散射当属Rayleigh散射,即散射中心尺度远远小于光波长的情况,其最重要的规律就是散射强度正比于频率四次方变化。
可见光谱中长波或曰红端频率低,其Rayleigh 散射强度远比短波端弱,即著名的天空为何呈现蓝色的问题的答案。
之后Mie用电磁论系统的研究了光散射,解决了不同大小的各类规则散射体问题,至今仍然意义重大,常说的Mie散射其实不确切,Mie给出的是各类散射的解甚至包含了Rayleigh散射。
此外的Dyndall散射,临界乳光之类的光散射现象暂时省略.在上述光散射中,散射波和入射波的频率相同,Stockes早前甚至提出所谓的Stokes定律:考虑能量守恒,散射波的波长不可能小于激发散射的光的波长。
考察诸如荧光,磷光等过程,此定律没错,但是Stokes定律的范围仅仅限于入射波和散射中心无动量,无能量交换的过程,即所谓的弹性散射。
后来Smekel最早预言了频率变化的非弹性散射.Brillioun观测到了以其名字命名的Brillioun散射,即低频声声子对光子的散射,频移较小。
表面增强拉曼散射技术在化学生物传感中的应用
表面增强拉曼散射技术在化学生物传感中的应用引言:近年来,随着化学生物传感技术的发展,表面增强拉曼散射技术(Surface-enhanced Raman Scattering, SERS)作为一种快速、高灵敏度的方法,被广泛应用于化学生物传感领域。
本文将重点介绍SERS技术的原理和应用,以及其在化学生物传感中的应用。
一、SERS技术原理SERS技术是在金属表面上产生的表面增强拉曼散射效应的基础上发展起来的。
SERS效应是基于拉曼散射效应的一种增强现象,通过在金属纳米结构表面吸附分子来使其拉曼散射信号变得更强,并且具有高灵敏度和高选择性。
SERS技术的原理包括两个主要方面:1. 表面增强效应:当分子吸附在金属表面时,金属纳米结构表面的局域电子场可引起电荷分离和极化,从而增强分子的电场效应。
这种增强效应使得分子的拉曼散射截面积增大了数千倍,从而提高了拉曼信号的强度。
2. 化学增强效应:金属表面的化学反应也可以增强SERS 效果。
例如,金属纳米结构表面的氧化物或腐蚀产物能够与吸附分子发生化学反应,从而引起拉曼信号的增强。
二、SERS技术在化学传感中的应用1. 分子检测和识别:SERS技术能够对不同分子进行快速、准确的检测和识别。
通过金属纳米结构表面的增强效应,对吸附分子的拉曼散射信号进行放大,从而实现对微量分子的高灵敏检测。
SERS技术广泛应用于食品安全领域,如检测农药残留、食品添加剂、重金属等。
2. 生物传感和分析:SERS技术在生物传感和分析领域也有广泛的应用。
例如,通过将金属纳米结构修饰在生物传感器表面,可以实现对生物标志物的快速检测。
SERS技术的高灵敏度和选择性使得它成为研究和诊断癌症、感染疾病等生物医学问题的重要工具。
3. 药物分析和研究:SERS技术在药物分析和研究中也发挥了重要作用。
通过SERS技术可以实现对药物的定量和定性分析,同时可以研究药物的结构和相互作用。
这对于药物研发、药物代谢研究等具有重要意义。
SERS(表面增强拉曼散射)理论
SERS 的物理类模型物理类模型致力于阐释金属表面局域场的增强,它的主要代表包括表面电磁增强模型和镜像场模型。
1、表面电磁增强模型(Electromagnetic Enhancemant Model ,简记为EM )表面电磁增强模型[5~7]又可称为表面等离子体共振模型,它认为一个吸附在金属表面的分子的诱发偶极矩是通过金属椭球由入射场和散射场共同产生的。
对于椭球比光波波长小的情况,在频率与偶极表面等离子体共振时,散射场比入射场大,这可以看作是椭球外部空间的场密度的影响。
因此拉曼散射场会与金属颗粒的强散射场引起的金属颗粒表面的等离子体振荡发生共振,这种共振的结果使振荡分子产生了非常大的能量。
如图2-1所示,把一个可以看成经典电偶极子的分子放在球形金属颗粒外的r ' 处,以频率为ω0的平面波照射,分子偶极子会产生频率为ω的拉曼散射,其偶极矩为:),(),(00ωαωr E r P P •'=' (2-1)这里的α'是分子的拉曼极化率而P E 包括两部分:),(),(),(000ωωωr E r E r E LM i P '+'=' (2-2)其中i E 是入射场的场强,LM E 是用Lorenz-Mie 理论计算获得的散射场场强。
在观察点r 处与拉曼散射相关的电场由下式给出),(),(),(ωωωr E r E r E sc dip R +=(2-3)图2-1 纳米颗粒表面增强散射示意图其中,dip E 是球形颗粒不存在时振荡偶极子P 发射的场,sc E 是由球形颗粒产生的必须满足频率ω的边值问题的散射场。
拉曼散射的强度R I 是远场振幅R E 的平方:2/)ex p(),(lim r ikr r E I R kr R ω ∞→=,增强因子G 定义为0R R I I G =,其中0R I 是在金属球形颗粒不存在时的拉曼强度。
那么在小颗粒的限制下,增强因子可由下式给出:[]230333033303)(3)1/()1/()(3i n n r g a r i r g a g a r i i n n g a i G ⋅+'+'-'+'-⋅+=(2-4) 这里的i 指入射场在r '处的偏振态,也就是()i E r E i 00,='ω,r r n ''=/ ,g和g 0是表达式()()21+-εε在ω和ω0处的值,其中ε是胶体颗粒与周围物质的复合介电函数的比值。
sers原理
sers原理
SERS是表面增强拉曼散射的缩写,是一种高灵敏的分析技术,用于检测微小化合物的存在和浓度。
SERS利用表面纳米结构和表面等离子体共振效应增强原本弱的拉曼信号,从而实现对微量化合物的准确检测。
SERS原理的核心是表面等离子体共振效应,即当金属纳米颗粒与光相互作用时,会产生表面等离子体共振效应,这种效应可以增强到数百
倍的拉曼信号。
金属表面上的纳米颗粒可以大大增加拉曼信号的电场
强度,增强的效果与肉眼可见的物体相当。
在SERS中,激光通过一个镜头聚焦到样品表面上,形成一个微小的光斑。
样品中的分子会振动,发出特定的光谱信号,这些信号会被聚焦
光和金属纳米颗粒共同增强,并通过光谱仪进行检测和分析。
由于SERS分析技术具有极高的灵敏度,可以检测到至少一个分子的存在,因此在药物分析、材料科学、生物学和环境监测等领域有着广泛的应用。
尽管SERS技术优越,但仍需要克服一些挑战。
例如,金属纳米颗粒的制备和表面化学修饰等方面的技术需要不断改进。
此外,SERS技术的实验条件对结果产生重要影响,例如选择激光波长、样品的吸附位置
和环境等,都会对结果产生重要的影响。
因此,为了获得准确的结果,
需要仔细考虑和控制每一个实验参数。
总之,SERS技术是一项非常有前途的分析技术,可以为很多领域提供准确和快速的分析方法。
尽管还需要进一步改进,但我相信未来的发展将使得SERS技术得到更广泛的应用。
表面增强拉曼光谱学SERS综述
For personal use only in study and research; not for commercial use《表面增强拉曼光谱学SERS 综述,简史,原理,实验,展望》本文回顾表面增强拉曼光谱学SERS,surface Enhanced Raman Scattering。
作者出身物理,主要关注器件和技术,尽可能简单平实,少用公式。
SERS结合灵敏的Raman谱,表面科学甚至电化学,是重要的灵敏特异检测技术。
目录1.简史2.定义3.理论3.1 电磁增强理论3.2 化学增强理论4 实验4.1 总的实验结构4.2 衬底制造4.3 谱的解读5 应用6 展望简史欲说SERS先说Raman谱,欲说Raman先说散射光散射的核心含义是散射中心,如微粒,吸收辐射并再次辐射电磁波的过程,据此定义,磷光和荧光都可视为散射。
传统的散射暗示了入射波的传播方向和散射光的方向有偏折,甚至完全反向,即背散射,实际上,受激散射的散射波的方向和入射波是一致的,受激性使然。
故散射的散只有历史意义了。
最早被系统研究的光散射当属Rayleigh散射,即散射中心尺度远远小于光波长的情况,其最重要的规律就是散射强度正比于频率四次方变化。
可见光谱中长波或曰红端频率低,其Rayleigh散射强度远比短波端弱,即著名的天空为何呈现蓝色的问题的答案。
之后Mie用电磁论系统的研究了光散射,解决了不同大小的各类规则散射体问题,至今仍然意义重大,常说的Mie散射其实不确切,Mie给出的是各类散射的解甚至包含了Rayleigh散射。
此外的Dyndall散射,临界乳光之类的光散射现象暂时省略。
在上述光散射中,散射波和入射波的频率相同,Stockes早前甚至提出所谓的Stokes定律:考虑能量守恒,散射波的波长不可能小于激发散射的光的波长。
考察诸如荧光,磷光等过程,此定律没错,但是Stokes定律的范围仅仅限于入射波和散射中心无动量,无能量交换的过程,即所谓的弹性散射。
表面增强拉曼光谱 (sers)
表面增强拉曼光谱 (sers)
表面增强拉曼光谱(SERS)是一种先进的分子光谱技术,它能够极大地增强拉曼散射信号,从而提供分子的独特“指纹”。
这使得SERS成为一种在许多领域中广泛应用的工具,包括化学、生物学、环境科学和医学。
在表面增强拉曼光谱中,样品被放置在特殊的增强表面上,这些表面通常是由纳米级粗糙度的金属(如金、银、铜)制成的。
当激光束照射在样品上时,拉曼散射光会被这些金属表面增强,产生强烈的信号。
这种增强的信号使得我们能够检测到单个分子,甚至单个原子。
表面增强拉曼光谱的优点在于其高灵敏度、高分辨率和高特异性。
