AO工艺实例计算书
AO工艺设计计算参考
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值~ 水温14~25℃BOD5=160mg/L VSS=126mg/LVSS/TSS= TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准污水综合排放标准GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用;采用生物处理法是去除废水中有机物的最经济最有效的选择;废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在;生活污水中氮的主要存在形态是有机氮和氨氮;其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%;废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的;废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程;在废水的生物脱氮处理过程中,首先在好氧oxic条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧Anoxic条件下,利用反硝化菌脱氮菌将亚硝酸盐和硝酸盐还原为氮气N2而从废水中逸出;因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化脱氮一个阶段.◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点;该工艺与传统生物脱氮工艺相比的主要特点如下:①流程简单,构筑物少,大大节省了基建费用;②在原污水C/N较高大于4时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用;③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质;④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分硝化过程对碱度的消耗;⑤该工艺在低污泥负荷、长泥龄条件下运行,因此系统剩余污泥量少,有一定稳定性;⑥便于在常规活性污泥法基础上改造A1/O脱氮工艺;⑦混合液回流比的大小,直接影响系统的脱氮率,一般混合液回流比取200%~500%,太高则动力消耗太大;因此A1/O工艺脱氮率一般为70%~80%,难于进一步提高;三、污水处理工艺设计计算一、污水处理系统1、格栅设计流量:平均日流量Qd=3000m3/d=s则K2=最大日流量 Qmax=K2Qd=s设计参数:格栅倾角 =60 栅条间隙b= 栅条水深h= 过栅流速v=s1栅槽宽度①栅条的间隙数n 格栅设两组,按两组同时工作设计,一格停用,一格工作校核;则n= = =31个②栅槽宽度B栅槽宽度一般比格栅宽~,取设栅条宽度 S=10mm则栅槽宽度 B=Sn-1+bn+= 31-1+ 31+=2通过格栅的水头损失h1①进水渠道渐宽部分的L1;设进水渠宽B1=其渐宽部分展开角 1=20进水渠道内的流速为sL1= = =②栅槽与出水渠道连接出的渐窄部分长宽L2,mL2= = =③通过格栅的水头损失h1,mh1=h0kk一般采用3h0= sin , =h1= sin k= sin60 3= 设 =3栅后槽总高度H,m设栅前渠道超高h2=H1= h+h1+h2=++=≈4栅槽总长度L1,m式中H1=h+h25每日栅渣量W,m/3dw= 式中,w1为栅渣量 m3/10 m 污水 , 格栅间隙为16~25mm时w1=~ /10 m3 污水;格栅间隙为30~50mm时, w1=~103m3污水本工程格栅间隙为21mm,取W1=10m3污水W= =m3/d m3/d采用机械清渣2、提升泵站采用A1/O生物脱氮工艺方案,污水处理系统简单,污水只考虑一次提升;污水经提升后入平流式沉砂池,然后自流通过缺养池、好养池、二沉池等;设计流量Qmax=1800m3/h,采用3台螺旋泵,单台提升流量为900m3/h;其中两台正常工作,一台备用;3.平流式沉池砂1 沉沙池长度L,mL=vt 取v=s,t=30s则L= 30=2 水流端面面积A,m2A= = =2m23 池总宽度B,mB=nb 取n=2, b=则B=2 =4 有效水深h2, mh2= = =5 沉砂池容积v, m3V= 取x=30m3/106m3污水,T=2d k2=则V= =6 每个沉斗砂容积V0,m3设每个分格有2个沉沙斗,共4个沉砂斗则V0= =7 沉砂斗尺寸①沉砂斗上口宽a,ma= +a1 式中h/3为斗高取h/3=, a1为斗底宽取,a1=, 斗壁与水平面的倾角55则a= +=②沉砂斗容积V0,m3V0=h/32a2+2aa1+2a12= 2 12 2 1 +2 2 =8 沉砂室高度h3 ,m采用重力排沙,设池底坡度为,坡向砂斗,沉砂室有两部分组成:一部分为沉砂斗,另一部分为沉砂池坡向沉砂斗的过滤部分,沉砂室的宽度为 2L2+a + L2= = =h3=h/3+ L2=+ =9 沉砂池总高度H,m取超高h1=H=h1+h2+h3=++=10验算最小流速Vmin m/s在最小流速时,只用一格工作n1=1Vmin= Qmin= = =s则Vmin= = =s﹥s11 砂水分离器的选择沉砂池的沉砂经排砂装置排除的同时,往往是砂水混合体,为进一步分离出砂和水,需配套砂水分离器清除沉砂的间隔时间为2d,根据该工程的排砂量,选用一台某公司生产的螺旋水分离器;该设备的主要技术性能参数为:进水砂水分离器的流量为1~3L/S ,容积为,进水管直径为100mm, 出水管直径为100mm,配套功率为4、A1/O生物脱氮工艺设计计算1好氧区容积V1V1= 取Y=;Kd=①出水溶解性BOD5;为使出水所含BOD5降到20mg/L,出水溶解性BOD5浓度S 应为:S=20-× ×TSS1-e-kt=20-××20×1-e-×5=mg/L②设计污泥龄;首先确定硝化速率取设计pH=,计算公式:-15 1--Ph-15 ×=××=d-1硝化反应所需的最小污泥龄= = =4;05d选用安全系数K=3;设计污泥龄=K =3×=d③好氧区容积V1,m3V1= =m3⑵好氧区容积V2V2=①需还原的硝酸盐氮量;微生物同化作用去除的总氮NW:NW= =× =mg/L被氧化的NH3-N=进水总氮量-出水氨氮量-用与合成的总氮量=40-8-=mg/L所需脱硝量=进水总氮量-出水总氮量-用与合成的总氮量=40-15-=mg/L 需还原的硝酸盐氮NT=30000×× =534kg/d②反硝化速率=qdn,20 qdn20取 -N/kgMLVSS·d; 取;=×-20=kgNO -N/kgMLVSS③缺氧区容积V2= =m3缺氧区水力停留时间t2= = =d=h⑶曝气池总容积V总,m3V总=V1+V2=+=系统总设计泥龄=好氧池泥龄+缺氧池泥龄=+× =⑷污泥回流比及混合液回流比①污泥回流比R;设SVI=150,回流污泥浓度计算公式:XR= ×r r取XR= ×=8000mg/L混合液悬浮固体浓度XMLSS=4000mg/L污泥回流比R= ×100﹪= ×100﹪=100﹪一般取50﹪~100﹪②混合液回流比R内;混合液回流比R内取决与所要求的脱氮率;脱氮率可用下式粗略估算: = = =﹪r= = =167﹪≈200﹪⑸剩余污泥量生物污泥产量:PX= = =d对存在的惰性物质和沉淀池的固体流失量可采用下式计算:PS=QX1-Xe Q取30000m3/dPs=QX1-Xe=30000×--=1020kg/d剩余污泥量△X=PX+PS=+1020=d去除每1kgBOD5产生的干泥量= = =kgBOD5⑹反应池主要尺寸①好氧反应池;总容积V1=7482;38m3,设反应池2组;单组池容V1单= = =有效水深h=,单组有效面积S1单= = =采用3廊道式,廊道宽b=6m,反应池长度L1= = =52m超高取,则反应池总高H=+=②缺氧反应池尺寸总容积V2=设缺氧池2组,单组池容V2单= =有效水深h=,单组有效面积S2单= = =长度与好氧池宽度相同,为L=18m,池宽= = =17m⑺反应池进,出水计算①进水管;两组反应池合建,进水与流污泥进入进水竖井,经混合后经配渠,进水潜孔进入缺氧池;单组反应池进水管设计流量 Q1=Q= =s管道流速采用v=s;管道过水断面A= = =管径d= = =取进水管管径DN 700mm;校核管道流速v= = =s②回流污泥渠道;单组反应池回流污泥渠道设计流量QR QR=R×Q=1× =s渠道流速v=s;则渠道断面积A= = =则渠道断面b×h=×校核流速v= =s渠道超高取;渠道总高为+=③进水竖井;反应池进水孔尺寸:进水孔过流量Q2=1+R× =1+1× = =s孔口流速v=s孔口过水面积A= = =孔口尺寸取×;进水竖井平面尺寸×;④出水堰及出水竖井;按矩形堰流量公式:Q3= bH =×b×HQ3=1+R =1+1 =Q=sb取H= = =出水孔过流量Q4=Q3=s孔口流速v=s;孔口过水断面积A= = =孔口尺寸取×;出水竖井平面尺寸×;⑤出水管;单组反应池出水管设计流量Q5=Q3=s管道流速v=s;管道过水断面A= = =s⑻曝气系统设计计算①设计需氧量AOR;需氧量包括碳化需氧量和硝化需氧量,并应扣除剩余活性污泥排放所减少BOD5及NH3-N的氧当量此部分用于细胞合成,并未耗氧,同时还应考虑反硝化产生的氧量;AOR=碳化需氧量+硝化需氧量-反硝化脱氮产氧量=去除BOD5需氧量-剩余污泥中BOD5需氧量+NH3-N硝化需氧量-剩余污泥中NH3-N的氧当量-反硝化脱氮产氧量a 碳化需氧量D1D1= -k取,t取5dD1= -×=db 硝化需氧量D2D2=N0-Ne -×﹪×Px=×30000×--×﹪×=dc 反硝化脱氮产生的氧量D3D3=式中,NT为反硝化脱除的硝态氮量,取NT=534kg/dD3=×534=d故总需氧量AOR=D1+D2-D3=+-=h=h最大需氧量与平均需氧量之比为,则:AORmax==×=d=h去除每1kgBOD5的需氧量= = =kgBOD5⑵标准需氧量;采用鼓风曝气,微孔曝气器敷设于池底,距池底,淹没深度,氧转移效率EA=20﹪,将实际需氧量AOR换算成标准状态下的需氧量SORSOR= T取25℃,CL取2mg/L, 取, 取查表得水中溶解氧饱和度:CS20=L,CS25=L空气扩散器出口处绝对压力:Pb=p+×103H p=×105Pa,Pb=×105+×103×=×105Pa空气离开好氧反应池时氧的百分比Ot:Ot= ×100﹪式中,EA为空气扩散装置的氧的转移效率,取EA=20﹪Ot= =﹪好氧反应池中平均溶解氧饱和度:Csm25=Cs25 + =× + =L标准需氧量为:SOR= =d=h相应最大时标准需氧量为:SORmax==×=d=h好氧池反应池平均时供气量为:GS= ×100= ×100=h最大时供气量为:Gsmax==h③所需空气压力p相对压力p=h1+h2+h3+h4+△hh4取,△h取取h1+h2=p=+++==49kPa可根据总供气量,所需风压,污水量及负荷变化等因素选定风机台数,进行风机与机房设计;③曝气器数量计算以单组反应池计算;a 按供氧能力计算曝气器数量; h1=采用微孔曝气器,参照有关手册,工作水深,在供风量q=1~3m3h·个时,曝气器氧利用率EA=20%,服务面积~,2,充氧能力qc=h·个,则:h1= =2049个b 以微孔曝气器服务面积进行校核f= = =<④供风管道计算;供风管道指风机出口至曝气器的管道;a 干管;供风干管采用环状布置;流量QS=×Gsmax=×=h流速v=10m/s管径d= = =取干管管径为DN400mm;b 支管;单侧供气向单侧廊道供气支管布气横管:QS单= × = ×=h流速v=10m/s;管径d= = =取支管管径为DN250mm;双侧供气:QS双= = ×=h流速v=10m/s;管径d= = =取支管管径为DN400mm;⑽缺氧池设备选择缺氧池分成三格串联,每格内设一台机械搅拌器;缺氧池内设3台潜水搅拌机,所需功率按5W/m3污水计算;厌氧池有效容积V单=17×18×=混合全池污水所需功率N单=×5=6273W⑾污泥回流设备选择污泥回流比R=100%污泥回流量QR=RQ=30000m3/d=1250m3/h设回流污泥泵房1座,内设3台潜污泵2用1备;单泵流量QR单==×1250=625m3/h水泵扬程根据竖向流程确定;⑿混合液回流泵混合液回流比R内=200%混合液回流量QR=R内Q=2×30000=60000m3/d=2500m3/h每池设混合液回流泵2台,单泵流量QR单= =625m3/h混合液回流泵采用潜污泵;5、向心辐流式二次沉淀池1沉淀池部分水面面积F最大设计流量Qmax=s=1800m3/h采用两座向心辐流式二次沉淀池,表面负荷取m2·h 则F= = =1125m22池子直径DD= = =取D=38m3校核堰口负荷q′q′= = =<〔L/s·m〕4校核固体负荷GG= = =〔kg/m2·d〕符合要求5澄清区高度h2′设沉淀池沉淀时间t=h2′= =qt= =2m6污泥区高度h2′′h2′′= = =⑺池边水深h2h2= h2′+h2′′+=2++=8污泥斗高h4 设污泥斗底直径D2=,上口直径D1=,斗壁与水平夹角60°则h4= tan60°= tan60°=9池总高H 二次沉淀池拟采用单管吸泥机排泥,池底坡度取,排泥设备中心立柱的直径为;池中心与池边落差 h3= =018m超高h1= 故池总高H=h1+h2+h3+h4=+++=10流入槽设计采用环行平底糟,等距设布水孔,孔径50mm,并加100mm长短管①流入槽设流入槽宽B=槽中流速取s槽中水深h=②布水孔数n 取t=650s,Gm20s-1,水温20℃时v= m2/s布水孔平均流速vn= = =s布水孔数n= 个③孔距④校核Gmv1=v2=Gm= = 在10~30之间合格二、污泥处理系统1、浓缩池1浓缩池面积A剩余污泥量 =d 污泥固体通量选用30kg/m2·dA= m2⑵浓缩池直径D设计采用n=1个圆形辐流池浓缩池直径D= 取D=11m⑶浓缩池深度H浓缩池工作部分的有效水深h2= 式中取T=15hQW= 取C0=6kg/m3=则h2=超高h1= 缓冲层高度h3= 浓缩池设机械刮泥坡底坡度 i=1/20 污泥斗下底直径D1= 上底直径D2=池底坡度造成的深度h4= =污泥斗高度h5=浓缩池深度H=h1+h2+h3+h4+h5=++++=2、污泥泵共设污泥泵两台,一用一备单泵流量Q =424m3/d=h3、污泥脱水间进泥量 =424m3/d=h出泥饼GW=68t/d泥饼干重W=18t/d选用DY—3000带式脱水机,带宽3m,处理能力为600kg干/h,选用三台;。
