一元一次方程应用题专题训练
一元一次方程应用题专项练习
一元一次方程应用题专项练习一、单选题1.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5人与他们一起做6h 完成这项工作.假设这些工人的工作效率一样,具体应先安排多少人工作?小华的解法如下:设先安排x 人做4h .所列方程为46(5)15050x x ++=,其中“450x ”表示的意思是“x 人先做4h 完成的工作量”,“6(5)50x +”表示的意思是“增加5人后(5)x +人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x +⨯+=,其中,“(46)50x +”表示的含义是()A .x 人先做4h 完成的工作量.B .先工作的x 人前4h 和后6h 一共完成的工作量.C .增加5人后,新增加的5人完成的工作量.D .增加5人后,(5)x +人再做6h 完成的工作量.2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款()元.A .288B .306C .288或316D .288或3063.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A .3场B .4场C .5场D .6场4.如图,各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .242B .232C .220D .2525.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x 人,这个物品的价格是y 元.有下列四个等式:①8x +3=7x ﹣4;②3487y y -+=;③3487y y +-=;④8x ﹣3=7x +4,其中正确的是()A .①②B .②④C .②③D .③④二、填空题6.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.7.下表是某市居民出行方式以及收费标准:(不足1千米按1千米算)打车方式出租车3千米以内8元;超过3千米的部分2.4元/千米滴滴快车路程:1.4元/千米;时间:0.6元/分钟说明打车的平均车速40千米/时假设乘坐8千米,耗时:8406012÷⨯=分钟;出租车收费:8(83) 2.420+-⨯=元;滴滴快车收费:8 1.4120.618.4⨯+⨯=元.为了提升市场竞争力,出租车公司推出行使里程超过10千米立减4.8元活动.小聪乘坐出租车从甲地到达乙地支付车费22.4元,若改乘滴滴快车从甲地到乙地,则需支付______元.8.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.9.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).这个问题中共有_____两银子.10.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________.三、解答题11.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a 套,每天的付费方案有两种选择:方案一:当a 不超过50套时,每套支付租金100元;当a 超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a >50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a 代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a 代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.12.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装 200 个苹果或者 300 个梨,每个果篮中放 3 个苹果和 2 个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?(1)若设安排x 名工人包装苹果,y 名工人包装梨,请求出x ,y 的值;(2)若每个果篮可卖25元,每名工人每天工作8个小时,问该果树基地一天可以卖得多少钱?13.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身3个或者盒盖5个,且一个盒身和两个盒盖恰好做成一个包装盒.设裁成盒身的白板纸有x 张,回答下列问题:(1)若有11张白板纸.①请完成下表:x 张白板纸裁成盒身()张白板纸裁成盒盖盒身的个数()0盒盖的个数0()②若盒身与盒盖全部配套用完,求可做多少个包装盒.(2)若仓库中已有5个盒身,4个盒盖和21张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,可做多少个包装盒?(3)若有n 张(5060)n ≤≤白板纸,先把一张纸适当裁成3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,求n 的可能值.14.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.15.某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价%a 进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a 的值.16.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?17.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?19.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠超过200元的部分享受大于200八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?20.相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)若4b =,6c =,求a 的值;(3)由三阶幻方可以衍生出许多有特定规律的新幻方.在如图3所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,当2x =,=3y -时,则a b c d --+的值为多少?21.数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,使数轴上表示3的点与表示1-的点重合,则表示数23a +的点与表示数___________(用含a 的式子)的点重合;(2)操作2:若点A 、B 表示的数分别是1-、4,点P 从点A 出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q 从点B 出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是___________.22.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足29(05)a b +-+=.(1)a =;b =;(2)动点P ,Q 分别从点A ,点B 同时出发,沿着数轴向右匀速运动,点P 的速度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.①几秒时,点P 与点Q 距离2个单位长度?②动点P ,Q 分别从点A ,点B 出发的同时,动点R 也从原点O 出发,沿着数轴向右匀速运动,速度为每秒()3n n >个单位长度.记点P 与点R 之间的距离为PR ,点A 与点Q 之间的距离为AQ ,点O 与点R 之间的距离为OR .设运动时间为t 秒,请问:是否存在n 的值,使得在运动过程中,743PR OR AQ -+的值是定值?若存在,请求出此n 值和这个定值;若不存在,请说明理由.23.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过20吨,每吨水收费2元,如果每户每月用水超过20吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费,但她不清楚家里每月用水是否超过20吨.