单闭环直流电机调速课程设计
【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真
【关键字】设计东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计设计题目:转速单闭环直流电机调速系统设计与仿真学生:张海松专业:自动化班级学号:指导教师:王立夫设计时间:2012年6月27日东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计任务书专业:自动化班级:509 学生姓名:设计题目:转速单闭环直流电机调速系统设计与仿真一、设计实验条件实验设备:PC机二、设计任务直流电机额定电压,额定电枢电流,额定转速,电枢回路总电阻,电感,励磁电阻,励磁电感,互感,,允许过载倍数。
晶闸管装置放大系数:,时间常数:,设计要求:对转速环进行设计,并用Matlab仿真分析其设计结果。
目录绪论--------------------------------------------------------------------------------11.转速单闭环调速系统设计意义-----------------------------12.原系统的动态结构图及稳定性的分析-----------------------22.1 转速负反应单闭环控制系统组成-----------------------22.2 转速负反应单闭环控制系统的工作原理-----------------33.调节器的选择及设计-------------------------------------33.1调节器的选择- --------------------------------------33.2 PI调节器的设计--- ---------------------------------44.Mat lab仿真及结果分析----------------------------------74.1 simulink实现上述直流电机模型-----------------------74.2 参数设置并进行仿真---------------------------------74.3结果分析--------------------------------- ---------155.课设中遇到的问题--------------------------------------166.结束语- ---------------------------------------------17参考文献- ---------------------------------------------17转速单闭环直流电机调速系统设计与仿真绪论直流电动机由于调速性能好,启动、制动和过载转矩大,便于控制等特点,是许多高性能要求的生产机械的理想电动机。
单闭环直流调速系统课程设计
单闭环直流调速系统课程设计1. 引言单闭环直流调速系统是电力工程中常见的一种控制系统,用于控制直流电机的转速。
本文将对单闭环直流调速系统进行课程设计,包括系统建模、控制器设计、仿真分析等内容。
2. 系统建模2.1 直流电机模型首先,我们需要对直流电机进行建模。
直流电机可以简化为一个电动势源、一个电阻和一个反电动势。
根据基尔霍夫定律和欧姆定律,可以得到直流电机的数学模型如下:V a=I a R a+k eωm其中,V a为输入电压,I a为输入电流,R a为线圈电阻,k e为反电动势系数,ωm为转速。
2.2 转速传感器模型在实际应用中,我们通常使用转速传感器来测量转速。
假设转速传感器测得的转速为ωr,则有:ωr=k tωm其中,k t为传感器系数。
2.3 控制器模型为了实现对直流电机转速的调节,我们需要设计一个控制器。
这里我们选择PID控制器作为控制器的模型。
PID控制器的输出为控制电压V c,根据PID控制器的定义,有:V c=K p(ωr∗−ωr)+K i∫(ωr∗−ωr)t0dt+K dddt(ωr∗−ωr)其中,K p、K i、K d分别为比例、积分和微分系数,ωr∗为期望转速。
3. 控制器设计3.1 参数整定方法在实际应用中,我们需要根据系统的要求来确定PID控制器的参数。
常用的参数整定方法有经验法、试误法和自整定法等。
这里我们选择试误法进行参数整定。
首先,将PID控制器中的积分项和微分项置零,只保留比例项。
通过调节比例系数K p,观察系统响应特性。
如果系统过冲较大,则减小比例系数;如果系统响应较慢,则增大比例系数。
接下来,在合适的比例系数下,将积分项和微分项逐渐引入,并调节相应的系数。
最终得到满足要求的PID控制器参数。
3.2 仿真分析为了验证所设计的控制器的性能,我们进行仿真分析。
选择合适的仿真软件,建立单闭环直流调速系统的数学模型,并将所设计的控制器加入系统中。
通过对不同输入信号(如阶跃信号、正弦信号等)的响应分析,可以评估控制系统的性能。
单闭环直流电机调速系统课程设计
《计算机控制技术》课程设计(单闭环直流电机调速系统)摘要运动控制系统中应用最普遍的是自动调速系统。
在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静、动态性能。
由于直流电动机具有极好的运行性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,并有望在不太长的时间内取代直流调速系统,但是就目前来讲,直流调速系统仍然是自动调速系统的主要方式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
随着电子技术和计算机技术的高速发展,直流电动机调速逐步从模拟化走向数字化,特别是单片机技术的应用,使直流电动机调速技术进入一个新的发展阶段。
因此,本次课程设计就是针对直流电动机的起动和调速性能好,过载能力强等特点设计由单片机控制单闭环直流电动机的调速系统。
本设计利用AT89C52单片机设计了单片机最小系统构成直流电动机反馈控制的上位机。
该上位机具有对外部脉冲信号技术和定时功能,能够将脉冲计数用软件转换成转速,同时单片机最小系统中设计了键盘接口和液晶显示接口。
利用AT89C52单片机实现直流电机控制电路,即直流电动机反馈控制系统的下位机,该下位机具有直流电机的反馈控制功能,上位机和下位机之间采用并行总线的方式连接,使控制变得十分方便。