它可以用来检测生物分子、有机物、无机物甚至是污染物的存在。
由于其独特的分子识别能力,SERS也被广泛应用于生物传感、药物检测和环境监测等领域。
然而,表面增强拉曼光谱也有一些局限性。
首先,它通常需要特殊的增强表面,这些表面的制备可能会比较复杂。
其次,SERS对实验条件(如激光波长、表面条件等)非常敏感,需要精确的控制。
最后,尽管SERS有很高的灵敏度,但它通常只能用于检测特定的分子或物质。
尽管如此,随着技术的不断进步,表面增强拉曼光谱的应用前景仍然十分广阔。
未来,随着更先进的光学技术和纳米制造技术的出现,SERS有望在更多领域中发挥重要作用。
总的来说,表面增强拉曼光谱是一种强大的技术,它使我们能够以前所未有的灵敏度和特异性来探测分子。
在未来,我们有理由期待它在科学研究和实际应用中的更多突破。
SERS表面增强拉曼散射效应解释与利用
SERS表面增强拉曼散射效应解释与利用引言:在现代科学技术的发展中,SERS(表面增强拉曼散射)效应作为一种非常重要的表征和分析方法,已经被广泛应用于生物医学、环境监测、食品安全等领域。
本文将对SERS效应进行详细解释,并介绍其在各个领域中的应用。
一、SERS效应的解释:1. 拉曼散射:拉曼散射效应是指光束在与物质相互作用之后发生频率的改变,从而产生散射光谱。
通过测量拉曼散射光谱,可以得到物质的结构和性质信息。
2. 表面增强拉曼散射效应:SERS效应是指在金属表面附近胶凝有待测分子时,分子的拉曼散射信号会被显著增强的现象。
这种增强效应的原因主要有两个方面:电磁增强和化学增强。
3. 电磁增强:金属纳米颗粒表面存在表面等离子体共振,当入射光与共振频率一致时,可以产生极强的电磁场。
待测分子与这个电磁场相互作用,导致拉曼信号的增强。
4. 化学增强:金属表面与待测分子之间发生化学吸附或化学反应,使得分子振动模式的偶极矩增大,从而增强了拉曼散射信号。
这种效应依赖于金属表面的活性。
二、SERS效应的特点:1. 极高的灵敏度:由于SERS效应可以增强原本微弱的拉曼散射信号,因此可以检测到非常低浓度的待测物质,甚至在单分子水平上进行分析。
2. 高分辨率和特异性:SERS技术可以提供非常详细的结构信息,对于复杂的样品也能够实现特异性分析,从而提高了分析结果的可靠性和准确性。
3. 非破坏性:SERS技术基于光波与待测分子之间的相互作用,不需要对样品进行破坏性的处理,可以对生物样品进行原位、实时、无损的分析。
三、SERS效应在生物医学中的应用:1. 癌症早期诊断:SERS技术结合特定靶向分子,可以实现对癌症早期信号分子的检测,从而实现早期诊断和治疗。
2. 药物传输和释放:利用SERS技术可以实现对药物的定量测量和释放过程的监测,为药物研发和治疗提供重要的信息。
3. 细胞成像和分析:SERS技术能够提供细胞内部结构的高分辨率成像,以及对细胞代谢等生物过程的分析,助力生物学研究和医学诊断。
表面增强拉曼光谱优缺点
表面增强拉曼光谱优缺点表面增强拉曼光谱(Surface-enhanced Raman spectroscopy,SERS)是一种获得高灵敏度和分辨率的光谱技术,因其在众多领域得到广泛应用。
在SERS技术中,金属纳米颗粒作为表面增强剂,将分子接触到它们的表面,这种表面增强效应可使得光谱信号放大至10^15级别,从而获得高灵敏度和分辨率。
本文将探讨SERS技术的优缺点。
1. 优点1.1 高灵敏度SERS技术的最显著特点是其高灵敏度,其所能检测的样品数量可以达到纳摩尔级别。
此外,SERS技术在分析样品时仅需要非常小的样品体积,这对于微观分析非常有利。
1.2 非破坏性相对于其他光谱技术,SERS技术可以在非破坏性的情况下快速分析样品。
由于金属纳米颗粒的表面作为表面增强剂,样品无需反应或破坏,因此可以避免样品中的化学变化和分解,保留原有的化学状况。
1.3 快速性SERS技术在样品分析速度上表现出非常优异的性能。
由于技术的高灵敏度和非破坏性,样品的分析几乎可以立即完成。
1.4 可定量SERS技术可以定量地检测样品中的分子浓度,因为它能够在准确计算光谱信号的基础上产生非常具体的数据。
2. 缺点2.1 稳定性金属纳米颗粒的表面作为表面增强剂的稳定性会影响SERS技术的分析结果。
因为纳米颗粒表面比较容易被污染或氧化,所以在使用SERS技术时,必须采取适当的保护措施。
2.2 选择性SERS技术检测样品分子的能力是具有一定选择性的,这些分子需要具有高振动频率以完成清晰的检测。
也就是说,在检测时不能应用于较低振动频率的分子。
2.3 大量金属颗粒的加入将大量金属颗粒加入样品中是SERS技术的一个主要缺陷。
这种情况下,金属颗粒本身和可能与样品中其他成分相互作用,这些成分之间的干扰会影响SERS技术的精度。
3. 结论总的来说,SERS技术的优点要远大于它的缺点。
但是,在应用这种技术时,我们必须清楚地认识到其一些缺陷,同时寻求解决办法。
表面增强拉曼光谱和针尖增强拉曼光谱
文章标题:探讨表面增强拉曼光谱和针尖增强拉曼光谱一、引言表面增强拉曼光谱(surface-enhanced Raman spectroscopy,SERS)和针尖增强拉曼光谱(tip-enhanced Raman spectroscopy,TERS)是近年来在纳米科学和光谱学领域备受关注的研究热点。
它们以其在表面增强效应和高灵敏度方面的独特优势,为材料表征和生物医药等领域带来了许多新的可能性和机遇。
二、表面增强拉曼光谱(SERS)1. 表面增强效应表面增强拉曼光谱是在粗糙表面或纳米结构表面上实现的拉曼光谱的增强效应。
这种增强效应主要源于局部表面等离激元的激发,即激发表面等离激元的共振增强效应和局部电场增强效应。
通过这种表面增强效应,SERS可以实现对分子的极其敏感的检测和强大的增强效果。
2. 应用领域SERS在化学、生物医药、材料科学等领域具有广泛的应用价值。
在药物分析、环境监测、生物分子检测等方面,SERS都展现出了极高的灵敏度和选择性,成为研究人员的重要工具之一。
三、针尖增强拉曼光谱(TERS)1. 针尖增强效应针尖增强拉曼光谱利用金属探针尖的局部电磁场增强效应,实现了单分子级别的探测和纳米尺度的空间分辨。
相比传统的SERS,TERS更加侧重于单分子的检测和纳米尺度的空间分辨。
2. 技术发展随着纳米技术和扫描探针显微镜技术的发展,TERS在纳米材料表征、生物分子探测等领域展现出了巨大的潜力。
其高分辨率、高灵敏度的特点吸引了越来越多的研究者投入到TERS的研究中。
四、个人观点在当今科学研究的浪潮中,SERS和TERS作为光谱学的新兴技术,拥有着巨大的发展潜力和广阔的应用前景。
从表面增强效应到针尖增强效应,这些技术在分子检测、纳米材料表征等方面都有着独特的优势,将为材料科学、生命科学等领域带来革命性的变革。
五、总结与展望SERS和TERS作为表面增强拉曼光谱的两大分支,在其应用和技术发展方面都展现出了极大的潜力。
拉曼光谱的表面增强效应(sers)
拉曼光谱的表面增强效应(sers)拉曼光谱是一种用来测定物质分子振动和转动的非常重要的技术方法。
它能够提供准确的分子信息,对于物质的性质和结构研究具有重要的作用。
然而,拉曼光谱的应用还有很多限制,其中一个重要的问题就是灵敏度不足。
当物质浓度或样品量不足时,拉曼光谱的信号强度也会降低,难以获得准确的分析结果。
为了克服这一问题,科学家们开发出了一种叫做表面增强拉曼光谱(SERS)的技术。
SERS是指在金属表面上,分子吸附在金属颗粒表面时,由于金属自身的表面等离子体激元共振效应,导致分子的振动模式强烈放大,从而提高拉曼信号。
相比于普通的拉曼光谱技术,SERS技术具有更高的灵敏度和分辨率,可以用来探测非常微小的物质样品,从而拓展了化学和生物学研究的范围。
SERS技术的原理是基于金属表面等离子体激元共振(SPR)效应的。
当金属表面受到激光照射时,金属中的自由电子被激发进入高能态,形成自由振荡电子云。
这些电子云构成了一个表面等离子体波,其频率会随着金属的类型、形状和大小而变化。
当分子与金属表面接触时,分子的振动模式将和金属表面的表面等离子体波相互作用,共振增强了分子的拉曼信号。
这种效应可以显著提高分子信号的强度,使得分析更加准确和灵敏。
SERS技术的发展对于化学和生物学研究有非常广泛的应用。
SERS可以用来探测单分子的生物分子,如脱氧核糖核酸(DNA)、核糖核酸(RNA)、氨基酸和蛋白质等。
通过给分子标记一个金属或加入金属纳米颗粒,就可以将分子测量的灵敏度提高到非常低的浓度。
此外,SERS技术还可用于材料科学、环境监测、食品安全和疾病诊断等领域。
SERS技术的应用和研究已经涉及了许多领域,从基础研究到工业应用都有着广泛的应用空间。
例如,SERS已经广泛应用于纳米催化、表面增强拉曼光谱成像、Surface Enhanced Fluorescence(SEF)成像、生物传感器制备等众多领域,还在食品安全检测,污染物检测等环境检测中得到了应用。
sers表面增强拉曼光谱定义
近年来,随着科学技术的不断发展,sers表面增强拉曼光谱在材料科学、化学分析和生物医学领域等方面已经得到了广泛的应用。
SERS是表面增强拉曼散射的缩写,它利用纳米结构表面对激光的拉曼散射进行增强,从而可以检测到非常微弱的拉曼信号,使其具有极高的灵敏度和选择性。
一、SERS表面增强拉曼光谱的定义在SERS技术中,当分子吸附在具有纳米结构的金、银等金属表面上时,激光的局域电磁场能够增强分子的拉曼散射信号,从而实现对分子的高灵敏度检测。
SERS表面增强拉曼光谱,即通过SERS技术获取的拉曼光谱信息,可以提供样品的化学成分、结构等信息,具有非常重要的应用价值。
