分式与分式方程单元复习
北师大版八年级数学下册第五章分式与分式方程
八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。
例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。
(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。
检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。
第五章 分式与分式方程【复习课件】-(北师大版)
与被除式相乘.
上述法则用式子表示为:
b ·d = bd
b÷ d = b ·c = bc
分式的乘方法则 理解要点:
( a )n b
a bn
.
(1)分式乘方时,一定要把分子、分母分别乘方,不
√ 要把
a
n
b
an bn
写成
×
a b
n
an b
.
(2)分式乘方时,要首先确定乘方结果的符号,
找最简公分母: 第一要看系数;第二要看字母(式子). 分母是多项式的先因式分解,再找公分母.
异分母分式的加减法法则 异分母的分式相加减,先通分,化为同分母的分式,
然后再按同分母分式的加减法法则进行计算.
上述法则可用式子表示为 b d bc ad bc ad . a c ac ac ac
分式的混合运算顺序
混合运算的特点:是整式运算、因式分解、分式运 算的综合运用,综合性强.
知识点 分式方程 分式方程的概念
分母中含有未知数的方程叫做分式方程.
分式方程的特征 (1)是等式; (2)含有分母; (3)分母中含有未知数.
知识要点
“去分母法”解分式方程的步骤 1.在方程的两边都乘最简公分母,约去分母,化 成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公 分母的值不为0,则整式方程的解是原分式方程 的解,否则须舍去. 4.写出原方程的根.
∴-a-1>0且-a-1≠1,解得a<-1且a≠-2, ∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),
例 若关于x的分式方程 求m的值.
无解,
解析:先把分式方程化为整式方程,再分 两种情况讨论求解:整式方程无解与解为分 式方程的增根.
八年级数学下册 第五章 分式与分式方程单元复习课课件
方程两边都乘x-2,得1-x=-1-2(x-2), 解这个方程,得x=2. 你认为x=2是原方程的根吗?与同伴交流.
第四页,共十七页。
解:不是(bù shi). 经检验x=2是原方程的增根,
∴x=2舍去,
∴原方程无解.
第五页,共十七页。
【中考这样(zhèyàng)考】 (2019·南京中考)解方程:
考的热点,形式多样,用到的数量关系有:
总价=单价×数量,售价=标价×
利润率= 利 润 ×100%等.
进价
折 扣利,润=售价-进价,
10
第十五页,共十七页。
2.专家支招:列分式方程解应用题的一般步骤:审、设、列、 解、验、答.必须严格按照步骤进行做题,规范解题步骤,另外 还要注意完整性:如设和答叙述要完整(wánzhěng),要写出单位等.
第十七页,共十七页。
第七页,共十七页。
【专家这样说】 1.类题说明:解分式方程(fēn shì fānɡ chénɡ)也是中考常考内容,多见 于解答题,难度不大,但得分率往往不理想,主要的原因是忘记 验根.
第八页,共十七页。
2.专家支招:熟记解分式方程的一般步骤:(1)乘以最简公分母, 转化为整式方程;(2)解整式方程,得到(dé dào)未知数的值;(3) 通过验根,最终确定出分式方程的解. 切记,一定要验根!