(1)如果小红家每月用水15吨,则水费是元;如果小红家每月用水23吨,则水费是元.(2)如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示.当020x ≤≤时,每个月的水费为:(用含x 的代数式表示);当20x >时,每个月的水费为:(用含x 的代数式表示);(3)小红家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额(单位:元)263450.5小红家这个季度共用水多少吨?24.探究与发现:a b -表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,则数轴上点B 表示的数;(2)若82x -=,则x =.(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为()0t t >秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为()0t t >秒.问当t 为多少秒时?P ,Q 之间的距离为425.如图1是2022年2月的日历表:(1)在图1中用优美的“”U 形框框住五个数,其中最小的数为1,则U 形框中的五个数字之和为_________;(2)在图1中将U 形框上下左右移动,框住日历表中的5个数字,设最小的数字为x ,用代数式表示U 形框框住的五个数字之和为_________;(3)在图1中移动U 形框的位置,若U 形框框住的五个数字之和为53,则这五个数字从小到大依次为_________;(4)在图1日历表的基础上,继续将连续的自然数排列成如图2的数表,在图2中U 形框框住的5个数字之和能等于2023吗?若能,分别写出U 形框框住的5个数字;若不能,请说明理由.26.小颖在国庆期间用五天时间看完了一本课外阅读书,第一天看了全书的15,第二天看的页数比第一天多14,第三天看的页数比第二天多了13,第四天看了52页,第五天看了第三天余下的13,这本课外阅读书共有多少页?27.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =_______;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,同时点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为_______.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mQA nQB ''+为定值,求出m ,n 满足的数量关系.28.已知M 、N 两点在数轴上所装示的数分别为m 、n ,且m 、n 满足()21020m n -++=:(1)则m =_________,n =_________;(2)①情境:有一个玩具汽车AB 如图所示,放置在数轴上,将汽车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具汽车的长为_________个单位长度;②应用:一天,小阳问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;若是我现在这么大,我已是老寿星,116 岁了!”小阳心想:爷爷的年龄到底是多少岁呢?聪明的你能帮小阳求出来吗?(3)在(2)①的条件下,当汽车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记汽车AB 运动后对应的位置为A B ''.是否存在常数k 使得2PQ kB A '-的值与它们的运动时间无关?若存在,请直接写出k 的值;若不存在,请说明理由.29.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q ?②问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.30.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:备选体育用品篮球排球羽毛球拍价格60元/个35元/个25元/支(1)若用2550元全部用来购买篮球、排球和羽毛球拍,篮球和排球的数量比2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:打折前一次性购物总金额优惠措施不超过500元不优惠超过500元且不超过600元售价打九折超过600元售价打八折按上述优惠条件,若初一年级一次性付款420元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?。
完整版七年级数学一元一次方程应用题专题练习
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
一元一次方程应用题集(含答案)
一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
人教版七年级上册数学一元一次方程应用题(工程问题)专题训练
人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。
一元一次方程应用题20道题
20道一元一次方程的应用题:1. 小明买了3本书和2支笔,总共花费了35元。
如果每本书比每支笔贵5元,求每本书和每支笔的价格。
2. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,问多少小时后到达乙地?3. 某商店进行打折活动,一件衣服原价200元,打8折后售价是多少元?4. 小华每天早上跑步,速度为每小时8公里,他跑了30分钟后,求他跑了多少公里?5. 一辆自行车行驶1000米,速度为每小时15公里,求行驶这段路程需要多少分钟?6. 小李的年龄比小王大3岁,今年他们的年龄之和为35岁,求小李和小王的年龄。
7. 一辆汽车加满油可以行驶600公里,现剩余油量可以行驶200公里,求汽车已经行驶了多少公里?8. 某商品进价50元,售价为80元,求该商品的利润率。
9. 一家工厂生产一批产品,原计划每天生产100个,实际每天生产120个,提前5天完成任务。
求原计划需要多少天完成?10. 一辆火车从A地出发,以每小时80公里的速度行驶,3小时后到达B地,求A、B两地之间的距离。
11. 小红有10个苹果,小明有15个苹果,他们把苹果合在一起平均分给5个人,求每个人分到多少个苹果?12. 一辆公交车每站停靠时间为2分钟,行驶全程共需60分钟,如果不计停靠时间,求公交车的平均速度。
13. 某学生语文、数学两门课的平均成绩为85分,已知数学成绩比语文成绩高10分,求该学生的语文和数学成绩。
14. 一家电器店购进一批电视机,每台进价3000元,售价为4000元,求每台电视机的利润。
15. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,距离目的地还有100公里,求汽车离出发地的距离。
16. 某商品原价100元,连续两次打折后售价为80元,求平均每次打折的折扣率。
17. 小刚每天跑步锻炼,第一天跑了3公里,之后每天比前一天多跑0.5公里,求第五天小刚跑了多少公里?18. 一辆自行车行驶在平直的公路上,速度为每小时15公里,行驶了20分钟后,求自行车行驶的距离。
列一元一次方程解决实际问题专项训练题
列一元一次方程解应用题专题一、填空题1.我国政府为解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后, 2001年降价70%至a 元,则这种药品在1999年涨价前的价格为 元.2.光明中学初中一年级一、二、三班向希望学校共捐书385本.一班与二班捐书的本数之比 为4︰3,—班与三班捐书的本数之比为6 :7,那么二班捐书 本.3.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排 人加工甲种部件, 人加工乙种部件, 人加工丙种部件。
4.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7 米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了 米。
