安徽省合肥一中省级名校大联考2016-2017学年高一上学期期末试卷 - 数学(扫描版)
安徽省合肥市第一中学等省级名校2016-2017学年高二英语上学期期末大联考试题(PDF)
合肥一中2016-2017学年上学期省级名校大联考高二英语试卷时长:120分钟分值:150分命题人:王康审题人:陈媛芳第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Who will the man call?A.His wife.B.His boss.C.A taxi driver.2.What does the man suggest the woman do?A.Wait on the phone.B.Order the pizza online.C.Drive to the pizza place.3.What does the woman want to do?A.Make some coffee.B.Buy a coffee maker.C.Learn to make a video.4.What will the man do at3o’clock on Friday?A.Go to a class.B.Meet the doctor.C.Take the woman’s shift.5.What does the man think of the lecture?A.Excellent.B.Difficult.C.Boring.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第下面一段材料,回答第6至7题。
6.Who will send the file?A.Sam.B.Carol.C.Lucy.7.Where is the woman?A.At the airport.B.In the office.C.On the trip.听第下面一段材料,回答第8至10题。
安徽省合肥一中省级名校大联考2016-2017学年高一上学期期末试卷 - 政治(扫描版)
合肥一中2016-2017学年第一学期高一年级期末考试
政治试卷答案
1-5:DCDBB 6-10:BDDCC 11-15:BCCCC 16-20:BDBBB
21.(1)(13分)
①根本途径:大力发展经济,创造更多的就业机会。
(3分)
②政府要实施就业优先战略和积极的就业政策,加强引导,完善市场就业机制,构建有利于劳动者成才的环境,调动劳动者的积极性和创造性。
(4分)
③劳动者要转变就业观念,树立正确的择业观,即树立自主择业观、树立竞争就业观、树立职业平等观、树立多种方式就业观。
(4分)要不断提高自己的职业技能与素质,增强就业的竞争力,多渠道就业。
(2分)
22.(12分)
①高中小微企业税收起征点,运用财政政策进行调控,体现了运用经济手段加强调控。
(4分)
②法严厉打击非法集资、高利贷等违法行为,体现了运用法律手段进行调控。
(4分)
③责令停止和限期改正“两高”企业,体现了运用行政手段进行调控。
(4分)
23.(15分)
①国家财政是促进社会公平、改善人民生活的物质保障。
加大社会保障的支持力度,要更好发挥社会保障的社会稳定器作用,把重点放在兜底上,保障群众基本生活,保障基本公共服务等说明了这一点。
(5分)
②国家财政具有促进资源合理配置的作用。
财政增加对“三农”、节能环保等方面和中西部地区支持力度说明了这一点。
(5分)
③国家财政具有促进国民经济平稳运行的作用。
实施积极的财政和稳健的货币政策, 实行结构性减税,优化财政支出结构,有利于经济平稳运行。
(5分)(非选择题答案仅供参考,言之有理即可)。
2016-2017学年安徽省合肥市第一中学高一上学期期中考试数学试题
2016-2017学年安徽省合肥市第一中学高一上学期期中考试数学试题数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简3423(5)⎡⎤-⎣⎦=( )A .5B .5-C .5-D .5-2.已知函数()f x 的定义域为[]2,1-,函数(1)()21f xg x x -=+,则()g x 的定义域为( ) A .1(,2]2-B .(1,)-+∞C .1(,0)(0,2)2-D .1(,2)2- 3.函数ln ||()||x x f x x =的图象可能是( )4.已知0.6log 0.5a =,ln 0.5b =,0.50.6c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>5.已知(31)4,1,()log ,1aa x a x f x x x -+<⎧=⎨≥⎩对任意两个不相等实数a ,b ,总有[]()()()0a b f a f b --<成立,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)76.若函数(1)f x -是定义在R 上的偶函数,()f x 在(,1]-∞-上是减函数,且(1)0f =,则使得()0f x <的x 的取值范围是( )A .(,1)-∞B .(1,)+∞C .(,3)(1,)-∞-+∞D .(3,1)-7.已知函数22,1,()22,1,x x f x x x -⎧≤=⎨+>-⎩则满足()2f a ≥的实数a 的取值范围是( )A .(,2)(0,)-∞-+∞B .()1,0)-C .(2,0)-D .(,1][0,)-∞-+∞8.已知函数2()|log |f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m ,n 的值分别为( ) A .12,4 B .12,2 C .22,2 D .14,4 9.若不等式23log 0a x x -<对任意1(0,)3x ∈恒成立,则实数a 的取值范围为 () A .1[,1)27B .1(,1)27C .1(0,)27D .1(0,]2710.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >11.已知函数()f x x e a =+,2()42g x x x =--+,设函数(),()(),()(),()(),f x f x g x h x g x f x g x ≤⎧=⎨>⎩若函数()h x 的最大值为2,则a =( ) A .0B .1C .2D .312.对于函数()f x ,若在定义域内存在实数x ,满足()()f x f x -=,称()f x 为“局部奇函数”,若12()423x x f x m m +=-⋅+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是( ) A .1313m -≤≤+ B .1322m -≤≤ C .2222m -≤≤D .2213m -≤≤-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数||(1)y x x =-的单调递增区间为 .14.已知一个扇形的圆心角60α=︒,6R cm =(R 为扇形所在圆的半径),则扇形的弧所在弓形的面积为 2cm .15.设p ,q +R ∈,且有91216log log log ()p q p q ==+,则pq= . 16.已知集合1[0,)2A =,1,12B ⎡⎤=⎢⎥⎣⎦,函数1,,()22(1),,x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩若0x A ∈且[]0()f f x A ∈,则0x 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}2,1,3A a a =+-,{}23,31,1B a a a =--+,若{}3A B =- ,求实数a 的值. 18.设函数()y f x =且lg(lg )lg(3)lg(3)y x x =+-. (1)求()f x 的解析式及定义域; (2)求()f x 的值域.19.已知2()21x x af x -=+(a R ∈)的图象关于坐标原点对称.(1)求a 的值;(2)若函数()()221x xbh x f x =+-+在[]0,1内存在零点,求实数b 的取值范围. 20.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若m ,[]1,1n ∈-,0m n +≠时,有()()0f m f n m n+>+.(1)证明:()f x 在[]1,1-上是增函数;(2)若2()21f x t at ≤-+对任意[]1,1x ∈-,[]1,1a ∈-恒成立,求实数t 的取值范围.21.我国加入WTO 后,根据达成的协议,若干年内某产品关税与市场供应量P 的关系允许近似的满足:2(1)()()2kt x b y P x --==(其中t 为关税的税率,且1[0,)2t ∈),(x 为市场价格,b ,k 为正常数),当18t =时的市场供应量曲线如图.(1)根据图像求b ,k 的值;(2)若市场需求量为Q ,它近似满足1112()2xQ x -=,当P Q =时的市场价格称为市场平衡价格,为使市场平衡价格控制在不低于9元,求税率t 的最小值.22.已知集合M 是同时满足下列两个性质的函数()f x 的全体:(1)()f x 在其定义域上是单调增函数或单调减函数;(2)在()f x 的定义域内存在区间[],a b ,使得()f x 在[],a b 上的值域是11,22a b ⎡⎤⎢⎥⎣⎦. (1)判断函数3y x =-是否属于集合M ?并说明理由,若是,请求出区间[],a b ;(2)若函数1y x =-t +M ∈,求实数t 的取值范围.合肥一中2016-2017学年度第一学期高一年级段二考试数学试卷答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BABBCDDBAABA二、填空题13.10,2⎡⎤⎢⎥⎣⎦14.693π- 15.512+ 16.11(,)42三、解答题17.解:33a -=-,0a =,20a =,11a +=,{}0,1,3A =-,311a -=-,211a +=,{}3,1,1B =--,{}1,3A B =- 不满足条件,故舍去,18.解:(1)lg 3(3)y x x =-,所以3(3)10x x y -=,因为30,30,x x >⎧⎨->⎩解得03x <<,所以函数的定义域为(0,3).(2)239273(3)3()(0,]244t x x x ⎡⎤=-=---∈⎢⎥⎣⎦,所以函数的值域为274(1,10].19.解:(1)根据函数的图象关于原点对称,可得()f x 是定义在R 的奇函数,图象必过原点,即(0)0f =,∴1a =.(2)由(1)知21()21x x f x -=+,所以2121(2)21()2212121x x x x x x xb bh x +-+--=+-=+++, 由题设知()0h x =在[]0,1内有解, 即方程21(2)210x x b ++--=在[]0,1内有解.所以212(2)21(21)2x x x b +=+-=+-在[]0,1内单调递增,∴27b ≤≤,故当27b ≤≤时, 函数()h x ()221x xbf x =+-+在[]0,1内存在零点.20.解:(1)任取1211x x -≤<≤, 则1212121212()()()()()()()f x f x f x f x f x f x x x x x +--=+-=--,∵1211x x -≤<≤,∴12()0x x +-≠,由已知1212()()0f x f x x x +->-,120x x -<,∴12()()0f x f x -<,即()f x 在[]1,1-上是增函数.(2)由(1)知()f x 在[]1,1-上是增函数,所以()f x 在[]1,1-上的最大值为(1)1f =,要使2()21f x t at ≤-+对[]1,1x ∀∈-,[]1,1a ∈-恒成立,只要2211t at -+≥,即220t at -≥,设2()2g a t at =-,对[]1,1a ∀∈-,()0g a ≥恒成立,所以22(1)20,(1)20,g t t g t t ⎧-=+≥⎪⎨=-≥⎪⎩即0220t t t t ≥≤-⎧⎨≥≤⎩或,或,∴2t ≥或2t ≤-或0t =.21.解:(1)由图可知,18t =时,有22(1)(5)8(1)(7)821,22,kb kb ----⎧=⎪⎨⎪=⎩解得6,5k b =⎧⎨=⎩. (2)当P Q =时,得2111(16)(5)222xt x ---=,解得22122117(5)1162(5)62(5)x x t x x ⎡⎤⎡⎤---=-=-⎢⎥⎢⎥--⎣⎦⎣⎦21171212(5)5x x ⎡⎤=---⎢⎥--⎣⎦, 令15m x =-,∵9x ≥,∴1(0,]4m ∈,则21(172)12t m m =---, ∴对称轴11(0,]344m =∈,且开口向下;∴14m =时,t 取得最小值19192,此时9x =,所以税率t 的最小值为19192.22.解:(1)331,21,2b a a b ⎧-=⎪⎪⎨⎪-=⎪⎩得[]22,,22a b ⎡⎤=-⎢⎥⎣⎦.(2)要使方程112x t x -+=在[1,)+∞内有两个不等实根,即22(44)440x t x t -+++=在[2,)t +∞内有两个不等实根:22(2)(2)(44)2440,0,442,2f t t t t ttt⎧⎪=-+++≥⎪∆>⎨⎪+⎪>⎩解得12t<≤.。
2016 2017安徽合肥一中高一上学期月考一数学试卷
实用文档 21y2x71,)数”,那么函数解析式为,值域为的“合一函数”共有(
实用文档 学年安徽合肥一中高一上学期月考一数学试卷2016-2017xxx
分钟;命题人:考试范围:xxx;考试时间:100注意事项:.答题前填写好自己的姓名、班级、考号等信息1.请将答案正确填写在答题卡上2
BA,b,MxxaAb1,2,3B,,a4,5M中的元素个数为,则1.设集合)(
5364B.D CA....下列各组中的两个函数是同一函数的为()2)3)(5x(x5yxy,.A 213x2x(x)f(x)x,gB.34331x)xxx,F(f(x)xC. 5)2x2x5,f(xf(x).D21 Ry(x,y)x,AB)y(xy,x(f:fAB:x,y),则中,,且3.在映射BA)(1,2中的元素对应的)中的元素为(与)31)(1,(3,.A.B))(3,1(1,3.C D.4.下图中函数图象所表示的解析式为()
为区间则称函数上的“平底型”函数
实用文档 2xx2f(x)f(x)x1x R上的“平底型”函)判断函数是否为(1和21数?2mn),[2nx()mxx2xg和函数,是区间)求若函数上的“平底型”(2的值.