本系统能够用键盘实现对直流电机的起/停、正/反转控制,速度调节既可用键盘数字量设定也可用电位器连续调节并且有速度显示电路。
本系统操作简单、造价低、安全可靠性高、控制灵活方便,具有较高的实用性和再开发性。
关键词:直流电动机AT89C52 L298N 模数转换1课题来源1.1设计目的计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,为了使学生进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高学生运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养学生独立自主、综合分析与创新性应用的能力,特设立《计算机控制技术》课程设计教学环节。
单闭环直流调速系统课程设计
单闭环直流调速系统课程设计一、课程设计简介本次课程设计的主要内容是单闭环直流调速系统,旨在通过理论学习和实践操作,使学生掌握单闭环直流调速系统的基本原理、控制方法和实现技术,提高学生的电子技术实践能力和综合素质。
二、课程设计目标1.了解单闭环直流调速系统的基本原理和控制方法;2.熟悉单闭环直流调速系统的硬件组成和软件编写;3.能够根据要求进行电路设计、仿真和实验操作;4.培养学生分析问题、解决问题的能力;5.提高学生的团队协作精神和沟通能力。
三、课程设计内容1.单闭环直流调速系统的基本原理(1)直流电机基本原理(2)PWM技术及其应用(3)PID控制器原理及应用2.单闭环直流调速系统硬件组成(1)电源模块(2)信号采集模块(3)PWM模块(4)PID控制器模块(5)输出驱动模块3.单闭环直流调速系统软件编写(1)编写程序框图设计文档(2)编写控制程序(3)编写PWM程序(4)编写PID控制器程序4.电路设计、仿真和实验操作(1)根据要求进行电路设计和仿真(2)进行实验操作,测试系统性能5.课程设计报告撰写(1)系统框图设计和电路原理图绘制(2)软件设计文档、程序代码和注释说明(3)实验数据记录和分析四、课程设计步骤及要点1.学习单闭环直流调速系统的基本原理和控制方法,了解硬件组成和软件编写;2.根据课程要求进行电路设计、仿真和实验操作;3.撰写课程设计报告,包括系统框图设计、电路原理图绘制、软件设计文档、程序代码和注释说明,以及实验数据记录和分析;4.在整个课程设计过程中,要注意安全问题,严格遵守实验室规定。
五、课程设计评价方法1.考核学生对单闭环直流调速系统的理解深度;2.考核学生的实验操作能力;3.考核学生的团队协作精神和沟通能力;4.评价学生的课程报告质量。
六、总结本次课程设计以单闭环直流调速系统为主题,通过理论学习和实践操作,使学生掌握了单闭环直流调速系统的基本原理、控制方法和实现技术,提高了学生的电子技术实践能力和综合素质。
单闭环直流调速系统课程设计
.....综合课程设计说明书题目:单闭环直流调速系统的设计与Matlab 仿真(一)学院:机电与汽车工程学院专业班级:电气工程与自动化专业(1)班:学号:07240113指导教师:目录第一章概述.......................................2第二章调速控制系统的性能指标 (3)2.1直流电动机工作原理. (4)2.2电动机调速指标. (4)2.3直流电动机的调速. (5)2.4 直流电机的机械特性.......................5 第三章单闭环直流电动机系统.. (6)3.1V-M系统简介 (6)3.2闭环调速系统的组成及静特性 (7)3.3反馈控制规律. (8)3.4主要部件 (9)3.5稳定条件 (11)3.6 稳态抗扰误差分析 (12)第四章单闭环直流调速系统的设计及仿真 (14)4.1参数设计 (14)4.2 参数计算及MATLAB仿真···················15第五章总结·······································24参考文献第一章概述电动机是用来拖动某种生产机械的动力设备,所以需要根据工艺要求调节其转速,而用于完成这项功能的自动控制系统就被为调速系统。
直流电机不可逆单闭环调速控制系统课程设计
课程设计课程名称电力拖动自动控制系统课题名称直流电机不可逆单闭环调速控制系统课程设计任务书课程名称:运动控制系统题目:直流电机不可逆单闭环调速控制系统设计目录摘要 (6)第1章控制系统的概述 (7)1.1转速控制调速指标与要求 (7)1.2 转速负反馈直流调速系统结构 (8)1.3电压负反馈直流调速系统 (9)1.4 VM晶闸管-电动机调速系统 (10)第2章总体方案的论证比较 (12)2.1 总体方案的设计 (12)2.2 主电路方案的论证比较 (14)2.2.1 PWM调压调速方案 (14)2.2.2 使用晶闸管可控整流装置调速 (15)第3章单闭环直流调速系统启动过程 (18)第4章主电路设计 (19)4.1主电路工作设备选择 (19)第5章控制电路设计 (21)第6章调试 (24)总结与体会 (26)参考文献 (27)附录 (28)摘要摘要:为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。
而在对调速指标要求不高的场合,采用单闭环即可。
闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。
在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能够满足要求,可利用转速单闭环提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统静差,可采用积分调节器代替比例调节器。
本次设计中进行了计算,主要设备调试,关于主电路设计和控制电路设计是基础部分,对晶闸管和电机的调试是非常重要的部分。
关键词:稳态性能;稳定性;开环;闭环负反馈;静差第1章控制系统概述1.1转速控制调速指标与要求直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。
直流电动机调速系统课程设计