(精确到个位)5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买 支钢笔。
二、选择题:6.某妇人买了一包弹球,其中41是绿色的,81是黄色的,余下的51是蓝色,如果有12个蓝色的弹球,那么她总共买了( )个弹球。
A. 48B. 60C. 96D. 720E. 19207.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( ).A.20%B.25%C.80%D.75%8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ).A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁9.甲、乙、丙、丁4人拿出同样多的钱,合伙订购同样规格的若干货物.货物买来后,甲、乙、丙分别比丁多拿了3、7、14件货物,最后结算时,乙付给丁14元,那么丙应付给丁( )元.A.28B.56C.70D.11210.天池旅馆二层客房比底层的多5间,黄冈市某中学参加数学竞赛有48人,若全部安排在底层,每间住4人,房间不够; 而每间住5人,有的房间未住满,又若全部安排在二层,每间住3人,房间不够;而每间住4人,有的房间未住满,这家旅馆底层共有房间()个.A.9B.10C.llD.12三、解答题:11.某市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分,按每吨0.45元收费;超过10吨而不超过20吨部分,按每吨0.80元收费;超过20吨部分按1.5元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?12.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?13.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不是3本,设该校买了 m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m ; (2)求出该校的获奖人数及所买课外读物的本数.打以上的,每打还可以按2.70元付款,解答下列问题:(1)初三、一班共57人,每人需要1本A 种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A 种练习本,则该年级集体去买时,最少需付多少元?15.在3点和4点之间,时钟上的分针和时针在何时重合?16.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?17.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱髙出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折出售,消费者购买才合算?(按使用期10年,每年365 天,每度电0.40元计算)18.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票以购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进人该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元;(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?19.某人大学毕业后,准备到母校探望曾经教过自己的一位老师.他带了 50元人民币,先到百货公司买了—些罐失和饮料,共用去30元;经过水果市场时,他打算买1500克香蕉和1500克苹果,但发现所带的钱不够,结杲只好少买了 500克香蕉,这样所带钱数尚有结余,已知香蕉每500克3元,苹果价格也是整数,试求苹果的价格。
一元一次方程应用题(50道)
一元一次方程应用题(50道)一元一次方程应用题(50道)1. 池塘问题:有一个池塘,里面有一些鱼和青蛙。
已知鱼和青蛙的总数为36,头数为100,请问池塘里有多少只鱼和青蛙?2. 苹果贩卖问题:小明每天贩卖一些苹果和橙子。
已知他卖出的苹果数目是橙子的2倍,他总共卖出了15个水果。
请问他每天贩卖多少个苹果和橙子?3. 铁路站台问题:火车站上有一辆高铁和一辆普速列车,一共有30个车厢。
已知高铁的车厢数是普速列车的2倍,问高铁和普速列车各有多少个车厢?4. 小明和小红问题:小明比小红大2岁,两人年龄之和是28岁。
请问小明和小红分别多少岁?5. 汽车和自行车问题:青松和小明一起从A城到B城,青松骑自行车,每小时的速度是12km/h;小明开汽车,每小时速度是60km/h。
已知他们离开A城和到达B城的时间差2个小时,求A城到B城的距离。
6. 水果和蔬菜问题:在一次农贸市场活动中,小王和小李带来各自的水果和蔬菜卖。
已知小王卖出了10个水果和5个蔬菜,而小李卖出了8个水果和7个蔬菜。
小王的水果每个价格是3元,蔬菜每个价格是2元;小李的水果每个价格是4元,蔬菜每个价格是1元。
请分别计算小王和小李卖出水果和蔬菜的总金额。
7. 儿童和成人门票问题:某游乐园门票分为儿童票和成人票。
已知一天销售的门票总数为48张,总金额为240元。
儿童票的价格是每张15元,成人票的价格是每张20元。
请问儿童票和成人票分别售出了多少张?8. 书包和铅笔盒问题:小明的书包和铅笔盒总共有9个,书包比铅笔盒的数量多3。
请问书包和铅笔盒各有多少个?9. 电脑和手机问题:小王带着电脑和手机出门,电脑的重量是手机的2倍,他们的总重量是6kg。
请问电脑和手机各有多重?10. 停车费问题:某停车场停车费为每小时8元。
小明停车了4小时,停车费用为多少元?11. 毛巾和浴巾问题:某商店有毛巾和浴巾两种商品,已知毛巾的价格是浴巾的三分之一。
小张花了27元买了3个毛巾和2个浴巾,请问每个毛巾和浴巾的价格分别是多少元?12. 配菜问题:在一次聚餐中,小明带来了甲菜和乙菜两种配菜。
一元一次方程解应用题-行程问题专项练习 含答案)
一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。
一元一次方程的应用——行程问题专题练习(解析版)
一元一次方程的应用——行程问题专题练习一、相遇问题1、小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=25答案:C解答:∵是相向而行,∴路程和=速度和×时间,∴3(4+x)=25,选C.2、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=270答案:B解答:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270.3、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.答案:640解答:首先进行单位的统一,72千米/时=20米/秒,设听到回响的时候,汽车离山谷的距离是x米,由题意得,2x=340×4-20×4,即2x+4×20=4×340.解得x=640.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?答案:甲车共行驶了4小时.解答:设甲车共行驶了x小时,72x+48(x-2560)=360+100,解得x=4答:甲车共行驶了4小时.5、甲骑摩托车,乙骑自行车从相距25km的两地相向而行.(1)甲,乙同时出发经过0.5小时相遇,且甲每小时行驶路程是乙每小时行驶路程的3倍少6km,求乙骑自行车的速度.(2)在甲骑摩托车和乙骑自行车与(1)相同的前提下,若乙先出发0.5小时,甲才出发,问:甲出发几小时后两人相遇?答案:(1)14km/h.(2)甲出发0.36小时后两人相遇.解答:(1)设乙骑自行车的速度为xkm/h,则甲的速度为(3x-6)km/h,根据题意可得(x+3x-6)×0.5=25,解得x=14,3x-6=36(km/h),答:乙骑自行车的速度为14km/h.(2)由题意可得14250.53614-⨯+=0.36(小时),答:甲出发0.36小时后两人相遇.6、小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?