数学归纳法

合集下载

数学归纳法

数学归纳法
对考察对象一一
考察后得出结论
神腰牌般的野影状的缕缕闪光体中,突然同时喷出七簇奇妙无比的青兰花色精灵,这些奇妙无比的青兰花色精灵被光一晃,立刻化作浓重的飘带,不一会儿这些飘带就一望 无际着跳向罕见异绳的上空,很快在四金砂地之上变成了闪烁怪异、质感华丽的凸凹飘动的摇钱树……这时女总裁腾霓玛娅婆婆发出最后的的狂吼,然后使出了独门绝技
=
1 2
k(k+1)+(k+1)
=
1 2
(k+1)[(k+1)+1]
右边=
1 2
(k+1)[(k+1)+1]
即n=k+1时成立。
由(1) (2)可知等式对任何n∈ N*都成立
2、 1+2+22+…+2n-1= 2n - 1
证明:(1)当n=1时,左边=1,右边=21 – 1=1 等式成立。
(2)假设当n=k成立,即 1+2+22+…+2k-1= 2k-1
三、数学归纳法
怎样由归纳法得到的某些与正整数有关的 数学命题的真假呢?
1 23
请思考:
k k+1
n-1 n
满足什么样的条件才能使骨牌全部倒下?
先证明当n取第一个值n0(例如n0=1)时命题 成立,然后假设当n=k(k∈N*,k≥n0)时命题成 立,证明当n=k+1时命题也成立,那么就证明
这个命题成立。 这种证明方法叫数学归纳法。
(3)书写格式(两个步骤一个结论)。
练习:用数学归纳法证明:
1、1+2+3+…+n=
1 2
n(n+1)
证明:(1)当n=1时,左边=1,右边=

数学归纳法

数学归纳法
依次为:1、2、7;29、22、23;49、26、-17、-163;…………………………
1、2、3;1、2、3;1、2、3;1、…(mod4 )即
猜想: (k≥0),下面证明之
证明当k=0时,由分析可知结论成立
假设对于k结论成立,即
从而可知
那么对于k+1时, ,
即对于k+1时结论成立
所以由数学归纳法知, , 模4不同余于0,所以 ,
数学归纳法
一、数学归纳法
最小数原理:已知 ,则 , ,使得 。
证明若 是有限集,且 ,那么 中元素可以按小到大的顺序排列,取 为其中最小的那个元素,则 , ,使得 。
若 为无限集,且 ,那么 是可列的,因而 中元素可以按小到大的顺序列出,取 为其中最小的那个元素,则 , ,使得 。
综上所述,若 ,则 , ,使得 。
因为 ,j=1,2,…,k,所以
又因为 ,故 。
解得 或 (舍去).
所以n=k+1时命题也成立.
从而, ,命题成立。
例5将质数由小到大编上序号: , , ,…求证:第 个质数 。
证当 时, ,命题成立。
假设 时命题成立,即 ,
将上面这 个不等式相乘,得
所以
因为 , ,…, 都不能整除 ,所以 的质因数 不可能是 , ,…, ,只能大于或等于 ,于是有
由 的假设可知, ,P(n)成立。
再由定理条件 ,命题P(n)成立,能推出 时,命题P(n)成立知,
,命题P(n)成立。
这与B中定有最小正整数 , ,使得 不成立矛盾。
故原假设不成立。即定理结论成立。
特别的:
(1)第一数学归纳法
取 ,当n=1(即 )时,P(1)成立,假如n=k(即 )时,P(k)成立,能推出n=k+1( )时,P(k+1)成立;则对 ,命题P(n)成立。

数学归纳法

数学归纳法
数学归纳法
1、归纳法:
由特殊的事例推出一般结论的推理方法叫做归纳法。
完全归纳法:在逐步考察某个事例的所有可能的情况下 推出结论;
不完全归纳法:在考察某个事例的部分情况下推出结论 分析: (1)归纳法是一种特殊到一般的数学思想方法; (2)完全归纳法推出的结论一定正确,而不完全 归纳法推断出的结论有时不正确
2 2
2 2

2

1
2
(k C. 1 )
D. ( k 1 )[ 2 ( k 1 ) 3
1]
Ex:在数归法中,证明了若n=k时命题成立,则n=k+1时 命题也成立。现已知n=4时命题不成立,则n=( 3 )时 命题必不成立。
Ex:设 f ( x ) 是定义在正整数集上的函数,且
“当
f (k ) k
D.n 1 2
Ex:用数学归纳法证明
1 2 ( n 1) n ( n 1) 2 1
2 2 2 2 2 2 2
n(2 n 1)
2
时,由 n
k 的假设到证明 n k 1
3
时,等式左边应添加的式子是(
(k (k A. 1 ) 2 k B. 1) k
2、数学归纳法及其证明步骤
数学归纳法是证明与自然数n有关的命题 它的步骤如下: (1)证明当n取第一个值n0时命题成立; (奠基步) (2)假设当n=k(kN*, n≥n0 )时命题成立, 证明当n=k+1时命题也成立 (假设递推步) 由(1)和(2)得:该命题对n≥n0 成立 分析: (1)数学归纳法适用范围仅限于有关自然数的命题。 整数、有理数和实数等有关的命题都不适用; (2)数学归纳法的两个步骤缺一不可。

数学归纳法

数学归纳法

A、1
B、1 a
C、1 a a2
D、1 a a2 a3
2、用数学归纳法证明: 1 1 1
1
24 46 68
2n (2n 2)
n 4(n
1)
时,从k到k+1时左边需要增添的项为__1_______
4(k 1)(k 2)
3、用数学归纳法证明: 当n N时,1 2 22 23 25n1是31 的倍数,当n=1时,原式为 _____________
7、用数学归纳法证明:
1 1 1 1 234
1 2n 1
n(n
N
, 且n
1)时,
不等式在n=k 1时的形式是 ____________
1
1 2
1 3
1 4
1 2k 1
1 2k
1 2k 1
1 2k1 1
共有多少项呢? 2k 个项
例1已知数列
1 ,1 , 1 , 1×4 4×7 7×10
,
1
则当n=k+1时,
12 + 22 + … +
k2
+
(k + 1)2
13 35
(2k 1)(2k +1) (2k +1)(2k + 3)
= k2 + k +
(k + 1)2
= k(k + 1)(2k + 3)+ 2(k + 1)2
4k + 2 (2k +1)(2k + 3)
2(2k +1)(2k + 3)
k
1
3k 1 (3k 1)(3k 4)
3k 2 4k 1 (3k 1)(3k 4)

