七上有理数 第5课时 绝对值与相反数(1)练习 含答案

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

冀教版(2024新版)七年级数学上册习题练课件:1.3 绝对值与相反数

冀教版(2024新版)七年级数学上册习题练课件:1.3 绝对值与相反数

B. 点 N 与点 P
C. 点 M 与点 P
D. 点 N 与点 Q
C
)
7. 如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反
数.
(1)图中点 C 表示的数是
1


【解析】(1)因为点 A , B 表示的数互为相反数,
所以 AB 的中点即为原点的位置,
如图所示,
所以点 C 表示的数为1.
(2)若点 D 在数轴上,且 CD =3,则点 D 表示的数为
个是不合格品?
解:(2)由(1)可知,25,30,40都超过了20,即第①个、第④个、第⑥
个足球的质量均与规定质量相差超过了20克,所以6个足球中有3个是不
合格品.
20. 已知数 a 所对应的点在数轴上的位置如图所示.
(1)在数轴上标出 a 的相反数所对应的点的位置;
解:(1)点 a 的相反数如图所示.
(2)若数 a 所对应的点与其相反数所对应的点相距20个单位长度,则数 a
是多少?
解:(2)由题意知,| a |=10.
因为数 a 所对应的点在原点左侧,所以 a 是-10.
(3)在(2)的条件下,若数 b 所对应的点与数 a 的相反数所对应的点相距5
个单位长度,求数 b 是多少.
解:(3)由(2)可知,- a =10.
解:(1)-(+5)=-5. (2)-(-3.4)=3.4.
(3)+(-3);
(3)+(-3)=-3.
(4)-[+(-8)];
(5)-[-(-9)].
解:(4)-[+(-8)]=-(-8)=8.
(5)-[-(-9)]=-(+9)=-9.
绝对值的性质及求法
9. (2023·江苏扬州中考)-3的绝对值是(

人教版七年级上册数学数轴与绝对值的解答题

人教版七年级上册数学数轴与绝对值的解答题

人教版七年级上册数学数轴与绝对值的解答题1.有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0. (2)化简:|a |+|b +c |﹣|c ﹣a |.2.如图,数轴上的三个点A ,B ,C 分别表示实数a ,b ,c .(1)如果点C 是AB 的中点,那么a ,b ,c 之间的数量关系是________; (2)比较4b -与1c +的大小,并说明理由; (3)化简:|2||1|||--+++a b c .3.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示x 和-2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6,则a 表示的数为 ;(3)若x 表示一个有理数,则|x +2|+|x -4|有最小值吗?若有,请求出最小值;若没有,请说明理由.4.已知b 是最大的负整数,且a 、b 、c 满足()21202a b c +++=,请回答下列问题: (1)请直接写出a 、b 、c 的值:=a _____,b =_____,c =______;(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点A 、B 、C 开始在数轴上运动,若点B 以每秒一个单位长度的速度向左运动,同时点A 、点C 都以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离为AB,点B与点C之间的距离为BC,请问:AB BC-的值是否随着t的变化而改变?若变化,请说明理由;若不变,请求出AB BC-的值.5.如图一,已知数轴上,点A表示的数为6-,点B表示的数为8,动点P从A出t>发,以3个单位每秒的速度沿射线AB的方向向右运动,运动时间为t秒()0(1)线段AB=__________.(2)当点P运动到AB的延长线时BP=_________.(用含t的代数式表示)(3)如图二,当3t=秒时,点M是AP的中点,点N是BP的中点,求此时MN的长度.(4)当点P从A出发时,另一个动点Q同时从B点出发,以1个单位每秒的速度沿射线向右运动,①点P表示的数为:_________(用含t的代数式表示),点Q表示的数为:__________(用含t的代数式表示).①存在这样的t值,使B、P、Q三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t值.______________.6.数轴上与1A,B,点B,点A的距离与点A,点C(点C在点B的左侧)之间的距离相等,设点C表示的数为x,求代数式|x﹣2|的值.7.如图,周长为2个单位长度的圆片上的一点A与数轴上的原点O重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;①当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?8.解答下列各题(1)有8筐白菜,以每筐25千克为标准重量,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣1.5,﹣2,﹣2.5.回答下列问题:①与标准重量比较,8筐白菜总计超过多少千克或不足多少千克?①若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?(2)有理数a、b、c在数轴上的位置如图所示.①用“>”或“<”填空:a+b_____0,c﹣b______0;①|a+b|=_______,|c|=______,|c﹣b|=_______;①化简:|a+b|-|c|+|c﹣b|.9.如图,在数轴上点A、C、B表示的数分别是-2、1、12.动点P从点A出发,沿数轴以每秒3个单位长度的速度向终点B匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向终点A匀速运动,设点Q的运动时间为t秒.(1)AB的长为_______;(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)若PC+QB=8,直接写出t点P表示的数.10.已知数轴上有两个点A:-3,B:1.(1)求线段AB的长;(2)若2m ,且m<0;在点B右侧且到点B距离为5的点表示的数为n.①求m与n;①计算2m+n+mn;11.在今年720特大洪水自然灾害中,一辆物资配送车从仓库O出发,向东走了4千米到达学校A,又继续走了1千米到达学校B.然后向西走了9千米到达学校C,最后回到仓库O.解决下列问题:(1)以仓库O为原点,以向东为正方向,用1个单位长度表示1千米,画出数轴.并在数轴上表示A、B、C的位置;(2)结合数轴计算:学校C在学校A的什么方向,距学校A多远?(3)若该配送车每千米耗油0.1升,在这次运送物资回仓的过程中共耗油多少升?12.如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动72cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B、点C分别以每秒4cm、9cm的速度匀速向右移动.设移动时间为t秒,试探索:BA CB-的值是否会随着t的变化而改变?若变化,请说明理由,若无变化,请直接写出BA CB-的值.13.1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8(1)写出点A和点B表示的数;(2)写出与点B距离为9.5厘米的直尺左端点C表示的数;(3)在数轴上有一点D,其到A的距离为2,到B的距离为4,求点D关于原点点对称的点表示的数.14.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为a b -根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x +=,则x =________.15.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______.(2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.16.在数学综合实践活动课上,小亮同学借助于两根小木棒m 、n 研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,已知()2510a b +++=,3c =,8d =.(1)求a 和b 的值:(2)小亮把木棒m 、n 同时沿x 轴正方向移动,m 、n 的速度分别为4个单位/s 和3个单位/s ,设平移时间为t (s ).①若在平移过程中原点O 恰好是木棒m 的中点,求t 的值;①在平移过程中,当木棒m 、n 重叠部分的长为3个单位长度时,求t 的值. 17.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足以下关系式:()2390a c ++-=,1b =.(1)a=______;c=______;(2)若将数轴折叠,使得A点与B点重合,则点C与数______表示的点重合;(3)若点P为数轴上一动点,其对应的数为x,当代数式x a x b x c-+-+-取得最小值时,此时x=______,最小值为______.18.已知有理数-16,-10,c在数轴上对应的点分别是A,B,C三点,BC-AB=4.(1)请在数轴上画出点A,B,并求B,C两点间的距离;(2)求AC中点表示的数19.综合与实践:A、B、C三点在数轴上的位置如图所示,点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为,点B表示的数为;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);①t为何值时,P,Q两点重合;①请直接写出t为何值时,P,Q两点相距5个单位长度.20.阅读下面的材料:a-我们知道,在数轴上,||a表示有理数a对应的点到原点的距离,同样的道理,|2|表示有理数a 对应的点到有理数2对应的点的距离,例如,|52|3-=,表示数轴上有理数5对应的点到有理数2对应的点的距离是3. 请根据上面的材料解答下列问题:(1)数轴上有理数9-对应的点到有理数3对应的点的距离是_______;(2)|5|-a 表示有理数a 对应的点与有理数_______对应的点的距离;如果|5|2-=a ,那么有理数a 的值是_______;(3)如果|1||6|7-+-=a a ,那么有理数a 的值是_______.(4)代数式|1||6|-+-a a 的最小值是_________,此时有理数a 可取的整数值有______个.21.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________; (4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.22.A ,B 两个动点在数轴上做匀速运动,运动方向不变,它们的运动时间以及对应位置所对应的数记录如表.(1)m =_______;n =______;(2)A ,B 两点在第________秒时相遇,此时A ,B 点对应的数是__________; (3)在运动到多少秒时,A ,B 两点相距10个单位长度?23.在数轴上表示a 、0、1、b 四个数的点如图所示,已知OA =OB ,求|a +b |+|a b|+|a +1|+a 的值.24.点A 、B 在数轴上分别表示有理数a 、b ,点A 与原点O 两点之间的距离表示为AO ,则0AO a a =-=,类似地,点B 与原点O 两点之间的距离表示为BO ,则BO b =,点A 与点B 两点之间的距离表示为AB a b .请结合数轴,思考并回答以下问题:(1)填空:①数轴上表示1和3-的两点之间的距离是______. ①数轴上表示m 和1-的两点之间的距离是______.①数轴上表示m 和1-的两点之间距离是3,则有理数m 是______. (2)求满足246x x -++=的所有整数x 的和______.(3)已知31510412y x z x z y -+-+-=-+----.求x y z ++的最大值为______.25.实数a ,b ,c ﹣|a ﹣c26.【阅读】在数轴上,若点A 表示数a ,点B 表示数b ,则点A 与点B 之间的距离为ABa b .例如:两点A ,B 表示的数分别为3,-1,那么()314AB =--=.(1)若32x -=,则x 的值为 .(2)当x = (x 是整数)时,式子123x x -++=成立. (3)在数轴上,点A 表示数a ,点P 表示数p .我们定义: 当1p a -=时,点P 叫点A 的1倍伴随点, 当2p a -=时,点P 叫点A 的2倍伴随点, ……当p a n -=时,点P 叫点A 的n 倍伴随点.试探究以下问题:若点M 是点A 的1倍伴随点,点N 是点B 的2倍伴随点,是否存在这样的点A 和点B ,使得点M 恰与点N 重合,若存在,求出线段AB 的长;若不存在,请说明理由.27.如图,在数轴上有三个点A ,B ,C ,完成下列问题:(1)A 点表示的数是______,C 点表示的数是______;(2)将点B 向右移动6个单位长度到点D ,D 点表示的数是______;(3)在数轴上找点E ,使点E 到B ,C 两点的距离相等,E 点表示的数是______; (4)将点E 移动3个单位长度到F ,点F 所表示的数是______.28.如图,在数轴上有三个点A ,B ,C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到A ,C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.29.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,且a 、c 满足()22100a c ++-=.若点A 与点B 之间的距离表示为ABa b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A 、C 之间,且满足2BC AB =.(1)=a ___________,b = ___________,c =___________.(2)动点M 从B 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,同时动点N 从A 点出发,沿数轴以每秒2个单位的速度向C 点运动,设运动时间为t 秒.问:当t 为何值时,M 、N 两点之间的距离为3个单位?30.如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8(1)点D 表示的有理数是______;表示原点的是点_______. (2)与点B 表示的有理数互为相反数的点是________.(3)图中的数轴上另有点M 到点A 、点G 距离之和为14,则这样的点M 表示的有理数是_______.31.已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且320a b ++-=,A 、B 之间的距离记为AB a b =-或b a -,请回答问题:(1)直接写出a ,b ,AB 的值,a =______,b =______,AB =______. (2)设点P 在数轴上对应的数为x ,若35x -=,则x =______.(3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-1,动点P 表示的数为x .①若点P 在点M 、N 之间,则14x x ++-=______; ①若1410x x ++-=,则x =______;①若点P 表示的数是-5,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M 、点N 的距离之和是8?32.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点. (1)点C 表示的数是 ;(2)若点A 以每秒2个单位的速度向左移动,同时C 、B 点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t 秒,①点C 表示的数是 (用含有t 的代数式表示); ①当t =2秒时,求CB -AC 的值;①试探索:CB -AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.33.如图,在数轴上点A表示的数为﹣6,点B表示的数为10,点M、N分别从原点O、点B同时出发,都向左运动,点M的速度是每秒1个单位长度,点N的速度是每秒3个单位长度,运动时间为t秒.(1)求点M、点N分别所对应的数(用含t的式子表示);(2)若点M、点N均位于点A右侧,且AN=2AM,求运动时间t;(3)若点P为线段AM的中点,点Q为线段BN的中点,点M、N在整个运动过程中,当PQ+AM=17时,求运动时间t.34.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:;(2)A、B两点间的距离是,A、C两点间的距离是;(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?35.已知数轴上A、B两点表示的数分别为a、b,请回答问题:(1)①若a=3,b=2,则A、B两点之间的距离是;①若a=﹣3,b=﹣2,则A、B两点之间的距离是;①若a=﹣3,b=2,则A、B两点之间的距离是;(2)若数轴上A、B两点之间的距离为d,则d与a、b满足的关系式是;(3)若|3﹣2|的几何意义是:数轴上表示数3的点与表示数2的点之间的距离,则|2+5|的几何意义:;(4)若|a|<b,化简:|a﹣b|+|a+b|=.36.如图,①5﹣2①表示5和2的差的绝对值,也可以理解为5与2两数在数轴上所对应的两点之间的距离;①5+2①可以看做①5﹣(﹣2)①,表示5和﹣2的差的绝对值,也可以理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)①5﹣(﹣2)①= ;(2)①4—1①= ;(3)利用数轴找出所有符合条件的整数x,使得①x+2①=2,则x= ;(4)利用数轴找出所有符合条件的整数x,使得①x+2①+①x-1①=3,则x= .37.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为,表示数y与﹣1两点之间的距离可以表示为.(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;(3)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(4)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是.38.阅读理解;我们知道」x丨的几何意义是在数轴上数x对应的点与原点的距离,即丨x丨=丨x-0丨,也就是说丨x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:丨x -y 丨表示在数轴上数x 、y 对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x | = 2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为 x =±2.①在方程丨x -1丨=2中,x 的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x = 3或x = -1.知识运用:根据上面的阅读材料,求下列方程的解 (1)方程|x |= 5的解 (2)方程| x -2|= 3的解39.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,b 满足|a +3|+(b ﹣9)2=0,c =1.(1)a = ,b = ;(2)点P 为数轴上一动点,其对应的数为x ,则当x 时,代数式|x ﹣a |﹣|x ﹣b |取得最大值,最大值为 ;(3)点P 从点A 处以1个单位/秒的速度向左运动;同时点Q 从点B 处以2个单位/秒的速度也向左运动,在点Q 到达点C 后,以原来的速度向相反的方向运动,设运动的时间为t (t ≤8)秒,求第几秒时,点P 、Q 之间的距离是点B 、Q 之问距离的2倍?40.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b .A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a =2,b =5时,AB =5-2=3;当a =2,b =-5时,AB =52--=7;当a =-2,b =-5时,AB =52---()=3,综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -). 请你根据上述材料,探究回答下列问题:(1)表示数a 和-2的两点间距离是6,则a = ;(2)如果数轴上表示数a 的点位于-4和3之间,则43a a ++-= (3)代数式123a a a -+-+-的最小值是 .(4)如图,若点A ,B ,C ,D 在数轴上表示的有理数分别为a ,b ,c ,d ,则式子||||||a x x b x c x d -+++-++的最小值为 (用含有a ,b ,c ,d 的式子表示结果)参考答案:1.(1)<,>,>,< (2)b2.(1)2c =a +b (答案不唯一) (2)4-<b 1c +;理由见解析 (3)3a b c --- 3.(1)4,2x + (2)7或5- (3)有最小值,6 4.(1)2,-1,12- (2)不变,525.(1)14 (2)314-t (3)7(4)①36t -;8t + ①285秒或7秒或14秒67.(1)-2(2)①1或-3;①28或328.(1)①总计不足5千克;①出售这8筐白菜可卖507元 (2)①>,<;①a b +,c -,b c -;①2+a b 9.(1)14 (2)当t 为145秒时,点P 与点Q 相遇; (3)当t 为1秒或235秒时,点P 与点Q 间的距离为9个单位长度; (4)存在某一时刻使得PC +QB =8,此时点P 表示的数为235. 10.(1)4(2)①m =-2,n =6;①-10 11.(1)见解析(2)学校C 在学校A 的西边,距学校A 8千米;(3)1.8 12.(1)见解析 (2)152(3)经过32或72秒后点A 到点C 的距离为3cm (4)BA CB -的值不会随着t 的变化而变化,12BA CB -= 13.(1)A 表示-3,B 表示3 (2)-6.5 (3)1 14.(1)5; (2)7x ; (3)-8;-3或-13; 15.(1)1或-5(2)x =-5,-4,-3,-2,-1,0,1,2,3,4. 16.(1)5a =-,1b =- (2)①3s 4t =;①t =7s 或10s 17.(1)3-,9 (2)11- (3)1,1218.(1)画图见解析,10 (2)AC 中点表示的数为-8或-18. 19.(1)10-;2(2)①104t -+;62t +;①8;①112或21220.(1)12; (2)5,3或7; (3)0或7; (4)5,6.21.(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(3)10,19m-≤≤(4)17,9m= 22.(1)-13,4-(2)32,72(3)14或11423.024.(1)①4;①|m+1|;①2或-4(2)-7(3)925.026.(1)5或1(2)-2、-1、0、1(3)存在这样的点A和点B,使得点M恰与点N重合,线段AB的长为3或1 27.(1)-2,3(2)1(3)-1(4)-4或228.(1)1-(2)0.5(3)3-或7-29.(1)-2,2,10;(2)1或730.(1)2,C;(2)D;(3)-5或9.31.(1)-3,2,5(2)8或-2(3)①5;①-3.5或6.5;①2.5秒或10.5秒(2)①−1+t;①0;①CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.33.(1)点M、点N分别所对应的数分别为t-,103t-;(2)4t=;(3)t=1或18 34.(1)6-,1,4;(2)7,10;(3)将点B向左移动2个单位35.(1)①1,①1,①5;(2)d=|a﹣b|;(3)数轴上表示数2的点与表示数﹣5的点之间的距离;(4)2b36.(1)7;(2)3;(3)0或—4;(4)—2,—1,0,137.(1)2,5,|x−5|,|y+1|;(2)1或−5;(3)6(4)1,938.(1)5x=±;(2)5x=或1-39.(1)﹣3,9;(2)≥9,12;(3)125秒或367秒.40.(1)4和-8;(2)7;(3)2;(4)c d b a+--。