在实际应用中,SERS表面增强拉曼光谱在化学分析、材料表征、生物医学等领域都有着广泛的应用。
在化学分析中,SERS可以用于检测微量的有机分子、药物、毒品等化合物;在材料表征中,SERS可以用于研究纳米材料的结构、性质等;在生物医学中,SERS可以用于细胞成分的检测、肿瘤标记物的诊断等。
二、个人理解和观点对于SERS表面增强拉曼光谱,我个人认为它具有非常重要的科学意义和应用前景。
SERS技术的灵敏度和选择性都非常高,可以用于检测微量的分子,对于环境监测、食品安全等方面具有重要意义。
SERS技术还可以用于研究纳米材料的结构和性质,这对于材料科学领域的发展也具有非常重要的意义。
SERS在生物医学领域的应用也非常广泛,可以用于细胞成分的检测、肿瘤标记物的诊断等,可以为生物医学研究提供重要的信息。
SERS表面增强拉曼光谱作为一种新型的光谱技术,在多个领域都具有着重要的应用价值。
随着科学技术的不断进步,相信SERS技术将会在更多的领域展现出其重要作用,为人类的科学研究和生产生活带来更多的便利和突破。
SERS表面增强拉曼光谱在近年来得到了广泛的关注和应用,其在材料科学、化学分析和生物医学领域等方面的重要性逐渐凸显。
随着科学技术的不断发展,SERS技术被广泛应用于不同领域,取得了许多重要的进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Surface-enhanced Raman spectroscopyFrom Wikipedia, the free encyclopedia(Redirected from Surface-enhanced Raman scattering)Raman spectrum of liquid 2-mercaptoethanol (below) and SERS spectrum of 2-mercaptoethanol monolayer formed on roughened silver (above). Spectra are scaled and shifted for clarity. A difference in selection rules is visible: Some bands appear only in the bulk-phase Raman spectrum or only in the SERS spectrum.Surface-enhanced Raman spectroscopy or surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Ramanscattering by molecules adsorbed on rough metal surfaces or by nanostructures such as plasmonic-magnetic silica nanotubes.[1] The enhancement factor can be as much as 1010 to 1011,[2][3] which means the technique may detect single molecules.[4][5]Contents[hide]•1History•2Mechanismso 2.1Electromagnetic theoryo 2.2Chemical theory•3Surfaces•4Applicationso 4.1Oligonucleotide targeting•5Selection rules•6ReferencesHistory[edit]SERS from pyridine adsorbed on electrochemically roughened silver was first observed by Martin Fleischmann, Patrick J. Hendra and A. James McQuillan at the Department of Chemistry at the University of Southampton, Southampton, UK in 1973.[6] This initial publication has been cited over 4000 times. The 40th Anniversary of the first observation of the SERS effect has been marked by the Royal Society of Chemistry by the award of a National Chemical Landmark plaque to the University of Southampton. In 1977, two groups independently noted that the concentration of scattering species could not account for the enhanced signal and each proposed a mechanism for the observed enhancement. Their theories are still accepted as explaining the SERS effect. Jeanmaire and Van Duyne[7] proposed an electromagnetic effect, while Albrecht and Creighton[8] proposed a charge-transfer effect. Rufus Ritchie, of Oak Ridge National Laboratory's Health Sciences Research Division, predicted the existence of the surface plasmon.[9]Mechanisms[edit]The exact mechanism of the enhancement effect of SERS is still a matter of debate in the literature. There are two primary theories and while their mechanisms differ substantially, distinguishing them experimentally has not been straightforward.The electromagnetic theory proposes the excitation of localized surface plasmons, while the chemical theory proposes the formation of charge-transfer complexes. The chemical theory applies only for species that have formed a chemical bond with the surface, so it cannot explain the observed signal enhancement in all cases, whereas the electromagnetic theory can apply even in those cases where the specimenis physisorbed only to the surface. It has been shown recently that SERS enhancement can occur even when an excited molecule is relatively far apart from the surface which hosts metallic nanoparticles enabling surface plasmon phenomena.[10] This observation provides a strong support for the electromagnetic theory of SERS. Research in 2015 on a more powerful extension of the SERS technique called SLIPSERS (SlipperyLiquid-Infused Porous SERS)[11] has further supported the EM theory.