ao工艺设计计算参考
ao工艺设计计算参考A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO脱氮工艺参数设计计算
Q=100m3/h=2400m3/dCOD=10000mg/l ss=000mg/lNH3-NJ进=500mg/l
经A/O工艺处理后的水质达到:COD<1400(本工程按平均1000算)NH3-N出<25 mg/l(本工程按平均15mg/l算)
容积负荷
本工艺按2.0公斤计算
Nv=2.0 kgCOD/(m3.d)
污泥指数
SVI=120
回流污泥浓度
Xr=106/SVI
8000 mg/l
曝气池内污泥浓度MLSS
X=6000 mg/l
污泥回流比
Rr=X/(Xr-X)
6000/(8000-6000)
300%
污泥回流量
Qr=RrQ
2400×300%
7200 m3/d
氨氮去除率
EN=(500-15)/500
97%
消化液回流比
RC=EN/(1-EN)
0.97/ (1-0.97)
3200%
消化液回流量
Qc= RCQ
32×2400
76800 m3/d
A/O池尺寸主要计算
反应池的有效容积V1
V1=Q(Co-Ce)/ Nv
Q-进水流量
Co-进水COD浓度kg/m3
Ce-出水COD浓度kg/m3
Nv-容积负荷
V1=2400×(10-1)/2
反应池所需氧量Oa包括有机物COD氧化需氧量O1,硝化反应需氧量O2,微生物自身氧化需氧量O3,保持好氧池一定的溶解氧所需氧量O4四部分
Oa=O1+O2+O3+O4=9720+5160+5832+130=20842kg/d
A/O脱氮工艺参数设计计算
缺氧+好氧(AO)生物脱氮计算书
污泥回流比R 100%
内回流比 R内 4
污泥产率系数a(kg/kg9969.230769
总停留时间T(h) 8.307692308
内源呼吸分解泥量W2(kg/d)=b·V ·Xv
5233.846154
不可生物降解和惰性悬浮物量W3 (kg/d),约等于TSS的50% 4785.230769
需氧量O2(kg/d) 18944.45745
污泥自身氧化速率b(d-1)
污泥含水率P
0.05
99.20%
A:O=1:4
缺氧段停留时间(h) 好氧段停留时间(h)
1.661538462
6.646153846
剩余污泥量W(kg/d) 6679.384615
每日生成的污泥量Xw (kg/d)
1894.153846
3333.333333
A/O池有效容积V(m³) 44861.53846
进水氨氮(mg/L) 25
出水氨氮(mg/L) 0
污泥指数SVI 150
TN去除率ηN 0.8
有效水深H(m) 4.5
微生物中氮含量的比 例系数 0.12
降解BOD生成的污泥量W1 (kg/d)=a·Q平·Lr 7128
挥发性悬浮固体浓度Xv(kg/m ³)=f·X
2.333333333
湿污泥量Qs(m³/d) 834.9230769
污泥龄θc(d) 55.26315789
A/O工艺(缺氧+好氧生物脱氮)参数设计计算
进水TN(mg/L) 25
进水SS(mg/L) 126
出水TN(mg/L) 5
出水SS(mg/L) 30
回流污泥浓度Xr(mg/L)=10^6/SVI ·r(r=1) 6666.666667
AO(脱氮)设计计算书
惰性物质及沉淀池固体流失 去除1kgBOD产生干污泥量
625 m3/h
流道面积 A
管径 D
2
回流混合 液量Q
流道面积 A
管径 D
=
0.25 m2
按v=0.7m/s设计
=
562 mm
=
1042 m3/h
=
0.36 m2
按v=0.8m/s设计
=
679 mm
(一)设计需氧量 碳化需氧 量 D1 硝化需氧 量 D2 反硝化脱 氮产生的 氧量 D3 总需氧量 AOR 单位BOD 需氧量 最大需氧 量
生物除氮工艺P120
(一)设计需氧量 1
2
3 4
8 进水氨氮 NH3-N =
9 出水氨氮 NH3-N =
10 VSS/TSS
=
11 进水碱度 SALK
=
12 pH
=
13 水温
=
14 混合液 MLSS =
30 mg/L 8 mg/L 0.7 280 mg/L 7.2 14 ℃
4000 mg/L
(二)标准需氧量 1
A/O工艺设计计算(动力学计算法) 原始条件:(生物除氮)
1 设计流量 Q
=
15000 m3/d
2 进水BOD S0
=
160 mg/L
3 出水BOD Se
=
20 mg/L
4 进水TSS X0
=
180 mg/L
5 出水TSS Xe
=
20 mg/L
6 进水总氮 TN
=
7 出水总氮 TN
=
40 mg/L 15 mg/L
2
计算结果:
(一)好氧区容积计算
1 出水溶解性BOD
ao工艺设计计算
1、缺氧池、好氧池(曝气池)的设计计算: (1)、设计水量的计算由于硝化和反硝化的污泥龄和水力停留时间都较长,设计水量应按照最高日流量计算。
Q=K Q式中:Q——设计水量,m3/d;Q——日平均水量,m3/d;K——变化系数;(2)、确定设计污泥龄0C需反硝化的硝态氮浓度为N O =N-0.05(S0 -S e)-N e式中:N——进水总氮浓度,mg/L;S---- 进水BOD值【1】,mg/L;S e——出水BOD值,mg/L;N e——出水总氮浓度,mg/L;反硝化速率计算K =N O de S 0计算出K“e值后查下表选取相应的V D/ V值,再查下表取得0°值。
反硝化设计参数表(T=10~12℃)式中:Y ——污泥产率系数,kgSS/kgBOD ;K ——修正系数,取K =0.9 ; x 0——进水SS 值mg/L;T ——设计水温,与污泥龄计算取相同数值。
然后按下式进行污泥负荷核算:L = -------- S -------- S e 「Y (S 0-S )式中:L S ——污泥负荷,我国规范推荐取值范围为0.2〜0.4kgBOD/(kgMLSS • d )。
XY =K [0.75 +0.6—0S0.102 e 「1.072(T -15)] 1 +0.174・1.072(T -15)C(4)、确定 MLSS(X)MLSS(X)取值通过查下表可得。
反应池MLSS 取值范围RX R - X式中:R ——污泥回流比,不大于150%;t ——浓缩时间,其取值参见下表。
E(5)、计算反应池容积V = 24Q呼(S 0 - S )1000X~一计算出反应池容积V 后,即可根据匕/V 的比值分别计算出缺氧反应池和好氧反应池 的容积。
2、厌氧池的设计计算:X =0.7R1000 ~VIT厌氧反应池的容积计算V =0.75Q (1+R ) +0.15VAD式中:V A ——厌氧反应池容积,m 3。
小明的计算书AO工艺(DOC)