【衔接课精选讲义】新初一第2讲 认识数轴、绝对值与相反数(苏科版【含答案】)

【衔接课精选讲义】新初一第2讲 认识数轴、绝对值与相反数(苏科版【含答案】)

课程类型:新授课—衔接课年级:新初一学科:数学课程主题第2讲:认识数轴、绝对值与相反数【要点梳理】1、数轴:规定了原点、正方向和单位长度的直线叫做数轴.注意:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.2、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…注意:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.3、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数例如无理数,比如 .注意:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】1、(2021七上·海安期末)比-4.3大的负整数有()A. 4个B. 5个C. 6个D. 无数个2、(2021七上·江阴期末)下列算式中,运算结果为负数的是()A. B. C. D.3、(2020七上·溧阳期中)已知两个有理数、,如果 0且a+b 0,那么()A. 0, 0B. 0, 0C. 、同号D. 、异号,且负数的绝对值较大4、在数轴上,位于﹣3和3之间的点有()A. 7个B. 5个C. 4个D. 无数个5、在﹣4,0,﹣1,3这四个数中,最小的数是()A. ﹣4B. 2C. -1D. 36、数轴是一条()A. 直线B. 射线C. 线段D. 不能确定7、下面画的数轴正确的是()A. B. C. D.【同步演练】1、下列一组数:1,4,0,-,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A. 2个B. 3个C. 4个D. 5个2、如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<03、如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.P站点与O站点之间B. O站点与Q站点之间C. Q站点与R站点之间D. R站点与S站点之间4、若有理数m在数轴上对应的点为M,且满足|m|>1且m<0,则下列数轴表示正确的是()A. B.C. D.要点2:认识相反数【要点梳理】1、定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.注意:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.3、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .注意:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1、(2021七下·苏州开学考)2021的相反数是()A. -2021B.C. 2021D.2、(2020七上·高新期中)下列各对数中,互为相反数的是()A. -(-3)与B. 与-0.25C. -(+3)与+(-3)D. +(-0.1)与-(- )3、如果a与﹣3互为相反数,那么a等于()A. B. - C. 3 D. -34、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。

1有理数认识、相反数、绝对值50题(题含答案)

1有理数认识、相反数、绝对值50题(题含答案)

有理数认识相反数绝对值57题1、海拔高度是+561米表示__________________,海拔高度是—189米表示_____________2、味精袋上标有“300±5克”字样,+5表示__________________,—5表示_____________还说明这袋味精的质量应该是____~____3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___地,最低处为____地,最高处与最低处相差_________4、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________5、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________6、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为___7、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________8、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。

则点P表示的数是______,P点与M点距离是________9、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______10、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________11、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______12、如果一个数的相反数小于它本身,则这个数为________数13、a+3与—1互为相反数,则a=________14、a—1的相反数是__________,n+1的相反数是_________,—a+b—c的相反数是________15、_____的相反数是它本身,_____的绝对值是它本身,____的倒数是它本身,______的绝对值是它的相反数。

苏科版数学七年级上册2.3绝对值与相反数教案(一)

苏科版数学七年级上册2.3绝对值与相反数教案(一)