(1,1)f(x)x,y(1,1)都函的数有任意:满足①对在22.定义xyf(x)f(y)f()x0f(x)0.;②当时,回答下列问题: 1xyf(x)的奇偶性,并说明理由;1)判断函数(f(x)(0,1)上的单调性,并说明理由;)判断函数在(211111f()f()()ff()的值)若3(,试求. 2211519
2017-2018年安徽省合肥一中高一上学期数学期末试卷(解析版)
2017-2018学年安徽省合肥一中高一(上)期末数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)2.(5分)函数的定义域为()A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)C.D.(﹣∞,﹣1)∪(1,+∞)3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b 5.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)6.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断7.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A.B.C.D.8.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2B.3C.4D.59.(5分)(理)设点是角α终边上一点,当最小时,sinα﹣cosα的值是()A.B.C.或D.或10.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)=f (b)=f (c),则a+b+c 的取值范围是()A.(1,2 017)B.(1,2 018)C.[2,2 018]D.(2,2 018)11.(5分)已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则•的取值范围是()A.B.[﹣1,1)C.D.[﹣1,0)12.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.1二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)已知函数y=f(x)是定义在R上的奇函数,且周期为4,若f(﹣1)=2,且函数的则f(2017)的值为.14.(5分)已知定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是.15.(5分)已知||=4,||=8,=x,且x+2y=1,∠AOB是钝角,若f(t)=||的最小值为2,则||的最小值是.16.(5分)已知函数f(x)=2sin (2x+),记函数f(x)在区间[t,t+]上的最大值为M t最小值为m t,设函数h(t)=M t﹣m t,若t∈[],则函数h(t)的值域为.三、解答题(本题共6道题,17题10分,18-22题每题12分,共70分)17.(10分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.18.(12分)已知sin(π﹣α)﹣cos(π+α)=.求下列各式的值:(1)sinα﹣cosα;(2).19.(12分)函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(1)求函数f(x)的零点.(2)若函数f(x)的最小值为﹣2,求a的值.20.(12分)如图,在平面直角坐标系中,点,,锐角α的终边与单位圆O交于点P.(Ⅰ)当时,求α的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M 的横坐标;若不存在,说明理由.21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log 4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.22.(12分)已知f(x)=ax2﹣2x+2,a∈R(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.2017-2018学年安徽省合肥一中高一(上)期末数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)【解答】解:∵集合M={x|﹣1≤x<8},N={x|x>4},∴M∪N={x|x≥﹣1}=[﹣1,+∞).故选:D.2.(5分)函数的定义域为()A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)C.D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由,解得x>﹣2且x≠﹣1.∴函数的定义域为(﹣2,﹣1)∪(﹣1,+∞).故选:B.3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称【解答】解:∵函数y=sin(2x+φ)在x=处取得最大值,∴sin(+φ)=1,∴cos(+φ)=0,∴函数y=cos(2x+φ)的图象关于点(,0)对称,故选:A.4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b【解答】解:a=2﹣1.2<1,b=log36=1+log32,c=log510=1+log52,而log32>log52>0,∴b>c.∴b>c>a.故选:D.5.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.6.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断【解答】解:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”∴函数f(x)在区间[a,b]上至少有一个零点,也可能有2,3或多个零点,但是如果函数不是连续函数,在区间(a,b)上可能没有零点;f(x)=,函数不是列出函数,定义域为R,没有零点.则函数y=f(x)在区间(a,b)内的零点个数,无法判断.故选:D.7.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A.B.C.D.【解答】解:f(x)=x2•sin(x﹣π)=﹣x2•sinx,∴f(﹣x)=﹣(﹣x)2•sin(﹣x)=x2•sinx=﹣f(x),∴f(x)奇函数,∵当x=时,f()=﹣<0,故选:D.8.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2B.3C.4D.5【解答】解:=(2sin13°,2sin77°)=(2sin13°,2cos13°),||=2,|﹣|=1,与﹣的夹角为,所以==﹣,1=4﹣,∴•=3,故选:B.9.(5分)(理)设点是角α终边上一点,当最小时,sinα﹣cosα的值是()A.B.C.或D.或【解答】解:∵∈(﹣∞,﹣2]∪[2,﹣∞)故当=±2时,最小当=﹣2时,sinα﹣cosα=﹣(﹣)=当=2时,sinα﹣cosα=﹣=﹣故选:D.10.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)=f (b)=f (c),则a+b+c 的取值范围是()A.(1,2 017)B.(1,2 018)C.[2,2 018]D.(2,2 018)【解答】解:作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.11.(5分)已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则•的取值范围是()A.B.[﹣1,1)C.D.[﹣1,0)【解答】解:如图,∵OA=OB=1,∠AOB=120°;∴O到直线AB的距离d=;∴;∴==;∴;∴的取值范围为.故选:A.12.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.1【解答】解:∵(α﹣)3﹣sinα﹣2=0,可得:(α﹣)3﹣cos()﹣2=0,即(﹣α)3+cos()+2=0由8β3+2cos2β+1=0,得(2β)3+cos2β+2=0,∴可得f(x)=x3+cosx+2=0,其,x2=2β.∵α∈[,],β∈[﹣,0],∴∈[﹣π,0],2β∈[﹣π,0]可知函数f(x)在x∈[﹣π,0]是单调增函数,方程x3+cosx+2=0只有一个解,可得,即,∴,那么sin(+β)=sin=.故选:B.二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)已知函数y=f(x)是定义在R上的奇函数,且周期为4,若f(﹣1)=2,且函数的则f(2017)的值为﹣2.【解答】解:∵函数y=f(x)是定义在R上的奇函数且f(﹣1)=2,∴f(1)=﹣2,又∵函数的周期为4,∴f(2017)=f(4×504+1)=f(1)=﹣2,故答案为:﹣214.(5分)已知定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是(,1)∪(2,+∞).【解答】解:定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,可得f(x)在(﹣∞,0)上是增函数,且f()=﹣f()=0,当log4x>0即x>1,f(log4x)>0即为log4x>,解得x>2;当log4x<0即0<x<1,f(log4x)>0即为log4x>﹣,解得<x<1.综上可得,原不等式的解集为(,1)∪(2,+∞).故答案为:(,1)∪(2,+∞).15.(5分)已知||=4,||=8,=x,且x+2y=1,∠AOB是钝角,若f(t)=||的最小值为2,则||的最小值是4.【解答】解:∵f(t)=||的最小值为2,根据图形可知,当()时,f(t)=||有最小值,即||=2,,∵||=4,∴∠AOM=30°,∴∠AOB=120°,∴==4×=﹣16,∵=x,且x+2y=1,∴=++2xy,∵16x2+64y2﹣32xy=192y2﹣96y+16≥4,即||的最小值4,故答案为:4.16.(5分)已知函数f(x)=2sin (2x+),记函数f(x)在区间[t,t+]上的最大值为M t最小值为m t,设函数h(t)=M t﹣m t,若t∈[],则函数h(t)的值域为[1,2] .【解答】解:f(x)=2sin (2x+),∴f(x)在[﹣+kπ,+kπ]上单调递增,在(+kπ,π+kπ]上单调递减,k∈Z,∵t∈[],∴t+∈[,],当t∈[,],f(x)单调递增,最大值为2,当t+∈[,]上f(x)单调递减,最小值为2sin(2t++)=2cos(2t+),那么h(t)=2﹣2cos(2t+),t∈[,],∴2t+∈[,],可得函数的h(t)的值域为[1,2],当t∈(,],f(x)单调递减,最大值为sin(2t+),当t+∈[,]上f(x)单调递减,最小值为2sin(2t++)=2cos(2t+),那么h(t)=sin(2t+)﹣2cos(2t+)=2sin(2t﹣),t∈(,],∴2t﹣∈(,],可得函数的h(t)的值域为[2,2],综上可得函数h(t)值域为[1,2],故答案为:[1,2]三、解答题(本题共6道题,17题10分,18-22题每题12分,共70分)17.(10分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.【解答】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|﹣2<x<4},则A∪B={x|﹣2<x≤7},又∁R A={x|x<1或x>7},则(∁R A)∩B={x|﹣2<x<1},(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①、当A=∅时,有m﹣1>2m+3,解可得m<﹣4,②、当A≠∅时,若有A⊆B,必有,解可得﹣1<m<,综上可得:m的取值范围是:(﹣∞,﹣4)∪(﹣1,).18.(12分)已知sin(π﹣α)﹣cos(π+α)=.求下列各式的值:(1)sinα﹣cosα;(2).【解答】解:(1)由sin(π﹣α)﹣cos(π+α)=,得sinα+cosα=.①将①式两边平方,得1+2sinαcosα=.∴2sinαcosα=﹣.又,∴sinα>0,cosα<0.∴sinα﹣cosα>0.∴(s inα﹣cosα)2=(sinα+cosα)2﹣4sinαcosα==.∴sinα﹣cosα=;(2)=cos2α﹣sin2α=(cosα﹣sinα)(cosα+sinα)=.19.(12分)函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(1)求函数f(x)的零点.(2)若函数f(x)的最小值为﹣2,求a的值.【解答】解:(1)要使函数有意义:则有,解之得:﹣3<x<1,所以函数的定义域为:(﹣3,1),函数可化为f(x)=log a(1﹣x)(x+3)=log a(﹣x2﹣2x+3),由f(x)=0,得﹣x2﹣2x+3=1,即x2+2x﹣2=0,解得x=﹣1±,∵x=﹣1±∈(﹣3,1),∴f(x)的零点是﹣1±;(2)函数可化为:f(x)=log a(1﹣x)(x+3)=log a(﹣x2﹣2x+3)=log a[﹣(x+1)2+4],∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴log a[﹣(x+1)2+4]≥log a4即f(x)min=log a4,由题知,log a4=﹣2,∴a﹣2=4∴a=.20.