单元 复习课 (dānyuán) 第五章 分式与分式方程
第一页,共十七页。
第二页,共十七页。
考点1 解分式方程(考查方式(fāngshì):解可转化为一元一次方程 的分式方程)
第三页,共十七页。
【教材这样(zhèyàng)教】(P127议一议) 在解方程 1 x 1 -2时,小亮的解法如下:
第五章分式与分式方程+单元测试+2022-2023学年八年级下册数学北师大版
第五章分式与分式方程(单元测试)一、单选题 1.分式方程113023162x x --=--的根是( ) A .310x = B .16x = C .3x = D .2x =2.要使分式31x -有意义,x 的取值应满足( ) A .1x > B .1x ≠ C .0x ≠ D .x 为任意实数3.若分式293x x -+无意义,则x 的取值为() A .0B .-3C .3D .3或-3 4.若分式方程2()8(1)5x a a x +=--的解为15x =-,则a 等于( ) A .56 B .5 C .56- D .-55.《九章算术》是中国古代数学名著,其中记载:每头牛比每只羊贵1两,20两买牛,15两买羊,买得牛羊的数量相等,则每头牛的价格为多少两?若设每头牛的价格为x 两,则可列方程为( )A .20151x x =+B .20151x x =-C .20151x x =+D .20151x x=- 6.若分式方程311x m x x -++=2无解,则m =( ) A .﹣3B .﹣2C .﹣1D .0 7.若分式3(1)(2)x x --有意义,则( ) A .x≠1 B .x≠2 C .x≠1且x≠2 D .x≠1或x≠28.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-9.“杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km 的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均速度为xkm /h ,则下列方程正确的是( )A .()22225115-=+%x xB .()2222111512-=+%x x C .()22225115-=+%x x D .()2222111512-=+%x x二、填空题三、解答题21.山西省平遥县政府为进一步挖掘“双林寺、老醯水镇、平遥古城”的旅游价值,计划在2019年开工建设一条途完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若先让甲队施工且甲队参与该项工程施工的时间不超过36天,则乙队加入后至少要施工多少天才能完成该项工程?22.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩.23.按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…① =(a ﹣1)•2(1)(1)ab a a +-…① =21ab a +…① 当a =1,b =1时,原式=12…①以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.24.由于新冠肺炎疫情暴发,某公司根据市场需求代理A 、B 两种型号的空气净化器,每台A 型净化器比每台B 型净化器进价多200元,用5万元购进A 型净化器与用4.5万元购进B 型净化器的数量相等.(1)求每台A 型、B 型净化器的进价各是多少元?(2)公司计划购进A 、B 两种型号的净化器共50台进行试销,其中A 型净化器为m 台,购买资金不超过9.8万元,试参考答案:。
八年级数学分式及分式方程单元复习
八年级数学分式及分式方程单元复习第八章分式及分式方程单元复习知识要点1、分式的定义: _________________________________ 。
2、分式的___________________ 时有意义; _____________ 时值为零。
(注意分式与分数的关系)3、分式的基本性质: ;用字母表示为:(其中 )。
(注意分式基本性质的应用,如改变分子、分母、分式本身的符号,化分子、分母的系数为整数等等)。
4、分式的约分:。
(思考:公因式的确定方法)。
5、最简分式: ____________________________________ 。
6、分式的通分:。
7、最简公分母:。
8、分式加减法法则: _____ 。
(加减法的结果应化成 )9、分式乘除法则:。
10、分式混合运算的顺序:。
11、分式方程的定义:。
12、解分式方程的基本思想: ____ ;如何实现:。
13、方程的增根:。
14、解分式方程的步骤:________________________________ 。
15、用分式方程解决实际问题的步骤:习题巩固一、填空:1、当x 时,分式有意义;当x 时,分式无意义。
2、分式:当x ______时分式的值为零。
3、的最简公分母是 _________ 。
4、 ; ;5、 ; 。
6、已知,则。
7、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙合作小时完成。
8、若分式方程的一个解是,则。
9、当,时,计算。
10、若分式13-x 的值为整数,则整数x= 。
11、不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数:①23 x-32 y 56 x+y = ; ② 0.3a-2b -a+0.7b = 。
12、已知x=1是方程的一个增根,则k=_______。
13、若分式的值为负数,则x的取值范围是_ _。
14、约分:① _______,② ______。
15、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要______________小时。
《分式与分式方程》单元测试卷含答案精选全文完整版
可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
分式与分式方程辅导讲义
分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。
知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。
字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。
知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。