正确理解绝对值的概念
一.创设情境,感受绝对值的几何意义
1.小明的家在学校西边3km处,小丽的家在学校东边2km处。

如果他们上学行走的速度相同,那么你认为谁所花时间少呢?为什么?
2.假设学校位于数轴的原点处,小明家在原点的左边,小丽家在原点的右边,你能根据上面的信息在数轴上标出小明的位置A和小丽家的位置B吗?
原点的距离是多少?数轴上点B与原点的距离是多少?——引入课题,绝对值
二.借助数轴,揭示绝对值的概念
1.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

例:表示-3的点A与原点的距离是3,所以-3的绝对值是3.
表示2的点B与原点的距离是2,所以2的绝对值是2. 表示0的点(原点)与原点的距离是0,所以0的绝对值是0.(教师借助数轴讲解)学生发表意见
学生动手画图
从学生熟
悉的生活
情景出发,
充分展示
绝对值的
几何意义
的实际生
活背景,自
然地引入
绝对值的
概念,能有
效地帮助
学生加深
对绝对值
概念的理
解和应用。

加深对绝
对值概念
的理解,渗
透数形结
合思想
小明家学校小丽。

人教版 七年级上册数学 有理数单元 正数和负数练习卷1(含答案)

人教版 七年级上册数学  有理数单元  正数和负数练习卷1(含答案)

正数和负数练习卷(含答案)姓名:_____________ 年级:____________ 学号:______________ 题型 xx 题 xx 题 xx 题 xx 题 xx 题 xx 题 总分 得分 一、选择题(共12题,共**分)1、 3. 实数、在数轴上的位置如图3所示,则与的大小关系是() (A ) (B )(C ) (D )无法确定2、 的相反数是( )A .5B .C .D .3、 下列计算结果为1的是( )A.(+1)+(-2)B.(-1)-(-2)C.(+1)×(-1)D.(-2)÷(+2)4、 在5,,.这四个数中,小于0的数是( )A .5 B. C. D. 阅卷人 评分5、下列说法中错误的是( )A、一个正数的前面加上负号就是负数B、不是正数的数一定是负数C、0既不是正数,也不是负数D、正负数可以用来表示具有相反意义的量6、若,则的值为( )A.5 B.-5 C.5或1 D.以上都不对7、若,则对于数的论断正确的是( )A.一定是负数 B.可能是正数C.一定不是正数 D.可以是任何数8、若为有理数,则表示的数是( )A.正数 B.非正数 C.负数 D.非负数9、若,则的值是()A.1 B.-1 C.9 D.-910、若,那么一定是( )A.正数 B.负数 C.―1 D.±111、下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 412、 水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2) 二、填空题(共6题,共**分) 1、 若7-3与+3互为相反数,则的值为________.2、 比较大小:-6 -8.(填“<”、“=”或“>”)3、 绝对值大于1而不大于3的整数有___________,它们的和是___________.4、 如果,那么m-2的值是____________.5、 若实数a 、b 满足,则=__________。

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

初中数学试卷1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同学,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“如果有理数a的绝对值是它本身,那么a一定是正数”;小花说:“如果a为有理数,那么﹣|a|一定是负数”;小倩说:“你们说得都不对”.你认为这四位同学中谁说错了?谁说对了?错的该怎样改正?2.若a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探究题(1)比较下列各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)根据(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G 表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是.(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都可以用数轴上唯一的一个点来表示.2.如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示这个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一般地,如果a表示一个数,则:(1)当a(2)当a=0(3)当a a和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必须具备三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,一定要考虑绝对值符号内的式子表示的数是正数还是负数.【方法技巧】1.求一个数的相反数,在这个数的前面加上负号即可.2.求一个数的绝对值时,先分清这个数是正数、0还是负数,再按照相应的情况“对号入座”,即去掉绝对值后是否添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情况进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除了正数还有0;小花说错了,因为﹣|﹣a|不一定是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,所以|a﹣1|=0,|b+2|=0,|c﹣4|=0,所以a=1,b=﹣2,c=4,所以a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,所以|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,所以|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,所以|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)根据(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,所以|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.所以x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,所以a+b=0.因为有理数c到原点的距离为1,所以c=1 或c=-1.因为有理数d为绝对值最小的数,所以d=0.所以当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.所以原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,所以AG=|8+4|=12,所以相邻两点之间的距离==2,所以点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,则|m+4|+|m﹣8|=13,所以m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)若将原点取在点D,因为每两点之间距离为2,所以点C表示的有理数是﹣2.因为点B与点F在原点D的两侧且到原点的距离相等,所以此时点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,则点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,所以x=2.5.。

人教版七年级数学上册第一章《有理数》课时练习题(含答案)

人教版七年级数学上册第一章《有理数》课时练习题(含答案)

人教版七年级数学上册第一章《有理数》课时练习题(含答案)一、单选题1 )A .BC D .32.实数a 的绝对值是54,a 的值是( ) A .54 B .54- C .45± D .54± 3.如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .34.在2,-4,-3,5中,任选两个数的积最小的是( )A .-12B .-15C .-20D .-65.实数2021的相反数是( )A .2021B .2021-C .12021D .12021- 6.2022的相反数是( )A .2022B .2022-C .12022D .12022- 二、填空题7.如图,点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为112,C 为OB 的中点,则点C 在数轴上对应的数为__________.8.数轴上一点A ,在原点左侧,离开原点6个单位长度,点A 表示的数是______.9.已知a 、b 为有理数,下列说法:①若a 、b 互为相反数,则“a b =﹣1;②若|a ﹣b |+a ﹣b =0,则b >a ;③若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ;④若|a |>|b |,则(a +b )•(a ﹣b )是正数,其中正确的序号是 _____. 10.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.三、解答题11.把下列各数:()4-+,3-,0,213-,1.5 (1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.12.(1)写出下列各数的绝对值,并分别把它们和它们的绝对值在数轴上表示出来.11,2,,(3),| 3.5|2-----.(2)已知a ,b 互为相反数,c ,d 互为倒数,m 绝对值等于2的数,求22a b m cd a b c++-++的值.13.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来。

七年级数学基础巩固与拓展提优:第二章 第5课时 绝对值与相反数(1)

七年级数学基础巩固与拓展提优:第二章 第5课时 绝对值与相反数(1)

第5课时绝对值与相反数(1)(附答案)【基础巩固】1.在数轴上离原点距离是3的数是________.2.绝对值等于本身的数是________,绝对值小于2的整数是________.3.数轴上与表示1的点的距离是2的点所表示的数有________.4.+6的符号是________,绝对值是________,56-的符号是_______,绝对值是_______.5.计算:2 3.6 1.6-+--=_______.6.绝对值等于10的数是________.7.下列说法中,错误的是 ( )A.+5的绝对值等于5 B.绝对值等于5的数是5 C.-5的绝对值是5 D.+5、-5的绝对值相等8.绝对值最小的有理数是 ( )A.1 B.0 C.-1 D.不存在9.绝对值等于本身的数有 ( )A.1个 B.2个C.4个 D.无数个10.绝对值小于3的负数有 ( )A.2个 B.3个 C.4个 D.无数个11.化简3--等于 ( )A.-3 B.-13C.13D.312.求下列数的绝对值,并用“<”号把这些绝对值连接起来.-1.5,-3.5,2,1.5,-2. 75.13.正式足球比赛时所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果:-25、+10、-20、+30、+15、-40.请指出哪个足球的质量好一些,并用绝对值的知识进行说明.【拓展提优】14.在数轴上表示-2的点离开原点的距离等于 ( )A.2 B.-2 C.±2 D.415.下列各式中,正确的是 ( )A.若a=b,则a=b B.若a>b,则a>bC.若a<b,则a<b D.若a=b,则a=±b16.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是 ( )A.a+b>0 B.ab>0 C.a-b>0 D.->017.实数a、b在数轴上的位置如图所示,则a、b的大小关系是_______.18.大家知道550=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是________.19.已知a=5,b=8,且a<b,则a+b=_______.20.计算:1111111122334910-+-+-++-.21.阅读下面的例题:解方程:15x-=.解:由绝对值的定义,得 x-1=5或x-1=-5.所以x=6或x=-4.仿照上面的思路,解下列方程:(1)3x=6;(2)17x+=22.若x<0,y>0,求x y xyx y xy++的值.23.(1)比较下列各式的大小(用“>”“=”或“<”连接).23_______23-+-+;35_______35+--;1111_______2323-+---;05_______05+--;……(2)通过(1)的比较,请你分析,归纳出当a、b为有理数时,a+b与a b+的大小关系.(3)根据(2)中你得出的结论,当x+2012=2012x-时,求x的取值范围.24.数形相伴.(1)如图,点A 、B 所代表的数分别为-1,2,在数轴上画出与A 、B 两点的距离和为5的点(并标上字母).(2)若数轴上点A 、B 所代表的数分别为a 、b ,则A 、B 两点之间的距离可表示为AB =a b -,那么,12x x ++-=7时,当=7时,x =_______;当12x x ++->5时,数x 所对应的点在数轴上的位置是在_______.参考答案【基础巩固】1.±3 2.非负数±1,0 3.3,-1 4.正号 6 负号565.4 6.±107.B 8.B 9.D 10.D 11.A 12. 1.52 2.75 3.5±<<--13.+10的绝对值最小,质量好些【拓展提优】14.A 15.D 16.C 17.a b> 18.表示a的点与表示-5的点之间的距离 19.13或3 20.91021.(1)x=±2 (2)x=6或x=-8 22.-1 23.(1)> > ==(2)a b a b+≥+ (3)x≤024.(1)如图,C、D两点即为所求. (2)-3或4点C的左边或点D的右边。