[12] Electromagnetic theory[edit]The increase in intensity of the Raman signal for adsorbates on particular surfaces occurs because of an enhancement in the electric field provided by the surface. When the incident light in the experiment strikes the surface, localized surface plasmons are excited. The field enhancement is greatest when the plasmon frequency, ωp, is in resonance with the radiation. In order for scattering to occur, the plasmon oscillations must be perpendicular to the surface; if they are in-plane with the surface, no scattering will occur. It is because of this requirement that roughened surfaces or arrangementsof nanoparticles are typically employed in SERS experiments as these surfaces provide an area on which these localized collective oscillations can occur.[13]The light incident on the surface can excite a variety of phenomena in the surface, yet the complexity of this situation can be minimized by surfaces with features much smaller thanthe wavelength of the light, as only the dipolar contribution will be recognized by the system. The dipolar term contributes to the plasmon oscillations, which leads to the enhancement. The SERS effect is so pronounced because the field enhancement occurs twice. First, the field enhancement magnifies the intensity of incident light, which will excite the Raman modes of the molecule being studied, therefore increasing the signal of the Raman scattering. The Raman signal is then further magnified by the surface due to the same mechanism that excited the incident light, resulting in a greater increase in the total output. At each stage the electric field is enhanced as E2, for a total enhancement of E4.[14]The enhancement is not equal for all frequencies. For those frequencies for which the Raman signal is only slightly shifted from the incident light, both the incident laser light and the Raman signal can be near resonance with the plasmon frequency, leading to the E4 enhancement. When the frequency shift is large, the incident light and the Raman signal cannot both be on resonance with ωp, thus the enhancement at both stages cannot be maximal.[15]The choice of surface metal is also dictated by the plasmon resonancefrequency. Visible and near-infrared radiation (NIR) are used to excite Ramanmodes. Silver and gold are typical metals for SERS experiments because their plasmon resonance frequencies fall within these wavelength ranges, providing maximal enhancement for visible and NIR light. Copper's absorption spectrum also falls within the range acceptable for SERS experiments.[16] Platinum and palladium nanostructures also display plasmon resonance within visible and NIR frequencies.[17]Chemical theory[edit]While the electromagnetic theory of enhancement can be applied regardless of the molecule being studied, it does not fully explain the magnitude of the enhancement observed in many systems. For many molecules, often those with a lone pair of electrons, in which the molecules can bond to the surface, a different enhancement mechanism that does not involve surface plasmons has been described. This chemical mechanism involves charge transfer between the chemisorbed species and the metal surface. The chemical mechanism only applies in specific cases and probably occurs in concert with the electromagnetic mechanism.[18][19]The HOMO to LUMO transition for many molecules requires much more energy than the infrared or visible light typically involved in Raman experiments. When the HOMO and LUMO of the adsorbate fall symmetrically about the Fermi level of the metal surface, light of half the energy can be employed to make the transition, where the metal acts as a charge-transfer intermediate.[18] Thus a spectroscopic transition that might normally take place in the UV can be excited by visible light.[15]Surfaces[edit]While SERS can be performed in colloidal solutions, today the most common method for performing SERS measurements is by depositing a liquid sample onto a silicon or glasssurface with a nanostructured noble metal surface. While the first experiments were performed on electrochemically roughened silver,[20] now surfaces are often prepared using a distribution of metal nanoparticles on the surface[21] as well as usinglithography[22] or porous silicon as a support.[23][24]Applying a thin film of silver onto wafers of silicon, through a day-long immersion in a saturated solution of silver nitrate in n-octanol, is a widely accepted method to prepare a surface-enhanced Raman scattering substrate.