直流电动机调速系统课程设计直流电机转速电流双闭环调速系统设计设计报告设计人:李良友班级:电气优创0801学号:********同组人:辛迪硕郝齐心目录第一章设计任务 ................................................................................................................. - 1 -一、设计内容: ........................................................................................................ - 1 -二、设计要求: ........................................................................................................ - 1 -三、设计参数: ........................................................................................................ - 1 -第二章直流电动机转速电流双闭环调速系统设计 ......................................................... - 2 -一、转速、电流双闭环直流调速系统的组成及其静态结构图 ................................... - 2 -1、双闭环调速系统的组成 ......................................................................................... - 2 -2、稳态结构框图 ......................................................................................................... - 3 -二、转速、电流双闭环直流调速系统的动态模型 ....................................................... - 5 -三、按工程方法设计双闭环系统调节器 ....................................................................... - 6 -1、电流调节器的设计计算 ......................................................................................... - 6 -2、转速调节器的设计计算 ......................................................................................... - 8 -3 调速系统的开环传递函数 ................................................................................... - 10 -四、转速调节单闭环实验 ............................................................................................. - 11 -1、原理图各部分电路 ............................................................................................... - 11 -2、测试结果 ............................................................................................................... - 13 -五、自我评定 ................................................................................................................. - 14 -参考资料 ............................................................................................................................. - 15 -附录一速度反馈电路原理图附录二元件清单第一章设计任务一、设计内容:1、根据给定参数设计转速电流双闭环直流调速系统。
单闭环直流电机调速课程设计
课程设计任务书课程名称:电力电子技术课程设计题目:闭环直流电机控制系统设计目录第1章概述 0第2章系统总体方案确定 (1)2.1 闭环调速系统的组成与其静特性 (2)2.1.1 系统组成 (2)第3章主电路设计 (4)3.1主电路结构设计 (4)3.2主电路参数计算与元器件选型 (4)3.2.1整流变压器T1参数计算 (4)3.2.2 晶闸管参数计算 (5)3.2.3 滤波电容计算 (5)3.2.4 平波电抗器计算 (5)3.3主电路保护设计 (6)3.3.1过电流保护 (6)3.3.2 过电压保护 (6)第4章单元控制电路设计 (7)4.1主控制芯片的详细说明与其外围元件设计 (7)4.2检测与控制保护电路设计 (7)4.3驱动电路的设计 (7)第5章系统仿真 (11)5.1 仿真参数计算 (11)第6章总结 (16)附录: (18)第1章概述目前调速系统分为交流调速和直流调速系统,由于直流电动机具有良好的起、制动性能,调速范围广,静差率小,稳定性好以与具有良好的动态性能,在很多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
近年来,高性能交流调速技术发展很快,随着其应用范围的逐渐扩大,有着取代直流调速系统的发展趋势。
为了提高直流调速系统的动态、静态性能,通常要采用闭环控制系统。
在对调速指标要求不高的场合,采用转速单闭环系统是最经济的选择,正因为这样,单闭环直流电机调速系统在日常生活中的应用越来越广泛,其良好的调速性能也被大众所认同。
闭环系统把一部分的输出信号反馈回输入端,与输入端的信号进行比较,其差值作为实际的输入信号,能自动地调节输入量,提高系统的稳定性。