最新人教版七年级数学上册全套同步练习题(课课练)及答案

最新人教版七年级数学上册全套同步练习题(课课练)及答案

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

苏科版-数学-七年级上册-2.4 绝对值与相反数 第1课时 教案

苏科版-数学-七年级上册-2.4 绝对值与相反数 第1课时 教案

绝对值与相反数 第1课时教学目标1.理解有理数的绝对值的意义,会求已知数的绝对值;2. 理解有理数的相反数的概念,会求已知数的相反数;3.渗透数形结合等思想方法,培养学生的概括能力.教学重难点【教学重点】绝对值和相反数概念的理解应用、观察分析问题和语言表达能力的培养. 【教学难点】应用绝对值的知识解决问题能力的形成.课前准备课件.教学过程情境创设导入小明的家在学校西边3km 处,小丽的家在学校东边2km 处,我们可以用数轴来表示小明、小丽两家和学校的位置分别在A.B 两处. 学生思考:1.A.B 两点离原点的距离各是多少?2.A.B 两点离原点的距离与它们表示的数是正数还是负数有没有关系?3.在数轴上分别描出下列数所对应的点,并指出它们到-2 -1 21 0A-3 B自学指导:阅读书本第23页.完成下面的尝试练习尝试练习:如图,你能说出数轴上A.B.C.D.E各点所表示的数的绝对值问题串:(1)点A表示的数是多少?(2)它到原点的距离是多少?(3)点A表示的数的绝对值是多少?以此类推…特别注意:0的绝对值│0│=?总结:从上面的问题中你能找到求一个数的绝对值的方法吗?(1)先画出数轴,在数轴上找出需要的点;(2)观察这个点与原点的距离,这个距离就是我们要求的绝对值.例1、求4、-3.5的绝对值.解:在数轴上分别画出表示4、-3.5的点A.点BA 点与原点的距离是4, 所以4的绝对值是4, | 4|= 4B 与原点的距离是 3.5, -3.5的绝对值是 3.5, | -3.5|=3.5活动一:请一位同学随便报一个数,并说出它的绝对值,然后点名叫另一位同学说出它的意义.例2、比较-3与-6的绝对值的大小解:在数轴上分别画出表示-3、-6的点A.点B因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值. 例3 求3,-4.5,0的相反数.表示一个数的相反数,在这个数前面添一个“-”号,就可以表示这个数的相反数了,比如-5的相反数可以表示为-(-5).(投影教材第23页的“议一议”)大家独立思考第161243-3 65-1-2 -4 -5 -6 3AB。

精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第05课 有理数的乘除运算

精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第05课 有理数的乘除运算

1 2
1 2
1 3
1 3
1 4
1 4
1 (5) 6 4 1 5
3 1 9 (6) 4 2 4
1 4 (7) 27 2 (24) 4 9
2 4 1 (8) 5 (1 ) (2 ) 7 7 5 4
例 6.定义一种新运算:观察下列式: 1⊙3=1×4+3=7 3⊙1=3×4+1=13 5⊙4=5×4+4=24 4⊙3=____________ 请你想一想 a⊙b=______; 若 a≠b,那么 a⊙b______b⊙a(填入 “=”或 “≠ ”) 计算: [(a-b)⊙(a+b)]⊙b
例 7.已知:a、b、c 是非零有理数,且 a+b+c=0,求
C.a,b 异号
3.一个有理数与其相反数的积( A.符号必定为正 4.下列结论错误的是(
B.符号必定为负 )
C.一定不大于零
D.一定不小于零
A.若 a, b 异号,则 a b 0 , C.
a 0 b
B.若 a, b 同号,则 a b 0 ,
a 0 b
a a a a a D. b b b b b 5.实数 a,b 在数轴上的位置如图所示,则下列结论正确的是(
8.(1)如果两个有理数的积是正的,那么这两个因数的符号一定______. (2)如果两个有理数的积是负的,那么这两个因数的符号一定_______. 9.(1)奇数个负数相乘,结果的符号是_______ 10.-0.125 的相反数的倒数是_______ 11.若 xy 0,z 0 ,那么 xyz ______0. 12.若 a 5, b 2, ab >0,则 a b __ 13.填空: 若a 0,b 0,则ab 0; 若 a 0 , b 0 , 则 ab 0; ; (2) 若 a=0,b≠0,则 ab_______0 ; (3) 0; (2)偶数个负数相乘,结果的符号是_______.

数学人教版(2024)七年级上册 第一章 有理数 第5课时 相反数

数学人教版(2024)七年级上册 第一章 有理数 第5课时 相反数

相反数等于它本身的数是0;-a是a的相反数,-a不一定是 负数,可以是正数、负数和0.
领跑作业本 ·数学(七年级上册RJ)
第5课时 相反数
返回目录
5.如图,数轴上A,B两点表示的数互为相反数,且点A与点B 之间的距离为4个单位长度,则点A表示的数是_-__2_____.
第5题图
领跑作业本 ·数学(七年级上册RJ)
第5课时 相反数
返回目录
6.【数形结合】写出下列各数的相反数,并将这些数连同它们的相反 数在如图所示的数轴上表示出来:-4.5,6,-130 ,0,-(+2),--12 .
第6题图 第6题答图 解:这些数的相反数分别为 4.5,-6,130 ,0,2,-12 . 这些数及它们的相反数在数轴上的表示如答图所示.
1 =_____2_____.
领跑作业本 ·数学(七年级上册RJ)
C.+(-9)=9
D.+(+5)=-5
返回目录
领跑作业本 ·数学(七年级上册RJ)
综合提升
返回目录
第5课时 相反数
返回目录
4.(1)如果a=-a,那么a表示的数是____0____. (2)若a为正数,则-a为__负__数___;若a为负数,则-a为__正__数____;
若a=0,则-a=____0____.(填“正数”“负数”或“0”)
返回目录
2.如图,数轴上点A表示的数为a,则a的相反数为( B )
A.-2 B.2 C.-12 D.12
第2题图
领跑作业本 ·数学(七年级上册RJ)
第5课时 相反数
返回目录
3.化简: (1)+(-6)=___-__6_____;(2)-(+15)=___-__1_5____;
(3)--73

2019-2020学年度七年级数学用卷-5绝对值(1)

2019-2020学年度七年级数学用卷-5绝对值(1)

2019-2020学年度七年级数学用卷1.2.4 绝对值(1)一、知识点:1. 绝对值:__________上表示数a 的点与_________的距离叫做数a 的绝对值.记作_______2. 规定:一个正数的绝对值是___________ 绝对值的求法一个负数的绝对值是____________0的绝对值是_______ ()()(),00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩二、典例分析:例1:求下列各数的绝对值:⑴ +205 (2)21; (3) -3.2 (4) 0 (5)-3练习:1、求下列各式的值:+∣24∣= . ∣—3.1∣= ,-∣—13∣= ,∣0∣= . 2、求下列各数的绝对值:(1)-8 (2)+6 (3)0 (4)-3.7例2:填空:(1)绝对值小于4的正整数有 .(2)如果一个数的绝对值是13,那么这个数是 .变式:(1)绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个(2)数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.三、强化练习:1.-2的绝对值等于( ). A .21- B .2 C .2- D .21 2.有理数的绝对值一定是 ( )A .正数B .整数C .正数或零D .自然数 3. 1.5-= ,10-= , 2+= , 2.5-+= .4.⑴一个数的绝对值和相反数都是它本身,这个数是 ;⑵绝对值小于3.2的整数有 ; ⑶123-的相反数是 ,绝对值是 ; 5. 若8=x ,则=x ______; 若8-=x ,则=x ______;6.计算下列各题: ⑴216-+-; ⑵20082008--.7.判断题:01<-。

( ) 负数没有绝对值。

( ) 55-=--。

( )任何数的绝对值都不是负数。

( )互为相反数的两个数的绝对值相等。

( )8.下列语句中正确的是( )A . 因为()2-+是正数,所以()()22-=-+B .任何一个有理数的绝对值都不小于0C .负数没有绝对值D .绝对值等于一个定值的有理数一定有两个,它们的符号相反9.下列各式中正确的是( )A .22->B .()33-=--C .44=-D .()55--=--10.若a a -=,则a 一定是( )A .负数B .正数C .负数或零D .零11.绝对值不大于3.1的整数有( )A .11个B .12个C .22个D .23个12.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时,它们的绝对值才相等C .若b a =,则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数。

第5课时 绝对值(1)(重点练)(解析版)

第5课时 绝对值(1)(重点练)(解析版)

一、选择题1.-7的绝对值是( )A .-7B .7C .-17 D .17【答案】B【解析】负数的绝对值是它的相反数,所以-7的绝对值是7,故选B .2.下列说法正确的是( )A .一个有理数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数【答案】C .【解析】正数和零的绝对值都是它本身,所以A 错误,B 错误,0的绝对值是它本身,也是它的相反数,故D 错误,故选C .3.下列结论正确的是( )A .若|x|=|y|,则x=-yB .若x=-y ,则|x|=|y|C .若|a|<|b|,则a <bD .若a <b ,则|a|<|b| 【答案】B .【解析】若|x|=|y|,则x=-y 或x=y ,所以A 错误,若|a|<|b|,a 是较小的正数,b 是一个绝对值大于a 的负数,所以C 错误,b 是较小的正数,a 是一个绝对值大于b 的负数,所以D 错误,故选B .4.如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2B .C .0D .4 【答案】B第5课时 绝对值(1)(重点练) 第一章 有理数二、填空题5.绝对值等于5的数是_____,它们互为_____.【答案】±5,相反数6.如果|a|>a,那么a是_____.【答案】负数【解析】一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,|a|>a,则a是负数7.已知数a对应的点在数轴上的位置如图所示,则|a-2|=.【答案】a-2【解析】由图知a>2,所以a-2>0,即a-2是正数,所以|a-2|=a-2,故答案为a-2.三、解答题8. 求下列各数的绝对值-1.6 , 85, 0, -10, +10【解析】|-1.6|=1.6 | 85|=85| 0 |=0 |-10 |=10 |+10 |=109.一辆出租车从A站出发,先向东行驶12 km,接着向西行驶8 km,然后又向东行驶4 km.(1) 画一条数轴,以A站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B;(2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km耗油0.05升,出租车由起点A到终点B共耗油多少升?【解析】(1)如图所示.(2)|12|+|-8|+|4|=24(km).它的实际意义是出租车行驶的总路程是24 km.(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.。