[25] The most common metals used for plasmonic surfaces are silver and gold, however aluminum has recently been explored as an alternative plasmonic material, because its plasmon band is in the UV region, contrary to silver and gold.[26] Hence, there is great interest in using aluminum for UV SERS. It has, however, surprisingly also been shown to have a large enhancement in the infrared, which is not fully understood.[27] In the current decade, it has been recognized that the cost of SERS substrates must be reduced in order to become a commonly used analytical chemistry measurement technique.[28] To meet this need, plasmonic paper has experienced widespread attention in the field, with highly sensitive SERS substrates being formed through approaches such assoaking,[29][30][31] in-situ synthesis,[32][33] screen printing[34] and inkjet printing.[35][36][37]The shape and size of the metal nanoparticles strongly affect the strength of the enhancement because these factors influence the ratio of absorption and scattering events.[38][39] There is an ideal size for these particles, and an ideal surface thickness for each experiment.[40] Particles that are too large allow the excitation of multipoles, which are nonradiative. As only the dipole transition leads to Raman scattering, the higher-order transitions will cause a decrease in the overall efficiency of the enhancement. Particles that are too small lose their electrical conductance and cannot enhance the field. When the particle size approaches a few atoms, the definition of a plasmon does not hold, as there must be a large collection of electrons to oscillate together.[14] An ideal SERS substrate must possess high uniformity and high field enhancement. Such substrates can be fabricated on a wafer scale and label-free superresolution microscopy has also been demonstrated using the fluctuations of surface enhanced Raman scattering signal on such highly uniform, high-performance plasmonic metasurfaces. [41]Applications[edit]SERS substrates prepared with silver nano rods are used to detect the presence of low abundance biomolecules, and can therefore detect proteins in body fluids.[42][43][44] This technology has been utilized to detect urea and blood plasma label free in human serum and may become the next generation in cancer detection and screening.[43][44] The ability to analyze the composition of a mixture on the nano scale makes the use of SERS substrates beneficial for environmental analysis, pharmaceuticals, material sciences, art and archeological research, forensic science, drug and explosives detection, food quality analysis, and single algal cell detection.[45][46][47] SERS combined with plasmonic sensing can be used for high-sensitivity and quantitative detection of biomolecular interaction.[48]Oligonucleotide targeting[edit]SERS can be used to target specific DNA and RNA sequences using a combination of gold and silver nanoparticles and Raman-active dyes, such as Cy3. Specific single nucleotide polymorphisms (SNP) can be identified using this technique. The gold nanoparticles facilitate the formation of a silver coating on the dye-labeled regions of DNA or RNA, allowing SERS to be performed. This has several potential applications: For example, Cao et al. report that gene sequences for HIV, Ebola, Hepatitis, and Bacillus Anthracis can be uniquely identified using this technique. Each spectrum was specific, which is advantageous over fluorescence detection; some fluorescent markers overlap and interfere with other gene markers. The advantage of this technique to identify gene sequences is that several Raman dyes are commercially available, which could lead to the development of non-overlapping probes for gene detection.