答案:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.解答:设小刚的速度为x{km/h},则相遇时小刚走了2xkm,小强走了(2x-24)km,由题意得,2x-24=0.5x,解得:x=16,则小强的速度为:(2×16-24)÷2=4{km/h},2×16÷4=8h.答:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.二、追及问题7、《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)答案:B解答:根据题意得60x=100(x-100).8、甲、乙两人练习长跑,已知甲每分钟跑300米,乙每分钟跑260米,若乙在甲前方120米处与甲同时、同向起跑,则甲在______分钟后追上乙.答案:3解答:设甲x分钟后追上乙,由题意,得:300x=260x+120,解得x=3.故答案为:3.9、五一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,则哥哥出发后______分钟追上弟弟和妈妈.答案:30解答:设出发后x小时追上弟弟和妈妈,由题意,得:(6-2)x=2×1,解得x=12,故哥哥出发后12小时追上,即30分钟.10、2012年11月北京降下了六十年来最大的一场雪,暴雪导致部分地区供电线路损坏,该地供电局立即组织电工进行抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.若抢修车以每小时30千米的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修工地的距离.答案:供电局到抢修工地的距离为30千米.解答:设供电局到抢修工地的距离为x千米,由题意,有203060x-= 1.530x⨯.解得x=30.答:供电局到抢修工地的距离为30千米.11、列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正达到了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.答案:这座山的高度为900米.解答:设这座山的高度为x 米, 由题意列方程:1015x x =30, 15x -10x =4500,5x =4500,x =900,答:这座山的高度为900米.12、某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?答案:学生队伍步行的速度为每小时4千米.解答:设学生队伍步行的速度为每小时x 千米,则张老师骑自行车的速度为每小时(x +8)千米, 根据题意,得34x =14(x +8), 解这个方程,得x =4,答:学生队伍步行的速度为每小时4千米.三、环形跑道及多次相遇问题13、学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行5.5米,两人从同一地点出发,反向而行,每隔______秒两人相遇一次. 答案:50解答:设每隔x 秒两人相遇一次,根据题意得:2.5x +5.5x =400,解得x =50.14、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇,已知每秒钟甲比乙多行0.1米,那么两人第三次相遇的地点与点A沿跑道上的最短距离是______米.答案:176解答:方程法:设乙每秒行x米,则甲每秒行(x+0.1)米,依题意有8×60(x+x+0.1)=400×3,解得x=1.2,则在8分钟内,乙共行1.2×60×8=576(米),去掉乙走过了一整圈400米,还余176米,由于不足200米,故是相遇地点沿跑道距A点的最短距离.算术法:在8分钟内,甲比乙共多行0.1×60×8=48米,这时一共有了三圈,每圈甲比乙多行16米,即相遇地是越过此出发地始终端的400米跑道的中点16÷2=8(米).三圈累计,越过8×3=24(米).∴第三次相遇点距A沿跑道的距离是176米或224米,较小值176米是所求的最短距离.15、学校为提高同学身体素质,开展了冬季体育锻炼活动.班主任老师让甲、乙二人在长为400米的圆形跑道上进行跑步训练,已知甲每秒钟跑5米,乙每秒钟跑3米.请列方程解决下面的问题.(1)两人同时同地同向而跑时,经过几秒钟两人首次相遇?(2)两人同时同地背向而跑时,首次相遇时甲比乙多跑了多少米?答案:(1)200秒.(2)100米.解答:(1)设x秒钟两人首次相遇.由题意得:5x-3x=400,解得:x=200.答:两人同时同地同向而跑时,经过200秒钟两人首次相遇.(2)设y秒钟两人首次相遇.由题意得:5x+3x=400,解得:y=50,5×50-3×50=100(米).答:两人同时同地背向而跑时,首次相遇时甲比乙多跑了100米.16、小智和小康相约在学校的环形跑道上练习长跑.小智以5米/秒、小康以4米/秒的速度从同一地点同时出发,背向而行.途中小智的鞋带掉了,因此花了2秒停在原地系鞋带.当两人第一次相遇时,小康走了全程的511.那么跑道一圈的长度是多少米?答案:440米.解答:设两人第一次相遇时,小康跑了x秒,小智跑了x-2秒.5(x-2):4x=6:5整理得:24x=25x-50,解得:x=5050×4÷5×11=440(米)答:跑道一圈的长度是440米.17、已知甲乙两人在一个400米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?答案:(1)20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)40秒后两人再次相遇.(3)他们第100次相遇时,在跑道AD上.解答:(1)设x秒后两人首次相遇,依题意得到方程4x+6x=200.解得x=20.甲跑的路程=4×20=80米,答:20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)设y秒后两人再次相遇,依题意得到方程:4y+6y=400.解得y=40.答:40秒后两人再次相遇.(3)第1次相遇,总用时20秒,第2次相遇,总用时20+40×1,即60秒,第3次相遇,总用时20+40×2,即100秒,第100次相遇,总用时20+40×99,即3980秒,则此时甲跑的圈数为:3980×4÷400=39.8,400×0.8=320,此时甲在AD弯道上.即他们第100次相遇时,在跑道AD上.四、顺逆流问题18、一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水流速度为3千米/时,则轮船在静水中的速度是().A. 18千米/时B. 15千米/时C. 12千米/时D. 20千米/时答案:B解答:设轮船在静水中的速度为x千米/小时.根据顺水路程=逆水路程,顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.得:2(3+x)=3(x-3),解得:x=15.选B.19、甲乙两地相距180千米,已知轮船在静水中的航速是a千米/时,水流速度是10千米/时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是().A. 40千米B. 50千米C. 60千米D. 140千米答案:A解答:∵轮船在静水中的航速是a千米/时,水流速度是10千米/时,∴轮船顺流航行的速度为(a+10)千米/时.由题意,得:3(a+10)=180,解得a=50.∴轮船逆流航行的速度为:a-10=50-10=40(千米/时),∴轮船逆流行驶1小时后离乙地的距离是:1×40=40(千米).选A.20、轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为xkm ,则列出方程正确的是( ).A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 答案:D解答:设两码头间的距离为xkm ,则船在顺流航行时的速度是:24km /时,逆水航行的速度是16km /时. 根据等量关系列方程得:204x + +204x -=5. 选D.21、船在江面上航行,测得水的平均流速为5千米/小时,若船逆水航行3小时,再顺水航行2小时,共航行120千米,设船在静水中的速度为x 千米/小时,则列方程为______. 