目录第1章设计概述 (1)1.1设计题目 (1)1.2设计依据 (1)1.3处理要求 (1)第2章城市污水管网的设计计算 (2)2.1城市污水管网的设计计算 (2)2.1.1设计参数 (2)2.1.2 确定城市污水的比流量 (3)2.1.3 污水变化系数的确定 (3)2.1.4 街区面积 (3)2.1.5污水干管流量计算 (3)2.1.6污水干管水力计算 (3)2.2城市雨水管网设计计算 (4)2.2.1设计参数 (4)2.2.2 设计计算 (4)第3章设计水质水量及出水指标 (6)3.1污水水质水量计算 (6)3.1.1 污水设计流量 (6)3.1.2 污水中污染物含量和处理程度计算 (6)3.4城市污水处理流程 (7)第4章污水处理构筑物设计计算 (9)4.1中格栅设计计算 (9)4.1.1 设计参数: (9)4.1.2设计计算: (9)4.2污水提升泵房设计计算 (11)4.2.1设计原始资料 (11)4.3细格栅设计计算 (13)4.3.1设计参数: (13)4.3.2 设计计算 (13)4.4曝气沉砂池设计计算 (15)4.4.1设计参数 (15)4.4.2设计计算 (16)4.4.3进水渠道 (17)4.4.4 出水管道 (18)4.5平流式初沉池 (19)4.5.1 初沉池主体设计 (19)4.5.2 进出水设计 (21)4.6曝气池(A/O)设计计算 (23)4.6.1 池体设计 (23)4.6.2 进出水设计 (28)4.7二沉池设计计算 (28)4.7.1工艺设计参数 (28)4.7.2设计计算 (29)4.8消毒接触池设计计算 (31)4.9计量设备 (33)4.9.1 尺寸设计 (34)4.9.2 水头损失计算 (34)第5章污泥处理构筑物的设计计算 (36)5.1回流污泥泵站 (36)5.2污泥浓缩 (36)5.2.1剩余污泥量的计算 (36)5.2.2污泥浓度Xr (37)5.2.3浓缩池尺寸的计算 (37)5.2.4浓缩后污泥体积 (37)5.2.5分离出的污水流量 (38)5.3贮泥池 (38)5.3.1贮泥量的计算 (38)5.3.2贮泥池的尺寸计算 (38)5.4污泥脱水 (39)5.4.1污泥脱水设备的选择 (39)5.4.2脱水机的选择 (39)第6章污水厂平面及高程的布置 (40)6.1污水厂平面及高程布置 (40)6.2污水厂高程布置 (40)6.2.1 概述 (40)6.2.2 构筑物之间管渠的连续及水头损失的计算 (41)6.2.3 构筑物之间管渠的连续及污泥损失的计算 (43)第7章工程概算 (46)7.1工程概算编制说明 (46)7.1.1基础资料 (46)7.1.2 工程造价分析 (46)7.2工程概算 (47)7.2.1 基本建设投资估算 (47)7.2.2 生产成本分析 (48)致谢 (52)参考文献 (53)附表1 (55)附表2 (55)附表3 (57)附表4 (58)附表5 (59)第1章设计概述1.1设计题目辉南县城市污水处理厂工艺设计1.2设计依据辉南县城市发展与改革委员会计字【2005】第1号文件:“辉南县排水治理工程计划任务书的批复”,同意该城市采用完全分流制排水系统,设计内容包括全城规划区内的污水管道、雨水管道和污水处理厂。
AO工艺计算书
4、剩余 污泥量 W/ (kg/d )
W=a*Q*(L o-Le)b*V*Xv+Q *(SoSe)*0.5= 4.1降解 BOD生成 污泥量 W1: W1=a*Q*( Lo-Le)= 4.2内源 呼吸分解 泥量W2:
Xv=ƒ*X= W2=b*V*X v= 4.3不可 生物降解 和惰性悬 浮物量 (NVSS) W3=0.5*Q *(SoSe)= Xw=a*Q*( Lo-Le)b*V*Xv=
+4H -2H2O
2HNO2
(二 )A/O 工艺 设计 计算 (按 BOD5 污泥 负荷
1、生化 反应池 容积比
V1/V2=2~ 4 V1---好 氧段容 积,m3;
+4H -2H2O
[2HNO]
+4H N2O
2NH2OH
+2H -H2O
V2---缺 氧段容 积,m3。
2、生化 反应池 总容积 V/m3
O2=a′ *Q*(LoLe)+b′ *Nr-b′ *ND-c′ *Xw=
a′=
b′=
c′=
Nr=Q* (NkoNke)0.12*Xw=
ND=(Q* (NkoNke-NOe)0.12*Xw) *0.56= a′,b ′,c′--分别为1 、4.6、 1.42;
11.52
1.47 பைடு நூலகம்ko= 4.6 Nke= 1.42 NOe=
5、湿污 泥量 Qs, m3/d
Qs=W/(10 00(1P))= P= P---污泥 含水 率,%
99.20%
0.71
6、污泥 龄θ c/d(泥 龄与水 温关 系: (硝化 率大于 80%)为 θ c=20.65 e*P(0.0639t ),t为 水温, ℃。
AO生物池厌氧缺氧好氧计算书
工艺计算(一)序号(二)水质参数CODcrBOD5TSS NH-N3TKN NO3- -NTNTPPH碱度Tmax Tmin 污水处理一设计参数进水水量项目符号公式计算值单位备注工程设计规模Q =70003m /d总总变化系数K z= 1.47平均日、平均时流量Q h=Q总/24=291.6673m /hQ s=Q h/3600=0.081023m /s最高日、最高时流量Q =Q*K =428.753max h z m /h=Q max/3600=0.11913m /s进出水水质进水指标( mg/L)符号出水指标( mg/L)符号去除率%备注400COD50COD87.5t te120S010S e91.6666666790%~95% 220T SS10T S95.4545454525N o5N a8035N k5Nke85.7142857101035N t15N te57.1428571460%~85%3P t0.5P te83.333333336~96~9280S ALK20℃14℃A2O生物反应池(厌氧 / 缺氧 / 好氧)(一)序号(二)判断是否可采用A2 O工艺项目符号公式BOD/TN(碳氮比)k =S /N=510 tBOD5/TP(碳磷比)k2=S0 /P t =A2O生物反应池容积计算 ( 污泥负荷法)去除水中B OD5,N和PA2/O生物反应池设计流量Q=Q总=BOD污泥负荷N=5混合液悬浮物固体浓度M LSS X=污泥回流比R=脱氮率ηN=N t -N te /N t =混合液回流比R内=ηN/ (1- ηN)==取值2V=Q ( S o S e)A O生物反应池有效容积NX计算值单位备注3.42857≥440≥1770003m /d0.08kgBOD/(kgMLSS5·d)0.1~0.23500mgMLSS/L3000~4000mg/L1100%回流0.5714360%~85%1.33333100%~400%2200%27503m(三)A2O生物反应池总停留时间厌氧 / 缺氧 / 好氧段停留时间之比厌氧区停留时间缺氧区停留时间好氧区停留时间厌氧区有效容积缺氧区有效容积好氧区有效容积校核氮磷负荷=HRT==k3=HRT=1HRT=2HRT3=V厌=V缺=V好=取值V/Q=24×HRT=HRT*1/(1+2+8)=HRT*2/(1+2+8)=HRT*8/(1+2+8)=V*1/(1+2+8)=V*2/(1+2+8)=V*8/(1+2+8)=27503随停留时间需要确定m0.39286d9.42857h1:2:80.85714h1.71429h6.85714h2503m5003m20003mQN t0.05N0.035 kgTN/(kgMLSS d)XV 好厌氧段总磷负荷(四)剩余污泥量计算污泥总产率(增殖)系数MLSS中MLVSS所占比例内源代谢系数 ( 污泥自身氧化率 )生物污泥产量非生物污泥产量剩余污泥产量(五)碱度校核K P=QP t<0.06 ,符合要求0.024 kgTP/(kgMLSS·d)XV 厌Y=0.6kgMLSS/kgBOD0.3~0.65f=0.7kgMLVSS/kgMLSS0.7~0.8K d=0.05d-1P =YQ(S-S )-k VfX=125125g/dx o e d=125.125kg/dP s=Q( T ss-T s)× 50%/1000=735kg/d△ X=P X+P S=860.125kg/d生物污泥中含氮量每日微生物同化 ( 合成 ) 作用除氮量被氧化的N H3-N的量所需脱硝量需要脱去的硝态氮总量氧化 1mgNH3-N消耗碱度氧化 NH3-N消耗总碱度去除 1mgBOD产生碱度5去除 BOD产生的总碱度5还原 1mgNO-N产生碱度3还原 NO-N产生总碱度3剩余碱度(六)A2O生物反应池尺寸计算反应池组数单组反应池池容单组反应池有效水深单组反应池有效面积单组推流式反应池廊道数量廊道宽度单组反应池宽度单组反应池长度校核宽深比校核长宽比反应池超高反应池总高(七)反应池进、出水管渠计算反应池总进水管设计流量进水管流速进水管截面积k4=N w==N NH=N N=N T=S ALK1=S ALK2=SALK3=SALK4=SALK5=SALK6=S ALK7=n=V单=H=S单=n1=B=W=L==k4=k5=H1=H2=Q0=v=S=P x×k4=N w×1000/Q=N t -N a -N w=N t -N te -N w=Q×N N/1000=S ALK1×N NH=S ×(S-S )=ALK3o eS ×N=ALK5NS ALK-S ALK2+S ALK4+S ALK6=V/n=V单/H=B×n=1S单/W=取值B/H=L/B=H+H1=Q =sQ0/v=0.124以12.4%计15.5155kg/d用于生物细胞合成2.2165mg/L27.7835mgNH-N/L317.7835mgN0-N/L3124.485kgN03-N/d7.14mg/mgNH-N3198.374mg/L0.1mg/mgBOD511mg/L3.57mg/mgNO-N363.4871mg/L156.113mg/L>100mg/L(CaCO计)32组31375 m5m2275 m2个9m18 m15.2778m62.5m1.81~26.944445~100.5m0.5~1.0m5.5m0.081023m /s0.8m/s0.7~2.0m/s0.101272m进水管直径校核管道流速回流污泥管设计流量回流污泥管流速回流污泥管截面积回流污泥管直径4 SD=π0.35909m=取值 0.6m DN600 v1=Q 01πD20.28654m/s0.7~2.0m/s4Q =R×Q=0.08102310m /sv=0.8m/s0.7~2.0m/s S=Q0/v=0.101272mD=4 S0.35909mπ=取值0.6m DN600单组生物反应池进水孔设计流量进水孔流速进水口过水断面积进水孔边长出水堰流量出水堰宽出水堰堰上水头流量系数过堰流量出水孔过流量出水孔流速出水孔过水断面积出水孔边长出水管设计流量出水管流速出水管截面积出水管直径校核管道流速(八)曝气系统设计计算BOD5分解速度常数BOD试验时间5去除B OD5需氧量剩余污泥中 BOD氧当量碳化需氧量去除N H3-N需氧量剩余污泥 NH-N氧当量3硝化需氧量反硝化脱氮产生氧量好氧池实际总平均需氧量好氧池实际总最大需氧量去除1kgBOD需氧量520℃清水溶解氧饱和度T℃清水溶解氧饱和度标准大气压压力修正系数好氧池中溶解氧浓度污水与清水传氧速率比污水与清水中饱和溶解氧之比微孔曝气器距池底微孔曝气器安装深度微孔曝气器出口处压力微孔曝气器氧转移效率Q2=v2=A=L孔==Q3=B堰=H=m=Q堰=Q4=v3=A出=L孔出==Q5=v4=S=D==v5=k=t=D o1=D o2=D o3=D N1=D N2=D N3=D N4=AOR==AOR max==AOR =BODC s(20) =Cs(14)=p标=ρ=C L=α=β= H4=H5=p b=E A=(1+R)Q/n=0.0810230m /s0.6m/sQ /v2=0.1350322mA0.36747m取值0.6m(1+R+R )Q /n=0.162043内0m /sB=9m0.083m0 .00270.437530 .405H33m B 堰 2 g H 20.41708m /sQ =0.162043m /s30.6m/sQ /v3=0.2700624mA0.51967m取值0.9mQ =0.1620433m /s0.8m/sQ5 /v 4=0.202552m4 S0.50783mπ取值0.8mQ 5120.32236m/sπ D40.23d-15dQ(S0S e )1126.78kgO2 /d1000 (1 e kt )1.42 ×P =177.678kgO /dX2D o1-D o2=949.102kgO2 /d4.6Q(N t -N a)/1000=966kgO2 /d4.6 ×12.4%×P =71.3713kgO /dX2D N1-D N2=894.629kgO2 /d2.86 ×N =356.026kgO /dT2D03+D N3-D N4=1487.71kgO2 /dAOR/24=61.9877kgO2 /h1.4 ×AOR=2082.79kgO2 /dAOR max/24=86.7828kgO2 /h1000AORQ ( S0 S e ) 1.93209kgO2 /kgBOD9.17mg/L10.17mg/L101300Pa12mg/L0.820.950.2mH-H4= 4.8mp +9800×H=148340Pa标50.221(1E A )79 21(1E A )由进水竖井潜孔进假设为正方形孔取值保证过堰流量≈Q3DN8000.7~2.0m/s合成细胞,未耗氧合成细胞,未耗氧查表附录十二查表附录十二当地气压比标准气压根据安装要求定由设备性能参数定空气出池时氧的百分比好氧池溶解氧饱和度好氧池标准状态总平均需氧量O t21(1E A )=E A )79 21(1C sm(14) = C s(14)(p b O t)2.066 1050.42AOR C s(20)SOR=(T 20)α ( βρC sm(T)C L ) 1.0240.1753711.5485 mg/L2138.11 kgO2 /d由实际需要量换算好氧池标准状态总最大需氧量好氧池平均时供气量单组好氧池平均时供气量好氧池最大时供气量单组好氧池最大时供气量3采用鼓风曝气时毎m 污水供气量供风管道局部阻力曝气器淹没水头曝气器阻力富余水头好氧区所需风压单个曝气器通气量单个曝气器服务面积单组好氧区配置曝气器数量单组好氧区表面积单格曝气器服务面积单组好氧池供风干支管风速供风干管管径需双侧供气供风支管风量需双侧供气供风支管管径(九)缺氧池搅拌设备计算缺氧池组数单组缺氧池容积3毎m污水所需搅拌功率单组缺氧池所需搅拌功率(十)混合液回流设备计算混合液回流量毎组好氧池设回流泵台数单台回流泵流量=SOR =maxG s==G1S==Gsmax===G smax1===G sp=h1=h2=h3=h4=△ h=p气==q=S q=n3=F