(12分)如图,在平面直角坐标系中,点,,锐角α的终边与单位圆O交于点P.(Ⅰ)当时,求α的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M 的横坐标;若不存在,说明理由.【解答】解:(I)P(cosα,sinα).…(2分),=cos2α﹣cosα+sin2α=﹣cosα,因为,所以,即,因为α为锐角,所以.…(7分)(Ⅱ)法一:设M(m,0),则,,因为,所以,…(12分)所以对任意成立,所以,所以m=﹣2.M点的横坐标为﹣2.…(16分)法二:设M(m,0),则,,因为,所以,即m2﹣2mcosα﹣4cosα﹣4=0,(m+2)[(m ﹣2)﹣2cosα]=0,因为α可以为任意的锐角,(m﹣2)﹣2cosα=0不能总成立,所以m+2=0,即m=﹣2,M点的横坐标为﹣2.…(16分)21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.【解答】解:(1)因为,…①,∴,∴…②由①②得,,.(2)由=.得:,令t=2x,则t>0,即方程…(*)只有一个大于0的根,①当a=1时,,满足条件;②当方程(*)有一正一负两根时,满足条件,则,∴a>1,③当方程(*)有两个相等的且为正的实根时,则△=8a2+4(a﹣1)=0,∴,a=﹣1(舍)时,,综上:或a≥1.22.(12分)已知f(x)=ax2﹣2x+2,a∈R(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.【解答】解:(1)令10x=t即x=lgt,由h(10x)=ax2﹣x+3得h(t)=alg2t﹣lgt+3即h(x)=alg2x﹣lgx+3(2)由题意得:ax2﹣2x+2>0即恒成立,,当x=2时,所以a得取值范围为(3)由题意得F(x)=|f(x)|在x∈[1,2]单调递增,①当a<0时,f(x)=ax2﹣2x+2,对称轴为又因为f (0)>0且f (x )在x ∈[1,2]单调递减,且f (1)=a <0, 所以F (x )=|f (x )|在x ∈[1,2]单调递增.②当a=0时,f (x )=﹣2x +2,f (x )在x ∈[1,2]单调递减,且f (1)=0, 所以F (x )=|f (x )|在x ∈[1,2]单调递增; ③当时,f (x )=ax 2﹣2x +2,对称轴为,所以f (x )在x ∈[1,2]单调递减,要使F (x )=|f (x )|在x ∈[1,2]单调递增.f (1)=a <0不符合,舍去; ④当时,f (x )=ax 2﹣2x +2,对称轴为,可知F (x )=|f (x )|在x ∈[1,2]不单调. ⑤当a ≥1时,f (x )=ax 2﹣2x +2,对称轴为所以f (x )在x ∈[1,2]单调递增,f (1)=a >0 要使F (x )=|f (x )|在x ∈[1,2]单调递增.故a ≥1; 综上所述,a 的取值范围为(﹣∞,0]∪[1,+∞)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =. xxxx>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q) ()2b f a-0x xf xfxx<O-=f (p)f(q)()2b f a-0xx<O-=f (p)f (q)()2b f a-0x。
安徽省合肥市2016-2017学年高一上学期期末考试数学试题Word版含答案
安徽省合肥市2016-2017学年高一上学期期末考试数学试题本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{}{}{}4,,0,1,2,2,3,U x x x N A B =<∈==则()U BC A 等于( )A. ∅B. {}3C. {}2,3D. {}0,1,2,3 2.下列各组中的两个函数是同一函数的为( )A.0)(,1)(x x g x f == B.xx x g x x f 233)(,==)( C. ln ()ln e ,()ex xf xg x == D.21)(,||1)(xx g x x f ==3.已知直线1:(3)(4)10l k x k y -+-+=与2:2(3)230l k x y --+=平行,则k 的值是( ) A. 3或5 B. 1或3 C. 1或5 D.3或24.已知βα,是两个不同的平面,m l ,是两条不同的直线,且βα⊂⊂m l ,,则( ) A .若βα∥,则m l ∥ B .若m l ∥,则βα∥ C .若βα⊥,则m l ⊥ D .若β⊥l ,则βα⊥ 5.当0<a <b <1时,下列不等式正确的是( ) A.()()b b a a ->-111B. ()()bab a ->-11C.()()211bb a a ->- D. ()()bab a +>+116.若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦的长为32,则=a ( )A .2B .1C .1-D .2-7.某四面体的三视图如图所示,该四面体的四个面中有两个直角三角形,则直角三角形的面积和是( )A .2B .4 C.2 D.4+8.某几何体的三视图如图所示,则该几何体的体积为( )A .24B .683 C .20 D .7039.已知函数()f x 是定义在R 上的奇函数,且在区间()0,+∞上单调递增,若()10f -=,则不等式()210f x ->的解集为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .()10,1,2⎛⎫⋃+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭10.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是( )A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-= D .22(2)(1)1x y ++-=11.已知函数213(),(2)()24log ,(02)x x f x x x ⎧+≥⎪=⎨⎪<<⎩,方程()k x f =恰有两个解,则实数k 的取值范围是( ) A. (0,1) B. 3[,1]4 C. 3[,1)4 D. 3(,1)412.若直线y =kx +4+2k与曲线y =有两个交点,则实数k 的取值范围是( ) A .[1,+∞) B .[﹣1,34-) C .(34,1] D .(﹣∞,﹣1]第Ⅱ卷二、填空题: 本大题共4小题,每小题5分。
《解析》安徽省合肥市第一中学2016-2017学年高一上学期第一次数学试卷Word版含解析
安徽省合肥市第一中学2016-2017学年高一上学期第一次数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则中的元素个数为()A.B.C.D.2.下列各组中的两个函数是同一函数的为()A.B.C.D.3.在映射中,,且,则与中的元素对应的中的元素为()A.B.C.D.4.图中函数图象所表示的解析式为()A.B.C.D.5.设函数则的值为()A.B.C.D.6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为,值域为的“合一函数”共有()A.个B.个C.个D.个7.函数,则的定义域是()A.B.C.D.8.定义两种运算:,则是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数9.定义在上的偶函数满足:对任意的,有,且,则不等式的解集是()A.B.C.D.10.若函数,且对实数,则()A.B.C.D.与的大小不能确定11.函数对任意正整数满足条件,且,则()A.B.C.D.12.在上定义的函数是偶函数,且.若在区间上的减函数,则()A.在区间上是增函数,在区间上是增函数B.在区间上是减函数,在区间上是减函数C.在区间上是减函数,在区间上是增函数D.在区间上是增函数,在区间上是减函数二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的值域是______.14.已知函数,若,求______.15.若函数的定义域为,则______.16.已知函数,若,则实数的取值范围是______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知全集,集合.(1)求;(2)若集合,且,求实数的取值范围.18.在到这个整数中既不是的倍数,又不是的倍数,也不是的倍数的整数共有多少个?并说明理由.19.合肥市“网约车”的现行计价标准是:路程在以内(含)按起步价元收取,超过后的路程按元/收取,但超过后的路程需加收的返空费(即单价为元/).(1)将某乘客搭乘一次“网约车”的费用(单位:元)表示为行程,单位:)的分段函数;(2)某乘客的行程为,他准备先乘一辆“网约车”行驶后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.20.已知,若函数在区间上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断并证明函数在区间上的单调性,并求出的最小值.21.对于定义在区间上的函数,若存在闭区间和常数,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间上的“平底型”函数.(1)判断函数和是否为上的“平底型”函数?(2)若函数是区间上的“平底型”函数,求和的值.22.定义在的函数满足:①对任意都有;②当时,.回答下列问题:(1)判断函数的奇偶性,并说明理由;(2)判断函数在上的单调性,并说明理由;(3)若,试求的值.答案部分1.考点:集合的概念试题解析:由题得:所以中有4个元素。
【优质文档】2017-2018年安徽省合肥一中高一上学期期末数学试卷与答案
----<<本文为word格式,下载后方便编辑修改,也可以直接使用>>------<<本文为word格式,下载后方便编辑修改,也可以直接使用>>----2017-2018年安徽省合肥一中高一上学期期末数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)2.(5分)函数的定义域为()A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)C.D.(﹣∞,﹣1)∪(1,+∞)3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b 5.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)6.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断7.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A.B.C.D.8.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2B.3C.4D.59.(5分)(理)设点是角α终边上一点,当最小时,sinα﹣cosα的值是()A.B.C.或D.或10.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)=f (b)=f (c),则a+b+c 的取值范围是()A.(1,2 017)B.(1,2 018)C.[2,2 018]D.(2,2 018)11.(5分)已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则•的取值范围是()A.B.[﹣1,1)C.D.[﹣1,0)12.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.1二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)已知函数y=f(x)是定义在R上的奇函数,且周期为4,若f(﹣1)=2,且函数的则f(2017)的值为.14.(5分)已知定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是.15.(5分)已知||=4,||=8,=x,且x+2y=1,∠AOB是钝角,若f(t)=||的最小值为2,则||的最小值是.16.(5分)已知函数f(x)=2sin (2x+),记函数f(x)在区间[t,t+]上的最大值为M t最小值为m t,设函数h(t)=M t﹣m t,若t∈[],则函数h(t)的值域为.三、解答题(本题共6道题,17题10分,18-22题每题12分,共70分)17.(10分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.18.(12分)已知sin(π﹣α)﹣cos(π+α)=.求下列各式的值:(1)sinα﹣cosα;(2).19.(12分)函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(1)求函数f(x)的零点.(2)若函数f(x)的最小值为﹣2,求a的值.20.(12分)如图,在平面直角坐标系中,点,,锐角α的终边与单位圆O交于点P.(Ⅰ)当时,求α的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M 的横坐标;若不存在,说明理由.21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.22.