答案:3(x -5)+2(x +5)=120解答:船在顺水中的速度=船在静水中的速度+水流的速度,船在逆水中的速度=船在静水中的速度-水流的速度,路程=速度×时间,船的逆水路程+船的顺水路程=共航行的路程,故答案为3(x -5)+2(x +5)=120.22、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,静水中速度是每小时12千米,问这机帆船往返两港要多少小时? 答案:机帆船往返两港要64小时.解答:解答本题需要两大步骤:首先求出水流的速度,其次,利用已求的水流速度求出帆船往返所需要的时间.设轮船顺流航行需要x 小时,依题意可列:x +x +5=35,解得:x =15.可求得水速为:136036021520-()=3(千米/时)则帆船往返两港所需要的时间为:360123+ +360123-=64(小时).23、某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共用3小时,若水流速度为2千米/小时,船在静水中的速度为8千米/小时.已知甲、丙两地间的距离为2千米,求甲、乙两地间的距离是多少千米.(注:甲、乙、丙三地在同一条直线上)答案:甲乙两地间的距离为12.5km 或10km .解答:(1)丙在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x --=3, 解得:x =12.5.(2)丙不在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x +-=3, 解得:x =10.答:甲乙两地间的距离为12.5km 或10km .五、变速问题24、某人开车从甲地到乙地办事,原计划2小时到达,但因路上堵车,平均每小时比原计划少走了25千米,结果比原计划晚1小时到达,问原计划的速度是多少.答案:原计划每小时行驶75千米.解答:设原计划每小时行驶x 千米,根据题意,得:2x =3(x -25),解得:x =75,答:原计划每小时行驶75千米.25、一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟,如果每小时行12千米,就要迟到10分钟,问规定的时间是多少小时?他去的单位有多远?答案:规定的时间是1.5小时,他去的单位有20千米远.解答:设规定的时间为x 小时.由题意,得15(x -1060)=12(x +1060), 解这个方程,得x =1.5, 则路程为12×(1.5+1060)=20(千米). 答:规定的时间是1.5小时,他去的单位有20千米远.26、某人因有急事,预定搭乘一辆小货车从A 地赶往B 地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是每小时36千米,求两地间路程.答案:两地间的路程是162千米.解答:设两地间路程为x 千米. 由题意得:36x -(1336x +23236x )=32, 解得:x =162,答:两地间的路程是162千米.27、列方程解决实际问题:京张高铁是2022年北京冬奥会的重要交通基础设施,最高运营时速为350公里.但考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运行速度分别设置为120公里/小时和200公里/小时.日前,清华园隧道正式开机掘进,这标志着京张高铁建设全面进入攻坚阶段.已知此路段的地下清华园隧道比地上区间多1公里,运行时间比地上多1.5分钟.求清华园隧道全长是多少公里.答案:11km .解答:设清华园隧道地上运行时间为xh ,地下运行时间为(x +1.560)h . 1.560h =140h , 120(140+x )=200x +1, x =140. 清华园隧道地上部分是:200×140=5km . 清华园隧道地下部分是:5+1=6km .5+6=11km .答:隧道总长为11km .28、老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带多余一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.答案:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.解答:先由学生A 步行,老师乘摩托车带另一名学生B ,一段时间后,学生B 下车步行至博物馆,老师单独返回接学生A ,乘摩托车带学生A 至博物馆,并使得3人刚好同时到达博物馆.由方案可知,两学生步行的路程相同,设两学生步行的路程为x 千米,则乘摩托车的距离为(33-x )千米,老师返回时所经过的路程为(33-2x )千米. 依题意得:5x =3320x -+33225x -,解得x =9. ∴所用时间为5x +3320x -=95+33920-=3小时,满足题目要求. 答:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.29、列方程解应用题:由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路和普通公路的行驶速度都是80千米/时;B 车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A 、B 两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?答案:甲、乙两地之间的距离是252千米.解答:设甲、乙两地之间的距离是x 千米, 根据题意得:240380x - =1370x +40100, 解得x =252.答:甲、乙两地之间的距离是252千米.六、过桥和过隧道问题30、博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A. 2075B. 1575C. 2000D. 1500答案:B解答:设火车的长为x 米,∵学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来∴火车相对于学生一分钟能跑多少米:120000450060+ =2075米, 一分钟火车能跑2075米而火车头与队伍头相遇到火车尾与队伍尾离开共60s ,也就是一分钟,∴500+x =120000450060+, 解得x =1575,∴火车的长度应该是2075m -500m =1575m .选B.31、一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为______.答案:300米解答:设火车的长度为x 米,则火车的速度为15x , 依题意得:45×15x =600+x , 解得:x =300.故答案是:300米.32、一列火车长150m ,每秒钟行驶19m ,全车通过长800m 的大桥,需要多长时间? 答案:50秒解答:设需要x 秒19x =150+800x =50,答:需要50秒.故答案为50秒.33、已知某一铁路桥长1000m ,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40S .求火车的速度.答案:20千米/小时解答:设火车的长度为x 米,则100060x +=100040x - x =200速度为(1000-200)÷40=20千米/小时34、一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.答案:火车的长度是180米,火车的速度为108千米/时.解答:设火车的长度是x 米,根据题意得出:72030x +=6x , 解得:x =180,1806=30m /s , 故火车速度为:30×3600÷1000=108(千米/时).答:火车的长度是180米,火车的速度为108千米/时.35、一列火车匀速行驶,经过一条长300m 的隧道需要12s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是7s .(1)设火车的长度为xm ,用含x 的式子表示,从火车头进入隧道到车尾离开隧道这段时间内火车的平均速度(2)求这列火车的长度(3)若这列火车从甲地到乙地,速度提高10%,则可以提前503分钟到达,求甲乙两地的距离(火车的长度忽略不计)答案:(1)30012x + (2)420(3)660km 解答:(1)30012x + (2)300127x x +=,420x = (3)设距离为Skm .