[49]Selection rules[edit]The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present. Additional modes not found in the traditional Raman spectrum can be present in the SERS spectrum, while other modes can disappear. The modes observed in any spectroscopic experiment are dictated by the symmetry of the molecules and are usually summarized by selection rules. When molecules are adsorbed to a surface, the symmetry of the system can change, slightly modifying the symmetry of the molecule, which can lead to differences in mode selection.[50]One common way in which selection rules are modified arises from the fact that many molecules that have a center of symmetry lose that feature when adsorbed to a surface. The loss of a center of symmetry eliminates the requirements of the mutual exclusion rule, which dictates that modes can only be either Raman or Infrared active. Thus modes that would normally appear only in the infrared spectrum of the free molecule can appear in the SERS spectrum.[13]A molecule's symmetry can be changed in different ways depending on the orientation in which the molecule is attached to the surface. In some experiments, it is possible to determine the orientation of adsorption to the surface from the SERS spectrum, as different modes will be present depending on how the symmetry is modified.[51]References[edit]1. Jump up^ Xu, X., Li, H., Hasan, D., Ruoff, R. S., Wang, A. X. and Fan, D. L. (2013), Near-Field EnhancedPlasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Adv. Funct.Mater.. doi:10.1002/adfm.2012038222. Jump up^Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. (2009). "Single-Molecule Surface-EnhancedRaman Spectroscopy of Nonresonant Molecules". J. Am. Chem. Soc.131 (40):14466–14472. doi:10.1021/ja905319w.PMID19807188.3. Jump up^Blackie, Evan J.; Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. (2007). "Surface EnhancedRaman Scattering Enhancement Factors: A Comprehensive Study". J. Phys. Chem. C. 111 (37):13794–13803.doi:10.1021/jp0687908.4. Jump up^Nie, S; Emory, SR (1997). "Probing Single Molecules and Single Nanoparticles by Surface-EnhancedRaman Scattering". Science. 275 (5303): 1102–6.doi:10.1126/science.275.5303.1102. PMID9027306.5. Jump up^Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. (2006). "Proof of Single-Molecule Sensitivity inSurface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique". J. Phys. Chem. B. 110 (4): 1944–1948.doi:10.1021/jp054732v. PMID16471765.6. Jump up^Fleischmann, M.; PJ Hendra & AJ McQuillan (15 May 1974). "Raman Spectra of Pyridine Adsorbed ata Silver Electrode". Chemical Physics Letters. 26 (2):163–166.Bibcode:1974CPL....26..163F. doi:10.1016/0009-2614(74)85388-1.7. Jump up^Jeanmaire, David L.; Richard P. van Duyne (1977). "Surface Raman Electrochemistry Part I.Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode". Journal ofElectroanalytical Chemistry.84: 1–20. doi:10.1016/S0022-0728(77)80224-6.8. Jump up^Albrecht, M. Grant; J. Alan Creighton (1977). "Anomalously Intense Raman Spectra of Pyridine at aSilver Electrode". Journal of the American Chemical Society. 99(15): 5215–5217. doi:10.1021/ja00457a071.9. Jump up^"Technical Highlights. New Probe Detects Trace Pollutants in Groundwater". Oak Ridge NationalLaboratory Review. 26 (2).10. Jump up^Kukushkin, V. I.; Van’kov, A. B.; Kukushkin, I. V. (2013). "Long-range manifestation ofsurface-enhanced Raman scattering". JETP Letters. 98 (2):64–69.doi:10.1134/S0021364013150113. ISSN0021-3640.11. Jump up^/content/early/2015/12/29/151898011312. Jumpup^/single-molecule-detection-of-contaminants-explosives-or-diseases-now-possible 13. ^ Jump up to:a b Smith, E.; Dent, G., Modern Raman Spectroscopy: A Practical Approach. John Wiley and Sons:2005 ISBN 0-471-49794-014. ^ Jump up to:a b Moskovits, M., Surface-Enhanced Raman Spectroscopy: a Brief Perspective. InSurface-Enhanced Raman Scattering – Physics and Applications, 2006; pp. 1–18ISBN 3-540-33566-815. ^ Jump up to:a b Campion, Alan; Kambhampati, Patanjali (1998). "Surface-enhanced Raman scattering". ChemicalSociety Reviews. 27 (4): 241. doi:10.1039/A827241Z.16. Jump up^Creighton, J. Alan; Eadon, Desmond G. (1991). "Ultraviolet?visible absorption spectra of the colloidalmetallic elements". Journal of the Chemical Society, Faraday Transactions. 