式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。
2019年 八年级下 初二 数学 分式与分式方程单元复习
第五章分式与分式方程一、认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式)(2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB=,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y)2=(y--2)2二、分式的乘除法【巩固训练】1、(2013四川成都)要使分式51x-有意义,则x的取值范围是( )(A)x≠1 (B)x>1 (C)x<1 (D)x≠-12、(2013深圳)分式242x x -+的值为0,则x 的取值是 A .2x =- B .2x =± C .2x = D .0x =3、(2013湖南郴州)函数y =中自变量x 的取值范围是( ) A . x >3 B . x <3 C . x ≠3 D .x ≠﹣34.(2013湖南娄底,7,3分)式子有意义的x 的取值范围是( )A . x ≥﹣ 且x ≠1B . x ≠1C .5.(2013贵州省黔西南州,2,4分)分式的值为零,则x 的值为( ) A .﹣1 B . 0 C . ±1D .1 6.(2013广西钦州)当x = 时,分式无意义. 7、(2013江苏南京)使式子1+ 1 x -1有意义的x 的取值范围是 。
分式及分式方程复习
分式及分式方程一、分式的概念A1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:A=0的条当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使B件是:A=0,B≠0。
例1:(2014•温州,第4题4分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1练习1.(2014•毕节地区,第10题3分)若分式的值为零,则x的值为()=0,则x=;练习2、①若分式23x-②若分式211x x -+=0,则x =; ③若分式3223x x +-=1,则x =.二.分式的基本性质1、分式的基本性质分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。
MB M A M B M A B A ÷÷=⨯⨯=。
其中,M 是不等于0的整式。
2、分式的约分把分式中分子和分母的公因式约去,叫做分式的约分。
3、分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母4、最简分式分子和分母没有公因式的分式叫做最简分式。
利用分式的基本性质可以对分式进行化简 例题2:如果把分式中的x 和y 都扩大2倍,则分式的值( ) A .扩大4倍 B .扩大2倍C .不变D .缩小2倍BDBCAD BD BC BD AD D C B A ±=±=±练习1.下列等式成立的是()A.B.C.=﹣D.=例3:约分:(1);(2).例4:(1)通分:;(2)通分:,.例5.在下列分式中,是最简分式的是()A.B.C.D.练习1.分式:①,②,③,④中,最简分式有()A.4个B.3个C.2个D.1个三、分式的运算1、分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
分式及分式方程练习题(附答案)
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式与分式方程知识点
分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
分式与分式方程知识点总结
分式与分式方程专题一、分式基本知识1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
(1)分式与整式最本质的区别:分式的分母必须含有字母,即未知数;分子可含字母可不含字母。
(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
(3)分式的值为零的条件:分子为零且分母不为零。
2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) (1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3、分式的通分和约分:关键先是分解因式(1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
(2)最简分式:分子与分母没有公因式的分式(3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
(4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分C B C A B A ⋅⋅=CB CA B A ÷÷=鑫鹏学校母中的部分项的符号。
5、分式的运算:(1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
(2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(3)分式乘方法则:分式乘方要把分子、分母分别乘方。
(4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算(5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
分式及分式方程复习讲义汇总