火车的平均速度为30042012+=60m /s =3.6km /min . 1.13.6 3.6S S -⨯=503S =660km .36、一辆车长为4米的小轿车和一辆车长为20米的大货车,在长为1200米隧道的两个入口同时开始相向而行,小轿车的速度是大货车速度的3倍,大货车速度为10m /s .(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当小轿车车头和大货车车头相遇后,求小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间.答案:(1)30s.(2)所需的时间为0.6s.(3)时间为0.48s或0.8s.解答:(1)设两车相遇的时间ts,(30+10)t=1200,t=30.两车相遇的时间为30s.(2)设两车完全离开的时间的时间t’s,依题意得,(30+10)t’=1200+4+20,t’=30.6,t’-t=30.6-30=0.6两车从相遇到完全离开所需的时间为0.6s.(3)设小轿车车头与大货车车头之间的距离为xm,①两车相遇期间:x=4[(20-x)+4],解得x=19.2,t=19.21030+=0.48;②两车分离后:x=4(x-20-4),解得:x=32,t=323010+=0.8.小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间为0.48s或0.8s.。
15道一元一次方程应用题带答案
优质解答1、甲乙两地相距162公里,一列慢车从甲站开出,每小时走48,一列快车从乙站开出,每小时走60公里,试问:若两车相向而行,慢车先开出1小时,再用多少小时,两车才能相遇?(一元一次方程解)设再用x小时两车相遇48(x+1)+60x=16248x+48+60x=162108x=114x=57/53数据别扭.两车同时同行(快车在后面),几小时可以追上慢车?(一元一次方程解)设x小时后追上60x-48x=16212x=162x=13.5小时答:13.5小时后追上222、一搜客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕时,求客船在静水中的平均速度?(一元一次方程解)设客船静水速度为每小时x千米2.5(x+4)=3.5(x-4)2.5x+10=3.5x-143.5x-2.5x=10+14x=24答:客船静水速度为每小时24千米3、3、一队学生练习行军,以每小时5公里的速度步行,出发3小时后,学校通讯员以每小时60公里的速度追上去,文通讯员经过多少小时追上学生队伍?(一元一次方程解)设x小时后追上60x=5(x+3)60x=5x+1555x=15x=3/11答.4、一列慢车从某站开出,每小时行48km,过了一段时间,一列快车从同站出发与慢车通向而行,每小时行72km,又经过1.5小时追上慢车,快车开出前,慢车已行了多少小时?(一元一次方程解)设慢车已经行了x小时48x+48×1.5=72×1.548x+72=72*1.548x=36x=0.75答:慢车已经行了0.75小时5、一个人从甲村走到乙村,如果他每小时走4千米,那么走到预定的时间,离乙村还有1.5千米;如果他每小时走5km,那么比一定时间少用半小时就可以到达乙村.求预定时间是多少小时,甲村到乙村的路程是多少千米?(一元一次方程解)设预定时间为x小时4x+1.5=5(x-0.5)4x+1.5=5x-2.55x-4x=1.5+2.5x=4甲乙路程:4×4+1.5=17.5千米6、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇.如果2人从同一地点同向而行,那么经过20分钟两人相遇.如果甲的速度比乙的速度快,求两人散步的速度?(一元一次方程)设甲速度为每分钟x米,乙速度为每分钟400/2-x米20x-20(400/2-x)=400x-(200-x)=20x-200+x=202x=220x=110400/2-x=200-110=90答:甲速度为每分钟110米,乙速度为每分钟90米7、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?设小王追上连队需要x小时14x=6*18/60+6x14x=1.8+6x8x=1.8x=0.2250.225小时=13.5分钟<15分钟小王能完成任务8、一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?(一元一次方程)设客车速度为每分钟5x米,货车速度为每分钟3x米5x-3x=200+2802x=480x=2405x=240×5=12003x=240×3=720答:客车速度为每分钟1200米,货车速度为每分钟720米设交叉时间为y分钟1200y+720y=200+280191、两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?设第一仓原有3x吨,第二仓原有x吨(3x-20)*5/7=x+205(3x-20)=7(x+20)15x-100=7x+1408x=240x=303x=3×30=90答:第一仓原有90吨,第二仓原有30吨2、甲乙丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?设甲乙丙各分担3x,2x,4x元3x+2x+4x=14409x=1440x=1603x=3×160=4802x=2×160=3204x=4×160=640答:甲分担480元,乙分担320元,丙分担640元3、一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?设原数十位数字为x,个位数字为11-x10(11-x)+x-(10x+11-x)=63110-10+x-9x-11=6318x=36x=211-x=11-2=9答:原来两位数为294、一工程甲单独要10天乙要12天,丙要15天,甲丙先做3天甲离开乙参加工作问还! 需要几天?设还需要x天(1/10+1/15)*3+(1/12+1/15)x=11/2+3/20*x=13/20*x=1/2x=1/2*20/3x=10/3答:还需要10/3天5、有含盐8%盐水40KG 使盐水含盐20% ①加盐多少②蒸发水分需蒸发多少KG水?1)设加盐x千克40×8%+x=(40+x)*20%3.2+x=8+0.2xx=6答:加盐6千克2)设蒸发水x千克(40-x)*20%=40*8%8-0.2x=3.20.2x=4.8x=24答:需要蒸发水24千克6、有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?设需要70%酒精x千克,98%酒精100-x千克7%x+98%(100-x)=100*84%0.07x+98-0.98x=840.91x=14x=200/13100-x=100-200/13=1100/13答:需要70%酒精200/13千克,98%酒精1100/13千克7、甲乙相距120千米乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发与甲相向而行经过10时后相遇,求甲乙的速度设甲速度为每小时x千米,乙速度为每小时x+1千米(2+10)x+10(x+1)=12012x+10x+10=120x=5x+1=5+1=6答:甲速度为每小时5千米,乙速度为每小时6千米。
小学一元一次方程应用题100例附答案(完整版)
小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。
-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。
-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。
-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。
-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。
-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。
设学生有x 人,求学生人数。
-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。