87 (24):3881.doi:10.1039/FT9918703881.17. Jump up^Langhammer, Christoph; Yuan, Zhe; Zorić, Igor; Kasemo, Bengt (2006). "Plasmonic Properties ofSupported Pt and Pd Nanostructures". Nano Letters. 6 (4):833–838.Bibcode:2006NanoL...6..833L. doi:10.1021/nl060219x.PMID16608293.18. ^ Jump up to:a b Lombardi, John R.; Birke, Ronald L.; Lu, Tianhong; Xu, Jia (1986). "Charge-transfer theory ofsurface enhanced Raman spectroscopy: Herzberg–Teller contributions". The Journal of Chemical Physics. 84 (8): 4174. Bibcode:1986JChPh..84.4174L.doi:10.1063/1.450037.19. Jump up^Lombardi, J.R.; Birke, R.L. (2008). "A Unified Approach to Surface-Enhanced RamanSpectroscopy". Journal of Physical Chemistry C. 112 (14): 5605–5617.doi:10.1021/jp800167v.20. Jump up^Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. (1974). "Raman spectra of pyridine adsorbed at a silverelectrode". Chemical Physics Letters. 26 (2):163–166.Bibcode:1974CPL....26..163F. doi:10.1016/0009-2614(74)85388-1.21. Jump up^Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. (2002). "Shape effects in plasmonresonance of individual colloidal silver nanoparticles". The Journal of Chemical Physics. 116 (15):6755.Bibcode:2002JChPh.116.6755M. doi:10.1063/1.1462610.22. Jump up^Witlicki, Edward H.; et al. (2011). "Molecular Logic Gates Using Surface-Enhanced Raman-ScatteredLight". J. Am. Chem. Soc.133 (19): 7288–7291.doi:10.1021/ja200992x.23. Jump up^Lin, Haohao; Mock, Jack; Smith, David; Gao, Ting; Sailor, Michael J. (August 2004)."Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon". The Journal of Physical ChemistryB. 108 (31): 11654–11659.doi:10.1021/jp049008b.24. Jump up^Talian, Ivan; Mogensen, Klaus Bo; Oriňák, Andrej; Kaniansky, Dušan; Hübner, Jörg (August 2009)."Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces". Journal ofRaman Spectroscopy.40 (8): 982–986. doi:10.1002/jrs.2213.25. Jump up^Shrestha, LK; Wi JS; Williams J; Akada M; Ariga K (March 2014). "Facile fabrication of silvernanoclusters as promising surface-enhanced Raman scattering substrates".Journal of Nanoscience andNanotechnology. 14 (3): 2245–51. doi:10.1166/jnn.2014.8538. PMID24745219.26. Jump up^Dörfer, Thomas; Schmitt, Michael; Popp, Jürgen (November 2007). "Deep-UV surface-enhancedRaman scattering".Journal of Raman Spectroscopy. 38 (11): 1379–1382.doi:10.1002/jrs.1831.27. Jump up^Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina; Kadkhodazadeh, Shima; Wagner, Jakob B.;Espina Palanco, Marta; Kneipp, Harald; Kneipp, Katrin (2014). "Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation". Chemical Communications. 50 (28): 3744. doi:10.1039/c4cc00010b. 28. Jump up^Hoppmann, Eric P.; Yu, Wei W.; White, Ian M. (2014)."Inkjet-Printed Fluidic Paper Devices forChemical and Biological Analytics Using Surface Enhanced Raman spectroscopy"(PDF). IEEE. IEEE. 20 (3): 195–204.doi:10.1109/jstqe.2013.2286076.29. Jump up^Lee, Chang H.; Tian, Limei; Singamaneni, Srikanth (2010). "Paper-Based SERS". ACS. AmericanChemical Society. 2 (12): 3429–3435. doi:10.1021/am1009875. Retrieved 2015-01-16.30. Jump up^Ngo, Ying Hui; Li, Dan; Simon, George P.; Garnier, Gil (2012). "Gold Nanoparticle". Langmuir.American Chemical Society. 28 (23): 8782–8790. doi:10.1021/la3012734. Retrieved 2015-01-16.31. Jump up^Ngo, Ying Hui; Li, Dan; Simon, George P.; Garnier, Gil (2013). "Effect of cationic polyacrylamides onthe aggregation and SERS". Journal of Colloid and Interface Science. Elsevier. 392:237–246.doi:10.1016/j.jcis.2012.09.080.32. Jump up^Laserna, J. J.; Campiglia, A. D.; Winefordner, J. D. (1989). "Mixture analysis and quantitativedetermination of nitrogen-containing organic molecules by surface-enhanced Raman spectrometry". Anal. Chem.American Chemical Society. 61 (15): 1697–1701.doi:10.1021/ac00190a022.33. Jump up^Chang, Yung; Yandi, Wetra; Chen, Wen-Yih; Shih, Yu-Ju; Yang, Chang-Chung; Chang, Yu; Ling,Qing-Dong; Higuchi, Akon (2010). "Tunable Bioadhesive Copolymer Hydrogels of Thermoresponsive Poly( N -isopropyl acrylamide) Containing Zwitterionic Polysulfobetaine". Biomacromolecules. American ChemicalSociety. 