(12分)已知f(x)=ax2﹣2x+2,a∈R(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.2017-2018年安徽省合肥一中高一上学期期末数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)【解答】解:∵集合M={x|﹣1≤x<8},N={x|x>4},∴M∪N={x|x≥﹣1}=[﹣1,+∞).故选:D.2.(5分)函数的定义域为()A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)C.D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由,解得x>﹣2且x≠﹣1.∴函数的定义域为(﹣2,﹣1)∪(﹣1,+∞).故选:B.3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称【解答】解:∵函数y=sin(2x+φ)在x=处取得最大值,∴sin(+φ)=1,∴cos(+φ)=0,∴函数y=cos(2x+φ)的图象关于点(,0)对称,故选:A.4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b【解答】解:a=2﹣1.2<1,b=log36=1+log32,c=log510=1+log52,而log32>log52>0,∴b>c.∴b>c>a.故选:D.5.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.6.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断【解答】解:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”∴函数f(x)在区间[a,b]上至少有一个零点,也可能有2,3或多个零点,但是如果函数不是连续函数,在区间(a,b)上可能没有零点;f(x)=,函数不是列出函数,定义域为R,没有零点.则函数y=f(x)在区间(a,b)内的零点个数,无法判断.故选:D.7.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A.B.C.D.【解答】解:f(x)=x2•sin(x﹣π)=﹣x2•sinx,∴f(﹣x)=﹣(﹣x)2•sin(﹣x)=x2•sinx=﹣f(x),∴f(x)奇函数,∵当x=时,f()=﹣<0,故选:D.8.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2B.3C.4D.5【解答】解:=(2sin13°,2sin77°)=(2sin13°,2cos13°),||=2,|﹣|=1,与﹣的夹角为,所以==﹣,1=4﹣,∴•=3,故选:B.9.(5分)(理)设点是角α终边上一点,当最小时,sinα﹣cosα的值是()A.B.C.或D.或【解答】解:∵∈(﹣∞,﹣2]∪[2,﹣∞)故当=±2时,最小当=﹣2时,sinα﹣cosα=﹣(﹣)=当=2时,sinα﹣c osα=﹣=﹣故选:D.10.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)=f (b)=f (c),则a+b+c 的取值范围是()A.(1,2 017)B.(1,2 018)C.[2,2 018]D.(2,2 018)【解答】解:作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.11.(5分)已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则•的取值范围是()A.B.[﹣1,1)C.D.[﹣1,0)【解答】解:如图,∵OA=OB=1,∠AOB=120°;∴O到直线AB的距离d=;∴;∴==;∴;∴的取值范围为.故选:A.12.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.1【解答】解:∵(α﹣)3﹣sinα﹣2=0,可得:(α﹣)3﹣cos()﹣2=0,即(﹣α)3+cos()+2=0由8β3+2cos2β+1=0,得(2β)3+cos2β+2=0,∴可得f(x)=x3+cosx+2=0,其,x2=2β.∵α∈[,],β∈[﹣,0],∴∈[﹣π,0],2β∈[﹣π,0]可知函数f(x)在x∈[﹣π,0]是单调增函数,方程x3+cosx+2=0只有一个解,可得,即,∴,那么sin(+β)=sin=.故选:B.二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)已知函数y=f(x)是定义在R上的奇函数,且周期为4,若f(﹣1)=2,且函数的则f(2017)的值为﹣2.【解答】解:∵函数y=f(x)是定义在R上的奇函数且f(﹣1)=2,∴f(1)=﹣2,又∵函数的周期为4,∴f(2017)=f(4×504+1)=f(1)=﹣2,故答案为:﹣214.(5分)已知定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是(,1)∪(2,+∞).【解答】解:定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,可得f(x)在(﹣∞,0)上是增函数,且f()=﹣f()=0,当log4x>0即x>1,f(log4x)>0即为log4x>,解得x>2;当log4x<0即0<x<1,f(log4x)>0即为log4x>﹣,解得<x<1.综上可得,原不等式的解集为(,1)∪(2,+∞).故答案为:(,1)∪(2,+∞).15.(5分)已知||=4,||=8,=x,且x+2y=1,∠AOB是钝角,若f(t)=||的最小值为2,则||的最小值是4.【解答】解:∵f(t)=||的最小值为2,根据图形可知,当()时,f(t)=||有最小值,即||=2,,∵||=4,∴∠AOM=30°,∴∠AOB=120°,∴==4×=﹣16,∵=x,且x+2y=1,∴=++2xy,∵16x2+64y2﹣32xy=192y2﹣96y+16≥4,即||的最小值4,故答案为:4.16.(5分)已知函数f(x)=2sin (2x+),记函数f(x)在区间[t,t+]上的最大值为M t最小值为m t,设函数h(t)=M t﹣m t,若t∈[],则函数h(t)的值域为[1,2] .【解答】解:f(x)=2sin (2x+),∴f(x)在[﹣+kπ,+kπ]上单调递增,在(+kπ,π+kπ]上单调递减,k∈Z,∵t∈[],∴t+∈[,],当t∈[,],f(x)单调递增,最大值为2,当t+∈[,]上f(x)单调递减,最小值为2sin(2t++)=2cos(2t+),那么h(t)=2﹣2cos(2t+),t∈[,],∴2t+∈[,],可得函数的h(t)的值域为[1,2],当t∈(,],f(x)单调递减,最大值为sin(2t+),当t+∈[,]上f(x)单调递减,最小值为2sin(2t++)=2cos(2t+),那么h(t)=sin(2t+)﹣2cos(2t+)=2sin(2t﹣),t∈(,],∴2t﹣∈(,],可得函数的h(t)的值域为[2,2],综上可得函数h(t)值域为[1,2],故答案为:[1,2]三、解答题(本题共6道题,17题10分,18-22题每题12分,共70分)17.(10分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.【解答】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|﹣2<x<4},则A∪B={x|﹣2<x≤7},又∁R A={x|x<1或x>7},则(∁R A)∩B={x|﹣2<x<1},(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①、当A=∅时,有m﹣1>2m+3,解可得m<﹣4,②、当A≠∅时,若有A⊆B,必有,解可得﹣1<m<,综上可得:m的取值范围是:(﹣∞,﹣4)∪(﹣1,).18.(12分)已知sin(π﹣α)﹣cos(π+α)=.求下列各式的值:(1)sinα﹣cosα;(2).【解答】解:(1)由sin(π﹣α)﹣cos(π+α)=,得sinα+cosα=.①将①式两边平方,得1+2sinαcosα=.∴2sinαcosα=﹣.又,∴sinα>0,cosα<0.∴sinα﹣cosα>0.∴(sinα﹣cosα)2=(sinα+cosα)2﹣4sinαcosα==.∴s inα﹣cosα=;(2)=cos2α﹣sin2α=(cosα﹣sinα)(cosα+sinα)=.19.(12分)函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(1)求函数f(x)的零点.(2)若函数f(x)的最小值为﹣2,求a的值.【解答】解:(1)要使函数有意义:则有,解之得:﹣3<x<1,所以函数的定义域为:(﹣3,1),函数可化为f(x)=log a(1﹣x)(x+3)=log a(﹣x2﹣2x+3),由f(x)=0,得﹣x2﹣2x+3=1,即x2+2x﹣2=0,解得x=﹣1±,∵x=﹣1±∈(﹣3,1),∴f(x)的零点是﹣1±;(2)函数可化为:f(x)=log a(1﹣x)(x+3)=log a(﹣x2﹣2x+3)=log a[﹣(x+1)2+4],∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴log a[﹣(x+1)2+4]≥log a4即f(x)min=log a4,由题知,log a4=﹣2,∴a﹣2=4∴a=.20.(12分)如图,在平面直角坐标系中,点,,锐角α的终边与单位圆O交于点P.(Ⅰ)当时,求α的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M 的横坐标;若不存在,说明理由.【解答】解:(I)P(cosα,sinα).…(2分),=cos2α﹣cosα+sin2α=﹣cosα,因为,所以,即,因为α为锐角,所以.…(7分)(Ⅱ)法一:设M(m,0),则,,因为,所以,…(12分)所以对任意成立,所以,所以m=﹣2.M点的横坐标为﹣2.…(16分)法二:设M(m,0),则,,因为,所以,即m2﹣2mcosα﹣4cosα﹣4=0,(m+2)[(m ﹣2)﹣2cosα]=0,因为α可以为任意的锐角,(m﹣2)﹣2cosα=0不能总成立,所以m+2=0,即m=﹣2,M点的横坐标为﹣2.…(16分)21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.【解答】解:(1)因为,…①,∴,∴…②由①②得,,.(2)由=.得:,令t=2x,则t>0,即方程…(*)只有一个大于0的根,①当a=1时,,满足条件;②当方程(*)有一正一负两根时,满足条件,则,∴a>1,③当方程(*)有两个相等的且为正的实根时,则△=8a2+4(a﹣1)=0,∴,a=﹣1(舍)时,,综上:或a≥1.22.(12分)已知f(x)=ax2﹣2x+2,a∈R(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.【解答】解:(1)令10x=t即x=lgt,由h(10x)=ax2﹣x+3得h(t)=alg2t﹣lgt+3即h(x)=alg2x﹣lgx+3(2)由题意得:ax2﹣2x+2>0即恒成立,,当x=2时,所以a得取值范围为(3)由题意得F(x)=|f(x)|在x∈[1,2]单调递增,①当a<0时,f(x)=ax2﹣2x+2,对称轴为又因为f(0)>0且f(x)在x∈[1,2]单调递减,且f(1)=a<0,所以F(x)=|f(x)|在x∈[1,2]单调递增.②当a=0时,f(x)=﹣2x+2,f(x)在x∈[1,2]单调递减,且f(1)=0,所以F(x)=|f(x)|在x∈[1,2]单调递增;③当时,f(x)=ax2﹣2x+2,对称轴为,所以f(x)在x∈[1,2]单调递减,要使F(x)=|f(x)|在x∈[1,2]单调递增.f(1)=a<0不符合,舍去;④当时,f(x)=ax2﹣2x+2,对称轴为,可知F(x)=|f(x)|在x∈[1,2]不单调.⑤当a≥1时,f(x)=ax2﹣2x+2,对称轴为所以f(x)在x∈[1,2]单调递增,f(1)=a>0要使F(x)=|f(x)|在x∈[1,2]单调递增.故a≥1;综上所述,a的取值范围为(﹣∞,0]∪[1,+∞)附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。
2016-2017学年安徽省合肥市第一中学等省级名校高二上学期期末大联考数学(理)试题_扫描版