-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。
-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。
-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。
一元一次方程应用题专题练习
一元一次方程应用题专题(15个)一、年龄问题1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1 4倍?解:设x年后小明的年龄是爷爷的14倍,根据题意得方程为:二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程)解:设这个数的十位数字是x,根据题意得解方程得:答:3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由.7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题(等周长变化,等体积变化)常用公式:三角形面积=,正方形面积圆的面积,梯形面积矩形面积柱体体积椎体体积球体体积8、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,则新的长方形的宽是多少?设新长方形长为xcm,列方程为9、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。
11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm 和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。
一元一次方程应用题50道题
一元一次方程应用题50道题1.一袋大米重3 kg,比一袋小米重2 kg 多5 kg,两袋共重多少千克?2.一只汽车以每小时60 km 的速度在高速公路行驶,经过3小时行驶了多少公里?3.一个瓶子装有300 ml 水,如果每天喝掉其中的1/5,这瓶水可以喝几天?4.张三和李四两个人合作挖坑,如果张三工作8小时,李四工作6小时,他们一起挖了多少立方米的土方?5.一个长方形花池的长是3 m,宽是2 m,若要在花池周围铺设30 cm 宽的石板,需要多少平方米的石板?6.一本书原价80 元,打了6 折后的价格是多少?7.一家餐馆中午卖出了300 份饭菜,占当天总菜品销售量的1/3,这家餐馆当天总共卖出了多少份饭菜?8.小明的体重是x 公斤,小红的体重是x-10 公斤,已知小明的体重是小红的体重的1.2 倍,求小红的体重是多少公斤?9.一块长方形铁皮长6 米,宽4 米,若每平方米20元,这块铁皮的售价是多少元?10.水果店买了150 公斤苹果,以每公斤5元的价格卖出,若想要盈利600 元,每公斤的成本价是多少元?11.某班同学中男生和女生的比例是3:2,如果班级中有30 名女生,求男生的人数?12.一个正方形花坛的周长是24 米,周围留有1 米的空白地带,求花坛和空白地带的总面积。
13.小明做了一份试卷,正确题数占总题数的3/4,如果正确的题数是30 题,求这份试卷总题数。
14.甲乙两个水龙头一起放水,甲水龙头每分钟放4 升水,乙水龙头每分钟放3 升水,它们一起放水10 分钟的总共放了多少升水?15.一辆汽车开了400 公里的路程,行驶时间是5 小时,求汽车的时速是多少公里?16.一支笔每支卖5 元,卖掉8 支时的总收入是多少元?17.篮球队举行了一场友谊赛,每名队员缴纳30 元参赛费,若入场观众共有150 人,求篮球队一共收入了多少元?18.一块长方形面积是80 平方米,宽是4 米,求长是多少米?19.甲乙两人运动员从同一地点出发,甲以每小时8 km 的速度向东跑,乙以每小时6 km 的速度向西跑,若2 小时后相遇,求两人的相距距离是多少千米?20.三个自行车座椅的长度总和是3 米,第一个座椅长度是2 肘,第二个长度是1 米,求第三个座椅的长度。
一元一次方程应用题20道
一元一次方程应用题20道1.一根长梁上有若干个孔,每个孔之间的距离相等,如果已知第一个孔距离梁的左端为3米,第八个孔距离梁的左端为21米,请问每个孔之间的距离是多少?2.小明父亲今年55岁,比儿子大40岁,求小明多少岁?3.一张纸片被对角线切成两个三角形,较小的三角形面积是6平方厘米,较大三角形面积是12平方厘米,求纸片的长和宽。
4.某商品原价650元,经过打折后售价560元,求打折的折扣率。
5.甲乙两人在一起吃饭,共消费了120元,若甲人均多支付8元,则甲和乙各自支付了多少钱?6.某商场推出了一项促销活动,购买100元以上的商品可以打9折,某顾客购买了一件120元的商品,请问他需要支付多少钱?7.小明家的自来水表显示一共用水了28立方米,水费共计为220元,已知每立方米水的价格为4元,请问小明家一天平均用水量是多少?8.汽车出发时油箱有90升油,每100公里耗油7升,要想到达目的地需要行驶800公里,问还需要加多少油?9.一个长方形空地周长为72米,长比宽大10米,求该空地的面积。
10.小明花费了自己余下的一半钱购买了一本书,再花费自己剩下的1/4钱购买了一件衣服,现在他只剩下60元零5角钱。
请问小明原来有多少钱?11.两个正数的乘积为880,其中一个数比另一个数大18,求这两个数。
12.一条矩形长方体箱子长、宽、高之比为2:3:4,体积为600立方厘米,求箱子的长、宽、高各是多少?13.从A点到B点的直线距离为120千米,汽车以每小时60千米的速度行驶,旅途中要经过两个收费站,第一个收费站距离A 点80千米,第二个收费站距离B点40千米,则车在路上行驶多久?14.父亲比儿子多大18岁,现在父亲的年龄是儿子的3倍,求儿子的年龄。
15.一直船下游行驶了20公里又返回起点,全程用时5小时,其中下游用了2小时,求这条河的水流速度和船在静水中的速度。
16.甲、乙两人从A地到B地,分别以60千米/小时和80千米/小时的速度前进,两人同时出发,相距200千米,求几个小时后两人相遇?17.某校文化节期间,学生卖的糖果原价每袋2元,现降价至每袋1.5元,需售出400袋才能返还成本,请问卖出多少袋能够盈利30元?18.一所学校有男女生共计1000人,女生比男生多60人,已知男生和女生的平均身高之比为4:3,求男生的平均身高。
一元一次方程应用题(50道)
1.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米2.将一个内部长、宽、高分别为300cm,300mm和80mm的长方体容器内装满水,然后倒入一个内径是200mm,高是200mm的圆柱形容器内,问水是否溢出来,3.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2010年10月11日到2011年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次4.全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。
问这个班有多少位同学—5.在收获季节的某星期天,某中学抽调七年级(1)、(2)两班部分学生去果园帮助村民采摘椪柑,其中,七年级(1)班抽调男同学2人,女同学8人,共摘得柑840千克;七年级(2)班调男同学4人,女同学6人,共摘得椪柑880千克,问这天被抽调的同学中,男同学每人平均摘椪柑多少千克女同学每人平均摘椪柑多少千克6.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母7.学校有校舍20000平方米,计划拆除部分旧校舍,建造新校舍,新校舍的建造面积是旧校舍的3倍还多1000平方米。