o=Fo单=v风=d风==Gsmax2=d支2==n4=V缺单=p搅拌=p搅拌1=Q R==n5=Q R单=SOR/24=1.4 ×SOR=SOR/0.3E A=G s/60=G s/n=G1S/60=1.4 ×G=sG smax/60=G smax/3600=G smax/n=G/60=smax1G smax1/3600=24×G s/Q=0.01 ×( H-H4)=h1+h2+h3+h4+△ h=p气×1000=G1max/q=V好/H/n=F o /n 3=4Gsmaxπv 风取值G/n =smax1 14 G smax2πv 风取值V缺/n 4=p搅拌×V缺单 =Q×R内=Q r /24=Q / (n×n)= R589.0878kgO2 /h124.723kgO2/h31484.8m /h324.7466m /min3742.398m /min312.3733m /min32078.71m /h334.6452m /min30.57742m /s31039.36m /min317.3226 m/min30.28871m /s335.09073m /m 污水0.001Mpa.1Mpa.48Mpa.4Mpa.5Mpa0.059Mpa59kPa32m /h0.3~0.725m519.679 个2200 m20.38485 m10m/s0.27114 mDN50030.14436 m /s0.13557 mDN2502组3250 m5w1.25 kw140003m /d583.3333m /h1台291.6673m /h风机选型参考风机选型参考3 3≥3m/m 污水需要根据情况计算需要根据情况计算1m水头为 0.01MPa≤0.004~0.005MPa0.003~0.005MPa风机选型参考数据由厂家提供数据由厂家提供≤0.75m210~15m/s32~8w/m搅拌设备选型参考可考虑再备用一台回流泵选型参考计算值设定值反校值已知条件设计标准。
A平方O工艺设计计算书精选文档
A平方O工艺设计计算书精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2.4 A/A/O 工艺设计2.4.1 设计参数2.4.2 好氧池设计计算(1)反应器内MLSS 浓度取MLSS 浓度X=3000mg/L ,回流污泥浓度X R =9000mg/L故污泥回流比 R=5.0300090003000=-=-=X X X R R (2)求硝化的比生长速率式中:μn,m ——硝化菌的最大比生长率,g 新细胞/(g 细胞·d);N ——出水氨氮的浓度,mg/l 。
此处为8mg/L ;K N ——半速率常数,在最大比基质利用率一半时的基质浓度,此处为1mg/L 。
先求10℃时的μn,m故 1256.0818288.0-=⎪⎭⎫⎝⎛+⨯=d n μ (3)求设计SRT d (污泥龄)理论SRT :设计SRT d :为保证安全设计的SRT d 未理论SRT 的三倍,故(4)好氧池停留时间式中 Y t —— 污泥总产率系数,取0.8kgMLSS/kgBOD ;S o —— 进水BOD 5浓度mg/L ,此处为180mg/L ;S e —— 出水溶解性BOD 5浓度,mg/L ;K d —— 自身氧化系数,()2020,-=T t d K K θ在20℃时,K 20取0.04-0.075,此处取0.075。
θ为温度修正系数,可取1.02-1.06,此处取1.02。
故 ()062.002.1075.0201010,≈⨯=-d KS e =S o ’-S neS ne =7.1b ×aC e式中 C e —— 处理出水中SS 浓度,此处为20mg/L ;b —— 微生物自身氧化率,此处为0.075;X a —— 在处理水的悬浮固体中,有活性的微生物所占比例,此处为0.4 S o ’ —— 出水BOD 5浓度,此处为20mg/L故 L mg S e /74.15204.0075.01.720≈⨯⨯⨯-=故()()d T297.0300073.11062.0174.151808.073.11≈⨯⨯+-⨯⨯=(5)好氧池面积故好氧池停留时间HRT为:(6)生物固体产量式中 Q ——该污水厂最大的处理量,6000m3/d故()()dkgVSSPbiox/47.456100073.11062.0174.151808.06000,≈⨯⨯+-⨯⨯=(7)比较求由氮氧化成的硝酸盐数量每产生1g的VSS就要消耗掉0.12g的N,故因生物固化作用除去的TNx,bio 故因硝化/反硝化作用除去的TN为式中 TNin——进水总氮量,45mg/L;TNout——出水总氮量,20mg/L故()dkg TNc/22.9578.54100020456000=--⨯=故产生的硝酸盐数量及浓度为:故硝酸盐浓度为2.4.3 缺氧池设计计算(1)内回流比IR式中 ()out N NO C -3—— 排除的硝酸盐量,12mg/L 故 %13211287.27=-=IR (2)缺氧池面积式中 K de ——反硝化速率,kgNO 3-N/(kgMLSS ·d);式中 K de20 —— 20℃时的反硝化速率,取0.06kgNO 3-N/kgMLSSθt ——温度修正系数,取1.08故 ()028.008.106.02010≈⨯=-de K故 357.11333000028.0100022.95m V n ≈⨯⨯= 其水力停留时间HRT 为2.4.4 厌氧池设计计算(1)厌氧池容积式中 t p —— 厌氧池停留时间,取2h故厌氧池体积2.4.5 曝气系统设计计算(本设计采用鼓风曝气系统)(1)设计最大需氧量AORAOR=除去BOD 需氧量—剩余污泥当量+消化需氧量—反硝化产氧量硝化需氧量反硝化产氧量故 d kgO AOR /61.128733.27221.76973.7902=-+=(2)供气量的计算采用STEDOC300型橡胶膜微孔曝气器,敷设于距池底0.2m 处,淹没水深4.8m ,氧 转移效率30%,计算温度定为30℃。
AO生物脱氮工艺设计计算
A1/O生物脱氮工艺设计计算1.已知条件(1)设计流量Q=40000m3/d(2)设计进水水质BOD5浓度S0=130mg/L; TSS浓度X0=180mg/L;TN0=40mg/L; NH3-N=25 mg/L; TP=3.5 mg/L; COD cr=220 mg/L(3)设计出水水质BOD5浓度S e<=20mg/L; TSS浓度X e<=20mg/L;TN e<=20mg/L; NH3-N<=8 mg/L; TP<=1mg/L; COD cr<=60 mg/L PH=6.0~7.02.设计计算(按BOD5负荷计算)(1)设计参数计算根据手册知道:(1)设计参数计算①假设BOD5污泥负荷: N S=0.13kg BOD5/(kgMLSS·d)②污泥指数: SVI=150③回流污泥浓度X R=106*r/SVIr——考虑污泥在沉淀池中停留时间,池深,污泥厚度等因素的系数取r=1.2则X R=106*1.2/150=8000(mg/L)④根据手册回流污泥比R=50%~100% 取R=100%⑤曝气池混合液污泥浓度{X}kg/m3=R*X R/(R+1)=1*8000/2=4000mg/L=4⑥TN去除率{ηN}%=( TN0- TN e)/ TN0=(40-20)/40=50⑦内回流比{R内}%=η/(1-η)=0.5/(1-0.5)=100(2) A1/O池主要尺寸计算①曝气池总有效容积{V}m3=Q设L0/ N S X=40000×130/(0.13×4000)=10000m3又生化反应池中好氧段容积与缺氧段容积之比V1/V2=3~4 取V1/V2=4则V1=8000 m3V2=2000 m3②有效水深h=5.0m③好氧反应池的尺寸总容积V1=8000m3, 设反应池两组。