2016-2017学年度高二上学期期末理科数学答案1-16 CDDBA C B D B B B C , 145 , ⎥⎦⎤⎢⎣⎡410, , 3-13, 4 17. 解:(1)由题意,(λ+3)x +(λ-1)y -4λ=0(其中λ∈R ),则λ(x +y -4)+(3x -y )=0, ∵λ∈R , ∴, 解的,∴直线l 所经过的定点P 的坐标(1,3)-------------------5分(2)分别过A ,B 且斜率为的两条平行直线,分别为y =x +2,y =x -2,由(1)知,l 恒过点(1,3),当斜率存在时,设直线l 为y -3=k (x -1),由图象易知,直线l 的倾斜角为30°,即k =,∴过点p 的直线l 为y -3=(x -1),即x -3y +9-=0.当直线l 的斜率不存在时,由(1)可知直线过定点(1,3),则直线方程为x =1,令x =1,可知y 1=3,y 2=-,|y 1-y 2|=4,符合题意,综上所述:直线l 的方程为x =1或x -3y +9-=0.-------------------10分18.证明:(1)在侧面A 1ABB 1中,∵A 1A=AB , ∴四边形AABB 是菱形,∴AB 1⊥A 1B∵CB ⊥平面A 1ABB 1. AB 1⊂平面A 1ABB 1, ∴AB 1⊥CB ,∵A 1B ⊥∩CB=B , ∴AB 1⊥平面A 1CB . ------------------6分(2)解:∵CB ⊥平面A 1ABB 1.AB ⊂平面A 1ABB 1. ∴CB ⊥AB ,在R t △ABC 中,AC=5,BC=3, 由勾股定理,得AB=4,又在菱形A 1ABB 1中,∠A 1AB=60°, 则△A 1AB 为正三角形,则.------------------12分19.证明:(1)因为平面EFG ∥平面BCD ,平面ABD∩平面EFG=EG ,平面ABD∩平面BCD=BD ,所以EG ∥BD , 又G 为AD 的中点, 故E 为AB 的中点,同理可得,F 为AC 的中点, 所以EF=BC . ------------------6分(2)因为AD=BD , 由(1)知,E 为AB 的中点, 所以AB ⊥DE ,又∠ABC=90°,即AB ⊥BC , 由(1)知,EF ∥BC ,所以AB ⊥EF ,又DE∩EF=E ,DE ,EF ⊂平面EFD , 所以AB ⊥平面EFD ,又AB ⊂平面ABC , 故平面EFD ⊥平面ABC .------------------12分20.解:(1)设圆C 的圆心C (a ,b ),半径为r ,则a =1,b =3---------(2分)--------------------------------------------(4分)∴圆C 的方程为(x -1)2+(y -3)2=2----------------------------------------(5分)(2)∵OP=OA ,CP=CA ,∴OC 是线段PA 的垂直平分线又OC 的斜率为3,∴PA 的斜率为∴直线PA 的方程为,即x +3y -8=0-----------------(8分)∵点O 到直线PA 的距离 OA=∴…(10分)∴△POA 的面积=…(12分)21.解:(1)∵FD ⊥平面ABCD ,EB ⊥平面ABCD ,∴FD ∥EB ,又 AD ∥BC 且AD∩FD=D ,BC∩BE=B , ∴平面FAD ∥平面EBC ,ME ⊂平面EBC ,∴ME ∥平面FAD . ------------------5分(2)以D 为坐标原点,分别以DA 、DC 、DF 所在直线为x 、y 、z 轴,建立空间直角坐标D-xyz ,依题意,得D(0,0,0),A(1,0,0),F(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),设M(λ,1,0),平面AEF 的法向量为=(x 1,y 1,z 1),平面AME 的法向量为=(x 2,y 2,z 2),∵=(0,1,1),=(-1,0,1),∴,∴.取z 1=1,得x 1=1,y 1=-1,∴=(1,-1,0). 又=(λ-1,1,0),=(0,1,1),∴,∴,取x 2=1得y 2=1-λ,z 2=λ-1,∴=(1,1-λ,λ-1),若平面AME ⊥平面AEF ,则⊥,∴=0,∴1-(1-λ)+(λ-1)=0,解得λ=,此时此时平面AME 的法向量为=(1,1/2,-1/2),又平面ABE 的一个法向量为DA →=(1,0,0), 设二面角B-AE-M 的平面角为θ,36cos =θ.------------------12分 22.解:(Ⅰ)∴所求轨迹方程为----------------4分(Ⅱ)由已知,可得.将y=kx+m 代入椭圆方程,整理得(1+3k 2)x 2+6kmx+3m 2-3=0.△=(6km)2-4(1+3k 2)(3m 2-3)>0(*)∴.∴==. 当且仅当,即时等号成立.经检验,满足(*)式.当k=0时,.综上可知|AB|max =2.∴当|AB|最大时,△A OB的面积取最大值.-------------12分。
安徽省合肥市第一中学2016年10月2016~2017学年度高一第一学期期中考试数学试题试题及参考答案
安徽省合肥市第一中学2016年10月2016~2017学年度高一第一学期期中考试数学试题试题及参考答案 数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简34=( )A.5 B .5-C. D.5-2.已知函数()f x 的定义域为[]2,1-,函数()g x =则()g x 的定义域为( ) A.1(,2]2- B.(1,)-+∞ C.1(,0)(0,2)2- D.1(,2)2-3.函数ln ||()||x x f x x =的图象可能是( )4.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A.a b c >> B.a c b >>C.c a b >>D.c b a >>5.已知(31)4,1,()log ,1a a x a x f x x x -+<⎧=⎨≥⎩对任意两个不相等实数a ,b ,总有[]()()()0a b f a f b --<成立,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)76.若函数(1)f x -是定义在R 上的偶函数,()f x 在(,1]-∞-上是减函数,且(1)0f =,则使得()0f x <的x 的取值范围是( )A.(,1)-∞B.(1,)+∞C.(,3)(1,)-∞-+∞D.(3,1)-7.已知函数22,1,()22,1,x x f x x x -⎧≤=⎨+>-⎩则满足()2f a ≥的实数a 的取值范围是( )A.(,2)(0,)-∞-+∞B.()1,0)-C.(2,0)-D.(,1][0,)-∞-+∞8.已知函数2()|log |f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m ,n 的值分别为( )A.12,4 B.12,2 C.2D.14,4 9.若不等式23log 0a x x -<对任意1(0,)3x ∈恒成立,则实数a 的取值范围为 () A.1[,1)27B.1(,1)27C.1(0,)27D.1(0,]2710.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( ) A.12S S = B.12S S ≤C.12S S ≥D.先12S S <,再12S S =,最后12S S >11.已知函数()f x x e a =+,2()42g x x x =--+,设函数(),()(),()(),()(),f x f xg xh x g x f x g x ≤⎧=⎨>⎩若函数()h x 的最大值为2,则a =( ) A.0 B.1C.2D.312.对于函数()f x ,若在定义域内存在实数x ,满足()()f x f x -=,称()f x 为“局部奇函数”,若12()423x x f x m m +=-⋅+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是( )A.11m ≤≤+B.1m ≤≤C.m -≤≤D.1m -≤≤-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.函数||(1)y x x =-的单调递增区间为 .14.已知一个扇形的圆心角60α=︒,6R cm =(R 为扇形所在圆的半径),则扇形的弧所在弓形的面积为 2cm .15.设p ,q +R ∈,且有91216log log log ()p q p q ==+,则pq= . 16.已知集合1[0,)2A =,1,12B ⎡⎤=⎢⎥⎣⎦,函数1,,()22(1),,x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩若0x A ∈且[]0()f f x A ∈,则0x 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知{}2,1,3A a a =+-,{}23,31,1B a a a =--+,若{}3A B =-,求实数a 的值.18.设函数()y f x =且lg(lg )lg(3)lg(3)y x x =+-. (1)求()f x 的解析式及定义域; (2)求()f x 的值域.19.已知2()21x x af x -=+(a R ∈)的图象关于坐标原点对称.(1)求a 的值;(2)若函数()()221x x bh x f x =+-+在[]0,1内存在零点,求实数b 的取值范围. 20.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若m ,[]1,1n ∈-,0m n +≠时,有()()0f m f n m n+>+.(1)证明:()f x 在[]1,1-上是增函数;(2)若2()21f x t at ≤-+对任意[]1,1x ∈-,[]1,1a ∈-恒成立,求实数t 的取值范围. 21.我国加入WTO 后,根据达成的协议,若干年内某产品关税与市场供应量P 的关系允许近似的满足:2(1)()()2kt x b y P x --==(其中t 为关税的税率,且1[0,)2t ∈),(x 为市场价格,b ,k 为正常数),当18t =时的市场供应量曲线如图. (1)根据图像求b ,k 的值;(2)若市场需求量为Q ,它近似满足1112()2xQ x -=,当P Q =时的市场价格称为市场平衡价格,为使市场平衡价格控制在不低于9元,求税率t 的最小值.22.已知集合M 是同时满足下列两个性质的函数()f x 的全体:(1)()f x 在其定义域上是单调增函数或单调减函数;(2)在()f x 的定义域内存在区间[],a b ,使得()f x 在[],a b 上的值域是11,22a b ⎡⎤⎢⎥⎣⎦.(1)判断函数3y x =-是否属于集合M ?并说明理由,若是,请求出区间[],a b ;(2)若函数y =t +M ∈,求实数t 的取值范围.合肥一中2016年10月2016~2017学年度度第一学期高一年级段二考试数学试卷答案 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BABBCDDBAABA二、填空题13.10,2⎡⎤⎢⎥⎣⎦14.6π-12 16.11(,)42三、解答题 17.解:33a -=-,0a =,20a =,11a +=,{}0,1,3A =-,311a -=-,211a +=,{}3,1,1B =--,{}1,3A B =-不满足条件,故舍去,18.解:(1)lg 3(3)y x x =-,所以3(3)10x x y -=, 因为30,30,x x >⎧⎨->⎩解得03x <<,所以函数的定义域为(0,3).(2)239273(3)3()(0,]244t x x x ⎡⎤=-=---∈⎢⎥⎣⎦,所以函数的值域为274(1,10].19.解:(1)根据函数的图象关于原点对称,可得()f x 是定义在R 的奇函数,图象必过原点,即(0)0f =,∴1a =.(2)由(1)知21()21x x f x -=+,所以2121(2)21()2212121x x x x x x x b bh x +-+--=+-=+++, 由题设知()0h x =在[]0,1内有解,即方程21(2)210x x b ++--=在[]0,1内有解.所以212(2)21(21)2x x x b +=+-=+-在[]0,1内单调递增, ∴27b ≤≤,故当27b ≤≤时, 函数()h x ()221x x bf x =+-+在[]0,1内存在零点. 20.解:(1)任取1211x x -≤<≤, 则1212121212()()()()()()()f x f x f x f x f x f x x x x x +--=+-=--,∵1211x x -≤<≤,∴12()0x x +-≠,由已知1212()()0f x f x x x +->-,120x x -<,∴12()()0f x f x -<,即()f x 在[]1,1-上是增函数.(2)由(1)知()f x 在[]1,1-上是增函数,所以()f x 在[]1,1-上的最大值为(1)1f =, 要使2()21f x t at ≤-+对[]1,1x ∀∈-,[]1,1a ∈-恒成立,只要2211t at -+≥,即220t at -≥,设2()2g a t at =-,对[]1,1a ∀∈-,()0g a ≥恒成立,所以22(1)20,(1)20,g t t g t t ⎧-=+≥⎪⎨=-≥⎪⎩即0220t t t t ≥≤-⎧⎨≥≤⎩或,或, ∴2t ≥或2t ≤-或0t =.21.解:(1)由图可知,18t =时,有22(1)(5)8(1)(7)821,22,kb k b ----⎧=⎪⎨⎪=⎩解得6,5k b =⎧⎨=⎩. (2)当P Q =时,得2111(16)(5)222xt x ---=,解得22122117(5)1162(5)62(5)x x t x x ⎡⎤⎡⎤---=-=-⎢⎥⎢⎥--⎣⎦⎣⎦21171212(5)5x x ⎡⎤=---⎢⎥--⎣⎦, 令15m x =-,∵9x ≥,∴1(0,]4m ∈,则21(172)12t m m =---, ∴对称轴11(0,]344m =∈,且开口向下;∴14m =时,t 取得最小值19192,此时9x =,所以税率t 的最小值为19192.22.解:(1)331,21,2b a a b ⎧-=⎪⎪⎨⎪-=⎪⎩得[],,22a b ⎡=-⎢⎣⎦.(2)12t x =在[1,)+∞内有两个不等实根,即22(44)440x t x t -+++=在[2,)t +∞内有两个不等实根:22(2)(2)(44)2440,0,442,2f t t t t t t t ⎧⎪=-+++≥⎪∆>⎨⎪+⎪>⎩解得102t <≤.。