教学目标:1. 掌握分式概念、性质及运算.2 .掌握分式方程的概念、解法、及增根问题.、知识回顾■知识点1:分式及分式概念2X — 43.若分式的值为0,那么分式及分式方程分式:分母还字母的代数式:易辨错的分式有:0 X 2分式方程: 分母含字母的方程叫分式方程.易错点1 约分,找 公因式,同时约去分子分母的公因式.用的是分式的除法性质 易错点2 通分,找 最简公分母,化异分母为同分母,用的是分式的乘法性质.知识点3:解分式方程去分母,变分式方程为整式方程求解,记得验根. 2 .易淆点(1) 把分子分母中的分数,小数变成整数时,是分子分母同时扩大多少倍,用的是分式的性质; (2) 去分母,方程的每项同乘分母的最简公分母,用的是等式性质; 3.增根问题增根的概念:是 整式方程的根,同时又使最简公分母为 0的根叫增根,必须满足这两个条件. 常考题型:求含参数的增根问题.♦课前热身1.下列式子中,哪些是分式?哪些是整式? ①X '②3 '③3;忌’④宁’⑤亡2X +2x +1 2'⑥,⑦卄-b7 '⑨(XT 尸分式: 2.当x__________ ;整式 ___________4 — X时,分式------ 有意义;当 XX-3X — 2时,分式斗上无意义.X-4知识点2:分式性质1.思路:4. 填空( 1)3X 2X 2 +2xX +2(2) X-yx + y (X + y)2'2a - ab a — b (3) -__ab5. 化简:3a 2b 33a 2b(m-1) 6. 计算:7. a 2 a +1 -12ab 26a 2y 2 8y 3a 28.下列关于 2+XA. ---------5 a +129ab (1-m);(3)2m —2m +11-m 22a — 2 a +2a 2aa 2 —4a -2X 的方程,是分式方程的是(B.=37+a-XX a C.---a bD.4=1 X —19.若关于X 的分式方程 ------ ——=1有增根,贝yX —1 X 10.解下列分式方程: ,丄=1; 5-2x2x -5 分式部分 、例题辨析 芒亞复例1若分式X+4 X 2的值为正数,则X 的取值范围是() A. X >0 B. X >-4C.XM0D.X >-4 且 XM0练习 (1 )当X时,分式1+x 2的值为负数.12-6x 2例如杲把分式為中的X 和y 都扩大3倍,那么分式的值( A .不变 B •变大3倍 C .缩小3倍 D.无法确定2练习 (1)把分式一J 中的X 和y 都扩大3倍,分式值X + y不改变分式的值,把分子、分母的系数化为整数 1 2—X —一 y ① 2__311 1 3 4 y三、归纳总结计算( 1)X —3 X +3练习: (1) a +2-r4aX - 3X 2 —1 1 -X3.1-化简求值:若x J 3,求3X ~3X 4~(X +」- X-22-X)的值.练习 化简求值(一^ -飞a —b a -2ab+b2h(為一几),其中a G ,b —3 -0.2a _0.03b② -------------0.04a +b7二・ 1.区别分数与分式:分数是一个具体的数,是 整式.分式的分母一定含有字母,是 分式,2. 分数与分式在形式上相近, 性质上也类似,所以由熟悉的分数来类比学习和理解分式的性质和运算3. 分式的运算中,分子分母能因式分解的要先分解因式.四、拓展延伸7型0例5 1.如果分式 丄+1 =—1—,那么a +—的值为( ).a b a +bb a分式方程部分A.1 D.-22.已知:B.-1C.21+丄=5,求2x —3x y +2y 的值.提示:整体代入,① X +y =3xy ,②转化出1 +丄 X y -X +2xy +y练习 1.若实数a 、b 满足:2 2a 丄bc E 「a +ab + b 心古斗—+— = 2,则 ------------ 2的值为b a a 2+4ab+b 2已知 X 2 -3x +1=0,求 X 4练习若x + 1 =3,求 X 2X X 4 +x 2 +1的值.例7解下列分式方程(1)丄=? X -1 X0.2(2) 一—一 -丄=0 ;0.1X-0.3 x/ 八5 +X X +5(4) BP提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根练习解下列方程:0.4(2)亠-2 =X—3 0.1 X —0.3若关于x的分式方程—=1 -旦有增根,求m的值.X —3 X —31.若分式方程一6X +5= ------- 有增根,则增根是(X T x(x T )A. x= 1X +1 2.若关于X的方程2X -XB. x= 1和x= 0C. X = 0D.无法确定1 X +k有增根,求增根和k的值. 3x 3x —32 3. m为何值时,关于X的方程——X -2mx+7^:7会产生增根?X+2五、作业与思考(1)亠+ 9=4 ;X +1 X X +7 十X +9X +6 X +8X +10X +9十X +6X +5提示:(1)换元法,设―=y ; ( 2)裂项法,X +1 X +7 =1 +丄x+6 x+6。
八年级数学下-第五章 分式与分式方程 知识点归纳与练习
八年级数学下-第五章 分式与分式方程 知识点归纳与练习1、分式:一般地,用,A B 表示两个整式,A B ÷可以表示成A B 的形式,如果B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母,对于任意一个分式,分母都不能为零. 练习1、下列各式中哪些是整式?哪些是分式? 211(1);;(3);(4);2242b a b x xy x y a x ++-+- (2) 2、分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.这一性质可以用式子表示为:,(0)b b m b b m m a a m a a m ⋅÷==≠⋅÷. 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.练习2、化简下列分式2225(1);;20xy a ab x y b ab++ (2)最简分式:在化简的结果中,如果分子和分母已没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或是整式.3、分式的乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后在与被除式相乘.这一法则可以用式子 表示为:;b d bd b d b c bc a c ac a c a d ad⋅=÷=⋅= . 练习3、 计算2222244(1);(4);2x xy xy x xy y x y x y x y x y+-+÷÷---+ (2)4、分式的加减法:同分母的分式相加减,分母不变,把分子相加减. 这一法则可以用式子表示为:b c b c a a a±±=.练习4,计算222(1);(2);(3);22a b x y m n n n a b b a x y y x n m n m n m++++-------- 通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分,为了计算方便,异分母分式通分时,通常取最简单的公分母(最简公分母)作为它们的共同分母. 异分母分式的加减法法则是:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.这一法则可以用式子表示为:;b d bc ad bc ad a c ac ac ac±±=±= 练习5,计算22111(1);(2);(3);423332a b a a a x x a b--+---+ 5、分式方程:分母中含有未知数的方程叫做分式方程.因为解分式方程可能产生增根,所以解分式方程必须检验.通常只需检验所得的根是否使原方程中分式的分母的值等于零就好了,如果使原方程中分式的分母的值等于零,则舍去此根. 练习6、解方程653121(1);(2)1;(3)2;1(1)4433x x y x x x x x y y+--=+==-++---- 巩固练习:。