七上 有理数 全章练习 含答案 分小节

七上 有理数 全章练习 含答案 分小节

七年级数学上第二章有理数2.1 负数1.下列说法中,正确的是( ) A.小学中所学过的数都是正数B.小学中所学过的数都是整数C.小学中所学过的数都是正整数D.小学中所学过的数包括正数和0 2.下列结论中,正确的是( ) A一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.一个有理数可能是整数、分数或者0 D.以上说法都不正确3.下列结论中,正确的是( ) A.自然数都是整数B.整数都是自然数C.0是最小的整数D.负数不可能是整数4.在下列句子中,对0的描述正确的是( ) A.0是正数B.0是整数C.0是负数D.0不是自然数5.在+1.2,-3.5,0,5 3,+3.14,-1.56,-2010,+9这些数中,负数的个数有( )A.1 B.2 C.3 D.46.汽车向东行驶5 km记作5 km,那么汽车向西行驶5 km记作( ) A.5 km B.-5km C.10 km D.0 km7.下列各数中,最小的数是( ) A.-1 B.-2 C.0 D.18日期1月1日1月2日1月3日1月4日最高气温5℃4℃0℃4℃最低气温0℃-2℃-4℃-3℃其中温差最大的一天是( ) A.1月1日B.1月2日C.1月3日D.1月4日9.如果+20%表示增加20%,那么-6%表示( ) A.增加14%B.增加6%C.减少6%D.减少26%10.在-1、0、1、2这四个数中,既不是正数也不是负数的是( ) A.-1 B.0 C.1 D.211.如果亏本5元记作-5元,那么盈利10元就可以记作_______元.12.如果水位升高0.65 m记作+0.65 m,那么水位下降0.3 m就可以记作________m.13.气温12℃表示的意义是________.14.如果+4 m表示前进4 m,那么-2 m表示_______.15.如果扑克牌中的黑桃表示正数,梅花表示负数,那么如图所示的两张扑克牌分别表示_______和_______.16多云转晴温度:4℃~15℃风力:北风4~5级当天的最高温度是________.17.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是________.18.据有关资料介绍,高度每升高1 km,气温大约下降6℃,如果山脚下的气温为12℃,山顶的气温为0℃,那么山的高度大约为_______km.19.观察下列一组数:12,34,56,78,…,它们是按一定规律排列的.那么这一组数的第19个数是________.20.在“环境保护知识竞赛”中,规定:如果抢答正确一道题目,加10分,表示为+10分;如果抢答错误一道题目,扣10分,表示为-10分.那么小明在抢答了2道题后,得分为20分,其含义是什么?21.下列各数中,哪些是正数?哪些是负数?3.2,12-,23,516-,+2.009,-108,4925+,81.22.在一次英语单词默写中,七年级(8)班平均每个同学默写正确28个.现规定:高于平均成绩的部分记作正数.(1)小明默写正确32个单词,他的成绩可以记作多少?(2)小亮的成绩被记作-5,那么他默写正确的单词有多少个?23.某种食品包装袋上标有“净含量385±5 g”的字样,请你说明其意义.24.几个同学约好星期天下午2点在学校集中,早到的记为正,迟到的记为负.结果小明最早到达,记为+0.2点,小亮因为途中自行车坏了,最后到达,记为-0.3点.请你写出小明和小亮具体到达的时间分别是几点,小明比小一亮早到了多长时间.25.把下列各数填写在相应的集合中.3,0,-6,14,+4,-3.5,79-,-2008,213.26.某学校对七年级新生进行素质测试,其中每分钟跳绳要达到125个.超过125个的个数+5 -2 +3 0 -2 +9 +8 +1 +12 -127.一套保暖内衣的原价为250元,根据销售的实际情况,商店一般可以将价格浮动±20%进行销售.(1)请你说明±20%的含义;(2)按照价格浮动的规律,到了季节交替的时候,商店为了资金的及时回笼,最低以怎样的实际价格出售剩余的保暖内衣?参考答案1.D 2.B 3.A 4.B 5.D 6.B 7.B 8.D 9.C 10.B11.+10 12.-0.3 13.比0℃低12℃(或零下12℃) 14.后退2 m15.+6 -5 16.15℃北风5级17.2:00 18.2 19.37 3820.小明抢答了2道题且都答错了,被扣了20分.21.正数有:3.2,23,+2.009,4925+,81;负数有:12-,516-,一108.22.(1)+4 (2)23个23.这种食品的标准质量为385 g,最大质量不超过390 g,最小质量不低于380 g.24.因为0.2 h就是12 min,0.3 h就是18min,所以小明和小亮具体到达的时间分别是下午1点48分和2点18分;小明比小亮早到了0.5 h,即30 min.25.26.10个学生中有7个同学达标,达标率为70%,虽然有3个学生没有达标,但他们离达标成绩都相差不大,稍加训练就可以达标了.27.(1)保暖内衣最高以250×(1+20%)=300(元)销售,最低以250×(1-20%)=200(元)销售;(2)根据题意,应该降低价格出售,所以最低的销售价格是200元.七年级数学上第二章有理数2.2 数轴1.下列所画的直线中,能正确反映数轴三要素的是( )2.如图,在数轴上表示到原点的距离为3个单位的点有()A.点D B.点A C.点A和点D D.点B和点C3.下列结论中,不正确的是( ) A.-4<0 B.14.7542->-C.-5>-8 D.1153<4.下列结论中,不正确的是( ) A.-4>-3>-2 B.-1<0<2.3C.123 3.13->->-D.3>-3.5>-55.下列说法中,正确的是( ) A.原点在数轴的正中位置B.数轴上没有表示32的点C.数轴上与原点相距7个单位的点有2个D.数轴上能表示出的有理数是有限的6.在数轴上,通过观察可以发现,表示与原点相距3个长度单位以内(包括3个长度单位)的整数点共有( ) A.4个B.5个C.6个D.7个7.在数轴上,原点及原点右边的点表示的是( ) A.有理数B.不是负数(非负数) C.正数D.整数8.在数轴上,一个点从原点开始,先向左移动5个单位,再向右移动7个单位,这个终点表示的数是( )A.12 B.-12 C.2 D.-29.如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<110.在数轴上,表示数a的点A在表示数b的点B的右边,那么数a与数b的差( ) A.小于0 B.大于0 C.等于0 D.都有可能11.A为数轴上表示-1的点,将点A沿数轴向左移动两个单位长度到点B,则点B所表示的数为( )A.-3 B.3 C.1 D.1或-312.将一刻度尺如图所示放在数轴上(数轴的单位长度是l cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )0 1(第9题图)A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<1313.数轴是规定了原点、_______和________的一条直线.14.在数轴上画出表示有理数的点,一般可以这样进行:(1)根据这个数的符号确定它在原点的左边或者________;(2)在相应的方向上确定它与原点相距______单位长度.特别地,表示0的点就是原点.15.在数轴上表示的数,______的数总比_______的数大.16.在数轴上,表示数-10的点与原点相距_______单位长度.17.在数轴上,与表示3的点相距5个单位的有理数是_______.18.正数都大于0,负数都_______0,正数都________负数.19.(1)写出比3小的自然数:_______________________;(2)写出比-4大的负整数:_____________________.20.借助于数轴思考、回答.、(1)在数轴上,到原点的距离为3个单位的点表示的数是________;(2)在数轴上,与表示数-2的点相距4个单位的点表示的数是_________.21.用“>”或“<”填空.(1)-1.2________0;(2)-3.1___________-3;(3)3_________-4;(4)35________ -1.22.点P是数轴上的一个动点,若点P现在的位置在数2处,则点P在数轴上移动3个单位后,它所在位置表示的数是_________.23.在数轴上,到点A的距离是5的点有2个,它们表示的数是2和-8,那么点A表示的数是________.24.在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.3,-1,0,32,122,-4.25.观察数轴,仔细思考,回答下列问题.(1)有没有最小的正整数?如果有,是什么?如果没有,说明理由;(2)有没有最大的负整数?如果有,是什么?如果没有,说明理由;(3)不超过2的自然数有哪些?上海大连深圳青岛乌鲁木齐石家庄5℃-9℃16℃-2℃-12℃-6℃(1)把各城市的平均气温按照从小到大的顺序用“<”号连接起来;(2)借助于数轴思想,青岛的平均气温比大连高多少?27.如图,写出数轴上的点A、B、C、D、E分别表示什么数,并用“>”号将它们连接起来:28.七(1)班在一次主题班会课上,把全班学生分成了4个小组参加“社会知识”抢答活动,规定:答对1题得10分;错一题扣10分(即得-10分);不答得0分.活动结束后,4个小组的得分情况如下:第一组:120分;第二组:-30分;第三组:0分;第四组50分.(1)将4个小组的得分按照从高分到低分的顺序进行排序;(2)借助于数轴思想,第四组比第二组多得多少分?29.如图,一只蚂蚁从原点出发,先向右爬行了2个单位长度到达点A,再向右爬行了4个单位长度到达点B,然后向左爬行了10个单位长度到达点C.(1)写出点A、B、C表示的数;(2)根据点C在数轴上的位置,回答:蚂蚁实际上是从原点出发,向什么方向爬行了多少个单位长度?30.如图,在数轴上有一条可以移动的线段AB.若将线段AB向右移动,使得点A移动到点B处,这时点B对应的数是18;若将线段AB向左移动,使得点B移动到点A处,这时点A对应的数是6.如果数轴的单位长度是1cm,求:(1)线段AB的长度为多少厘米?(2)起初点A、B对应的数分别是多少?参考答案1.D 2.C 3.B 4.A 5.C 6.D 7.B 8.C 9.A 10.B 11.A 12.C 13.正方向单位长度14.(1)右边(2)几个(多少) 15.右边左边16.10个17.-2和8 18.小于大于19.(1)2,1,0 (2)-3,-2,-1 20.(1)±3 (2)-6和2 21.(1)<(2)<(3)>(4)>22.5或-1 23.-324.如图所示:13-<-<-<<<.421032225.(1)有最小的正整数,是1;(2)有最大的负整数,是-1;(3)不超过2的自然数有0,1,2.26.(1)-12<-9<-6<-2<5<16;(2)青岛的平均气温比大连高7℃.27.A:1.5 B:-3 C:0 D:4 E:-1.5 4>1.5>0>-1.5>-3.28.(1)120分、50分、0分、-30分;(2)从数轴上可以看出,30与原点相距30个长度单位,50与原点相距50个长度单位,所以这两个点之间相距80个长度单位,即第四组比第二组多得80分.29.(1)A:2 B:6 C:-4;(2)向左爬行了4个单位长度.30.(1)(18-6)÷3=4(cm) (2)A:10 B:14七年级数学上第二章 有理数2.3绝对值与相反数第1课时 绝对值与相反数(1)1.若3a =,则a 的值是 ( )A .-3B .3C .13D .±3 2.如果一个有理数的绝对值是4,那么在数轴上表示这个数的点位于原点的 ( )A .左边B .右边C .左边或者右边D .以上都不正确3.如图,点A 所表示的有理数的绝对值是 ( )A .-1B .1C .±1D .以上都不对4.下列说法中,错误的是 ( )A .任何数的绝对值都是正数B .一个正数的绝对值还是正数C .一个负数的绝对值是正数D .任何数的绝对值都不是负数5.下列说法中,不正确的是 ( )A .正数的相反数一定是负数B .有理数都有相反数C .3.5与72-互为相反数 D .符号不同的两个数互为相反数 6.如图,互为相反数的点是 ( )A .点A 与点CB .点B 与点DC .点B 与点CD .点A 与点D7.若一个数的相反数是非负数,则这个数一定是 ( )A .负数B .正数C .非负数D .非正数8.下列判断中,正确的有 ( )(1)22+=;(2)22-=;(3)55--=;(4)0a >.(a 表示任何一个有理数)A .4个B .3个C .2个D .1个9.-5的绝对值是 ( ) A .5 B .-5 C .15 D .15- 10.如果a 与1互为相反数,则2a +等于 ( )A .2B .-2C .1D .-111.在数轴上,表示一个数的点与原点的距离叫做这个数的_______.12.符号不同、绝对值相同的两个数互为________.13.-2的绝对值是_________,-2的相反数是________.14.0的相反数是__________,-4的相反数________.15.在数轴上,表示互为相反数的两数的点分别位于原点的_______,并且它们与原点的_______相等.16.在数轴上,如果点A 和点B 表示的数互为相反数,并且它们相距5个单位长度,那么这两个数是________.17. 2.45-=___________;3--=________.18.如图,数轴上点A 表示的数的绝对值是________,它的相反数是_______.19.认真思考,把下列各数前面的括号去掉.(1)-(+2.3)=________;(2)-(-3.9)=_______;(3)+(+5)=________; (4)-[-(-2)]=__________.20.请你借助于数轴进行思考、填空.(1)绝对值小于3的整数有________个,分别是________;(2)在数轴上,如果表示两个互为相反数的点之间的距离为6,那么这两个数分别是____.21.分别写出下列各数的绝对值.315-,-(+6.3),+(-32),12,132.22.在数轴上表示下列各数以及它们的相反数.-2,-1.5,0,2.5,-(-3).23.某汽车配件厂生产的一种圆形橡胶垫,从中抽取5件产品进行检验.