数学归纳法

数学归纳法

数学归纳法1.归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明. 2.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:(1) (归纳奠基)证明当n 取第一个值n0(n0∈N*)时命题成立;(2) (归纳递推)假设n =k(k≥n0,k ∈N*)时命题成立,证明当n =k +1时命题也成立. 2.应用数学归纳法时注意几点:(1) 用数学归纳法证明的对象是与正整数n 有关的命题. (2) 在用数学归纳法证明中,两个基本步骤缺一不可.(3) 步骤(2)的证明必须以“假设n =k(k≥n0,k ∈N*)时命题成立”为条件.题型一 用数学归纳法证明等式例1 用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6,那么,12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.总结:用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 当n =1时,左边=1-12=12,右边=12,所以等式成立.假设n =k(k ∈N*)时,1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k 成立.那么当n =k +1时,1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+1k +1-12(k +1)]=1(k +1)+1+1(k +1)+2(k +1)+k 2(k +1)综上所述,对于任何n ∈N*,等式都成立.题型二 用数学归纳法证明不等式思考 用数学归纳法证明不等式的关键是什么?答 用数学归纳法证明不等式,首先要清楚由n =k 到n =k +1时不等式两边项的变化;其次推证中可以利用放缩、比较、配凑分析等方法,利用归纳假设证明n =k +1时的结论. 例2 已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1都成立. 证明 由b n =2n ,得b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n .下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立.(1)当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时不等式成立, 即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k>k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1)>4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1)=k +2=(k +1)+1.所以当n =k +1时,不等式也成立.由(1)、(2)可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1对任意的n ∈N *都成立.总结: 用数学归纳法证明不等式时要注意两凑:一凑归纳假设;二凑证明目标.在凑证明目标时,比较法、综合法、分析法都可选用.跟踪训练2 用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).证明 当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k,则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1k (k +1)k +1综上所述,对任意n ≥2的正整数,不等式都成立.题型三 利用数学归纳法证明整除问题 例3 求证:a n +1+(a +1)2n-1能被a 2+a +1整除,n ∈N *.证明 (1)当n =1时,a 1+1+(a +1)2×1-1=a 2+a +1,命题显然成立. (2)假设当n =k (k ∈N *)时,a k +1+(a +1)2k-1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2·(a +1)2k -1=aa k +1+(a +1)2k -1]+(a +1)2(a +1)2k -1-a (a +1)2k-1=aa k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1.由归纳假设,上式中的两项均能被a 2+a +1整除,故n =k +1时命题成立.由(1)(2)知,对任意n ∈N *,命题成立.总结: 证明整除性问题的关键是“凑项”,先采用增项、减项、拆项和因式分解等手段,凑成n =k 时的情形,再利用归纳假设使问题获证. 跟踪训练3 证明x 2n -1+y 2n -1(n ∈N *)能被x +y 整除.证明 (1)当n =1时,x 2n -1+y 2n -1=x +y ,能被x +y 整除.(2)假设当n =k (k ∈N *)时,命题成立,即x 2k -1+y 2k-1能被x +y 整除.那么当n =k +1时,x 2(k+1)-1+y 2(k+1)-1=x 2k +1+y 2k +1=x 2k-1+2+y 2k-1+2=x 2·x 2k -1+y 2·y 2k -1+x 2·y 2k-1-x 2·y 2k -1=x 2(x 2k -1+y 2k -1)+y 2k -1(y 2-x 2).∵x 2k -1+y 2k -1能被x +y 整除,y 2-x 2=(y +x )(y -x )也能被x +y 整除,∴当n =k +1时,x 2(k +1)-1+y 2(k+1)-1能被x +y 整除.由(1),(2)可知原命题成立.题型四 用数学归纳法证明数列问题例4 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明.解 S 1=11×4=14;S 2=14+14×7=27;S 3=27+17×10=310;S 4=310+110×13=413.可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1. 于是可以猜想S n =n3n +1.下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14,猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k3k +1,那么,11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4)=(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1,所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立.总结: 归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练4 数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明.解 由a 1=2-a 1,得a 1=1;由a 1+a 2=2×2-a 2,得a 2=32;由a 1+a 2+a 3=2×3-a 3,得a 3=74;由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158.猜想a n =2n-12n -1.下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立.(2)假设当n =k 时猜想成立,则有a k =2k -12k -1,当n =k +1时,S k +a k +1=2(k +1)-a k +1,∴a k +1=122(k +1)-S k ]=k +1-12(2k -2k -12k -1)=2k +1-12(k +1)-1,所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n -12n -1对任意正整数n 都成立.题型五 利用数学归纳法证明几何问题思考 用数学归纳法证明几何问题的关键是什么?答 用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成k +1个时,所证的几何量将增加多少,还需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.例5 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f (n )=n (n -1)2.证明 (1)当n =2时,两条直线的交点只有一个,又f (2)=12×2×(2-1)=1,∴当n =2时,命题成立.(2)假设n =k (k >2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k -1),l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1)=12(k +1)(k +1)-1],∴当n =k +1时,命题成立.由(1)(2)可知,对任意n ∈N *(n ≥2)命题都成立.总结: 用数学归纳法证明几何问题时,一要注意数形结合,二要注意有必要的文字说明. 跟踪训练5 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.证明 (1)n =1时,分为2块,f (1)=2,命题成立;(2)假设n =k (k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,所以平面上净增加了2k 个区域. ∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立,由(1)(2)知命题成立.注意:在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明. 练习1.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确答案 C 解析 由已知得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+aB .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4 答案 C 解析 将n =1代入a 2n+1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是________.答案 未用归纳假设 解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符. 4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *)证明 (1)当n =1时,左式=1+12,右式=12+1,所以32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N *都成立. 课后练习1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2 (n ∈N *),验证n =1时,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4答案 D 解析 等式左边的数是从1加到n +3. 当n =1时,n +3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( ) A .2 B .3 C .5D .6答案 C 解析 当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5,故选C.3.已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是( )A .2k-1项B .2k+1项C .2k 项D .以上都不对答案 C 解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+…+12k ,而f (2k +1)=1+12+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k )多了2k 项. 4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k+1时,下列说法正确的是( ) A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1D .增加了A 中的一项,但又减少了一项1k +1答案 C 解析 当n =k 时,不等式左边为1k +1+1k +2+…+12k ,当n =k +1时,不等式左边为1k +2+1k +3+…+12k +12k +1+12k +2,故选C.5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3 B .(k +2)3 C .(k +1)3D .(k +1)3+(k +2)3答案 A 解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.6.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________________. 答案 S n =2n n +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.7.已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n-n -1.证明 (1)当n =1时,a 1=S 1=12(a 1+1a 1),∴a 21=1(a n >0),∴a 1=1,又1-0=1,∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立,即a k =k -k -1. 当n =k +1时,a k +1=S k +1-S k =12(a k +1+1a k +1)-12(a k +1a k )=12(a k +1+1a k +1)-12(k -k -1+1k -k -1)=12(a k +1+1a k +1)-k . ∴a 2k +1+2ka k +1-1=0,解得a k +1=k +1-k (a n >0),∴n =k +1时,结论成立. 由(1)(2)可知,对n ∈N *都有a n =n -n -1.8.对于不等式n 2+n ≤n +1 (n ∈N *),某学生的证明过程如下:①当n =1时,12+1≤1+1,不等式成立.②假设n =k (n ∈N *)时,不等式成立,即k 2+k ≤k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+3k +2+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式成立,上述证法( ) A .过程全部正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确答案D 解析 从n =k 到n =k +1的推理中没有使用归纳假设,不符合数学归纳法的证题要求. 9.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立.则当n =k +1时,应推证的目标不等式是__________________________. 答案122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3解析 观察不等式中的分母变化知,122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3. 10.证明:62n -1+1能被7整除(n ∈N *).证明 (1)当n =1时,62-1+1=7能被7整除.(2)假设当n =k (k ∈N *)时,62k -1+1能被7整除.那么当n =k +1时,62(k+1)-1+1=62k-1+2+1=36×(62k -1+1)-35.∵62k -1+1能被7整除,35也能被7整除,∴当n =k +1时,62(k +1)-1+1能被7整除.由(1),(2)知命题成立.11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *).证明 (1)当n =2时,左边=13+14+15+16>56,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1k +1+1k +2+…+13k >56.则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>56+(13k +1+13k +2+13k +3-1k +1)>56+(3×13k +3-1k +1)=56,所以当n =k +1时不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *均成立. 12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明.解 当n ≥2时,a n =S n -S n -1=S n +1S n +2.∴S n =-1S n -1+2(n ≥2).则有:S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立. (2)假设n =k (k ∈N *)猜想成立,即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2.即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立.13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式a n ;(2)若不等式(1-12a 1)·(1-12a 2)·…·(1-12a n )≤m2a n +1对任意n ∈N *,试猜想出实数m 的最小值,并证明.解 (1)设数列{a n }公差为d (d >0),由题意可知a 1·a 4=a 22,即1(1+3d )=(1+d )2,解得d =1或d =0(舍去).所以a n =1+(n -1)·1=n .(2)不等式等价于12·34·56·…·2n -12n ≤m 2n +1,当n =1时,m ≥32;当n =2时,m ≥358;而32>358,所以猜想,m 的最小值为32. 下面证不等式12·34·56·…·2n -12n ≤322n +1对任意n ∈N *恒成立.下面用数学归纳法证明:证明 (1)当n =1时,12≤323=12,命题成立.(2)假设当n =k 时,不等式,12·34·56·…·2k -12k ≤322k +1成立,当n =k +1时,12·34·56·…·2k -12k ·2k +12k +2≤322k +1·2k +12k +2,只要证322k +1·2k +12k +2≤322k +3,只要证2k +12k +2≤12k +3,只要证2k +12k +3≤2k +2,只要证4k 2+8k +3≤4k 2+8k +4,只要证3≤4,显然成立.所以,对任意n ∈N *,不等式12·34·56·…·2n -12n ≤322n +1恒成立.。