分式和分式方程(复习)课件
最简公分母的确定
如果分母是单项式时,最简公分母是:①系数取最 小公倍数;②字母取所有字母;③字母的次数取所 有字母的最高次幂。 如果分母是多项式时,应该先考虑分解因式,再确 定最简公分母。 1 3 2 例: )通分: 与 (1 、 3 2 ax 2b x 3cx x2 x 1 ( 2)通分:2 与 2 x 2x x 4x 4
解:方程两边都乘以 4得: x
2
(x 2) a ( x 2)
2
2
若方程有增根,只能是 2或x 2 x 将x 2和x 2分别代入整式方程可得 : a 16或a 16
m 1 1、关于x的方程 1 x 1 x 2 1 有增根-1,求m
2、若方程
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 ······ 程的根. ··· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, 而不是分式方程的根.···· ····
x2 a x2 例:若关于x的方程 2 x2 x 4 x2 有增根,求a的值。
ab 1 1 解:由已知可得 3, 即 3(1), ab a b 1 1 1 1 同理得: 4(2), 5 b c c a 1 1 1 6 a b c 1 1 原式 ab bc ac 6 abc
分式 方程
概念:分母中含有未知数的有理方程,叫做 分式方程。 解分式方程的步骤: 将分式方程转化为整式方程(方程两边同时乘 以最简公分母) 解整式方程 检验(验根) 写出方程的解
解分式方程易错点分析
一、去分母时常数漏乘 最简公分母 2 x 1 例1、解方程: 2 x 3 3 x 二、去分母时,分子是 多项式不加括号 5 3 x 例2、解方程: 2 0 x 1 x 1 三、方程两边同时除以 可能为零的整式 3x 2 3x 2 例3、解方程: x4 x3
分式与分式方程-单元复习57页PPT
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而
分式和分式方程知识点总结大全
分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。
基本概念:1.分子和分母:分数中的a称为分子,b称为分母。
2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。
3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。
4.相等分式:两个分子和分母比值相等的分式称为相等分式。
例如,2/3和4/6是相等的分式。
分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。
运算结果的分母保持不变,并将分子相加或相减。
2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。
结果要简化。
3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。
结果要简化。
分式方程:分式方程是指含有分式的方程。
解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。
2.化简方程:将方程中的分式进行化简,得到方程的最简形式。
3.解方程:根据方程的形式,进行求解。
常见的方法包括合并同类项、配方、移项等等。
常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。
例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。
例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。
例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。
例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。
在几何学中,分式用于解决一些面积、体积等问题。
在经济学中,分式用于解决利润、成本等相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元复习
北师大版 八年级下册
本章知识网络
复习
1、分式概念 ⑴分式有意义的条件 ⑵分式的值的情况讨论
分
2、分式的基本性质
分式的约分 分式的通分
式
3、分式的运算 分式的乘除法运算 分式的加减法运算
4、分式方程 分式方程的解法步骤 分式方程的应用
一、分式的概念:
x2 4 1. 若分式 ( x 1)( x 2 )
4 a2
(2)
;
a2 2a
解: (1)2ac2 c 14a2bc 7ab
(3) x 2 16 . 2x 8
(2)
4 a2 a2 2a
(2a)(2a) a(a2)
2
a
a
(3) x 2 16 (x4)(x4) x 4 2x 8 2(x4) 2
2、计算
(1) 5x y ; y 15x2
解:c a c 2 a 2 ab bc abc abc 11
A(x2)B(x1) Ax2ABxB
(x1)(x2)
(x1)(x2)
(AB)x(2AB) (x1)(x2)
∵ xA 1xB 2(xx1)x(52)2AABB15
A B
2 1
解下列方程:
5 7 x x2
解:方程两边同时 x(x乘 2)以 ,得
5(x2) 7x 去括号,得5x10 7x 移项, 合并同类项,得 2x 10 系数化为 1,得x5
经检验x, 5是原方程.的根
解下列方程:
x2411
x1 x1
解:方程两边同(x时 1)乘 (x以 1),得
4(x1)(x1)(x1)(x1)
去括号,得4x2 1x22x1
移项, 合并同类项,得 2x 2
系数化为 1,得 x 1
经检验x,1是原方程的增 , 根 原方程无解 .