在对调速系统有较高要求的领域,常利用直流电动机,然而,直流电动机开环系统稳定性不高,系统有较大转速差,不能够满足要求,所以可以利用转速单闭环系统来提高稳态精度。
但是,采用比例调节器的负反馈调速系统还是有静差的,为了消除系统静差,可以采用积分调节器代替比例调节器。
单闭环直流调速系统课程设计
《单闭环直流调速系统课程设计》摘要:本课程设计旨在深入研究单闭环直流调速系统的原理、设计方法和实现技术。
通过对系统的理论分析和实际设计,掌握直流调速系统的基本特性和性能指标的优化方法。
课程设计包括系统的方案选择、参数计算、硬件电路设计、软件编程以及系统调试与性能测试等环节。
通过本次课程设计,培养学生的工程实践能力、创新思维和解决实际问题的能力,为今后从事相关领域的工作打下坚实的基础。
一、概述直流调速系统在工业生产、交通运输、电力电子等领域具有广泛的应用。
它能够实现对直流电动机转速的精确控制,满足不同工况下对转速稳定性和调速精度的要求。
单闭环直流调速系统是一种常见的调速系统结构,具有简单可靠、性能稳定等优点。
本课程设计将围绕单闭环直流调速系统展开,深入探讨其设计与实现的相关技术。
二、单闭环直流调速系统的工作原理单闭环直流调速系统主要由直流电动机、转速反馈环节、放大器、触发器和晶闸管整流装置等组成。
其工作原理如下:转速反馈环节将直流电动机的实际转速转换为电信号反馈到放大器输入端,与给定转速信号进行比较,得到偏差信号。
放大器对偏差信号进行放大处理后,输出触发脉冲信号控制晶闸管整流装置的导通和关断,从而改变直流电动机的电枢电压,实现对电动机转速的调节。
通过转速反馈环节的作用,系统能够使电动机的实际转速跟随给定转速变化,保持系统的稳定性和良好的调速性能。
三、系统方案的选择在进行单闭环直流调速系统课程设计时,首先需要进行系统方案的选择。
根据设计要求和实际应用场景,可以选择不同的调速方案。
常见的方案有转速负反馈单闭环调速系统、电流负反馈单闭环调速系统等。
转速负反馈单闭环调速系统具有结构简单、稳定性好、调速范围广等优点,适用于大多数调速控制场合;电流负反馈单闭环调速系统则能够提高系统的动态性能,适用于对动态响应要求较高的系统。
在本课程设计中,选择转速负反馈单闭环调速系统作为设计方案。
四、系统参数的计算系统参数的计算是单闭环直流调速系统设计的重要环节。
直流电动机单闭环控制系统设计(自动控制原理课程设计)
第一章直流电动机基本控制电路1.1 基本电路图1-1直流电动机基本控制电路1.2 各器件参数电动机:额定数据为10KV,220V,55A,,1000r/m,电枢电阻R=0.5Ω晶闸管触发整流装置:三相桥式可控整流电路,整流变压器Y/Y 联结,二次线电压U21=230V,电压放大系数KA=44: V-M系统电枢回路总电阻R=1.0;测速发电机:永磁式,额定数据为23.1W,110V,0.21A,1900r/m;直流稳压电源±15V。
1.3 动态结构图及数学模型直流电动机数学模型的建立:他励直流电动机在额定励磁下的等效电路绘于图1-2,其中电枢回路总电阻R 和电感L 包含电力电子变换器内阻、电枢电阻和电感以及可能在主电路中接入的其他电阻和电感,规定的正方向如图所示。
假定主电路电流连续,则动态电压方程为(1-1)(1-1)忽略粘性摩擦及弹性转矩,电动机轴上的动力学方程为(1-2)额定励磁下的感应电动势和电磁转矩分别为 式中包括电动机空载转矩在内的负载转矩N.m 电力拖动系统折算到电动机轴上的飞轮惯量额定励磁下的电动机的转矩系数电枢回路电磁时间常数电力拖动系统机电时间常数直流电动机动态结构图:图1-2直流电动机动态结构框图的变换和简化直流电动机的基本电路的动态结构图及数学模型:图1-3 直流电动机的基本电路的动态结构图由图可见,反馈控制闭环直流调速系统的开环传递函数是((((1-3)式中设从给定输入作用上看,闭环直流调速系统的闭环传递函数是第二章系统的静态分析2.1静态时的性能指标:要求调速范围D=10,静差率s≦5%。
2.2计算调速系统的稳态参数:1)为满足调速系统的稳态性能指标,额定负载时的稳态速降应为2)求闭环系统应有的开环放大系数。
求闭环系统应有的开环放大系数。
则开环系统额定速降为闭环系统的开环放大系数应为3)计算转速反馈环节的反馈系数和参数。
转速反馈系数包含测速发电机的电动势系数和其输出电位器的分压系数,即根据测速发电机的额定数据,有试取。
单闭环直流课程设计
单闭环直流课程设计一、教学目标本节课的教学目标是让学生掌握单闭环直流调速系统的原理及运行特性,能够运用所学知识分析和解决实际工程问题。
具体目标如下:1.知识目标:(1)了解单闭环直流调速系统的组成及工作原理;(2)掌握调速系统的主要参数,如转速、电流、电压等;(3)熟悉调节器的作用和调节方法,以及如何实现系统的稳定运行。
2.技能目标:(1)能够运用所学知识分析单闭环直流调速系统的工作特性;(2)具备调试和优化调速系统的能力;(3)学会使用相关仪器仪表进行系统参数的测量和分析。
3.情感态度价值观目标:(1)培养学生对调速技术的兴趣,激发学生主动探究的热情;(2)培养学生团队合作精神,提高学生解决实际问题的能力;(3)使学生认识到调速技术在现代工业中的重要地位,树立正确的职业观念。
二、教学内容本节课的教学内容主要包括以下几个部分:1.单闭环直流调速系统的组成及工作原理;2.调速系统的主要参数及其相互关系;3.调节器的作用和调节方法,以及如何实现系统的稳定运行;4.单闭环直流调速系统的运行特性分析;5.调速系统在实际工程中的应用案例。
三、教学方法为了提高教学效果,本节课将采用多种教学方法相结合的方式进行:1.讲授法:讲解单闭环直流调速系统的原理、运行特性以及调节方法;2.讨论法:学生针对实际工程案例进行讨论,培养学生的分析问题和解决问题的能力;3.案例分析法:分析调速系统在现代工业中的应用,使学生了解调速技术的重要性;4.实验法:安排学生进行调速系统的实验操作,提高学生的动手能力。
四、教学资源为了保证教学的顺利进行,教师需准备以下教学资源:1.教材:《电气传动自动化技术》;2.参考书:《直流调速系统及其应用》;3.多媒体资料:调速系统的原理动画、实验视频等;4.实验设备:单闭环直流调速系统实验装置。
通过以上教学资源的使用,为学生提供丰富多样的学习体验,提高教学质量。