2016-2017学年安徽省高一上学期期末考试数学联考试题 word版含答案
2016-2017学年安徽省高一上学期期末联考考试数学试题一、选择题(每小题5分,共60分) 1.向量概念下列命题中正确的是( )A. 若两个向量相等,则它们的起点和终点分别重合B. 模相等的两个平行向量是相等向量C. 若a 和b 都是单位向量,则a =bD. 两个相等向量的模相等 2.若点22sin,cos 33ππ⎛⎫⎪⎝⎭在角α的终边上,则sin α的值为( ) A. 12-B. 32-C.12D.323.若cos 2sin 5αα+=-,则tan α等于( )A.12 B.2 C.12- D.2-4.在ABC ∆中,若点D 满足2BD DC = ,则AD =( )A .1233AC AB +B .5233AB AC -C .2133AC AB -D .2133AC AB +5.已知函数()sin()(0)3f x x πωω=+>,若()()63f f ππ=且()f x 在区间(,)63ππ上有最小值,无最大值,则ω的值为( ) A .23 B .53 C .143 D . 3836.定义在R 上的函数()f x 满足)()3(x f x f -=+,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =.则)2013()3()2()1(f f f f +++=( ) A .338B .337C .1678D .20137.设a b c ,,分别是方程11222112=log ,()log ,()log ,22x x x x x x ==,的实数根, 则有( )A.a b c <<B.c b a <<C.b a c <<D.c a b <<8.函数x x g 2log )(= )21(>x ,关于x 的方程2()()230g x m g x m +++=恰有三个不同实数解,则实数m 的取值范围为( )A .(,427)(427,)-∞-⋃++∞B .(427,427)-+C .34(,)23-- D .34,23⎛⎤-- ⎥⎝⎦9.设()cos 23sin 2f x x x =-,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos 23sin 2g x x x =--的图象,则ϕ的值可以为( )A .6πB .3πC .23πD .56π 10.若cos 222sin 4απα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ). A .-72 B .12 C .-12D .72 11.已知函数()2log ,02sin(), 2104x x f x x x π⎧<<⎪=⎨≤≤⎪⎩,若存在实数1234,,,x x x x 满足()()()1234()f x f x f x f x ===,且1234x x x x <<<,则3412(1)(1)x x x x -⋅-⋅的取值范围( )A.(20,32)B.(9,21)C.(8,24)D.(15,25)12.设定义域为R 的奇函数()f x 单调递减,且2(cos +2sin )(22)0f m f m θθ+-->恒成立,则m 的范围是( )A.(1)-∞2,+B. [1)-∞2,+C. 1(-)2∞,+D.1[-)2∞,+二、填空题(每小题5分,共20分) 13.已知1cos 3α=,且π02α-<<,则()()()cos πsin 2πtan 2π3ππsin cos 22ααααα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______.14.设函数)0(sin >=ωωx y 在区间⎥⎦⎤⎢⎣⎡-4,5ππ上是增函数,则ω的取值范围为 ____. 15.函数2433x x y +-=的值域为___________.16.给出下列命题:(1)函数sin ||y x =不是周期函数;(2)函数tan y x =在定义域内为增函数;(3)函数1|cos 2|2y x =+的最小正周期为2π;(4)函数4sin(2)3y x π=+,x R ∈的一个对称中心为(,0)6π-.其中正确命题的序号是 .三、解答题(共70分) 17.(本题满分10分)已知tan()cos(2)sin()2()cos()f ππαπααααπ-⋅-⋅+=--.(1)化简()f α; (2)若4()5f α=,且α是第二象限角,求cos(2)4πα+的值.18.(本题满分12分)已知113cos ,cos()714ααβ=-=,且02πβα<<<. (1)求tan 2α; (2)求β.已知函数()sin()f x x b ωϕ=+-(0,0)ωϕπ><<的图像两相邻对称轴之间的距离是2π,若将()f x 的图像先向右平移6π个单位,再向上平移3个单位,所得函数()g x 为奇函数.(1)求()f x 的解析式;(2)求()f x 的对称轴及单调区间;20.(本题满分12分)已知函数()22sin 22cos 5244f x x x a ππ⎛⎫⎛⎫=+---+ ⎪ ⎪⎝⎭⎝⎭. (1)设sin cos t x x =+,将函数()f x 表示为关于t 的函数()g t ,求()g t 的解析式; (2)对任意0,2x π⎡⎤∈⎢⎥⎣⎦,不等式()62f x a ≥-恒成立,求a 的取值范围.已知()22sin 22sin 261,44242f x x t x t t x ππππ⎛⎫⎛⎫⎛⎫⎡⎤=--⋅-+-+∈ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭,其最小值为()g t . (1)求()g t 的表达式; (2)当112t -≤≤时,要使关于t 的方程()g t kt =有一个实根,求实数k 的取值范围.22. (本题满分12分)已知函数()()()22212log 2log 1,1f x x x g x x ax =-+=-+.(1)求函数cos 3y f x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的定义域; (2)若存在a R ∈, 对任意11,28x ⎡⎤∈⎢⎥⎣⎦,总存唯一[]01,2x ∈-,使得()()10f x g x =成立, 求实数a 的取值范围.2016-2017学年安徽省高一上学期期末考试数学联考试题参考答案1.D 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.A . 10.B 11.B 12.A 13. 22- 14.(0,2] 15.1,93⎡⎤⎣⎦16.(1)(4)17.(1)4()sin 5f αα==(2)17250试题分析:解:(1)tan cos cos ()sin cos f αααααα-⋅⋅==- 4分(2)4()sin 5f αα==又∵α为第二象限角,∴3cos 5α=-, 6分 24sin 22sin cos 25ααα∴==-,227cos 2cos sin 25ααα∴=-=- ∴72242172cos(2)cos 2cossin 2sin()44425225250πππααα+=-=-⨯+⨯=10分18.(1)4738-;(2)3πβ=. 试题解析:(1)由1cos ,072παα=<<, 得22143sin 1cos 177αα⎛⎫=-=-= ⎪⎝⎭∴sin 437tan 43cos 71ααα==⨯=,于是()222tan 24383tan 21tan 47143ααα⨯===---……6分 (2)由02παβ<<<,得02παβ<-<又∵()13cos 14αβ-=, ∴()()221333sin 1cos 11414αβαβ⎛⎫-=--=-= ⎪⎝⎭由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-113433317147142=⨯+⨯= 所以3πβ=……13分19.(1)()sin(2)33f x x π=+-;(2)增区间为5,()1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; 试题解析: (1)2=22ππω⨯,∴=2ω ∴()sin(2)f x x b ϕ=+- …1分又()sin[2()]36g x x b πϕ=-+-+为奇函数,且0ϕπ<<,则3πϕ=,3b = …………………3分故()sin(2)33f x x π=+-; ………4分 (2)对称轴:122k x ππ=+,k Z ∈ ………………………6分 增区间为5,()1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;20.(1)()2252g t t t a =--+,2,2t ⎡⎤∈-⎣⎦;(2)53a ≤-.试题解析:(1)()()()1cos 22cos sin 52sin 22cos sin 532f x x x x a x x x a π⎛⎫=-+-+-+=-+-+ ⎪⎝⎭, 因为sin cos t x x =+,所以2sin 21x t =-,其中2,2t ⎡⎤∈-⎣⎦,即()2252g t t t a =--+,2,2t ⎡⎤∈-⎣⎦.(2)由(1)知,当0,2x π⎡⎤∈⎢⎥⎣⎦时,sin cos 2sin 1,24t x x x π⎛⎫⎡⎤=+=+∈ ⎪⎣⎦⎝⎭,又()()22252151g t t t a t a =--+=--+在区间1,2⎡⎤⎣⎦上单调递增,所以()()min 115g t g a ==-,从而()min 15f x a =-, 要使不等式()62f x a ≥-在区间0,2π⎡⎤⎢⎥⎣⎦上恒成立,只要1562a a -≥-, 解得:53a ≤-.21. (1)()()225154216112821t t t g t t t t t t ⎧⎛⎫-+<-⎪ ⎪⎝⎭⎪⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎪⎩;(2)8k ≤-或5k ≥-.试题解析:(1)因为,242x ππ⎡⎤∈⎢⎥⎣⎦,所以32,464x πππ⎡⎤-∈-⎢⎥⎣⎦,所以1sin 2,142x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,()2sin 261,4242f x x t t x πππ⎡⎤⎛⎫⎛⎫⎡⎤=---+∈ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎝⎭,当12t <-时,则当1sin 242x π⎛⎫-=- ⎪⎝⎭时,()2min 554f x t t =-+⎡⎤⎣⎦, 当112t -≤≤时,则当sin 24x t π⎛⎫-= ⎪⎝⎭时,()min 61f x t =-+⎡⎤⎣⎦, 当1t >时,则当sin 214x π⎛⎫-= ⎪⎝⎭时,()2min82f x t t =-+⎡⎤⎣⎦, 故()()225154216112821t t t g t t t t t t ⎧⎛⎫-+<-⎪ ⎪⎝⎭⎪⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎪⎩.(2)当112t -≤≤时,()61g t t =-+,令()()h t g t kt =-,欲使()g t kt =有一个实根,则只需()10210h h ⎧⎛⎫-≤⎪ ⎪⎝⎭⎨⎪≥⎩或()10210h h ⎧⎛⎫-≥⎪ ⎪⎝⎭⎨⎪≤⎩,解得8k ≤-或5k ≥-.22.【答案】(1) ()5|2266x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭;(2) 2a ≤-或52a >.【解析】 试题解析: (1)由cos 03x π⎛⎫-> ⎪⎝⎭解得22,232k x k k Zπππππ-<-<+∈,即()5|2266x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭.(2)首先,()()()2222221log 2log 11log ,,2,3log 1,8f x x x x x x ⎡⎤=++=+∈∴-≤≤∴⎢⎥⎣⎦函数()f x 的值域为[]0,4.其次,由题意知:[](){}20,4|112y y x ax x ⊆=-+-≤≤,且对任意[]0,4y ∈,总存在唯一[]01,2x ∈-,使得()0y g x =.以下分三种情况讨论:①当12a ≤-时,则()()1202524g a g a -=+≤⎧⎪⎨=-≥⎪⎩,解得2a <-;②当22a ≥时,则()()1242520g a g a -=+≥⎧⎪⎨=-≤⎪⎩,解得4a >;③当122a -<<时,则()()()()0012412025202524g a g a g a g a ⎧⎧∆>∆>⎪⎪-=+≥-=+<⎨⎨⎪⎪=-≤=-≥⎩⎩或,解得542a <<,综上,2a ≤-或52a >.。
安徽省合肥一中省级大联考2016-2017学年高一上学期期末生物试卷Word版含答案
安徽省合肥一中省级名校大联考2016-2017学年高一上学期期末试卷生物试卷一、选择题:单选,每小题2分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求的。