数学归纳法

数学归纳法

5.由 k 到 k+1 这一步,要善于分析题目的结构特点,进行适 当的变形,常用分析、添项、拆项、作差等方法.
6.用不完全归纳法给出结论,用数学归纳法给出证明是高考题 中经常出现的题型,希望同学们用心体会.
7.本节内容是选修与选考内容,在复习时要注意把握好难度 能证明一些简单的数学命题就可以了.
用数学归纳法证明与正整数n有关的等式 用数学归纳法证明:2×1 4+4×1 6+6×1 8+…+2n21n+2 =4nn+1. 【思路分析】 本题主要考查用数学归纳法证明等式的步骤, 注意当 n=k+1 时,两边加上的项和结论各是什么.
【证明】 (1)当 n=1 时,左边=2×1 4=18,右边=18等式成立. (2)假设 n=k 时,2×1 4+4×1 6+6×1 8+…+2k21k+2=4k+k 1成立. 当 n=k+1 时, 2×1 4+4×1 6+6×1 8+…+2k21k+2+2k+212k+4 =4k+k 1+4k+11k+2=4kk+k+12k++12 =4k+k+11k+2 2=4kk++12=4[k+k+11+1] ∴n=k+1 时,等式成立. 由(1)(2)可得对一切正整数 n∈N*,等式成立.
【名师点睛】 数学归纳法证题的两个步骤缺一不可.证 n=k+1 成立时,必须用 n=k 成立的结论,否则,就不是数学 归纳法证明.
1.用数学归纳法证明: 1·n+2(n-1)+3(n-2)+…+(n-1)·2+n·1=16n(n+1)(n+2). 证明:(1)当 n=1 时,左边=1, 右边=16(1+1)(1+2)=1,等式成立. (2)假设 n=k 时,1·k+2(k-1)+3(k-2)+…+(k-1)·2+k·1= 16k(k+1)(k+2)成立.
(2)假设 n=2k(k∈N*)时,命题成立, 即 x2k-y2k 能被 x+y 整除. 当 n=2k+2 时,x2k+2-y2k+2=x2·x2k-y2·y2k =x2(x2k-y2k)+y2k(x2-y2) =x2(x2k-y2k)+y2k(x+y)(x-y). ∵x2(x2k-y2k)、y2k(x+y)(x-y)都能被 x+y 整除, ∴x2k+2-y2k+2 能被 x+y 整除,即 n=2k+2 时命题成立. 由(1)(2)知原命题对一切正偶数均成立. 【名师点睛】 因证明的命题对所有正偶数成立,所以归纳假 设中采用了 n=2k(k∈N*)与它相邻的是 n=2k+2.要注意体会 n =2k+2 时的变形方法.

数学归纳法的特点数学归纳法的三个步骤数学归纳法两种形式

数学归纳法的特点数学归纳法的三个步骤数学归纳法两种形式

一、数学归纳法的步骤
1)当n=1时,显然成立。

2)假设当n=k时(把式中n换成k,写出来)成立,
则当n=k+1时,(这步比较困难,化简步骤往往繁琐,考试时可以直接写结果)该式也成立。

由(1)(2)得,原命题对任意正整数均成立。

二、数学归纳法的特点
数学归纳法就是一种证明方式。

通过过归纳,可以使杂乱无章的数学条理化,使大量的数学系统化。

归纳是在比较的基础上进行的。

通过比较,找出数学间的相同点和差异点,然后把具有相同点的数学归为同一类,把具有差异点的数学分成不同的类。

最终达到数学上的证明。

归纳法:
对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法叫做归纳法。

归纳法包括完全归纳法和不完全归纳法。

数学归纳法的应用:
(1)证明恒等式;
(2)证明不等式;
(3)三角函数;
(4)计算、猜想、证明。

三、数学归纳法的特点:
①用数学归纳法进行证明时,要分两个步骤,两步同样重要,两步骤缺一不可;
②第二步证明,由假设n=k时命题成立,到n=k+1时.必须用假设条件,否则不是数学归纳法;
③最后一定要写“由(1)(2)……”。

数学归纳法

数学归纳法

数学归纳法数学归纳法是指根据归纳的原则和方法,按照事物发展和变化有目的地将一些数学问题进行有效地归类,进而达到“从现象到本质”的过程。

归纳法是指根据数学知识本身产生、发展、变化的规律,总结出一些数学规律或结论,用以指导自己进行抽象思维和具体运算,达到抽象概括并联系生活实际的目的。

数学归纳法包括:归类法、类比法、归纳法。

归类法:可以从数组或数列中把不同的变量归类出来,并对每个变量采取与变量相对应的顺序或层次归入其属性之中作为标准。

类比法:可以对每一个与各个数学分支有关的数学问题进行类比分析,然后得出各数学分支之间以及与之相关的其他数学分支之间进行类比,并对这些分类与各数学分支之间的关系进行推理,得出各种数学结论。

归纳法在教育教学中很重要,但对数学知识没有太多认识意义或者不懂得怎样运用归纳方法找到有效信息,是不能很好地解决数学问题的。

归纳法:在教学中运用较为广泛的一种方法。

在教学过程中要根据实际情景,合理地运用归纳方法收集知识、处理问题、解决问题等过程。

归纳主要包括两个方面:一是按照事物特点进行汇总与归类;二是根据所要考察的知识点选择相应的方法加以进行。

1.汇总与归类首先,根据数学概念、公式和基本法则,将其归纳到一个有一定逻辑顺序结构和一定组织形式的总目录,然后对这些目录加以处理,整理出一个数组或者数列,使之便于操作、便于学习应用。

其次,要综合考虑一些因素导致某一元素有其独特属性,在进行相应的分类。

这就是所谓的“按属性分类”,它包括三个方面:一是每个元素都有一个基本的属性;二是各元素有自己独特的属性类型;三是其独特的属性类型与其他元素之间存在着密切的关系。

最后要注意分类的层次性和关联性。

分类首先要对各元素的属性性质做出概括(即归纳)和确定。

其次为不同类别之间建立起合理的逻辑顺序与逻辑层次(即类别)。

但在汇总和归类过程中要注意两点:一是根据一定原则、方法、事物发展演变态势进行汇总或归类;二是必须建立起合理系统且有逻辑层次结构形式和各种不同类别之间是否存在着相互关联关系。