五、教学评估为了全面、客观地评估学生的学习成果,本节课采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解能力;2.作业:布置与本节课相关的练习题,要求学生在规定时间内完成,通过作业的完成情况评估学生的掌握程度;3.考试:安排一次课堂小测或期中期末考试,测试学生对单闭环直流调速系统知识的掌握情况。
单闭环直流电机调速系统
《计算机控制技术》课程设计单闭环直流电机调速系统指导教师学院名称工程学院专业班级06自动化(3)班设计提交日期2010年1月8日设计答辩日期2010年1月8日摘要在现实生活中的各个运动系统环节,都少不了电机的积极作用,所以,能够控制好电机,一来能够节约能耗,二来能使电机输出我们所需要的效果,从而提高效率。
本次课程设计本质就是控制电机的转速,使电机输出我们想要的转速,为此,我们通过对STC89C52单片机的简单编程,同时与各种电路相互结合,达到对电机的手动控制与自动控制,同时可以对电机进行加、减速与正反转控制,输出转速。
本设计在硬件上采用了基于PWM技术的H型桥式驱动电路,解决了电机驱动的效率问题,在软件上也采用较为合理的系统结构及算法,提高了单片机的使用效率,且具有一定的防飞能力。
在关于速度的反馈问题上,用光电开关作为测速反馈,以r/s表达当前的转速进行显示,提供较为直观的速度表示方式,与给定值进行比较,可以更好地控制电机稳定运行。
目录1. 课程设计任务 (1)1.1 课程设计目的 (1)1.2 课程设计要求 (1)2. 设计方案 (1)2.1 驱动方案 (1)2.2 .触发方案 (7)2.3 .键盘方案 (10)2.4 显示方案 (16)2.5 整体方案 (22)3. 调试及结果 (23)4. 过程、体会与收获 (23)5. 小组分工 (24)附录A 程序流程图、系统程序参考文献1.课程设计任务1.1 课程设计目的1. 熟悉集成电路的引脚安排。
2. 掌握各芯片、单片机的逻辑功能及使用方法。
3. 了解电路板结构及其接线方法。
4. 了解单闭环直流电机调压调速控制的组成及工作原理。
5. 熟悉单闭环直流电机调压调速控制的设计与制作。
1.2 课程设计要求1.用键盘实现对直流电机的起/停、正/反转控制。
2.速度调节要求既可用键盘数字量设定也可用电位器连续调节。
3.需要有速度显示。
4.单闭环直流电机调压调速控制。
直流单闭环直流调速控制教学
闭环系统和开环系统的静差率分别为
scl
ncl n0cl
和
sop
nop n0op
当
n0op
=n0cl
时,Hale Waihona Puke sclsop 1 K
系统特性比较〔续〕
〔3〕当要求的静差率一定时,闭环系统可以大大 提高调速范围。
如果电动机的最高转速都是nmax;而对最低速 静差率的要求相同,那么:
开环时,
Dop
nN s nop (1
3.单闭环转速负反响调速系统的性能分析
一、稳态分析〔静特性〕
为了突出主要矛盾,先作如下的假定: 〔1〕假定系统中各环节的输入输出关系都是线性的; 〔2〕忽略控制电源和电位器的内阻。 〔3〕系统在电流连续段工作。
各环节的稳态关系如下:
电压比较环节 放大器
U n
U
* n
Un
Uct KpU n
电力电子变换器
例如:
Un
Ud0 n
Un Uc
在反响环外的给定作用,即转速给定信号,它的 些微变化都会使被调量随之变化,丝毫不受反响 作用的抑制。因此,反响控制系统所能抑制的只 是被反响环包围的前向通道上的扰动。
3. 系统的精度依赖于给定和反响检测精度
给定精度——由于给定决定系统输出,输出精度 自然取决于给定精度。
K
sU
* n
Ce (1 K )
U*n
+
∆Un Kp Uc
Ks Ud0 1/Ce
n
- Un
b〕只考虑扰动作用时的闭环系统
+
n RId Ce (1 K )
-IdR E
n
+
1/Ce
- Ud0
自动控制系统课程设计--晶闸管-直流电动机单闭环调速系统
《电力拖动自动控制系统》报告题目:晶闸管-直流电动机单闭环调速系统系别电气工程系班级本自动化092学号学生姓名指导老师2012年11月题目:晶闸管-直流电动机单闭环调速系统系统结构图:已知数据:直流电动机:额定功率18kw、额定电压220v、额定电流94A、额定转速1000r/min、电枢回路电阻1欧;机械部分的飞轮惯量:10N.m^2;电枢回路总电感0.017H;测速发电机:永磁式,额定功率23w、额定电压110v、额定电流0.21A、额定转速1900r/min;整流变压器:Y/Y联接,二次线电压230V;直流稳压电源:15V*其它相关数据:触发整流器放大倍数设为40;二、设计要求(1)调速范围D=20,静差率S 10(按S=10计算)(2)超调量小于(或等于)25%三、设计完后须提交(1) 设计说明书(含静态计算、稳定性判定;调节器的选取及参数计算等)(2) 系统的电路原理图;*(3) 系统的性能仿真(用MATLAB软件)控制结构图有了原理图之后,把各环节的静态参数用自控原理中的结构图表示,就得到了系统的稳态结构框图。
图3、单闭环直流调速系统稳态结构框图同理,用各环节的输入输出特性,即各环节的传递函数,表示成结构图形式,就得到了系统的动态结构框图。
由所学的相关课程知:放大环节可以看成纯比例环节,电力电子变换环节是一个时间常数很小的滞后环节,这里把它看作一阶惯性环节,而额定励磁下的直流电动机是一个二阶线性环节。
所以,可以得到如下的框图:参数计算根据以上数据和稳态要求计算参数如下:取电机电枢电阻为0.5欧 1.为了满足D=20,s ≤10%,额定负载时调速系统的稳态速降为min /56.5min /)1.01(201.01000)1(r r s D s n n N cl =-⨯⨯≤-=∆2.根据cl n ∆,求出系统的开环放大系数 先计算电动机的电动势系数r V r Vn R I U C N a N N e min/173.0min/1000)5.094220(⋅=⨯-=-=则开环系统额定速降为min /35.543min /173.0194r r RI n ceN op =⨯==∆ 闭环系统的开环放大系数应为72.96172.97156.535.5431=-=-≥-∆∆=clop n n K3.计算测速反馈环节的放大系数和参数测速反馈系数α包含测速发电机的电动势转速比etg C 和电位器的分压系数2α,即α=2αetg C根据测速发电机数据,r V r Vetg min/0579.0min/1900110C ⋅==试取2.02=α,如测速发电机与主电动机直接联接,则在电动机最高转速成1000r/min 下,反馈电压为V V r C U etg n 58.1110000579.02.0min /10002=⨯⨯=⨯=α稳态时n U ∆很小,n n U U 只要略大于*即可,现有直流稳压电源为15V ,可以满足需要,因此所取的值是合适的。