规定:其直径比标准要求大的部分记作正数;比标准要求小的部分记作负数.检查的结果记录如下(单位:毫米): 产品序号1 2 3 4 5 检验结果 +0.1 -0.1 -0.2 0.3 0请你运用所学的绝对值的知识说明在这些产品中,哪些质量更好一些.24.(1)在数轴上,点A 表示的数是-2,点B 表示的数是3,求点A 与点B 之间的距离;(2)在数轴上,点A 表示的有理数的相反数是2.6,点B 表示的有理数的相反数是-2.4,求点A 与点B 之间的距离.25.化简:-(+3.2),-(-3.2), 3.2-,()3.2--.26.当b ≠0时,比较1+b 与1的大小.27.在数轴上,如果表示有理数a 的点A 在原点的左边,且距离原点4个长度单位.(1)这个有理数的绝对值是多少?(2)这个有理数是什么?(3)这个有理数的相反数是什么?28.计算.(1)354-++--; (2)()()62--÷+-.29.认真思考,求下列式子的值.111111200820092009201020102011-+-+-.30.如果用字母a 表示一个有理数,那么-a 表示怎样的有理数?请你简单地说明理由.31.如果两个有理数的绝对值分别是3和1,那么在数轴上,表示这两个有理数的点相距多少个单位长度?32.把一个正方形的纸盒沿着它的棱剪开,可以得到如图所示的平面展开图.已知这个正方形相对面上的两个数都互为相反数.请你把下列各数填入每个小正方形中:5,-7,1,-5,-1,7.参考答案1.D 2.C 3.B 4.A 5.D 6.A 7.D 8.C 9.A 10.C11.绝对值 12.相反数 13.2 2 14.0 4 15.两旁 距离 16.± 2.5 17.2.45 -3 18.2 -2 19.(1) -2.3 (2)3.9 (3)5 (4) -220.(1)5 -2,-1,0,1,2 (2) -3和321.331155-=,()6.3 6.3 6.3-+=-=,()323232+-=-=,1212=,113322=. 22.如图所示:23.根据常识可以知道:与标准直径的差距越小,其质量越高.分别计算检查结果的绝对值,可以说明序号为1,2,5的三个零件的质量更好一些.24.(1)A 、B 之间的距离为23235-++=+=.(2)根据题意,点A 表示的数是-2.6,点B 表示的数是2.4,所以A 、B 之间的距离为2.4-(-2.6)=5.25.-(+3.2)= -3.2,-(-3.2)=3.2, 3.2 3.2-=,()3.2 3.2--=.26.∵b ≠0时, ∴b >0或b <0.当b >0时,1+b >1,当b <时,1+b <1.27.根据题意,这个有理数是一个负数并且绝对值为4. (1)4 (2) -4 (3)428.(1)3543544-++--=+-=; (2)()()62623--÷+-=÷=.29.原式=11111132008200920092010201020114038088-+-+-= 30.-a 表示a 的相反数.如果a 是正数,那么-a 是负数;如果a 是0,那么-a 也是0;如果a 是负数,那么-a 是正数.31.设有理数a 的绝对值等于3,则a=3或a=-3;设有理数b 的绝对值等于1,则b=1 或b=-1. (1)当a=3,b=1时,两点相距2个长度单位;(2)当a=3,b=-1时,两点相距4个单位长度;(3)当a=-3,b=1时,两点相距4个单位长度;(4)当a=-3,b=-1时,两点相距2个长度单位.综上所述,表示这两个有理数的点相距2个或4个单位长度.32.略七年级数学上第二章有理数2.3绝对值与相反数第2课时绝对值与相反数(2)1.12-的绝对值是( ) A.-2 B.2 C.12-D.122.-(-2)的相反数是( )A.2 B.12-C.-2 D.123.下列说法中,正确的是( ) A.+(-1)的相反数是-1 B.自然数的相反数一定是整数C.-(+10)的相反数是-10 D.45-的相反数是544.下列各组有理数的大小比较中,不正确的是( )A.-(-8)>-8 B.9 4.52⎛⎫>--⎪⎝⎭C.7109⎛⎫+-<⎪⎝⎭D.-(-1.414)>05.在+(-2.3),-(-2.3),-[-(+2.3)],+[-(-2.3)],-[+(-2.3)]这些数中,正数有( )A.1个B.2个C.3个D.4个6.下列说法中,正确的是( ) A.有理数中没有最大的数和最小的数B.正数中没有最大的数,但有最小的数C.整数中有最大的数和最小的数D.负数中有最大的数,但没有最小的数7.如果a+b=0,那么a,b两个实数一定是( ) A.都等于0 B.一正一负C.互为相反数D.互为倒数8.有理数17,18-,19-的大小关系是( )A.111789<-<-B.111789>->-C.111897->->D.111798>->-9.实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是( )A.-a<a<-1 B.-1<-a<a C.a<-1<-a D.a<-a<-110.绝对值小于3.5的整数有( ) A.5个B.6个C.7个D.8个11.已知在数在线,O为原点,A、B两点的坐标分别为a、b.利用下列A、B、O三点在数线上的位置关系,判断哪一个选项中的a b<? ( )12.下列四个数中,其相反数是正整数的是 ( )A .3B .13C .-2D .12- 13.-5的相反数是________.14.一个正数的绝对值是它_____;0的绝对值是_______;一个负数的绝对值是它的_____.15.不论有理数a 取何值,它的绝对值总是_______,即非负数.16.符号是“-”,绝对值为3.45的数是_____;符号是“+”,绝对值为2 008的数是_____.17.一个数的相反数比这个数本身大,这个数是______;一个数的相反数比这个数本身小,这个数是_______.18.如果式子a a =-总成立,那么有理数a 是_________.19.绝对值最小的有理数是_______;绝对值最小的负整数是________.20.填空:(1)56________67;(2)12-________23-.(用“>”“<”或“=”连接) 21.大于-3且小于4的整数有________.22.比较大小:-2_________-3.(填“>”、“=”或“<”)23.计算:32--=________.24.计算:(1)74--+; (2)72009-+-.25.化简下列各数.213⎛⎫+- ⎪⎝⎭,-(+3.69),-(-520),-[-(+4.98)],+[-(+58.6)].26.比较下列各组数的大小.(1)23-与34-; (2)()2.1-与-(-2.1); (3)-3.2与138-.27.将有理数32⎛⎫-- ⎪⎝⎭,-2,2.5,0,-3按照从小到大的顺序排列,并用“<”连接起来.28.比较下列各数的大小,用“<”连接起来.1017-,1219-,1523-,3031-,6091-29.有理数a ,b ,c 在数轴上的位置如图所示,请用“>”把下列有理数连接起来. a ,-a ,b ,-b ,c ,-c .30.如果120a b -+-=,求a+b 的值.31.如果1a =,5b =,且a >b ,求a ,b 的值.32.写出绝对值大于2而小于6的整数,并用“<”连接各数.33.认真思考,并回答:下列各数存在吗?如果存在,请写出来;如果不存在,请说明理由.(1)最大的负整数;(2)最小的正整数;(3)绝对值最小的数;(4)相反数最小的负整数.参考答案1.D 2.C 3.B 4.B 5.D 6.A 7.C 8.D 9.C 10.C 11.B 12.C 13.5 14.本身 0 相反数 15.正数或0 16.-3.45 +2 008 17.负数 正数18.负数或0 19.0 -1 20.(1) < (2) > 21.-2 -1 0 1 2 322.> 23.124.(1)74743--+=-=; (2)72009720092016-+-=+=.25.221133⎛⎫+-=- ⎪⎝⎭,-(+3.69)= -3.69,-(520)=520,-[-(+4.98)]=4.98,+[-(+58.6)]=-58.6.26.(1)因为2283312-==,3394412-==,891212<,所以2334->-; (2)因为()2.1 2.1-+=,-(-2.1)=2.1,所以()()2.1 2.1-+=--;(3)因为 3.2 3.2-=,1133 3.12588-==,3.2>3.125,所以13.238-<-. 27.因为33 2.522⎛⎫--=< ⎪⎝⎭,2233-=<=-,所以3320 2.52⎛⎫-<<<--< ⎪⎝⎭.5. 28.因为1010601717102-==,121260191995-==,151560232392-==,303060313162-==, 60609191-=,所以30601512103191231917-<-<-<-<-.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)29.-b >-c >a >-a >c >b30.根据绝对值的意义,可以知道:只有0的绝对值为0,所以a -1=0且b -2=0,所以a=1,b=2,所以a+b=3.31.根据条件,a=1或a=-1,b=5或b=-5.但a >b ,所以a=1或a=-1,b=-5.32.借助于数轴进行思考.这些符合要求的数分别是-5,-4,-3,3,4,5.所以-5<-4<-3<3<4<5.33.(1)最大的负整数为-1; (2)最小的正整数为1;(3)绝对值最小的数为0;(4)相反数最小的负整数为-1.七年级数学上第二章 有理数2.4 有理数的加法与减法第1课时 有理数的加法1.如果两个有理数的和比其中任意一个加数都大,那么下列说法正确的是 ( )A .它们都是正数B .它们都是负数C .一个正数,一个负数D .以上说法都不对2.下列说法中,正确的是 ( )A .两数相加,其和大于任意一个加数B .两数相加,取较大一个加数的符号C .异号两数相加,其和小于任意一个加数D .两个数的和为0,它们一定互为相反数3.下列计算结果中是负数的是 ( )A .-(-3)+(-3)B .()15.752⎛⎫-++ ⎪⎝⎭C .313142⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭D .()()18-+-4.如果一个数是-7,另一个数比-7的相反数大3,那么这两个数的和是 ( )A .-3B .3C .-17D .175.如果有理数a 是一个负数,那么式子a a +的结果为 ( )A .2aB .-2aC .0D .不能确定6.下列说法中,正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则两数互为相反数D .两数之和一定大于每一个加数7.若一个数的绝对值和相反数都等于它本身,另一个数是最大的负整数,则这两个数的和为 ( )A .-2B .-1C .0D .18.如果2010个不都相等的有理数的和为0,那么下列说法中,正确的是 ( )A .其中至少有一个是负数B .其中正数与负数各占一半C .其中正数不能少于1005个D .其中必须有一个数是09.计算:-2+3等于 ( )A .5B .-5C .1D .-110.数轴上A 、B 两点所表示的有理数的和是 ( )A .-1B .1C .-5D .511.温度从-2°C 上升3°C 后是________.12.绝对值不等的异号两数相加,取________的符号,并用___________减去_________.13.(+2)+(-3)=_________;1123⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=________.14.(-5)+_________=1.2;()1224133⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭=__________.15.绝对值小于3的所有负整数的和为________,所有正整数的和为________.16.计算:(+1.5)+(-3.5)=______; (-5)+__________= -2.17.绝对值小于3的所有整数的和为_______.18.如图,小明在做作业时,不慎将数轴上的数字污损了一部分,那么污损的部分中各个整数的和为_________.19.计算.(1) (+2)+(-6); (2)(-19)+(+5)+(-31);(3)(+25)+(-12)+(+15)+(-28); (4)(-3.14)+(+4.96)+(+2.14)+(-7.96) .20.计算.(1)()()47.8695⎛⎫++-+- ⎪⎝⎭; (2)()()17143 3.53288⎛⎫⎛⎫⎛⎫++-+-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)()()111235 1.1254822⎛⎫⎛⎫⎛⎫-+-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.21.计算.1+(-2)+3+(-4)+…+2009+(-2010).22.8筐香蕉,以每筐28 kg 为标准,超过的部分计作正数,不足的部分计作负数,称重的结果记录如下(单位:kg):+3,-1,+2.5,+1,0,-1.5,-2,-1.通过计算回答.(1)实际称得的总重与标准总重相比,超过或不足多少千克?(2)8筐香蕉的实际总重是多少千克?23.一个动点从点A 开始上、下来回运动了8次.如果规定向上为正,向下为负,那么这8次运动的结果记录如下(单位:cm):-5,+7,-3,+9,-11,+3,-12,+1.(1)这个动点停止运动时,距离点A 多远?在点A 的什么位置处?(2)如果该动点运动的速度是2 cm /s ,那么来回运动8次一共需要多长时间?24.如果一个有理数的绝对值为3,另一个有理数的相反数为-4,那么这两个有理数的和为多少?25.把绝对值小于5的整数分别填入下图的各个方格中(每数只能用一次),使得每行、每列以及对角线上的数字之和都相等.参考答案1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.A 9.C 10.A11.1°C 12.绝对值较大加数 较大的绝对值 较小的绝对值13.-1 56- 14.6.2 0 15.-3 3 16.