数学归纳法

数学归纳法

(—)第一数学归纳法:一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1是命题也成立。

(二)第二数学归纳法:第二数学归纳法原理是设有一个与自然数n有关的命题,如果:(1)当n=1回时,命题成立;(2)假设当n≤k时命题成立,则当n=k+1时,命题也成立。

那么,命题对于一切自然数n来说都成立。

(三)螺旋归纳法:螺旋归纳法是归纳法的一种变式,其结构如下:Pi和Qi是两组命题,如果:P1成立Pi成立=>Qi成立那么Pi,Qi对所有自然数i成立利用第一数学归纳法容易证明螺旋归纳法是正确的编辑本段排列,组合·阶乘:n!=1×2×3×……×n,(n为不小于0的整数)规定0!=1。

·排列从n个不同元素中取m个元素的所有排列个数,A(n,m)= n!/(n - m)!(m是上标,n是下标,都是不小于0的整数,且m≤n)··组合从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。

所有不同组合的种数C(n,m)= A(n,m)/m!=n!/[m!·(n-m)!](m是上标,n 是下标,都是不小于0的整数,且m≤n)◆组合数的性质:C(n,k) = C(n,k-1) + C(n-1,k-1);对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数◆整次数二项式定理(binomial theorem)(a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+ ...+C(n,n)×a^0×b^n所以,有 C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n =(1+1)^n= 2^n编辑本段微积分学极限的定义:设函数f(x)在点x。

数学归纳法(各种全)

数学归纳法(各种全)

解:设椭圆221mx ny +=,则4191m n m n +=⎧⎨+=⎩,解得335835m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆方程为223813535x y +=.六、数学归纳法(一)数学归纳法应用关于正整数的命题的证明可以用数学归纳法.本部分的数学归纳法指的是第一数学归纳法.第一数学归纳法的思维方法是:命题在1n =成立的条件下,如果n k =时命题成立能够推出1n k =+时命题也成立,我们就可以下结论,对于任意正整数命题都成立.1.证明等式典型例题:证明222112(1)(21)6n n n n ++⋅⋅⋅+=++,其中n N *∈.证明:(1)当1n =时,左边211==,右边11(11)(21)16=⨯⨯++=,等式成立.(2)假设n k =时等式成立,即222112(1)(21)6k k k k ++⋅⋅⋅+=++.则当1n k =+时,左边22222112(1)(1)(21)(1)6k k k k k k =++⋅⋅⋅+++=++++1(1)(2)(23)6k k k =+++1(1)[(1)1][2(1)1]6k k k =+++++=右边,即1n k =+时等式成立.根据(1)(2)可知,等式对于任意n N *∈都成立.2.证明不等式典型例题 1.证明1111223n n+++⋅⋅⋅+<,其中n N *∈.证明:(1)当1n =时,左边1=,右边2=,不等式成立.(2)假设n k =时不等式成立,即1111223k k+++⋅⋅⋅+<,则当1n k =+时,左边11111122311k k k k =+++⋅⋅⋅++<+++,右边21k =+.要证左边<右边,536只需证12211k k k +<++,而此式2112(1)k k k ⇔++<+2121k k k ⇔+<+24(1)(21)01k k k ⇔+<+⇔<,显然01<成立,故1n k =+时不等式也成立.综上所述,不等式对任意n N *∈都成立.典型例题2.已知,0a b >,a b ≠,n N ∈,2n ≥,证明()22n nn a b a b ++<.证明:(1)当2n =时,2222222222()2442a b a ab b a b a b +++++=<=,不等式成立.(2)假设n k =时不等式成立,即()22k kk a b a b ++<,则当1n k =+时,左边1()2k a b ++11224k k k k k k a b a b a b a b ab +++++++<⋅=,因为11()()k k k ka b a b ab +++-+()()k k a b a b =--0>,所以11k k k k a b ab a b +++<+,则111142k k k k k k a b a b ab a b ++++++++<,即111()22k k k a b a b +++++<,故1n k =+时不等式也成立.由(1)(2)可知,不等式对任意n N ∈,2n ≥都成立.3.证明整除性问题典型例题:证明22nn ab -能被a b +整除,其中n N *∈.证明:(1)当1n =时,显然22a b -能被a b +整除.(2)假设n k =时命题成立,即22k k a b -能被a b +整除,则当1n k =+时,2(1)2(1)2(1)2(1)2222k k k k k k a b a b a b a b ++++-=-+-222222()()k k k a a b b a b =-+-,因为22a b -与22k k a b -都能被a b +整除,所以222222()()k kk a a b b a b -+-能被a b +整除,即1n k =+时命题也成立.综上所述,原命题成立.4.证明几何问题典型例题:求证平面内n 条直线的交点最多有1(1)2n n -个.证明:平面内n 条直线的交点最多,只需任意三条直线不过同一点,任意两条直线不平行,下面在此条件下证明.(1)当2n =时,显然两条直线只有1个交点,而1(1)12n n -=,命题成立.537(2)假设n k =时命题成立,即平面内k 条直线的交点有1(1)2k k -个,则当1n k =+即平面上有1k +条直线时,因为任意三条直线不过同一点,任意两条直线不平行,所以第1k +条直线与原来的k 条直线共有k 个交点.这时交点的总个数为1(1)2k k k-+1(1)[(1)1)]2k k =++-,即1n k =+时命题也成立.综上所述,原命题成立.(二)其他数学归纳法除了第一数学归纳法以外,还有一些特别的数学归纳法.1.第二数学归纳法典型例题:设n N *∈,且12cos x x α+=,证明:12cos n n x n x α+=.证明:(1)当1n =时,12cos x xα+=,命题成立.当2n =时,21()x x +2212x x =++24cos α=,得2212cos 2x xα+=,命题成立.(2)假设n k ≤(2)k ≥时命题成立,则当1n k =+时,有111k k x x +++11111()()()k k k k x x x x x x--=++-+2cos 2cos 2cos(1)k k ααα=⋅--2[cos(1)cos(1)]2cos(1)k k k ααα=++---2cos(1)k α=+,故1n k =+时不等式也成立.由(1)(2)可知,命题成立.2.反向数学归纳法典型例题:函数:f N N **→满足(1)(2)2f =,(2)对任意正整数m 、n ,()()()f mn f m f n =,(3)当m n >时,()()f m f n >;证明:()f n n =.证明:令2m =、1n =,则(2)(2)(1)f f f =,故(1)1f =.令2m =、2n =,则22(2)(2)(2)2f f f ==;令22m =、2n =,则323(2)(2)(2)2f f f ==;由第一数学归纳法易证(2)2mmf =.下面用反向数学归纳法证()f n n =.(1)由上面推证知,存在无数个形如2m的数使()f n n =成立.(2)假设1n k =+时成立,即(1)1f k k +=+.因为存在t N *∈满足1212t t k +<+≤,则122t t k +≤<.设2t k s =+,s N *∈,则1112(2)(21)(22)(2)(21)(2)2t t t t t t t t f f f f s f f +++=<+<+<⋅⋅⋅<+<⋅⋅⋅<-<=.所以1(21),(22),,(2),,(21)t t t t f f f s f +++⋅⋅⋅+⋅⋅⋅-是区间1(2,2)t t +内的21t -个不同的自然数,538而区间1(2,2)t t +内恰好有21t -个不同的自然数121,22,,2,,21t t t t s +++⋅⋅⋅+⋅⋅⋅-,于是11(21)21,(22)22,,(21)21t t t t t t f f f +++=++=+⋅⋅⋅-=-,即()f k k =.由反向数学归纳法知,对任意n N *∈都有()f n n =.3.跷跷板数学归纳法典型例题:n S 是数列{}n a 的前n 项和,设223n a n =,213(1)1n a n n -=-+,n N *∈,求证:2211(431)2n S n n n -=-+及221(431)2n S n n n =++.证明:设()P n :2211(431)2n S n n n -=-+;()Q n :221(431)2n S n n n =++.(1)当1n =时,111S a ==,则(1)P 成立.(2)假设n k =时,则()P k 成立,即2211(431)2k S k k k -=-+,则2212k k k S S a -=+=221(431)32k k k k -++21(431)2k k k =++,即()Q k 成立.当()Q k 成立时,21k S +=221k k S a ++21(431)3(1)12k k k k k =+++++21(1)[4(1)3(1)1]2k k k =++-++,即(1)P k +成立.由跷跷板数学归纳法可知,原命题成立.4.二重数学归纳法典型例题:设(,)f m n 满足(,)(,1)(1,)f m n f m n f m n ≤-+-,其中,m n N *∈,1mn >,且(,1)(1,)1f m f n ==,证明:12(,)m m n f m n C -+-≤.证明:设命题(,)P m n 表示(,)f m n .(1)112(,1)1m m f m C -+-==,012(1,)1n f n C +-==,即(,1)P m 、(1,)P n 成立.(2)假设(1,)P m n +、(,1)P m n +成立,即1(1,)m m n f m n C +-+≤,11(,1)m m n f m n C -+-+≤.则(1,1)(1,)(,1)f m n f m n f m n ++≤+++11111(1)(1)2m m m m m n m n m n m n C C C C -+++-+-++++-≤+==,即(1,1)P m n ++也成立.由二重数学归纳法知,原不等式成立.539。