1.下列各项的组合中,能体现生命系统结构层次由简单与复杂的正确顺序的是①上皮组织②心脏③神经元④一片热带雨林⑤核酸⑥一只乌龟⑦同一片森林里的所有大山雀⑧一片森林中的所有树⑨呼吸系统⑩一个池塘中的所有生物A.⑤③①②⑨⑥⑦⑩④B.①③⑨②⑥⑦⑧⑩④C.③①②⑨⑥⑦⑩④D.①②⑨⑧⑥⑦⑩④2.用显微镜观察到细胞质流动时如下面左图所示,则实际流动情况为3.下表为四种不同细胞的比较结果,正确的是4.下列有关细胞共性的叙述,正确的是A.都具有细胞膜但不一定具有磷脂双分子层B.都具有细胞核但不一定含有RNA和DNAC.都能进行细胞呼吸但不一定发生在线粒体中D.都能合成蛋白质但合成场所不一定是核糖体5.关于生物组织中还原糖、淀粉、脂肪、蛋白质的鉴定实验,下列叙述正确的是A.还原糖、淀粉的鉴定通常分别使用双缩脲试剂、碘液B.鉴定还原糖和蛋白质都需要进行水浴加热C.配制斐林试剂需要NaOH溶液和CuS04溶液D.脂肪、蛋白质鉴定时分别可见橘黄色颗粒、砖红色沉淀6.多糖、蛋白质、核酸等生物大分子都是由许多单体所组成。
下列相关叙述错误的是A.每个单体都是由若干个相连的碳原子成的碳链为基本骨架B.多糖、蛋白质、核酸的单体分别是单糖、氨基酸、核苷酸C.单体间通过聚合反应形成生物大分子需要消耗能量D.除了结构简单的病毒,所有生物体内都有生物大分子7.下列关于化合物的叙述,正确的是A.叶绿体合成的葡萄糖可进入线粒体被彻底氧化分解B.细胞质基质能为细胞核提供ATP、酶、DNA等C.碱基组成的多样性,决定了DNA分子的多样性D.胆固醇属于脂质,是构成动物细胞膜的重要成分8.大量事实表明,在蛋白质合成旺盛的细胞中,常有较大的核仁。
合理解释是A.细胞中的蛋白质主要由核仁合成B.核仁与核糖体的形成有关C.细胞中的核糖体主要分布在核仁D.核仁为蛋白质的合成提供原料9.将含3H标记的某种氨基酸注射到细胞中,则3H出现的部位如图所示(①→②→③→④→⑤)。
安徽合肥一中2016-2017高一数学上册段一考试卷(含答案)
合肥一中2016-2017学年第一学期高一段一考试数学试卷一、选择题1.设集合{1,2,3},{4,5},{|,,}A B M x x a b a A b B ====+∈∈,则M 中的元素个数为()A.3B.4C.5D.62.下列各组中的两个函数是同一函数的为()A.12(3)(5),53x x y y x x +-==-+ B.(),()f x x g x ==C.()()f x F x ==D.12()|25|,()25f x x f x x =-=-3.在映射:f A B →中,{(,)|,}A B x y x y R ==∈,且:(,)(,)f x y x y x y →-+,则与A 中的元素(1,2)-对应的B 中的元素是()A.(3,1)- B.(1,3)C.(1,3)-- D.(3,1)4.右图中函数图象所表示的解析式为()A.3|1|(02)2y x x =-≤≤ B.33|1|(02)22y x x =--≤≤C.3|1|(02)2y x x =--≤≤ D.1|1|(02)y x x =--≤≤5.设函数3,10()((5)),10x x f x f f x x -≥⎧=⎨+<⎩,则(6)f 的值为()A.5B.6C.7D.86.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为221y x =-,值域为{1,7}的“合一函数”共有()A.10个 B.9个C.8个D.4个7.函数21()3x f x x -=+,则[()]y f f x =的定义域是()A.{|,3}x x R x ∈≠-B.5{|,3,}8x x R x x ∈≠-≠-C.1{|,3,}2x x R x x ∈≠-≠ D.8{|,3,}5x x R x x ∈≠-≠-8.定义两种运算:a b a b ⊕=⊗=2()2(2)xf x x ⊕=-⊗是()函数A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数9.定义在R 上的偶函数()f x 满足:对任意的1212,(,0]()x x x x ∈-∞≠,有2121()()0f x f x x x -<-,且(2)0f =,则不等式2()()05f x f x x +-<的解集是()A.(,2)(2,)-∞-+∞B.(2,0)(0,2)-C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞- 10.若函数2()24(03)f x ax ax a =++<<,且对实数1212,1x x x x a <+=-,则()A.12()()f x f x <B.12()()f x f x =C.12()()f x f x > D.1()f x 与2()f x 的大小不能确定11.函数()f x 对任意正整数,m n 满足条件()()()f m n f m f n +=,且(1)2f =,则(2)(4)(6)(2016)(1)(3)(5)(2015)f f f f f f f f ++++=()A.4032B.1008C.2016D.1008212.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[1,2]上的减函数,则()f x ()A.在区间[2,1]--上是增函数,在区间[3,4]上是增函数B.在区间[2,1]--上是减函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是增函数,在区间[3,4]上是减函数。
安徽省合肥一中2015-2016学年高一数学上学期期末考试试题(2021年整理)
(完整)安徽省合肥一中2015-2016学年高一数学上学期期末考试试题(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)安徽省合肥一中2015-2016学年高一数学上学期期末考试试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)安徽省合肥一中2015-2016学年高一数学上学期期末考试试题(word版可编辑修改)的全部内容。
合肥一中2015—2016学年第一学期高一期末试卷数学试题一、选择题(本题共12小题,每小题5分,共60分)1。
2{4,21,}A a a =--,=B {5,1,9},a a --且{9}A B ⋂=,则a 的值是( )A 。
3a = B. 3a =- C. 3a =± D. 53a a ==±或 2。
函数()14log 12-=x y 的定义域为( )A 。
)21,0( B. )43(∞+,C .)21(∞+, D 。
错误!3。
若方程032=+-mx x 的两根满足一根大于1,一根小于1,则m 的取值范围是( )A. )2(∞+, B 。
)20(, C .)4(∞+, D 。
)4,0( 4.设2150.a =,218.0=b ,5.0log 2=c ,则( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<5。
为了得到函数)33sin(π-=x y 的图象,只需把函数x y 3sin =的图象( )A .向右平移9π个单位长度 B .向左平移9π个单位长度 C .向右平移3π个单位长度 D .向左平移3π个单位长度6. 给出下列各函数值:① 100sin ;②)100cos( -;③)100tan( -;④错误!.其中符号为负的是A .①B .②C .③D .④7.设D 为ABC ∆所在平面内一点3BC CD =,则( )A. AD = 34AB +31ACB.1433AD AB AC =-C. AD = 31-AB +34ACD.4133AD AB AC =-8。
安徽省2016-2017学年高一生物上学期期末联考试卷(含解析)
2016-2017学年高一上学期期末联考生物试题第Ⅰ卷(选择题共50分)一、选择题(本题共有25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1. 如图所示为生命系统的结构层次。
下列叙述正确的是A. 细菌为单细胞生物,只属于结构层次中的①B. 最大的生命系统是⑥C. 绿色开花植物无结构层次③D. SARS病毒属于最基本的生命系统【答案】C【解析】图中的①②③④⑤⑥⑦依次为细胞、组织、系统、种群、群落、生态系统和生物圈。
细菌为单细胞生物,既是细胞层次也是个体层次,A错误;最大的生命系统是⑦生物圈,B 错误;绿色开花植物无系统层次,由器官直接构成个体,C正确; SARS病毒无细胞结构,不属于生命系统的结构层次,D错误。
请在此填写本题解析!2. 下列关于细胞中化学元素的叙述,正确的是A. C、H、0是组成细胞中所有化合物的基本元素B. 微量元素含量极少,不是生命活动所必需的元素C. 一种元素缺乏可通过增加其他元素的量来替代D. 组成细胞的元素大多数以化合物的形式存在【答案】D【解析】C、H、O是组成细胞中所有有机物的基本元素,无机物如水中只含H、O元素,A错误;微量元素含量极少,但也是生命活动所必需的元素,B错误;细胞中的元素作用各不相同,其功能不能由其他元素代替,C错误;组成细胞的元素大多数以化合物的形式存在,极少数以离子形式存在,D正确。
3. 下列物质或结构中不含糖类的是A. 核糖体B. ADPC. 唾液淀粉酶D. 植物细胞壁【答案】C【解析】核糖体和ADP中都含有核糖,A、B错误;唾液淀粉酶为蛋白质,其结构中不含糖类,C正确;植物细胞壁的主要成分为纤维素,属于多糖,D错误。
4. 下列关于DNA和RNA的叙述,正确的是A. 彻底水解得到的终产物完全相同B. 都可作为遗传物质,携带遗传信息C. 含有RNA的细胞器一定含有DNAD. 含有DNA的生物一定含有RNA【答案】B【解析】DNA彻底水解得到的终产物为磷酸、脱氧核糖、A、T、G、C四种碱基,而RNA彻底水解得到的终产物为磷酸、核糖、A、U、G、C四种碱基,A错误;DNA是绝大多数生物的遗传物质,RNA是少数病毒的遗传物质,两者都能携带遗传信息,B正确;含有RNA的细胞器不一定含有DNA,如核糖体,C错误;DNA病毒仅由DNA和蛋白质构成,不含RNA,D错误。
安徽省合肥一中2016-2017学年高一(上)第一次段考数学试卷(解析版)(2)
2016-2017学年安徽省合肥一中高一(上)第一次段考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.62.判断下列各组中的两个函数是同一函数的为()A.y1=,y2=x﹣5 B.f(x)=x,g(x)=C.f(x)=,D.f1(x)=|2x﹣5|,f2(x)=2x﹣53.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则与A中的元素(﹣1,2)对应的B中的元素为()A.(﹣3,1)B.(1,3) C.(﹣1,﹣3)D.(3,1)4.图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)5.设f(x)=,则f(6)的值为()A.8 B.7 C.6 D.56.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A.10个B.9个 C.8个 D.4个7.函数,则y=f[f(x)]的定义域是()A.{x|x∈R,x≠﹣3}B.C.D.8.定义两种运算:a⊕b=,a?b=,则f(x)=是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有<0,且f(2)=0,则不等式<0解集是()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(2,+∞)D.(﹣2,0)∪(0,2)10.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定11.函数f(x)对任意正整数m、n满足条件f(m+n)=f(m)?f(n),且f(1)=2,则=()A.4032 B.2016 C.1008 D.2100812.在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)()A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数y=2﹣的值域是.14.已知函数f(x)=ax5﹣bx+|x|﹣1,若f(﹣2)=2,求f(2)=.15.函数y=的定义域是R,则实数k的取值范围是.16.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知全集U=R,集合A={x|x2﹣3x﹣18≥0},B={x|≤0}.(1)求(?U B)∩A.(2)若集合C={x|2a<x<a+1},且B∩C=C,求实数a的取值范围.18.在1到200这200个整数中既不是2的倍数,又不是3的倍数,也不是5的倍数的整数共有多少个?并说明理由.19.漳州市“网约车”的现行计价标准是:路程在2km以内(含2km)按起步价8元收取,超过2km后的路程按 1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为 1.9×(1+50%)=2.85元).(1)将某乘客搭乘一次“网约车”的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;(2)某乘客的行程为16km,他准备先乘一辆“网约车”行驶8km后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.20.已知≤a≤1,若函数f(x)=ax2﹣2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)﹣N(a).(1)求g(a)的函数表达式;(2)判断函数g(a)在区间[,1]上的单调性,并求出g(a)的最小值.21.