11 (4): 1101–1110.doi:10.1021/bm100093g.34. Jump up^Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S.; Long, Yi-Tao(2012-02-07). "Batch fabrication of disposable screen printed SERS arrays".Lab Chip. 12 (5):876–881. doi:10.1039/C2LC20926H.ISSN1473-0189.35. Jump up^Yu, Wei W.; White, Ian M. (2013). "Inkjet-printed paper-based SERS". Analyst. Royal Society ofChemistry. 138(4): 1020. doi:10.1039/c2an36116g.36. Jump up^Hoppmann, Eric P.; Yu, Wei W.; White, Ian M. (2013)."Highly sensitive and flexible inkjet printedSERS"(PDF). Methods. Elsevier. 63 (3): 219–224.doi:10.1016/j.ymeth.2013.07.010.37. Jump up^Fierro-Mercado, Pedro M.; Hern, Samuel P. (2012)."Highly Sensitive Filter Paper Substrate forSERS".International Journal of Spectroscopy. Hindawi Publishing Corporation. 2012:1–7. doi:10.1155/2012/716527.38. Jump up^H. Lu; Zhang, Haixi; Yu, Xia; Zeng, Shuwen; Yong, Ken-Tye; Ho, Ho-Pui (2011). "Seed-mediatedPlasmon-driven Regrowth of Silver Nanodecahedrons (NDs)"(PDF).Plasmonics. 7 (1):167–173. doi:10.1007/s11468-011-9290-8.39. Jump up^ Aroca, R., Surface-enhanced Vibrational Spectroscopy. John Wiley & Sons (2006) ISBN0-471-60731-240. Jump up^Bao, Li-Li; Mahurin, Shannon M.; Liang, Cheng-Du; Dai, Sheng (2003). "Study of silver films over silicabeads as a surface-enhanced Raman scattering (SERS) substrate for detection of benzoic acid". Journal of Raman Spectroscopy.34 (5): 394–398. Bibcode:2003JRSp...34..394B.doi:10.1002/jrs.993.41. Jump up^Ayas, S. (2013). "Label-Free Nanometer-Resolution Imaging of Biological Architectures throughSurface Enhanced Raman Scattering". Scientific Reports. 3: 2624.doi:10.1038/srep02624.doi:10.1038/srep02624 42. Jump up^Yang, J; et al. (May 2013). "Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay onAptamer-Functionalized Nanopillars Using Large-Area Raman Mapping"(PDF). ACS Nano. 7 (6):5350–5359.doi:10.1021/nn401199k.43. ^ Jump up to:a b Han, YA; Ju J; Yoon Y; Kim SM (May 2014)."Fabrication of cost-effective surface enhancedRaman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid". Journal of Nanoscience and Nanotechnology. 14 (5): 3797–9.doi:10.1166/jnn.2014.8184. PMID24734638.44. ^ Jump up to:a b Li, D; Feng S; Huang H; Chen W; Shi H; Liu N; Chen L; Chen W; Yu Y; Chen R (March2014). "Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Ramanspectroscopy for esophageal cancer screening". Journal of Nanoscience and Nanotechnology.10 (3):478–84. doi:10.1166/jbn.2014.1750.PMID24730243.45. Jump up^Deng, Y; Juang Y (March 2014). "Black silicon SERS substrate: Effect of surface morphology on SERSdetection and application of single algal cell analysis".Biosensors and Bioelectronics. 53:37–42.doi:10.1016/j.bios.2013.09.032.46. Jump up^Hoppmann, Eric; et al. (2013). Trace detection overcoming the cost and usability limitations oftraditional SERS technology(PDF) (Technical report). Diagnostic anSERS.line feed characterin |title= at position 50 (help)47. Jump up^Wackerbarth H; Salb C; Gundrum L; Niederkrüger M; Christou K; Beushausen V; Viöl W(2010). "Detection of explosives based on surface-enhanced Raman spectroscopy". Applied Optics. 49 (23): 4362–4366.doi:10.1364/AO.49.004362.48. Jump up^Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu,Logan (2016)."Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer". Nanoscale. 8: 6162–6172.doi:10.1039/C5NR08357E.49. Jump up^Cao, Y. C.; Jin, R; Mirkin, CA (2002). "Nanoparticles with Raman Spectroscopic Fingerprints for DNAand RNA Detection". Science. 297 (5586):1536–1540.Bibcode:2002Sci...297.1536C.doi:10.1126/science.297.5586.1536. PMID12202825.50. Jump up^Moskovits, M.; Suh, J. S. (1984). "Surface selection rules for surface-enhanced Raman spectroscopy:calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver". The Journal of Physical Chemistry. 88 (23): 5526–5530.doi:10.1021/j150667a013.51. Jump up^Brolo, A.G.; Jiang, Z.; Irish, D.E. (2003). "The orientation of 2,2′-bipyridine adsorbed at a SERS-activeAu(111) electrode surface"(PDF). Journal of Electroanalytical Chemistry. 547 (2):163–172.doi:10.1016/S0022-0728(03)00215-8.。