单闭环调速系统课程设计
单闭环调速系统课程设计一、课程目标知识目标:1. 学生能够理解单闭环调速系统的基本原理,掌握其组成部分及功能。
2. 学生能够掌握单闭环调速系统的数学模型,并了解不同参数对系统性能的影响。
3. 学生能够解释单闭环调速系统中PI调节器的作用,并学会调整参数以改善系统性能。
技能目标:1. 学生能够运用所学知识,分析实际的单闭环调速系统,并进行数学建模。
2. 学生能够通过实验或仿真软件,搭建单闭环调速系统,进行参数调试,以达到预期性能。
3. 学生能够运用图表、数据和文字,对单闭环调速系统的性能进行分析和评价。
情感态度价值观目标:1. 学生培养对自动化技术的兴趣,认识到调速系统在现代工业中的重要性。
2. 学生通过课程学习,培养解决问题的能力和团队合作精神,增强自信心。
3. 学生在学习过程中,树立正确的工程观念,关注工程实际,注重理论与实践相结合。
分析课程性质、学生特点和教学要求,本课程旨在使学生在掌握单闭环调速系统基本知识的基础上,提高实际操作和问题分析能力。
课程目标具体、可衡量,以便学生和教师能够清晰地了解课程的预期成果,并为后续的教学设计和评估提供依据。
二、教学内容1. 单闭环调速系统的基本原理及组成- 介绍闭环控制系统的概念,对比开环控制系统。
- 解释单闭环调速系统的结构,包括被控对象、执行器、传感器和控制器等组成部分。
2. 单闭环调速系统的数学建模- 掌握电机转速与负载之间的关系,建立数学模型。
- 分析系统参数对调速性能的影响。
3. PI调节器的设计与参数调整- 介绍PI调节器的工作原理,分析比例和积分项的作用。
- 学习PI参数的调整方法,以改善系统稳态和动态性能。
4. 单闭环调速系统的性能分析- 利用实验或仿真软件,观察系统在不同参数下的性能表现。
- 分析稳态误差、过渡过程时间和超调量等性能指标。
5. 教学实践与案例分析- 按照教学大纲,安排实验或仿真练习,使学生动手实践。
- 分析实际案例,让学生了解单闭环调速系统在工程中的应用。
单闭环直流课程设计
单闭环直流课程设计一、课程目标知识目标:1. 让学生理解单闭环直流电路的基本概念、工作原理和数学模型;2. 掌握单闭环直流电路的数学分析方法,如等效电路、传递函数等;3. 了解单闭环直流电路在实际应用中的优势和局限性。
技能目标:1. 培养学生运用所学知识分析和解决实际单闭环直流电路问题的能力;2. 学会使用相关软件(如MATLAB、Multisim等)进行单闭环直流电路的仿真和调试;3. 提高学生的实验操作能力和团队合作能力。
情感态度价值观目标:1. 培养学生对单闭环直流电路及其应用的兴趣,激发学生的探究欲望;2. 引导学生树立正确的工程观念,认识到单闭环直流电路在实际应用中的重要性;3. 培养学生严谨、细致的科学态度,养成良好的学习习惯。
课程性质:本课程为电子技术专业课程,旨在帮助学生掌握单闭环直流电路的基本理论、分析方法和实际应用。
学生特点:学生已具备一定的电子技术基础,具有一定的数学和物理知识储备,但实际操作能力和问题解决能力有待提高。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化学生的动手实践能力和创新思维,培养具备实际工程应用能力的人才。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程的学习和实际工作打下坚实基础。
二、教学内容1. 单闭环直流电路基本概念:包括闭环控制、反馈、稳态特性、动态特性等;教材章节:第一章第一节。
2. 单闭环直流电路的工作原理:分析电路的组成、工作过程及其数学模型;教材章节:第一章第二节。
3. 单闭环直流电路的数学分析方法:介绍等效电路、传递函数、波特图等分析方法;教材章节:第二章。
4. 单闭环直流电路的仿真与实验:运用MATLAB、Multisim等软件进行仿真,并进行实验操作;教材章节:第三章。
5. 单闭环直流电路在实际应用中的案例分析:分析实际应用中的单闭环直流电路,如电机调速、温度控制等;教材章节:第四章。
6. 单闭环直流电路的调试与优化:介绍调试方法、优化策略,培养学生的实际操作能力;教材章节:第五章。
单闭环直流调速系统课程设计
单闭环直流调速系统课程设计一绪论转速单闭环调速系统的简要介绍及设计意义直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器.反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负反馈信号去与恒值给定相比较,构成闭环系统。
对调速系统来说,若想提高静态指标,就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。
要想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环调节系统闭环转速系统可以获得比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够提高调速范围,为此所需付出的代价是,须增设电压放大器以及检测与反馈装置。
二单闭环调速系统的相关数据及图示2.1 数据选择2.1.1电动机型号Z4-225-11:额定电压400V 额定转速 900r/min 额定电流193A 电枢回路电阻0.1406Ω电枢回路电感4.9mH2.1.2测速电机选择型号: 321ZCFr额定电流0.4A 额定电压: 100v额定转速: 1500min3)晶闸管整流触发装置:三相半波整流电路,整流变压器采用∆连接。
Y-4)直流稳压电源V±。
152.2 单闭环直流调速系统的相关图示图1 带转速负反馈的单闭环直流调速系统原理框图图2 带电流截止负反馈的单闭环直流调速系统稳态结构框图三、反馈控制闭环直流调速系统的设计过程与参数计算3.1系统静特性参数3.1.1虽然采用PI 调节,但实际上不可能完全无静差,其稳态速降不为零,但应该很小,即()s D sn n N cl -=∆1很小。
单闭环直流调速课程设计
单闭环直流调速课程设计一、课程目标知识目标:1. 学生能理解单闭环直流调速系统的基本原理,掌握其数学模型及相关理论知识。