对于定义在区间D上的函数f(x),若存在闭区间[a,b]?D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2?[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.(1)判断f1(x)=|x﹣1|+|x﹣2|和f2(x)=x+|x﹣2|是否为R上的“平底型”函数?并说明理由;(2)若函数是区间[﹣2,+∞)上的“平底型”函数,求m和n的值.22.定义在(﹣1,1)的函数f(x)满足:①对任意x,y∈(﹣1,1)都有f(x)+f(y)=f();②当x<0时,f(x)>0.回答下列问题:(1)判断函数f(x)的奇偶性,并说明理由;(2)判断函数f(x)在(0,1)上的单调性,并说明理由;(3)若f()=,试求f()﹣f()﹣f()的值.参考答案与试题解析1.B.2.C.3.A 4.B.5.B.6.解:由题意知“合一函数”是只有定义域不同的函数,它的定义域可以是{1,2},{1,﹣2},{﹣1,2},{﹣1,﹣2},{1,﹣1,2},{1,﹣1,﹣2},{1,2,﹣2},{﹣1,2,﹣2},{1,﹣1,2,﹣2}共有9种不同的情况,故选:B.7.解:将y=f[f(x)]中的内层函数f(x)看作整体,由已知,函数的定义域为x≠﹣3.所以内层函数f(x)≠﹣3得出解得,故选D8.解:由新定义,可得:函数f(x)===,由4﹣x2≥0且2﹣|x﹣2|≠0,解得,﹣2≤x≤2且x≠0,则定义域关于原点对称,则有f(x)=,由于f(﹣x)=﹣f(x),则f(x)为奇函数.故选:A.9.解:∵对任意的x1,x2∈(﹣∞,0](x1≠x2),有<0,∴此时函数f(x)为减函数,∵f(x)是偶函数,∴当x≥0时,函数为增函数,则不等式<0等价为<0,即xf(x)<0,作出函数f(x)的草图:则xf(x)<0等价为或,即x<﹣2或0<x<2,故选:B10.解:已知函数f(x)=ax2+2ax+4(0<a<3),二次函数的图象开口向上,对称轴为x=﹣1,0<a<3,∴x1+x2=1﹣a∈(﹣2,1),x1与x2的中点在(﹣1,)之间,x1<x2,∴x2到对称轴的距离大于x1到对称轴的距离,∴f(x1)<f(x2),故选A.11.解析:∵f(x)对任意正整数m、n满足条件f(m+n)=f(m)?f(n),∴令n=1,可得f(m+1)=f(m)f(1),而f(1)=2,所以,,因此,分别取m=1,3,5,…,2015(共1008项)得,===…==2,所以,原式==2×=2016,故答案为:B.12.解:由f(x)=f(2﹣x)可知f(x)图象关于x=1对称,又∵f(x)为偶函数,∴f(x)=f(x﹣2)∴f(x)为周期函数且周期为2,结合f(x)在区间[1,2]上是减函数,可得f(x)草图.故选B.13.解:定义域应满足:﹣x2+4x≥0,即0≤x≤4,=所以当x=2时,y min=0,当x=0或4时,y max=2所以函数的值域为[0,2],故答案为[0,2].14.解:函数f(x)=ax5﹣bx+|x|﹣1,若f(﹣2)=2,可得:﹣32a+2b+1=2,f(2)=32a﹣2b+1=﹣1+1=0故答案为:015.解:当k=0时,分母=3,其定义域为R,因此k=0满足题意.当k≠0时,∵函数y=的定义域是R,∴,解得.综上可得:实数k的取值范围是.故答案为:.16.解:函数f(x),当x≥0 时,f(x)=x2+4x,由二次函数的性质知,它在[0,+∞)上是增函数,当x<0时,f(x)=4x﹣x2,由二次函数的性质知,它在(﹣∞,0)上是增函数,该函数连续,则函数f(x)是定义在R 上的增函数∵f(2﹣a2)>f(a),∴2﹣a2>a解得﹣2<a<1实数a 的取值范围是(﹣2,1)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)全集U=R,集合A=(﹣∞,﹣3]∪[6,+∞),B=[﹣5,14),(?U B)∩A=(﹣∞,﹣5)∪[14,+∞),(2)∵B∩C=C,∴C?B,当C≠?时,2a≥a+1,解得a≥1,当C≠?时,,解得﹣≤a<1,综上a≥﹣.18.解:共有54个,理由如下:集合A表示1到200中是2的倍数的数组成的集合,集合B表示1到200中是3的倍数的数组成的集合,集合C 表示1到200中是5的倍数的数组成的集合,则card(A)=100,card(B)=66,card(C)=40,card(A∩B)=33,card(A∩C)=20,card(B∩C)=13,card(A∩B∩C)=6,1到200中既不是2的倍数,又不是3的倍数,也不是5的倍数的整数为:[C U(A∪B∪C)],则card[C U(A∪B∪C)]=200﹣[card(A)+card(B)+card(C)﹣card(A∩B)﹣card(A∩C)﹣card(B∩C)+card(A∩B∩C)]=54.19.解:(1)由题意得,车费f(x)关于路程x的函数为:f(x)==.(6')(2)只乘一辆车的车费为:f(16)=2.85×16﹣5.3=40.3(元),(8')换乘2辆车的车费为:2f(8)=2×(4.2+1.9×8)=38.8(元).(10')∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.(12')20.解:f(x)=ax2﹣2x+1的对称轴为x=,∵≤a≤1,∴1≤≤3,∴f(x)在[1,3]上的最小值f(x)min=N(a)=f()=1﹣.∵f(x)=ax2﹣2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),∴①当1≤≤2,即≤a≤1时,M(a)=f(3)=9a﹣5,N(a)=f()=1﹣.g(a)=M(a)﹣N(a)=9a+﹣6.②当2<≤3时.即≤a<时,M(a)=f(1)=a﹣1,N(a)=f()=1﹣.g(a)=M(a)﹣N(a)=a+﹣2.∴g(a)=.(2)由(1)可知当≤a≤1时,g(a)=M(a)﹣N(a)=9a+﹣6≥0,当且仅当a=时取等号,所以它在[,1]上单调递增;当≤a<时,g(a)=M(a)﹣N(a)=a+﹣2≥0,当且仅当a=1时取等号,所以g(a)在[]单调递减.∴g(a)的最小值为g()=9×.21.解:(1)对于函数f1(x)=|x﹣1|+|x﹣2|,当x∈[1,2]时,f1(x)=1.当x<1或x>2时,f1(x)>|(x﹣1)﹣(x﹣2)|=1恒成立,故f1(x)是“平底型”函数.对于函数f2(x)=x+|x﹣2|,当x∈(﹣∞,2]时,f2(x)=2;当x∈(2,+∞)时,f2(x)=2x﹣2>2.所以不存在闭区间[a,b],使当x?[a,b]时,f(x)>2恒成立.故f2(x)不是“平底型”函数;(2)由“平底型”函数定义知,存在闭区间[a,b]?[﹣2,+∞)和常数c,使得对任意的x∈[a,b],都有g(x)=mx+=c,即=c﹣mx所以x2+2x+n=(c﹣mx)2恒成立,即x2+2x+n=m2x2﹣2cmx+c2对任意的x∈[a,b]成立…所以,所以或…①当时,g(x)=x+|x+1|.当x∈[﹣2,﹣1]时,g(x)=﹣1,当x∈(﹣1,+∞)时,g(x)=2x+1>﹣1恒成立.此时,g(x)是区间[﹣2,+∞)上的“平底型”函数…②当时,g(x)=﹣x+|x+1|.当x∈[﹣2,﹣1]时,g(x)=﹣2x﹣1≥1,当x∈(﹣1,+∞)时,g(x)=1.此时,g(x)不是区间[﹣2,+∞)上的“平底型”函数.综上分析,m=1,n=1为所求…22.解:(1)f(x)在(﹣1,1)上是奇函数.理由:对任意x,y∈(﹣1,1)都有f(x)+f(y)=f(),令x=y=0得2f(0)=f(0),可得f(0)=0,令y=﹣x则f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),所以f(x)在(﹣1,1)上是奇函数;(2)f(x)在(0,1)上单调递减.理由:设0<m<n<1,则f(m)﹣f(n)=f(m)+f(﹣n)=f(),而m﹣n<0,0<mn<1,则<0,当x<0时,f(x)>0,所以f()>0,即有f(m)>f(n),则f(x)在(0,1)上单调递减.(3)由f(x)在(﹣1,1)上是奇函数,可得:f()﹣f()﹣f()=f()﹣f()=f()﹣f()=f()=f(),f()+f()=f()=f()=+=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 t
1 1 ) > 0 因此 k (t ) = (t + ) 在 ( 0,1) 上单调 t1t2 t
1 ; (2)存在 m = −1, h ( x ) 最小值为 0. 2
f ( x ) , 即 对 于 任 意 x ∈ R log 3 3 + 1 + kx = log 3 3 解: ( 1 ) ∵ f (−x) =
(2kπ +
4π 2π ) − (2kπ + ) 3 3 = 10 (分钟) . π 3 5
= f ( x) cos(2 x + 21. ( 1 = ) ω 2,
π
2π π , kπ − k ∈ Z 调 递 减 区 间 ) 单 调 递 增 区 间 kπ − 3 6 3
π π kπ π + ,0 k ∈ Z kπ − , kπ + k ∈ Z 对称中心 6 3 2 12
三、解答题 17.解: (1)
A =
= { x 3 ≤ x < 6} { x 3 ≤ x < 6} ∴ A I B
∴ CR ( A I B ) = x x < 3或x ≥ 6
{
}
∅时,2a ≥ a+3 ⇒ a ≥ 3 , (2) 当 C =
2a ≥ 2 a ≥ 1 a + 3 ≤ 9 a ≤ 6 2a < a + 3 a < 3 ∴ ∴ 1 ≤ a < 3 ∴综上可得a ≥ 1 当 C ≠ ∅ 时,
.
27 − 25cos 因此 y =
27 − 25cos (2)要使点 P 距离地面超过 39.5m ,则有 y =
即 cos
1 2π π t 4π π t < − .于是由三角函数基本性质得 2kπ + , k ∈ Z. ≤ ≤ 2 kπ + 2 3 5 3 5
所 以 在 摩 天 轮 转 动 的 一 圈 内 , 点 P 距 离 地 面 超 过 39.5m 的 时 间 为
x
x
ϕ (t ) = t 2 + mt , t ∈ [1,3] ,开口向上,
对称轴 t = − 当1 < −
m m ϕ (1) = 1+ m = 0, m = −1 , ,当 − ≤ 1 ,即 m ≥ −2 时, ϕ ( t )min = 2 2
m2 m m < 3 ,即 −6 < m < −2 时, ϕ ( t )min =− = − = 0, m = 0 (舍去) ϕ , 2 4 2
m 当即时 − ≥ 3, 2
m ≤ −6
ϕ ( 3) = 9 + 3m = 0 ,∴ m = −3 (舍去) , ϕ ( t )min =
存在 m = −1 使得 h ( x ) 最小值为 0.
合肥一中 2016-2017 学年第一学期高一年级期末考试 数学试卷答案
一、选择题 1 A 2 C 3 C 4 B 5 C 6 B 7 A 8 D 9 A 10 D 11 C 12 D
二、填空题
1 ( m − n) 13. f ( x) = x 14. 2
3 4
15.
3 16.2017 2
π
6
)
π
3
< 2x +
π
6
< 2 kπ +
π π 2π < x < kπ + , k ∈ Z 所以定义域为 x | kπ + 12 4 3
= y A sin (ωt + ϕ ) + b 20.( 1)设点 P 离地面的距离为 y ,则可令
T 由题设可知 A = 25 , b = 27 ,又 = 2π π = 10 ,所以 ω = , ω 5
18.(1)原式化简: cos α − sin α = ,平方得 1 − 2 cos α sin α = −
5 5
1 5
4 9 π ⇒ 2 cos α sin α = ⇒ 1 + 2 cos α sin α = ,因为 0 < α < 所以 cos α + sin α > 0 5 5 2
因为 ( cos α + sin α ) = 所以 cos α + sin α =
= t cos x, t ∈ (0,1) 则 2t 2 + mt + 2 = −2(t + ) (2)令 0 在 ( 0,1) 上有解 ⇒ m =
1 t
(t1 − t2 )(1 − = (t + ) 任取 0 < t1 < t2 < 1 有 k (t1 ) − k (t2 ) = 令 k (t )
递减,因此 m < −2k (1) = −4 所以 m 范围 {m | m < −4} 22. (1) −
x
(
)
(Байду номын сангаас
−x
+ 1) − kx 恒 成 立 , ∴
1 3− x + 1 ∴ 2kx = − x ,∴ k = − . = 2kx log 3 ( 3 + 1) − log 3 ( 3= + 1) log 3 x 2 3 +1
−x x
( 2 )由题意, h ( x ) = 3x + m × 3 2 , x ∈ [ 0, 2] = 令则 t 3 2 , x ∈ [ 0, 2]
= y 25sin 从而 = y 25sin 代入
π t + ϕ + 27 ,再由题设知 t = 0 时 y = 2 , 5
π π t + ϕ + 27 ,得 sin ϕ = −1 ,从而 ϕ = 2kπ − , k ∈ Z 2 5
π t , t ≥ 0. 5 π t ≥ 39.5 , 5
2
9 5
3 5 5
(2) 由(1)易得 tan α =2 原式化简得
sin 2 α + 2 cos α sin α tan 2 α + 2 tan α 4 = = 1 + cos 2 α tan 2 α + 2 3
ω 2, ϕ = = = A 2, 19.(1)由已知
(2) 2kπ +
π
6
= f ( x) 2sin(2 x + 所以