数学归纳法

数学归纳法
在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个, 一直下去概不例外)的数学定理。
虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理 法。事实上,所有数学证明都是演绎法。
解题
原理
解题要点
最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:
数学归纳法
数学证明方法
01 简介
03 合理性 05 发展历程

目录
02 解题 04 变体
数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个 (或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如: 集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。
数学归纳法对解题的形式要求严格,数学归纳法解题过程中, 第一步:验证n取第一个自然数时成立 第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程 中不能直接将n=k+1代入假设的原式中去。 最后一步总结表述。 需要强调是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明: 证明1:所有的马都是一种颜色 首先,第一步,这个命题对n=1时成立,即,只有1匹马时,马的颜色只有一种。 第二步,假设这个命题对n成立,即假设任何n匹马都是一种颜色。那么当我们有n+1匹马时,不妨把它们编 好号: 1, 2, 3……n, n+1 对其中(1、2……n)这些马,由我们的假设可以得到,它们都是同一种颜色;
在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个, 一直下去概不例外)的数学定理。

数学归纳法

数学归纳法
数学归纳法
四边形、五边形、六边形分别有多少条对角线? 思 考
2
5
9
每个顶点处有3条对角线,6个顶点, 每条对角线都计算了两次。
猜想:n边形(n≥4)有多少条对角线?为什么?
n (n-3) 2
同上述理由,每个顶点处可作(n-3) 条对角线,n个顶点共可作n(n-3)条, 重复一次。
这一公式适合四边形、五边形、六边形吗?
即当n=k+1时,等式也成立。
由(1) (2)可知,等式对任何n∈N*都成立。
用数学归纳法证明命题的步骤:
⑴、证明当n取第一个值n0 (例如n0=1或2)时结论正确; (递推的基础)
⑵、假设当n=k(kN *,且k ≥n0)时
结论正确,证明当n=k+1时结论也正确。
(递推的依据)
例2. 用数学归纳法证明: 1+3+5+…+(2n-1)=n2

; 公众号助手 https:// 公众号助手

.命题作文:刚与柔 以“刚与柔”为题写一篇不少于800字的文章,自定立意,自选文体。 写作导引: 这是关系式作文命题,一般由并列的几个短语组成,包含着几个方面的内容。这就要求我们在写作时,首先在内容上要兼顾几个方面,不可只顾一点,不及其余。像本题中“刚”和“柔”两个方面 的内容都要写出来。其次,此类命题短语间的关系是多样的,如“相信自己与听取别人意见”是对立关系,“人文素养与发展”是条件关系,“快乐幸福与我们的思维方式”是因果关系……短语间的关系不同,写作的重点自然也不同。像“刚与柔”是明显的对立并列关系,写作时应将二者并重,从 二者的紧密联系或者褒贬角度去构思。第三,要联系社会生活,使内容具体化。若从刚柔紧密联系的角度,我们可以联想到:在成就功业和为人处世方面,“刚”就是一种高尚的气节