解下列方程:
23 6 x1x1x2 1
分式方程 解分式方程步骤:
1、去分母,化为整式方程:
⑴ 把各分母分解因式; ⑵ 找出各分母的最简公分母;
2、解整式方程。
3、检验:把整式方程的根代入最简公分母,
看结果是否是零,使最简公分母为 零的根,是原方程的增根,必须舍 去。
4、写出结论
例2.如果整数A、B满足等式
求A与B的值.
解: A B A(x2) B(x1) x1 x2 (x1)(x2) (x1)(x2)
ax4(12x)
去括号,得ax412x
移项, 合并同类项,得 x3a 系数化为 1,得x3a
∵原方程有增根 , x 4,
将 x4代x入 3a,4 得 3a
a7.
列方程解应用题:
娄底到长沙的距离约为180km,小刘 开着小轿车,小张开着大货车,都从娄底去长沙,小 刘比小张晚出发1小时,最后两车同时到达长沙, 已知小轿车的速度是大货车速度的1.5倍. 求小轿车和大货车的速度各是多少?
解:设大货车的速度为xkm/ h,小轿车的速度1.5为xkm/h,
依题意,得
180 180 1 解这个方程,得 x 1.5 x
x60
经检验x,60是所列方程的 根 1.5, x90
大货车的6速 0km/度 h,小 为轿车的速度
90km/h.
1、化简下列分式
(1) 2ac2 ; 14 a 2bc
2.若 把 分 式xy 中 的 x和 y的 值 都 扩 大 3倍 , xy
则 分 式 的 值
(A)
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变
3、
填空:
x(xy)
(x
y
)
x2 xy xy
例1:化简求值
3 a a 2 3 6 a ( a 2 a 5 2 )其 , a 2 3 中 a 1 0 .
解a : 3 (a2 5)
3 a26a
a2
a3 3a(a 2)
[(a2)(a2) a2
a
5
] 2
a3 3a(a 2)
(a2 4 5) a2
a 3 • a2 3a(a 2) (a3)(a3)
1
3a(a 3)
1
3(a 2 3a)ຫໍສະໝຸດ ∵ a23a10 a2 3a1
原式 1 3.
(1) x1 2x1 x1 1x
(x
9xy2 y)(x
y)
5(xy)9x2y 3x2y(xy)(xy)
15 x y
(4)4aa221b22abaa3bb.
解4: aa221b22abaa3bb
(ab)(ab) 4a(a3b)
a 3b ab
(ab)a(b)(a3b) 4a(a3b)a(b)
ab 4a
3、计算
(1) c a ; ab bc
解:5x y y 15x2
5x y y 15 x 2
1 3x
(2)2a2b(2xb);
x
解: 2a2b(2xb) x
2a 2b x
( -
1 ) 2a2b
2 xb
x 2xb
a2 x2
5x5y 9xy2
(3)
;
3x2y x2 y2
解: 5x5y 3x2y
9xy2 x2 y2
5(x y) 3x2 y
3x2 2x 1 (x 1)(x 2)
(3)
xx211
2x1 x1
解:(3)原式
(x
x 1 1)(x 1)
(2x1)(x1) (x1)(x1)
x1 2x2 x 1 (x1)(x1) (x 1)(x 1)
x12x2 x1
(x1)(x1)
2x2 2x2 (x 1)(x 1)
2x2 2x2 (x 1)(x 1)
(2) x12x1 x1 x2
解:(1)原式xx
1 1
2x 1 x 1
x12x1 3x 2
x1
x 1
解:(2)原式(x 1)(x 2) (2x1)(x1)
(x 1)(x 2) (x1)(x2)
x2 3x 2 2x2 x 1 (x 1)(x 2) (x 1)(x 2)
x2 3x22x2 x1 (x1)(x2)
解:方程两边同(x时 1)乘 (x以 1),得 2(x1)3(x1) 6
去括号,得 2x23x3 6
移项, 合并同类项,得 5x 5 系数化为 1,得 x 1
经检验x,1是原方程的增 , 根 原方程无解 .
例3、如果下列关于x的方程有增根,求a的值。
a 112x
x4
4x
解: 方程两边同时x乘 4以 ,得
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
C、x 2
B、x =-2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2 x 的y x 和y 都扩大两倍,则分式的值( ) B 3x y
A.扩大2倍 B不变 C缩小2倍 D.缩小2倍