-2 +3 17.0 18.819.(1) (+2)+(-6)=-(6-2)=-4;(2)[(-19)+(-31)]+(+5)=-45(3) (+25)+(-12)+(+15)+(-28) =0;(4) (-3.14)+(+4.96)+(+2.14)+(-7.96)=-4;20.(1)()()47.89685⎡⎤⎛⎫++-+-=- ⎪⎢⎥⎝⎭⎣⎦. (2)()()17143 3.530288⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-+++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. (3)()()111235 1.12545822⎛⎫⎛⎫⎛⎫-+-++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.21.原式=[1+(-2)]+[3+(-4)]+[5+(-6)]+…+[2009+(-2010)=-1005.22.(1)(+3)+(-1)+(+2.5)+(+1)+0+(-1.5)+(-2)+(-1)=1(kg);(2)8×28+1=225(kg)答:(1)超过1 kg ;(2)实际总重225 kg .23.(1)因为(-5)+(+7)+(-3)+(+9)+(-11)+(+3)+(-12)+(+1)=-11,所以动点停止运动时,距离点A11 cm ,且在点A 的下方;(2)来回运动8次所行路程为573911312151-+++-+++-+++-++=(cm),51=(s),所以来回运动8次一共需要25.5 s.25.5224.因为一个有理数的绝对值为3,所以这个有理数是3或-3;因为另一个有理数的相反数为-4,所以另一个有理数是4.因此,3+4=7或者(-3)+4=1,即这两个有理数的和为7或1.25.绝对值小于5的整数一共有9个,分别是-4,-3,-2,1,0,1,2,3,4,并且它们的和为0.根据题意,每行、每列以及对角线上的数字之和必定为0,如图所示:七年级数学上第二章 有理数2.4 有理数的加法与减法第2课时 有理数的减法1.两个有理数的差可以是 ( )A .正数B .负数C .0D .以上都可能2.如果a >0,b <0,那么式子a -b 的值是 ( )A .正数B .负数C .0D .以上都可能3.计算(-26)-(-12)所得的结果是 ( )A .-38B .-14C .38D .144.下列计算中,正确的是 ( )A .-6-6=0B .-7-3=-4C .-0.3+0.3=0D .-1-(-1.2)=0.25.有理数a 、b 在数轴上的位置如图所示,则b a +的值A .大于0B .小于0C .小于aD .大于b6.如果减数为正数,那么差与被减数的大小关系是 ( )A .差比被减数大B .差比被减数小C .差可能等于被减数D .无法比较7.如果有理数m ,n 满足0m n -=,那么m ,n 的关系是 ( )A .互为相反数B .m=±n 且n ≥0C .相等且都不小于0D .m 是n 的绝对值8.比1小2的数是 ( ) A .-1 B .-2 C .-3 D .19.某市2010年元月的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃10.有理数a ,b 在数轴上的位置如图所示,下列结论中,错误的是 ( )A .a+b <0B .-a +b <0C .a -b <0D .-a -b >011.减去一个数,等于加上这个数的________.12.(-6)-(-3)=(-6)+___________=___________.13.22________23⎛⎫--= ⎪⎝⎭;3.75-_______=5. 14.比0小4的数是______;比0+-4的数是________.15.世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848 m ,吐鲁番盆地的海拔高度大约是-155 m 两处高度相差________m .16.23减2所得的差的相反数是_______. 17.如果a ,b 都是有理数,且a <0,b <0,a b >,那么a -b_____0.(填“>”“<”或“=”)(第5题) a 018.如果有理数n 的绝对值为8,有理数b 的绝对值为6,且a 是正数,b 是负数,那么a -b=_______. 19.计算:32--=________.20.计算.(1) 0-(-3). (2)(-16)-(-18)-(-12)-24;(3)23-36-(-76)-(-105); (4)(-32)-87-(-72)-(-27).(5)2.75-(-8.5)-1.5-2.75. (6)()23211 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(7)()1223154233⎛⎫------ ⎪⎝⎭.21.如果一天早晨的气温是-7℃,中午上升了11℃,半夜气温又下降了9℃,那么半夜的气温是多少?22.输入-2,按照如图所示的程序进行运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),并写出输出的结果.23.在数轴上,点A 表示的有理数是-3.5,点B 在点A 的左边,且与点A 相距6个单位长度,求点B 表示的有理数.24.有理数a 的绝对值为5,有理数6的绝对值为3,且a ,b 一正一负,求a -b 的值.25.计算.111111200920082010200820102009---+-.26.某城市冬季的一天,最高气温为6℃,最低气温为-11℃.根据当天的天气预报报道,夜里将有一股冷空气袭击这个城市,第二天气温将下降10~12℃.请你依据以上的信息估计第二天该市的最高气温不会高于多少,最低气温不会低于多少?最高气温与最低气温的差至少为多少?参考答案1.D 2.A 3.B 4.D 5.A 6.B 7.B 8.A 9.D 10.C 11.相反数 12.3 -3 13.243- 1.25 14.-4 4 15.9003 16.4317.< 18.14 19.1 20.(1)原式==0+(+3)=3.(2)原式=(-16)+18+12+(-24)=10; (3)原式=23+(-36)+76+105=168;(4)原式=(-32)+(-87)+72+27=20.(5)原式=2.75+8.5-1.5-2.75=7.(6)原式=()23211 1.75343-+++-=1; (7)原式=1223154233+-+=31. 21.(-7)+11-9=[(-7)+(-9)]+11=-5(℃),即半夜的气温是-5℃.22.因为(-2)+4-(3)-5=(-2)+4+3+(-5)=0<2,0+4-(-3)-5=0+4+3+(-5)=2,2+4-(-3)-5=2+4+3+(-5)=4>2,所以输出的结果为4.23.-3.5-6=-9.5,即点B 表示的有理数是-9.5.24.根据条件a=5或a=-5,b =3或b=-3.又两数一正一负,所以,a -b=5-(-3)=5+3=8或a -b =(5)-3=-8. 25.原式=1111110200820092008201020092010--++-=. 26.6-10=-4,-11-12=-23,6-12-(-11-10)=-6+21=15.即最高气温不会高于-4℃,最低气温不会低于-23℃,最高气温与最低气温的差至少为15℃.1 0 -1 a b B A七年级数学上第二章 有理数2.4 有理数的加法与减法 第3课时 有理数的加法与减法1.有理数-7,-3,+5的和比它们的绝对值的和小 ( ) A .2 B .7 C .15 D .202.下列计算中,正确的是 ( ) A .(+7)+(-12)=5 B .(+7)-(-12)=-19 C .1113412-+= D .(-3.7)-(-3.7)=7.4 3.把+5-(+3)-(-7)+(-2)写成省略加号的和的形式是 ( ) A .5-3+7-2 B .5+3-7-2 C .5-3-7-2 D .5+3+7-24.式子-4-2-1+2的正确读法是 ( ) A .减4减2减1加2 B .负4减2减1加2C .负4,负2,负1加2D .4,2,1,2的和5.两个有理数的和为a ,这两个数的差为b ,那么a ,b 的大小关系是 ( ) A .a >b B .a <b C .a=b D .以上都有可能 6.-7,-12,+2的代数和比它们绝对值的和小 ( ) A .-38 B .38 C .-4 D .4 7.某商店( ) A .盈余644万元 B .亏本173万元 C .盈余173万元 D .亏本644万元 8.若a 表示一个有理数,且有33a a --=+,则a 应该是 ( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数 D .任意一个非负数 9.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0a b -+<B .0>-b aC .0>+b aD .0||||>-b a10.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A -C 表示观根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )mA .210B .130C .390D .21011.将式子(-3)-(+4)-(-5)写成省略括号的和的形式是_____,可以读作_____或______. 12.计算:1322⎛⎫--- ⎪⎝⎭=________;-5-6+7=_________.13.一架飞机在飞行的过程中,飞行高度先上升了1.2 km ,然后下降了2.4 km ,最后又上升了0.6 km ,这时飞机的高度与最初的位置相比是_______(填“高”或“低”)了______千米.14.把式子(-8)-(+9)+(-2)-(-4)中符号相同的加数放在一起:____,计算的结果是____. 15.填入适当的数,使下列式子成立:_______+7=4;-14+__________=-5. 16.若两个数的和为-5,其中一个加数为-12,则另一个加数是_______. 17.计算:(1)-8+12+7-15=________; (2)16-12-17+13=________.18.如果a ,b ,c 表示三个有理数,且它们满足条件:3a =,5b =,7c =,a >b >c .那么式子a+b -c 的值为________. 19.已知5x =,y=3,则x -y=________.20.计算.(1)(+18)+(-12)-(-7)-(+4); (2)(-2.7)-(-2.5)+(-5.5)-(+7.3).21.计算. (1)2571129696⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭; (2)3557212212⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)()()11312 1.7557.252 2.5424⎛⎫⎛⎫-+--+---- ⎪ ⎪⎝⎭⎝⎭.22.如图,一辆货车从超市出发,向东走了3 km 到达小明家,继续走了1.5 km 到达小丽家,然后向西走了8.5 km 到达小华家,最后回到超市.如果以超市为原点,规定向东的方向为正方向,那么小华家距小明家多远?货车一共行驶了多少千米?23.某钻井队在井下三处的标高分别是点A :-26.7 m(即点A 在地下26.7 m),点B :-123.4 m ,点C :-96.5 m 那么点A 比点B 、C 分别高多少? 24.计算.(1)-17.2+15.8-4.8; (2)1338.12574844-+-+.25.-5的相反数减去-8,再加上-11的绝对值,比-10大多少?26.小明在银行的存款有2800元,昨天因为急用取出了1350元.今天上午他将收回的货款3600元又存入了银行,并且下午打算去批发市场进货.如果这批货物需要5200元,那么小明银行的存款是否足够支付这批货物的费用呢?27.计算.-1+3-5+7-9+…-97+99.28.规定符号(a,b)表示a,b两个数中小的一个,符号[a,b]表示a,b两个数中大的一个,求下列式子的值.(1)(-3,5)+[-5,3];(2)(-2,-6)-[-9,(-4,-7)].29.在1,2,3,…,2006,2007,2008前面任意添加“+”或“-”,并且按照顺序进行计算,那么这些数的和能否等于2008呢?参考答案1.D 2.C 3.A 4.B 5.D 6.B 7.C 8.D 9.D 10.A 11.-3-4+5负3,负4,5的和负3减4加5 12.1 -4 13.低 0.6 14.(-8-9-2)+4 -15 15.-3 916.7 17.(1) -4 (2)0 18.5或-1 19.2或-8 20.(1)原式=18-12+7-4=18+7-12-4=9:(2)原式=-2.7+2.5-5.5-7.3=-2.7-7.2+2.5-5.5=-10-3=-13. 21.(1)原式=257121296963++-=. (2)原式=35570212212--+-=;(3)原式=12.25-1.75+5.5-7.25+2.75-2.5=9.22.8.5-1.5=7(km);3+1.5+8.8+(7-3)=17(kin),即小华家距小明家7 km ,货车 一共行驶了17 km .23.-26.7-(-123.4)=-26.7+123.4=96.7(m),即点A 比点B 高96.7 m ;-26.7 -(-96.5)=-26.7+96.5=69.8(m),即点A 比点C 高69.8m . 24.(1)原式=-17.2+11=-6.2; (2)原式=-1-4=-5.25.()()()58111058111034----+--=+++=.26.因为2 800-1 350+3 600-5 200=6 400-6 550=-150<0,所以不够支付这批货物的费用.27.原式=(-1+3)+(-5+7)+…+(-97+99)=50. 28.(1)原式=-3+3=0;(2)原式=-6-[-9,-7]=1.29.能.例如,因为2 008=4×502,所以可以考虑把2 008个数分成502组,每组4个数,并且其和都等于4.从1开始将相邻的4个数的前2个较小的数前面添加“-”,后2个较大的前面添加“+”即可.。