数学中的数学归纳法

数学中的数学归纳法

数学中的数学归纳法数学归纳法是数学中一种重要的证明方法,广泛应用于数论、代数、组合数学等领域。

通过数学归纳法,可以证明一类问题的通用性质,也可以用来构造一类问题的通用解法。

本文将介绍数学归纳法的基本概念、原理和应用,以及一些常见的数学归纳法的例子。

一、数学归纳法的基本概念数学归纳法是一种证明方法,它基于两个基本概念:基本情况和归纳步骤。

基本情况指的是我们需要证明的性质在某个特定情况下成立。

一般来说,基本情况是指当n等于某个特定的值时,我们要证明的性质成立。

归纳步骤是指我们假设某个特定情况下性质成立,然后通过这个假设推导出下一个情况下性质也成立。

通常是假设当n=k时,性质成立,然后通过这个假设证明当n=k+1时,性质也成立。

二、数学归纳法的原理数学归纳法的原理可以用以下形式表达:(1)基本情况成立:当n等于某个特定值时,需要证明的性质成立。

(2)归纳步骤成立:假设当n=k时,性质成立,然后证明当n=k+1时,性质也成立。

(3)由(1)和(2)可知,对于所有满足基本情况和归纳步骤的n,性质都成立。

数学归纳法的原理看起来很简单,但它需要严谨的证明。

通常,我们需要首先证明基本情况成立,然后通过归纳步骤证明当n=k时,性质成立。

最后,我们可以得出结论,对于所有满足基本情况和归纳步骤的n,性质都成立。

三、数学归纳法的应用数学归纳法在数学的各个领域都有广泛的应用。

1. 数论数论是研究整数性质和整数之间关系的数学分支。

数学归纳法在数论中得到了广泛应用,例如证明质数的无穷性、证明整数间的除法关系等。

2. 代数代数是研究数学结构、变换和等式的数学分支。

数学归纳法在代数中也有重要的应用,例如证明恒等式、证明等价关系等。

3. 组合数学组合数学是研究离散结构和组合问题的数学分支。

数学归纳法在组合数学中被广泛运用,例如证明组合恒等式、证明二项式系数等。

四、数学归纳法的例子下面是一些常见的数学归纳法的例子:1. 奇数和偶数基本情况:当n=1时,1是奇数。

数学归纳法的基本原理

数学归纳法的基本原理

总结:归纳法的意义与未来
▪ 归纳法的教育推广
1.归纳法作为数学思维的重要组成部分,应当在数学教育中得到更加广泛的推广。 2.通过教育和培训,提高公众对归纳法的认识和掌握程度,有助于提升社会的数学素养和创新 能力。
▪ 归纳法与社会科学的交叉研究
1.归纳法在社会科学中也可以发挥重要作用,帮助研究者发现社会规律和解决社会问题。 2.交叉学科的研究将会推动归纳法的发展,并为社会科学的研究提供更加严谨和科学的方法支 持。 以上内容仅供参考,您可以根据自身需求进行调整优化。
数学归纳法的重要性
1.数学归纳法是数学中的一种重要证明方法,能够确保数学命 题的准确性和严谨性。 2.通过数学归纳法,可以推导出许多重要的数学公式和定理, 从而推动数学学科的发展。 3.数学归纳法体现了从特殊到一般的推理思想,有助于培养数 学思维和问题解决能力。 以上内容仅供参考,具体内容可以根据您的需求进行调整优化 。
基本原理:归纳步骤详解
▪ 归纳法的注意事项
1.在进行归纳步骤的证明时,必须严格利用归纳假设和已知条件,不能引入新的条件和假设。 2.在证明过程中,需要注意保持命题的一致性和严谨性,避免出现逻辑漏洞和错误。
▪ 归纳法的发展趋势和前沿应用
1.随着数学的发展和计算机技术的应用,数学归纳法的应用范围和实用性不断扩大。 2.在人工智能、机器学习等领域,数学归纳法也被广泛应用于数据分析和模式识别等方面,为 相关领域的发展提供了有力的支持。
数学归纳法的基本原理
基本原理:基础步骤详解
基本原理:基础步骤详解
数学归纳法的定义和目的
1.数学归纳法是一种用于证明数学命题的方法,其目的是通过有限的步骤证明无限个数学命题的正 确性。 2.数学归纳法基于归纳原理,即从有限个特殊情况中推断出一般情况的正确性。

数学归纳法

数学归纳法
数学归纳法
四边形、五边形、六边形分别有多少条对角线? 思 考
2
5
9
每个顶点处有3条对角线,6个顶点, 每条对角线都计算了两次。
猜想:n边形(n≥4)有多少条对角线?为什么?
n (n-3) 2
同上述理由,每个顶点处可作(n-3) 条对角线,n个顶点共可作n(n-3)条, 重复一次。
这一公式适合四边形、五边形、六边形吗?

; 优游 ;
在沙丘顶上列队,一大排地立起身子,把它们光滑的背甲对着同一个方向,在太阳还没有升起的时候,会有一阵清风从这个方向吹来,抚过沙丘的表面,最后,吹到小虫的身体。风缓缓地、软软地、悄悄地轻拂着,小虫长时间一动不动,在它们的背甲上就悄悄地凝起了水珠,这是晨风带来的 仅有的一点湿润,水珠越聚越大,它们相互融合,终于,成了一颗水滴。水滴从小虫的背上流下来,流过它的脖子、脑袋、鼻子,最后流到它的嘴边,成了这只小小的甲壳虫一天赖以维系生命的甘露。 73、农村教育要有自己独特的视角 目前我国每年约有1000万左右的农村中小学毕 业生因为不能升入高一级学校而回到家乡。一些中小学毕业生因为缺乏生活技能,进城打工没门,搞二三产业无路,只好在家里闲着,面临“升学无望、就业无门、致富无术”的尴尬。出现这样的情况,主要是农村教育长期以来迷失于城市教育话语权之下。农村不存在真正属于自己的教育。 农村孩子所接受的实际上是城市知识人设计的教育模式,而这种教育模式显然预设、渗透“城市取向”的价值。在这种价值取向中,农村基础教育的终极目标不是为农村培养合格的劳动者和建设者,只是为高一级学校输送优秀人才。而对于大部分农村学生而言,最后的归宿只能是回到生养他 们的土地。 农村教育要适应农村的发展与建设,必须立足于农村,确立自己的教育视角。农村地域文化中原本就潜藏着丰富的教育资源,比如,经过长期积淀而形成的地域、民俗文化传统,这都是对于农村生活以及农村生活秩序建构弥足珍贵的价值成份。 同时,立足于农村建设、 作为现代农民必须的技能、知识,也是教育的重点。学校可采取正规教育与自然野趣之习染相结合,专门训练与口耳相授相结合,理论的传授与田野实践相结合,知识的启蒙与农村情感的孕育相结合,就能培养出农村欢迎的、能适应未来发展的新型农村劳动者和建设者。 74、加强女童 教育 联合国儿童基金会发表了《2004年世界儿童状况报告》,报告主题是女童教育,强调教育是改变女童未来命运的基础。 报告说,目前全球还有1.21亿儿童辍学,其中6500万是女童。在发展中国家,女童教育是最迫切需要解决的问题之一。儿童教育中的男女不平等,使女童在以 后的发展和社会生活中处于不利的地位。保女童得到教育,无论对家庭还是国家都有益的。 根据报告的统计,各国在儿童教育方面的差距非常大。在小学入学率方面,绝大多数发达国家和一些比较好的发展中国家入学率已经达到或接近100%。但在一些最不发达国家,女童的入学率只有 30%左右。 报告要求各国政府从多方面加强对女童的教育。报告还建议将国际官方援助的10%用于基础教育。发达国家应至少拿出国内生产总值的0.7%作为官方发展援助。 75、教育不能缺失人文精神 反思我们的教学,虽然在知识这个层面上,我们存在的问题也不少,但更缺 的是人文性。我们缺乏对学生的尊重,缺乏教学民主,缺乏对人性的关注。我们忽略了比知识、能力更重要的东西,即人的情感、态度和价值观。而这些方面不是靠说教所能奏效的,是靠感化,是在学生和教师相处中(即教学中、活动中),靠老师言行的感化。理性说教和作用极其有限,有 时很可能等于零——当老师在学生心目中什么地位也没有的时候。当学生遇到困难的时候(不论是学习上的,还是生活上的),老师要伸出援助的手,让学生在感受老师的关爱中学会关爱别人;当学生受到挫折时,老师要予以鼓励,在老师的鼓励下变得坚强;当学生在取得进步时,老师要及 时激励,让学生在激励中获得更多的成功体验;当学生不能正确对待自己、对待别人,老师要以自己的人格,自己的言行告诉学生应该怎样去做……古人说:“学高为师,身正为范。”“身正”指的就是人文性,就是一个“善”字。为什么说当老师不易?因为既做到“学高”,又做到“身 正”,要付出巨大努力,要不断地修炼。 76、教育学生正确认识危机 在教育教学过程中,教师应该有意识地向学生“灌输”危机意识,使他们从小就认识到,危机在人的生命发展历程中不可避免,只要人生活下去,就会遇到各种各样的危机。虽然危机会中断正常连续的生活过程,甚至 给人们的生活带来麻烦和灾难,但是只要通过自己的努力克服了危机的威胁,就能够获得生命发展的新起点,就会变得更加坚强和成熟。危机是一把“双刃剑”,在给人带来危险的同时也带给人们成长的机会,当人们能够认识危机,战胜危机时,心理就会更加成熟,就能够拥有更大的信心和 能力来面对真实的生活。 机吓倒。 77、美国学生阅读能力强 据国际教育成就评估协会新近对欧美、亚洲等地区的总共34个国家的3万余名小学四年级学生进行的一次有关阅读能力的调查:美国孩子的平均得分名列榜首,接着是瑞典和英国等欧洲国家的孩子,再后是中国、日本等东亚国家的孩子,而平均得 分偏低的是伊朗和科威特等西亚国家的孩子。 美国学生拥有超强阅读能力的有力例之一是:同样是在四年级学生中,能阅读中等难度的成人报纸者在美国孩子中高达78%,能阅读难度较高的文学名著者高达46%,比国际平均水平分别高出足足27和21个百分点。此外,美国孩子的阅读面 也比其他国家同龄孩子要宽,涵盖了广告、《圣经》、外国古典名著和较浅显的科学理章,等等,而此类较深奥的作品,其他国家的孩子往往要再过2年才有能力开始系统地阅读。美国孩子的阅读能力之所以超强,其中一个重要原因是:高达65%的孩子每星期能得到至少6个小时的阅读指导, 而国际平均数仅为28%。在美国几乎所有的学校都强调阅读的重要性,而国际平均数仅为78%。此外,就像在世界其他国家一样,在美国,女孩子的阅读能力普遍比男孩子强。 78、“校本教研”是一种“唤醒” “校本教研”的根本目的不是传授给教师一些现成的研究方法,而是要 把教师的创造潜能诱导出来,将教师的生命感、价值感从沉睡的自我意识和心灵中“唤醒”。教学研究绝非仅仅是教育研究机构的事情,它的主体应是教师自身,教师是教学原理的创造者。正如德国教育家斯普朗格认为的,“唤醒”这一概念是作为人的本体结构的全面“震颤”。教育过程不 仅需要从外部解放成长者,而且首先要考虑的问题应是解放成长者内部的力量。 又如德国教育家鲍勒诺夫认为,“唤醒”可以使主体的人在灵魂震颤的瞬间感受到从未体味过的内在敞亮,他因主体性空前张扬而获得一次心灵的解放。通过“唤醒”,可以使一个真正认识自己和自己所处 的世界,认识自己存在的处境、生命的历史和未来的使命,使自己成为一个真正具有自我意识和充满生命希望的人。因此,“校本教研”就是要“唤醒”教师沉睡的研究意识,增强其自我意识,使教师获得一种生命的升华。 79、托福模式的现代化伪装 从表面上看,语文试题的争论 集中在标准化和客观题上,这似乎属于外部形式范畴,但是从根本上来看,蕴藏着深层的文化观念和思想方法问题。改革不是表面考题形式的变化,而是价值观念的颠覆和重构。潜藏在托福模式下面的思维模式,其特点就是任何事情都有一个绝对正确的、惟一的、标准的、客观的答案。这种 答案的正确性是不须要任何因果分析来支持的,与命题者确认的答案哪怕是有微小差异的表述,都是绝对错误的。 这种绝对化的思维模式,不仅仅对于人文精神、审美的多元价值是一种背离,而且对于当代科学创造所不可或缺的想像力,也是一种扼杀。但是,它却潜藏在高考这种决定 命运的选拔形式的深层,就不能不在青少年的思想深处打上深深的烙印,对于他们的世界观产生长期消极的影响。托福模式曾经使中国根深蒂固的考试传统获得了一副现代化的伪装,十多年来对中国青少年的个性和创造力的扼杀惨烈到什么程度,是很难以某种统计数字来量化的。 80、 教学结构无定式 随着课型研究的不断深入,各种形式的课堂教学结构应运而生,各种形式的“模式”教学法让人目不暇接。受这种气氛的影响,不少老师的公开课教学都追求一种多变的形式、花哨的结构,总想把课堂教学设计成一件精致的工艺品,在程序的制定和细节的安排上挖空心 思,不断翻新,结果弄巧成拙,使得一堂课就像一个绣花枕头,华而不实,收效甚微。其实,结构只是一种外在的框架,并不能反映问题的本质。 如果一节课双基教学不扎实,思维训练不到位,教育功能不体现,即使结构再精巧,也只是徒有其表。反言之,就算课堂结构不尽完美,但是较 好地体现了知识、能力和觉悟的有机统一,体现了教师为主导、学生为主体和训练为主线的和谐结合,那也不失为一节好课。此外,结构的安排也要因法,如果一成不变,机械通用,必将步入“包装”的误区,就会画虎类犬。 ? 81、美味的咖啡 一位女儿对父亲抱怨说,生命是如何痛苦、 无助,她想要快乐地走下去,但是她已失去方向。父亲二话不说,拉起女儿的手走向厨房。他烧了三锅水,水滚了后在第一个锅里放萝卜,第二个锅里放蛋,第三个锅里放咖啡。 过了一会儿,父亲把锅里的萝卜、蛋捞起来放进碗中,把咖啡倒进杯子里。父亲要女儿摸摸经过沸水烧煮的 萝卜,萝卜已被煮得软烂;他要女儿敲碎薄薄的蛋壳,细心观察;最后他要女儿尝尝咖啡,女儿喝着咖啡,闻着浓浓的香味。她问,爸,这是什么意思? 父亲解释,这三样东西面对相同的逆境,也就是滚烫的水,反应却各不相同。原本粗硬、坚实的萝卜,在滚水中变软了;蛋原本非常 脆弱,薄薄的外壳经过滚水沸腾,蛋壳却变硬了;而粉末似的咖啡在滚烫的热水中竟然改变了水。 “你呢?我的女儿!”父亲慈爱地说:“当逆境来时,你作何反应?你看似坚强的萝卜,但痛苦与逆境来时却变得软弱,失去力量。或者你原本是一颗蛋,有着柔顺易变的心,但却在经历 死亡、分离、困境后,变得又倔强又固执。或者你就像咖啡,将那带来痛苦的沸水变成了美味的咖啡,愈沸腾愈美味。我的女儿!你要让逆境摧折你,还是转变逆境,让身边的一切事物感觉更美好?”