2. 学生能描述单闭环直流调速系统中各个环节的作用,如电源、电机、传感器和调节器等。
3. 学生能解释单闭环直流调速系统中调速参数对系统性能的影响。
技能目标:1. 学生能运用所学知识,设计简单的单闭环直流调速系统,并进行仿真或实验。
2. 学生能分析单闭环直流调速系统的性能,通过调整参数优化系统性能。
3. 学生能熟练使用相关仪器和设备,进行单闭环直流调速系统的调试和故障排除。
情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术及其应用的兴趣,增强对工程技术学习的热情。
2. 学生能认识到单闭环直流调速系统在现代工业中的重要作用,增强社会责任感和使命感。
3. 学生在团队协作中,培养沟通、合作能力和批判性思维,形成严谨、务实的科学态度。
本课程针对高年级电气工程及其自动化专业学生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。
旨在使学生掌握单闭环直流调速系统的基本理论和实践技能,为后续专业课程学习和工程实践打下坚实基础。
二、教学内容1. 单闭环直流调速系统概述:介绍单闭环直流调速系统的基本概念、原理和应用领域。
- 教材章节:第1章 单闭环直流调速系统概述2. 单闭环直流调速系统的数学模型:讲解电机的数学模型、调节器的数学模型以及整个系统的传递函数。
- 教材章节:第2章 单闭环直流调速系统的数学模型3. 单闭环直流调速系统的调速性能分析:分析调速系统的主要性能指标,如稳态性能、动态性能等。
- 教材章节:第3章 单闭环直流调速系统的调速性能分析4. 单闭环直流调速系统的设计方法:介绍系统设计步骤、参数计算方法以及系统仿真与实验。
- 教材章节:第4章 单闭环直流调速系统的设计方法5. 单闭环直流调速系统的优化与调试:讨论如何通过调整参数优化系统性能,以及系统调试方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书课程名称:电力电子技术课程设计题目:闭环直流电机控制系统设计目录第1章概述 (1)第2章系统总体方案确定 (2)2.1 闭环调速系统的组成及其静特性 (3)2.1.1 系统组成 (3)第3章主电路设计 (4)3.1主电路结构设计 (4)3.2主电路参数计算及元器件选型 (4)3.2.1整流变压器T1参数计算 (4)3.2.2 晶闸管参数计算 (5)3.2.3 滤波电容计算 (5)3.2.4 平波电抗器计算 (5)3.3主电路保护设计 (6)3.3.1过电流保护 (6)3.3.2 过电压保护 (6)第4章单元控制电路设计 (7)4.1主控制芯片的详细说明及其外围元件设计 (7)4.2检测及控制保护电路设计 (7)4.3驱动电路的设计 (7)第5章系统仿真 (10)5.1 仿真参数计算 (10)第6章总结 (14)附录: (15)第1章概述目前调速系统分为交流调速和直流调速系统,由于直流电动机具有良好的起、制动性能,调速范围广,静差率小,稳定性好以及具有良好的动态性能,在很多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
近年来,高性能交流调速技术发展很快,随着其应用范围的逐渐扩大,有着取代直流调速系统的发展趋势。
为了提高直流调速系统的动态、静态性能,通常要采用闭环控制系统。
在对调速指标要求不高的场合,采用转速单闭环系统是最经济的选择,正因为这样,单闭环直流电机调速系统在日常生活中的应用越来越广泛,其良好的调速性能也被大众所认同。
闭环系统把一部分的输出信号反馈回输入端,及输入端的信号进行比较,其差值作为实际的输入信号,能自动地调节输入量,提高系统的稳定性。
在对调速系统有较高要求的领域,常利用直流电动机,然而,直流电动机开环系统稳定性不高,系统有较大转速差,不能够满足要求,所以可以利用转速单闭环系统来提高稳态精度。
但是,采用比例调节器的负反馈调速系统还是有静差的,为了消除系统静差,可以采用积分调节器代替比例调节器。
单闭环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、测速发电机、闭环控制系统组成。
通过调整晶闸管的控制角来调节转速,非常方便,高效。
第2章系统总体方案确定直流电动机有三种调速方法:①改变电枢电压调速②改变励磁磁通调速③改变电枢回路电阻调速对于要求在一定范围内无级平滑调速的系统来说,以调节电枢电压的调速方式是最好的。
减弱磁通虽然能够平滑调速,但调速范围小,只能在基速上作小范围弱磁升速。
改变电阻只能实现有极调速。
对于小功率调速系统调压调速的实现也是非常简单的。
所以本设计方案确定调速方式为调压调速。
调节电枢电压需要有专门的可控直流电源,经常采用的3种直流电源如下:①旋转变流机组:由交流电机和直流电机组成,以获得可调的直流电压。
②静止式可控整流器:用静止式可控整流器也可获得可调的直流电压。
③直流斩波器\脉宽调制变换器:利用电力电子开关器件斩波或进行脉宽调制,产生可变平均电压。
旋转变流机组组成的(V-M)调速系统需要至少两台及调速电动机容量相当的旋转电机,还要一台励磁发电机,因此设备多,体积大,费用高,效率低,安装须打地基,运行有噪声,维护不方便,所以基本不被采用。
由全控型电力电子器件组成的PWM调速系统比较先进,可靠性高、不会失控(避免了逆变颠覆恶性故障发生)且功率因数为1(节能减排),缺点是价格(成本)太高了。
晶闸管整流控制直流的技术虽然落后了,但是技术成熟、价格(成本)低廉,虽然对电网依赖性强,容易失控导致逆变颠覆,但对于不可逆小功率电机控制系统来说不必考虑逆变颠覆的情况,在考虑到成本的情况下,选择晶闸管是最优的。
由于直流电动机开环系统稳定性不高,系统有较大转速降落,不能够满足要求,所以采用转速单闭环系统来提高稳态精度。
综合上述情况,本设计采用由晶闸管组成的不可逆单闭环直流调压调速。
2.1 闭环调速系统的组成及其静特性由自动控制原理可知,反馈控制的闭环调速系统是按被控量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。
调速系统的转速降落正是由负载引起的转速偏差,引入转速反馈环的调速系统可以大大减少转速落差。
2.1.1 系统组成图2-1 系统控制原理图及电动机同轴安装一台测速发电机TG,从而引出及被调量转速成正比的负反馈电压Un,及给定电压Un*相比较后,得到转速偏差电压△Un,经过放大器A,产生电力电子变换器UPE所需的控制电压Uc,用以控制电动机的转速。