单组池容V1单= V1/2=4000 m3单组有效面积S1单=V1单/h=4000/5.0=800m2采用5廊道式, 廊道宽b1=5.0m反应池长度L1=S1单/5 b1=800/(5×5.0)=32m校核b/h=5.0/5.0=1 (满足b/h=1~2)L/b=32/5.0=6.4(满足L/b=5~10)超高取1.0,则反应池总高H=5.0+1.0=6 m④缺氧反应池的尺寸总容积V2=2000 m3, 设反应池两组。
AO工艺设计计算书
AO⼯艺设计计算书基本原理:A/O⼯艺将前段缺氧段和后段好氧段串联在⼀起,A段DO(溶解氧)不⼤于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污⽔中的淀粉、纤维、碳⽔化合物等悬浮污染物和可溶性有机物⽔解为有机酸,使⼤分⼦有机物分解为⼩分⼦有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧⽔解的产物进⼊好氧池进⾏好氧处理时,可提⾼污⽔的可⽣化性及氧的效率;在缺氧段,异养菌将蛋⽩质、脂肪等污染物进⾏氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充⾜供氧条件下,⾃养菌的硝化作⽤将NH3-N(NH4+)氧化为NO3-,通过回流控制返回⾄A池,在缺氧条件下,异氧菌的反硝化作⽤将NO3-还原为分⼦态氮(N2)完成C、N、O在⽣态中的循环,实现污⽔⽆害化处理。
⼯艺优点:(1)效率⾼。
该⼯艺对废⽔中的有机物,氨氮等均有较⾼的去除效果。
当总停留时间⼤于54h,经⽣物脱氮后的出⽔再经过混凝沉淀,可将COD值降⾄100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2)流程简单,投资省,操作费⽤低。
该⼯艺是以废⽔中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。
尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮⽐有所提⾼,在反硝化过程中产⽣的碱度相应地降低了硝化过程需要的碱耗。
(3)缺氧反硝化过程对污染物具有较⾼的降解效率。
如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
(4)容积负荷⾼。
由于硝化阶段采⽤了强化⽣化,反硝化阶段⼜采⽤了⾼浓度污泥的膜技术,有效地提⾼了硝化及反硝化的污泥浓度,与国外同类⼯艺相⽐,具有较⾼的容积负荷。
(5)缺氧/好氧⼯艺的耐负荷冲击能⼒强。
当进⽔⽔质波动较⼤或污染物浓度较⾼时,本⼯艺均能维持正常运⾏,故操作管理也很简单。
通过以上流程的⽐较,不难看出,⽣物脱氮⼯艺本⾝就是脱氮的同时,也降解酚、氰、COD等有机物。
AO工艺设计计算参考
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7。
5 水温14~25℃BOD5=160mg/L VSS=126mg/L (VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3—N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978—1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH —N〈20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%.废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO计算说明书
A2/O工艺计算说明书1.概述城市污水处理厂的污水主要是来自居民生活污水和市区内的工业废水,该工业废水在排入市政管网之前已经过适当处理,并达到国家二级排放标准,可直接排入污水处理厂进行进一步处理。
该生活污水和工业废水经市政排水管网固定排放口收集。
假定污水中主要是可溶性有机物、氮、磷等,而且有机物的浓度不是特别高,可生化性较好,在处理时需要考虑常规的脱氮除磷。
根据《室外排水设计规范》(GB50014-2006)确定该城区水质特点为:设计水质BOD COD SS TN TPmg/L 240 400 250 40 8污水排放的要求执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准,则出水水质特点为:控制指标BOD COD SS TN TP含量(≤mg/L)20 60 20 20 12.工艺选择和评价在活性污泥法中,根据《室外排水设计规范》(GB50014-2006)推荐对于设计流量小于10×104m3/d的城市污水处理厂可以采用氧化沟法、A2/O法进行处理。
由于氧化沟对于脱氮除磷效果不是很好,而且占地比较大。
所以应选用A2/O工艺进行生化处理。
A2/O工艺是污水处理工艺中的应用典范,它由脱氮工艺和除磷工艺综合起来的一种能够起到同步脱氮除磷作用的污水处理工艺。
它是传统活性污泥工艺、生物脱氮除磷工艺的综合体,并具有优良的BOD降解和脱氮除磷的效果,其工程投资低,且有丰富的、可借鉴的设计运行经验,所以在国内外城市污水处理厂经常被采用。
A2/O工艺原理是有机氮通过氨化作用转变为氨氮,好氧下继续发生硝化转变为亚硝态氮和硝态氮,含有硝态氮与原污水一起从好氧池流到进行反硝化脱氮作用的缺氧区;磷在厌氧条件下被聚磷菌释放,在好氧区又被聚磷菌吸收,达到除磷目的;污染物在好氧区被氧化降解,去除COD和BOD5。
根据A2/O脱氮除磷工艺主要设计参数来考查该城区污水是否可采用A2/O 工艺。
AO工艺设计计算参考
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7。
5 水温14~25℃BOD5=160mg/L VSS=126mg/L (VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3—N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978—1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH —N〈20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%.废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活污水及少量工业污水污水设计流量Q=8000 m3/h,最小流量3500 m3/h,污水水质见下表:
污水处理厂进水水质表
请选择典型A2/O工艺进行污水处理方案设计,要求出水水质达到