数学归纳法

数学归纳法

应用广泛:在数学 、计算机科学等领 域有广泛应用
数学归纳法的应用范围
证明数学定理 解决数学问题 证明数学公式 证明数学猜想
数学归纳法的证明步骤
初始步骤
基础步骤:证明命题在n=1 时成立
确定命题:明确要证明的命 题
归纳假设:假设命题在n=k 时成立
归纳步骤:证明命题在 n=k+1时成立
归纳步骤
THNK YOU
汇报人:
利用数学归纳法求解数列的极限问题
数列的定义:数列是一列有序的数如1, 2, 3, ... 极限的定义:极限是指一个数列或函数在某一点或某一区间上的极限值 数学归纳法的应用:利用数学归纳法可以求解数列的极限问题 实例:求解数列1/n的极限利用数学归纳法可以证明其极限为0
利用数学归纳法证明不等式
结论推导的严密性
确保每一步推导都有明确的依据 注意逻辑的连贯性和一致性 避免使用未经证明的假设或结论 确保结论的准确性和完整性
应用范围的局限性
数学归纳法只适用于正整 数集
不适用于无限集或非整数 集
数学归纳法不能证明存在 性只能证明唯一性
数学归纳法不能证明非单 调性或不可数性
数学归纳法的拓展与提高
理的假设
归纳推理:根 据假设和已知 条件进行归纳 推理得出结论
验证结论:对 得出的结论进 行验证确保其 正确性和有效

推广应用:将 归纳推理的结 果推广到更广 泛的问题中解 决更复杂的问

总结反思:总 结归纳推理的 过程和结果反 思存在的问题 和不足提高解 决问题的能力
数学归纳法与其他数学方法的结合运用
确定命题:明确要证明的命题 基础步骤:证明命题在n=1时成立 归纳假设:假设命题在n=k时成立