这样建设完成后的校舍面积比现有校舍面积增加20%,拆除的旧校舍和新建的校舍面积各是多少已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,完成该计划需多少费用#8.某山中学组织七年级师生秋游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加秋游的人数(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算!9.学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元10.在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人~11.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件12.在高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节13.某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人—14.某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套(15.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套16.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶·17.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.求A、B两工程队分别整治河道多少米.18.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余恰好坐满。
七年级一元一次方程解应用题
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。
- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。
2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。
- 设甲、乙两地的距离为x千米。
- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。
- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。
- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。
- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题归类汇集
一般行程问题(相遇与追击问题)
1.行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间
2.行程问题基本类型
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为
每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千
米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米
3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车
车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米
4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,
骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米⑵这列火车的车长是多少米
6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千
米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因
事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下
发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度火车的长度是多少若不能,请说明理由。
9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均
每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。
环行跑道与时钟问题:
1、在6点和7点之间,什么时刻时钟的分针和时针重合
2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地
同向出发,几分钟后二人相遇若背向跑,几分钟后相遇
3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;
行船与飞机飞行问题:
航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3
小时,求两码头之间的距离。
2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行
需要3小时,求两城市间的距离。
3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,
求该河的水流速度。
4、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速
度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
工程问题
1.工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作
量的和=总工作量=1.
1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单
独做,还需要几天完成
2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4
小时,剩下的工作两人合作,问:再用几小时可全部完成任务
3、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而
且还比原计划多生产了60件,问原计划生产多少零件
4、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙
再做几天可以完成全部工程
市场经济问题
1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐请说明理由.
2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将
标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元
3、某地区居民生活用电基本价格为每千瓦时元,若每月用电量超过a千瓦则超过部分按基本电价的
70%收费.
(1)某户八月份用电84千瓦时,共交电费元,求a.
(2)若该用户九月份的平均电费为元,则九月份共用电多少千瓦•应交电费是多少元
4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八
折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元优惠价是多少
5、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装
按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元
调配与配套问题
1、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
2、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2
倍,需从乙工程队抽调多少人到甲工程队
3、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学
4、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到毫米, ≈).
5、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)
方案设计问题
1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多为什么
2、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案。