GB18918—2002《城镇污水处理厂污染物排放标准》一级标准B标准。
A2/O工艺设计内容与要求:
一、污水处理方案的总体设计
要求用流程方框图表达污水处理总体方案。
根据进水水质,判断初沉池设置必要性,验证污水可生化性及A2/O工艺的适宜性;计算主要污染物总去除率。
二、格栅的设计计算
要求计算栅槽宽度、栅后槽总高度、栅槽总长度、栅渣量。
在格栅示意图上注明尺寸。
主要设计参数:
栅前水深 h=;
过栅流速 s;
格栅栅条间隙为;
格栅倾角δ=60°;
单位栅渣量:ω1=栅渣/103 m3污水。
三、沉砂池的设计计算
要求计算沉砂池长度、水流断面积、池子宽度与格数、沉沙斗尺寸与容积、沉砂池总高度、校核最小流速,并在沉砂池示意图上注明有关尺寸。
主要设计参数:
采用平流式池型;
设计流速:v=s ;
水力停留时间:t=40s。
四、根据需要,开展初沉池的设计计算
要求计算沉淀池长、沉淀池宽度与个数、污泥部分所需总容积、池子总高度。
在平流式初沉池示意图上注明相关尺寸。
主要设计参数:
采用平流式池型;
水力表面负荷q’=(m3/( m2·h);
沉淀时间T=2h;
水流水平流速v=s;
污泥量按进水SS 50%去除率计,排泥间隔2天,污泥含水率95%。
五、 A2/O各段反应池的设计计算
要求计算污泥回流比、混合液回流比(内回流比)、厌氧池/缺氧池/好氧池尺寸,并在A2/O示意图上注明各段相关尺寸。
主要设计参数:
采用推流式的池型;
水力停留时间:t=8h(各段停留时间:A1:A2:O=1:1:3);
曝气池混合液污泥浓度: g/l;
回流污泥浓度X r=10 g/L;
池子有效水深,廊道宽8m。
六、二沉池的设计计算
要求计算单池直径与个数、沉淀池总高度,并在二沉池示意图上注明有关尺寸。
主要设计参数:
采用中心进水辐流式沉淀池;
沉淀池个数n=4;
水力表面负荷q’= (m3/( m2·h);
沉淀时间T=。
七、使用AutoCAD绘制A2/O系统的高程图
利用提供的污水处理构筑物AutoCAD图及高程数据,绘制A2/O工艺管线,并标注高程。
一格栅
格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。
一般情况下,分粗细两道格栅。
格栅型号:链条式机械格栅
过栅流速 s;
α=︒
格栅倾角60
确定栅前水深:h=;
(1) 栅前间隙数max 2sin 2.88sin 60111b Q n hv α︒
=
==(取111)
(2) 设栅条宽度:S=,(1)b 0.02(1111)0.051117.55B s n n m =-+=-+⨯=
(3) 则进水渠渐宽部分长度1 2.88
5.76vh 10.5
Q B m =
==⨯ (4)格栅与出水渠道渐宽部分长度12 1.282
L
L m ==
(5)过栅水头损失10.095h m =
(6)取栅前渠道超高部分20.3h m =
则栅前槽总高度12h 0.50.0950.30.895H h h m =++=++=
(7)格栅总长度120.095
1.00.5tan 60L l l =++++
︒
=0.095
2.56 1.280.51tan 60++++︒
=
(8)每日栅渣量
二沉砂池
沉砂池的作用是从污水中去除砂子、煤渣等比重较大的颗粒,保证后续处理构筑物的正常运行。
(1)长度:0.254010l vt m ==⨯=
(2)水流断面面积:max 11 2.88
22 5.760.25
Q A m v ⨯===
(3)池总宽度:nb=2=m B =⨯12
(4)有效水深2 5.76
=
=2.88m 2
A h
B = (5) 沉砂斗容积:max 366
11
86400 2.8830286400
22 5.7410 1.310
v Z Q X T V m K ••⨯⨯⨯⨯⨯===•⨯ (T =2d )
(6)
每个沉砂斗得容积(0V ) 设每一分格有2格沉砂斗则:
3011.48
0.717524
V m =
=⨯
(7)沉砂斗各部分尺寸:设贮砂斗底宽b 1=;斗壁与水平面的倾角55°,贮砂斗
高h ’3=沉砂室高度:(h 3)= 3
2 1.63tan 55h a a =
+=
(8)
沉砂室高度:(h 3)
设采用重力排砂,池底坡度i =6%,坡向砂斗,则
(8)池总高度:(H)
设超高10.3h m =,1230.3 2.880.8 3.98H h h h m =++=++=
(8) 核算最小流速
m in v
三A2/O
数据:
(1)
50.480.45330COD ==>好
(2)
5160
==4.2138BOD TN >3满足反消化条件
330
==8.6838COD TN >7满足反消化条件
(3)
5160
==208BOD TP 除磷效果好
330
==41.258
COD TP 除磷效果好 四二沉池:
要求计算单池直径与个数、沉淀池总高度,并在二沉池示意图上注明有关尺寸。
主要设计参数:
采用中心进水辐流式沉淀池; 沉淀池个数n=4;
水力表面负荷q ’= (m 3/( m 2·h); 沉淀时间T=。
(1)r =
1
R
X X R ⨯+ X=3800 (2)求内回流比RN TN 去除率为 010385
=
=100%87%38
TN TN YTN TN --⨯=
(1) 反应池容积V :11
192000160
44155470.133800
QSa V NS ⨯⨯===⨯
(2) 反应池总水力停留时间t :15547
0.32811920004
v t d h Q ====⨯
(3) 各段水力停留时间: 设厌氧:缺氧:好氧=1:1:3 则厌氧池
水力停留时间 1
t =8h=1.6h 5⨯厌 1t =8h=1.6h 5
⨯缺
3
t =8h=4.8h 5
⨯好
(4) 各段容积 厌氧池V 1
V =15547=3109.45
⨯厌
1V =15547=3109.45⨯缺 3
V =15547=9328.25
⨯好
(5) 好氧氮总氮负荷1
19200038
4===0.4938009328.2
O QXTN NX ⨯⨯⨯ 厌氧段总磷负荷
1
1920008
2===0.590.0638003109.4
O QXTN XV ⨯⨯<⨯厌 (6) 反应池主要尺寸 设有效水深h=5m 则有效面积
2v 15547
=
==3109m h 5
S 单 采用5廊道式推流式反应池,廊道宽b= 单组反应池长度s 3109
=
==77m b 58
L ⨯单 校核:b /h=8/5=1.6b /h=12/b=37/7.6=9.625/h=5100.3=50.3=5.3m
L L H ~~+(满足)
(满足)
取超高为,则反应池总高
五 二沉池
(1)二沉池表面面积
(2)沉淀池池径D
(3)校核堰D 负荷'
02356
q
=
==3.8<4.343.6 3.6 3.1455
Q D π⨯⨯
(4)校核固体负荷 1
2410.3810368 3.8
4==1382356G ⨯+⨯⨯⨯()
(5)澄清区高度 '21
103683ut 4h ===3.3m 2356
Q A ⨯⨯ (6)污泥区高度"2
"
"2h t
=2h
2210.3848000 3.8
h =
=1.3m
24 3.8102356
⨯⨯⨯⨯⨯⨯+⨯设污泥停留时间()()。