这样的反馈控制系统按被调量(转速n)的偏差进行控制,只要被调量出现偏差,它就会自动产生纠正偏差的作用。
这里的平波电抗器用来减少电流的脉动和延长晶闸管导通的时间。
第3章 主电路设计3.1主电路结构设计由于三相半波可控整流电路在其变压器的二次电流中含有直流分量,不适合变压器的长期运行,所以不予采用。
本设计采用三相桥式全控整流电路。
图3-1 主电路原理图3.2主电路参数计算及元器件选型3.2.1整流变压器T1参数计算根据电机参数U d =U N =220V ,I d =I N =12.35A ,忽略晶闸管导通压降,由三相全控整流电路平均值公式:()αωωπαπαπcos 34.2s 63122323U t td in U U d ==⎰++当α=0时()2232334.2s 631U t td in U U d ==⎰ωωπππ解得: U 2=90.0VI 2=0.816I d =10.10A由得变压器容量:S=1.57kw223I U S =3.2.2 晶闸管参数计算加在管子上的最大反向电压: =220.4V流过管子的平均电流:Iv=Id/3=4.12A所以可选额定电流为10A (考虑到两倍裕量),最大反向工作电压为100-1000V 的整流二极管。
由于本设计对高速型能要求不高,考虑到成本所以选择普通(螺栓)型号为KP-10的晶闸管。
3.2.3 滤波电容计算在电源设计中,滤波电容的选取原则是,对于50HZ 的正弦交流电的整流滤波来说:电容的耐压≥ 电压有效值(1+30%)大电容C ≥2.5T/R ,即C 的大小:RC ≥(3--5)×0.1s 由于Ra=1.7Ω,取C ≥(0.016854-0.028089)F 。
大电容在电路中,负载越重,吸收电流的能力越强,这个电容的容量应该取得很大。
C 的值应大于16854μF ,这里取18000μF ,用两个电容C0、C1串联组成,即每个电容9000μF ,当然,若经济允许取到C ≥5T/R 都没问题。
本设计中大电容耐压300V 。
小电容C1的耐压取300V ,电容量凭经验,一般104μF即可。
3.2.4 平波电抗器计算(mH) 三相全控桥中 K1=0.693;U2Φ=0.46;最小负载电流(对应直流电机最小机械负载)一般取电动机额定电流的5%-10%。
这里取Idmin=10%IN=1.24A 。
所以L1=0.26mH 。
26U U vrm =min 211/L d I U K Φ=3.3主电路保护设计3.3.1过电流保护常用的过电流保护方法有:限流控制保护、控制极脉冲封锁(动作时间在10ms左右)、快速熔断器保护。
本设计直接采用快速熔断器保护。
3.3.2 过电压保护本设计使用组容吸收电路,即在晶闸管器件上并联电阻电容。
它的作用是保护晶闸管器件关断引起的过电压。
因电容C两端电压不能突变,可吸收关断时引起的反向尖峰电压。
电阻R有两个作用,一是阻止LC电路发生振荡(因电路总有电感L存在),二是限制晶闸管导通时电容C放电电流的上升率。
图3-2 过压保护电路第4章单元控制电路设计4.1主控制芯片的详细说明及其外围元件设计本系统控制回路由转速闭环回路,触发电路,和电流截止负反馈电路组成,其电路原理图如下所示。
图4-1 转速负反馈原理图(带电流截止负反馈)4.2检测及控制保护电路设计本设置使用了电流截止负反馈,主要使用霍尔电流传感器对电流进行检测,传感器串联如电枢回路中。
有电流流过时,在输出端产生偏差电压,经过分压电阻调节,输入到电流截止负反馈环中。
4.3驱动电路的设计随着技术的发展,集成的电力电子触发电路已经非常成熟,而且价格低廉。
所以本设计主要使用TC787(AP)这款芯片。
TC787(AP)是采用先进 IC 工艺设计制作的单片集成图4-2 管脚图电路,适用于三相可控硅移相触发电路,能构成多种调压调速和变流装置。
该电路作为 TCA785 的换代产品,及目前国内市场上流行的 KC 系列电路相比,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽,外接元件少等优点;而且装调简便,使用可靠。
只需要一块这样的集成电路,就可以完成三块 TCA785 或五块 KC 系列器件组合(三块KC009或 KC004,一块 KC041,一块 KC042)才能具有的三相移相功能。
其为提高整机寿命,缩小体积,降低成本提供了一种新的更加有效的途径。
该芯片特点如下:1.电路采用单电源工作,电源电压 8V~15V。
2.三相触发脉冲调相角可在 0~180°之间连续同步改变。
3.识别零点可靠,可方便地用作过零开关。
4.器件内部设计有交相锁定电路,抗干扰能力强。
5.可用于三相全控触发(6 脚接 VDD),也可用于三相半控触发(6 脚接地)。
6.电路备有输出保护禁止端,可在过流过压时保护系统安全。
7.TC787 输出为调制脉冲列,适用于触发可控硅及感性负载。
8.调制脉冲或方波的宽度可根据需要通过改变电容Cx而选择。
电路原理:三相同步电压经过 T 型网络进入电路,同步电压的零点设计为 1/2 电源电压(电路输入端同步电压峰峰值不宜大于电源电压),通过过零检测和极性判别电路检测出零点和极性后,在 Ca、Cb、Cc 三个电容上积分形成锯齿波。
由于采用集中式恒流源,相对误差极小,锯齿波有良好的线性。
电容的选取应相对误差小,产生锯齿波幅度大且不平顶为宜。
锯齿波在比较器中及移相电压比较取得交相点,移相电压由 4 脚通过电位器或外电路调节而取得。
抗干扰电路具有锁定功能,在交相点以后锯齿波或移相电压的波动将不能影响输出,保证交相唯一并且稳定。
脉冲形成电路是由脉冲发生器给出调制脉冲(TC787),调制脉冲宽度可通过改变 Cx 电容的值来确定,需要宽则增大 Cx,窄则减小 Cx, 1000P 电容约产生 100μS的脉冲宽度。
被调制脉冲的频率-8/调制脉冲宽度。
脉冲分配及驱动电路是由 6 脚控制脉冲分配的输出方式,6 脚接高电平 VH,输出为全控方式,分别输出 A、-C;-C、B;B、-A;-A、C;C、-B;-B、A 的双触发脉冲,用户可以选择。
5 脚为保护端,当系统出现过流过压时,将 5 脚置高电平 VH,输出脉冲即被禁止。
5 脚还可以用作过零触发系统的控制端,输出端可驱动功率管,经脉冲变压器触发可控硅;也可直接驱动光电耦合器,经隔离触发可控硅或驱动三级管。