06数学归纳法

06数学归纳法

这就是说,当n=k+1时,等式也成立
根据(1)和(2),可知等式对任何n∈N*都成立
练习:
1.用数学归纳法证明
2
1 4 2 7 3 10 n (3 n 1) n ( n 1)
2.用数学归纳法证明等差数列的前n项和 公式 n ( n 1) S n na1 d 2
例如在本章2.1节的练习中,同学们用归
纳推理猜想到
1 2 3 n
3 3 3 3
n ( n 1)
2
2
4
(*)
这个猜想是一个与自然数相关的命题, 其正确性有待证明。要证明公式(*)成立, 原则上要对每一个正整数n实施证明。但 是这个证明步骤是无限的,无法实施,需 要另寻方法。数学归纳法可以用有限的步 骤,完成这个命题的证明。其步骤如下:
这就是说,n=k+1时也成立
所以等式对任何n∈N*都成立 该同学在没有证明当n=1时,等式是否成立的前提 下,就断言等式对任何n∈N*都成立,为时尚早 事实上,当n=1时,左边=2,右边=3 左边≠右边,等式不成立
思考2:下面是某同学 用数学归纳法证明等式 1 + 1 + 1 + + 1 1 1 (n∈N*) 2 3 2 2 2 2n 2n 成立的过程,它符合数学归纳法的证明要求吗?为什么? 第二步的证明没有在假设条件下进行,因此不符合 数学归纳法的证明要求
2.3.1 数学归纳法
归纳推理是合情推理,它可以帮助我们 发现规律,但是不能用来证明数学结论,数 学归纳法是已知证明方法,专门用来证明与 自然数相关的命题。 1.数学归纳法:对于某些与自然数n有关的 命题常常采用下面的方法来证明它的正确性: 先证明当n取第一个值n0时命题成立;然后 假设当n=k (kN*,k≥n0)时命题成立,证明 当n=k+1时命题也成立这种证明方法就叫做 数学归纳法

数学归纳法

数学归纳法

数学归纳法
数学归纳法是一种用于证明与数量有关的定理的思想,是数学分析的重要工具。

从经典的数学原理、定理和法则的实质来看,数学归纳
法是一种很常用的封闭演算法,用于正确地说明一组事实或定理。


基本思想是:通过将总体中的某些特定情况研究透彻,然后运用“推广”原则,将特定推广到更一般的总体,从而可以最终得出不同问题中通
用的具有普遍意义的总体规则定理。

数学归纳法最基本的步骤就是构造一系列证明例子,并用它们构造出
一个证明步骤,以便以之为基础做进一步的推演。

在首次构造的示例中,要求它的数量足够小,以免证明过程陷入困境,而且它们所说明
的定理必须是显而易见的,以便证明后面推广的定理的正确性。

其理
论框架中的第一步就是要确定定理的范围和条件,因为要对那些外在
条件等信息集成有效地进行观察和分析,以便得出结论并得出更深层
次的结论。

一般来说,数学归纳法的证明过程可以分成五个阶段:基本定义和原理,基本元素的证明,由单个元素的证明而推广,完全证明和推断出
正确的结论。

在证明前,应对定理做出有助于定理证明的正确分析,
尤其要确定定理的依据,并明确各个元素及其相互关系,以确保每项
元素的证明及其推理过程能够得出正确的结论。

最后要指出的是,数学归纳法不仅仅是推导定理所必需的,同时也是
数学发展过程中非常重要的思维工具,也是创新思想的重要基石。


培养着学生思考问题的深度、独立思考的能力,有助于学生系统地掌握数学知识,从而为数学发展发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

骨牌一个接一个倒下,就如同一个值到下一个值的过程。

1.证明当n = 1 时命题成立。

2.证明如果在n = m时命题成立,那么可以推导出在n = m+1 时命题也成立。

(m代表任意自然数)
这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。

当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。

把这个方法想成多米诺效应也许更容易理解一些。

例如:你有一列很长的直立着的多米诺骨牌,如果你可以:
1.证明第一张骨牌会倒。

2.证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。

那么便可以下结论:所有的骨牌都会倒。

[编辑]例子
假设我们要证明下面这个公式(命题):
其中n为任意自然数。

这是用于计算前n个自然数的和的简单公式。

证明这个公式成立的步骤如下。

[编辑]证明
[编辑]第一步
第一步是验证这个公式在n = 1时成立。

我们有左边 = 1,而右边 = 1(1 + 1) / 2 = 1,所以这个公式在n = 1时成立。

第一步完成。

[编辑]第二步
第二步我们需要证明如果假设n = m时公式成立,那么可以推导出n = m+1 时公式也成立。

证明步骤如下。

我们先假设n = m时公式成立。


(等式 1)
然后在等式等号两边分别加上m + 1 得到
(等式 2)
这就是n = m+1 时的等式。

我们现在需要根据等式 1 证明等式 2 成立。

通过因式分解合并,等式 2 的右手边
也就是说
这样便证明了从 P(m) 成立可以推导出 P(m+1) 也成立。

证明至此结束,结论:对于任意自然数n,P(n) 均成立。

[编辑]解释
在这个证明中,归纳推理的过程如下:
1.首先证明 P(1) 成立,即公式在n = 1 时成立。

2.然后证明从 P(m) 成立可以推导出 P(m+1) 也成立。

(这里实际应用的是演绎
推理法)
3.根据上两条从 P(1) 成立可以推导出 P(1+1),也就是 P(2) 成立。

4.继续推导,可以知道 P(3)成立。

5.从 P(3) 成立可以推导出 P(4) 也成立。

6.不断重复推导下一命题成立的步骤。

(这就是所谓“归纳”推理的地方)
7.我们便可以下结论:对于任意自然数n,P(n) 成立。

[编辑]数学归纳法的变体
在应用,数学归纳法常常需要采取一些变化来适应实际的需求。

下面介绍一些常见的数学归纳法变体。

[编辑]从 0 以外的数字开始
如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b
的自然数,那么证明的步骤需要做如下修改:
1.第一步,证明当n = b时命题成立。

2.第二步,证明如果n = m (m≥b) 成立,那么可以推导出n = m+1 也成立。

用这个方法可以证明诸如“当n≥ 3 时,n2 > 2n”这一类命题。

[编辑]只针对偶数或只针对奇数
如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改:
奇数方面:
1.第一步,证明当n = 1时命题成立。

2.第二步,证明如果n = m成立,那么可以推导出n = m+2 也成立。

偶数方面:
1.第一步,证明当n = 0或2时命题成立。

2.第二步,证明如果n = m成立,那么可以推导出n = m+2 也成立。

[编辑]递降归纳法又名递回归纳法
数学归纳法并不是只能应用于形如“对任意的n”这样的命题。

对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,...,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,...,m,原命题均成立。

[编辑]完整归纳法
另一个一般化的方法叫完整归纳法, 在第二步中我们假定式子不仅当n = m时成立,当n小于或等于m时也成立. 这样可以设计出这样两步:
1.证明当n = 0时式子成立.
2.证明当n≤m时成立,那么当n = m + 1时式子也成立.
例如,这种方法被用来证明:
fib(n) = [Φn− (−1/Φ)n ] / 51/2
fib(n) 是第n个斐波纳契数和Φ = (1 + 51/2) / 2 (即黄金分割). 如果我们可以假设式子已经在当n = m和n = m− 1时成立,从fib(m + 1) = fib(m) + fib(m− 1)之后可以直截了当地证明当n=m + 1 时式子成立.
这种方法也是第一种形式的特殊化:
1.定义P(n) 是我们将证的式子,
2.P(0)和P(1)成立
3.P(m + 1)在P(m)和P(m− 1)成立时成立。

结论:P(n)对一切自然数n成立。

[编辑]超限归纳法
最后两步可以用这样一步表示:
1.证明如果式子在所有的n < m成立,那么式子在当n = m时也成立.
1.m是一个极小元素,也就是没有一个元素小于m
2.m有一个直接的前辈,比m小的元素有一个大的元素
3.m没有任何前辈,也就是m是一个界限序数.。

相关文档
最新文档