七年级(上)第二章 有理数 第5课时 绝对值与相反数(1)(附答案)

七年级(上)第二章  有理数 第5课时 绝对值与相反数(1)(附答案)

第5课时绝对值与相反数(1)预学目标1.通过课本中“家与学校的距离”问题,了解距离与数轴上的单位长度之间的关系.2.了解绝对值的概念,尝试理解绝对值与距离的关系(即绝对值的几何意义).3.了解绝对值的表示方法.4.了解绝对值的大小比较.知识梳理1.绝对值的概念(1)观察图1,点A、B、C、D到原点的单位长度分别为________、________、________、_______,即它们到原点的距离为_______、________、________、_______.(2)点A、B、C、D所表示的数的绝对值为_______、________、________、________.归纳:数轴上表示一个数的点到_____________________,叫做这个数的绝对值.2.绝对值的表示与比较-5的绝对值为______,记为:5-=______;-212的绝对值为_______,记为:______;3.2的绝对值为_______,记为:_______.我们容易看出:_____<_____<_____.例题精讲例l 求下列各数的绝对值:-112,5,0,-1,4.5.提示:求一个数的绝对值的问题,其实就是处理符号的问题.解答:112-=l12,5-=5,0=0,1-=1,4.5=4.5.点评:理解一个数的绝对值,我们可以借助于数轴,先在数轴上画出表示这个数的点,再求出它到原点的距离,这个距离就是这个数的绝对值.例2 某工厂生产一批零件,根据零件的质量要求(零件长度可以有0.2 cm的误差),现检查6个零件,检查数据如下(超过规定长度的厘米数记作正数,反之记作负数):以上6个零件中,( )号零件符号要求,其中质量最好的一个是( )号.提示:我们可以分别求出每一个数的绝对值,将所求值与误差作比较.小于或等于0.2的为合格产品,绝对值越小的质量越好.解答:①③④⑤;④.点评:一个数的绝对值越小,表示这个数距离原点越近;一个数的绝对值越大,表示这个数距离原点越远.热身练习1.在数轴上表示-12的点与原点的距离是 ( ) A .-12 B .12C .-2D .2 2.-14的绝对值是 ( ) A .14 B .4 C .-14D .-4 3.-23的绝对值是_______,23的绝对值是_______. 4.12+=_______;0=_______; 2.1-=_______;9--5=________.5.在数轴上分别画出表示-4、3、-2.5的点A 、B 、C ,然后填空:(1)点A 、B 、C 到原点的距离分别是_______、_______、_______.(2)4、3、-2.5的绝对值分别是_______、_______、________.6.用“>”、“<”或“=”填空:(1)3- _______2.7; (2) 5.5______7.2-- .7.在数轴上表示下列各数,并将它们的绝对值用“<”号连接起来.0,-3,2,-14,5.8.正式的排球比赛对所用排球的重量有严格的规定.检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下(单位:克):+12,-14,+23,-16,-7.请运用学过的绝对值知识说明哪个排球的质量最好.参考答案1.B 2.A 3.23234.12 0 2.1 4 5.图略(1)4 3 2.5 (2)4 3 2.56.(1)> (2)< 7.图略0<14-<2<3-<58.离规定重量的克数为-7克的排球最好理由:因为它离规定重量的克数的绝对值最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课时绝对值与相反数(1)
【基础巩固】
1.在数轴上离原点距离是3的数是________.
2.绝对值等于本身的数是________,绝对值小于2的整数是________.3.数轴上与表示1的点的距离是2的点所表示的数有________.
4.+6的符号是________,绝对值是________,
5
6
-的符号是_______,绝对值是_______.
5.计算:2 3.6 1.6
-+--=_______.
6.绝对值等于10的数是________.
7.下列说法中,错误的是( )
A.+5的绝对值等于5B.绝对值等于5的数是5 C.-5的绝对值是5D.+5、-5的绝对值相等8.绝对值最小的有理数是( )
A.1 B.0C.-1 D.不存在9.绝对值等于本身的数有( )
A.1个B.2个C.4个D.无数个10.绝对值小于3的负数有( )
A.2个B.3个C.4个D.无数个11.化简3
--等于( )
A.-3 B.-1
3
C.
1
3
D.3
12.求下列数的绝对值,并用“<”号把这些绝对值连接起来.
-1.5,-3.5,2,1.5,-2. 75.
13.正式足球比赛时所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果:-25、+10、-20、+30、+15、-40.请指出哪个足球的质量好一些,并用绝对值的知识进行说明.
【拓展提优】
14.在数轴上表示-2的点离开原点的距离等于( )
A.2 B.-2C.±2 D.4
15.下列各式中,正确的是( )
A.若a=b,则a=b B.若a>b,则a>b
C.若a<b,则a<b D.若a=b,则a=±b
16.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A.a+b>0 B.ab>0 C.a-b>0 D.->0
17.实数a、b在数轴上的位置如图所示,则a、b的大小关系是_______.
18.大家知道550
=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5
a+在数轴上的意义是________.
19.已知a=5,b=8,且a<b,则a+b=_______.
20.计算:
1111111
1
22334910
-+-+-++-.
21.阅读下面的例题:
解方程:15
x-=.
解:由绝对值的定义,得
x-1=5或x-1=-5.
所以x=6或x=-4.
仿照上面的思路,解下列方程:
(1)3x=6;(2)17
x+=
22.若x<0,y>0,求x y xy
x y xy
++的值.
23.(1)比较下列各式的大小(用“>”“=”或“<”连接).
-+-+;
23_______23
+--;
35_______35
1111
-+---;
_______
2323
+--;
05_______05
……
+的大小关
(2)通过(1)的比较,请你分析,归纳出当a、b为有理数时,a+b与a b
系.
x-时,求x的取值范围.
(3)根据(2)中你得出的结论,当x+2012=2012
24.数形相伴.
(1)如图,点A、B所代表的数分别为-1,2,在数轴上画出与A、B两点的距离和为5的点(并标上字母).
(2)若数轴上点A、B所代表的数分别为a、b,则A、B两点之间的距离可表示为AB=
x x
++->5时,数x a b
++-=7时,当=7时,x=_______;当12
x x
-,那么,12
所对应的点在数轴上的位置是在_______.
参考答案【基础巩固】
1.±3 2.非负数±1,03.3,-14.正号6负号5
6
5.4 6.±10
7.B8.B 9.D10.D 11.A 12. 1.52 2.75 3.5
±<<--13.+10的绝对值最小,质量好些
【拓展提优】
14.A15.D 16.C 17.a b
>18.表示a的点与表示-5的点之间的距离19.13
或320.
9
10
21.(1)x=±2 (2)x=6或x=-822.-123.(1)>>==
(2)a b a b
+≥+(3)x≤0
24.(1)如图,C、D两点即为所求.(2)-3或4点C的左边或点D的右边。

相关文档
最新文档