从不同方向看1
2020年江西省赣州市于都县中考数学一轮复习测试:相似、三角函数(含解析)
2020年江西省赣州市于都县中考数学一轮测试:相似、三角函数一.选择题(本大题共8小题,每小题3分,共24分)1.(3分)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.2.(3分)如图,某飞机于空中A处探测倒地面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为()A.1200米B.2400米C.400米D.1200米3.(3分)如图是由几个小立方块所搭成的几何体的俯视图,小正方形内的数字表示该位置小立方块的个数,则该几何体的主视图是()A.B.C.D.4.(3分)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为()A.B.C.D.5.(3分)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为()A.B.C.D.6.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A.B.C.D.7.(3分)下列四个三角形,与如图中的三角形相似的是()A.B.C.D.8.(3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tan C等于()A.B.C.D.二.填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC=.10.(3分)在等腰△ABC中,∠C=90°,则tan A=.11.(3分)如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°角时,第二次是当阳光与地面成30°角时,则第二次观察到的影子比第一次长.12.(3分)正方形ABCD的边长为1.如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D′处,那么tan∠BAD′=.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,B的坐标是(6,4),那么点B′的坐标是.15.(3分)如图所示,以O为圆心,任意长为半径画弧.与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于.16.(3分)如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m =AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.(多填或错填的得0分,少填的酌情给分).三、(本大题共3小题,每小题6分,共18分)17.(6分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.18.(6分)如图,△ABC中,AB=AC,∠BAC=108°(1)只用直尺和圆规作图,首先在BC上截取BD=AB,再作BD的中垂线,交AB于E,连接AD,DE.(2)与△BDE相似的三角形有.(直接写出答案)19.(6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)四、(本大题共2小题,每小题8分,共16分)20.(8分)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).21.(8分)如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2.(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F 落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.23.(9分)如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度;(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:≈1.414,≈1.73)六、(本大题共2小题,每小题10分,共20分)24.(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比例相互唯一确定,因此,边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA==.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是.(3)如图②,已知∠C=90°,sin A=,其中∠A为锐角,试求sadA的值.25.(10分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.参考答案与试题解析一.选择题(本大题共8小题,每小题3分,共24分)1.(3分)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.【分析】俯视图就是从物体的上面看物体,从而得到的图形;找到从上面看所得到的图形即可.【解答】解:选项A的图形是从茶壶上面看得到的图形.故选:A.2.(3分)如图,某飞机于空中A处探测倒地面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为()A.1200米B.2400米C.400米D.1200米【分析】利用所给角的正弦函数即可求解.【解答】解:在Rt△ABC中,∠ABC=∠α=30°,AC=1 200,∴AB=2AC=2 400(米).故选:B.3.(3分)如图是由几个小立方块所搭成的几何体的俯视图,小正方形内的数字表示该位置小立方块的个数,则该几何体的主视图是()A.B.C.D.【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【解答】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有一层三个,另一层2个,即可得出答案.故选:A.4.(3分)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为()A.B.C.D.【分析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解可得.【解答】解:如图,作AD⊥BC于点D,则AD=5,BD=5,∴AB===5,∴cos∠B===,故选:B.5.(3分)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sin A=,tan B=和a2+b2=c2.∵sin A=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tan B=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cos B=sin(90°﹣B)=sin A=.又∵sin2B+cos2B=1,∴sin B==,∴tan B===.故选:A.6.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A.B.C.D.【分析】在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin ∠ACD转化为求sin B.【解答】解:在直角△ABC中,根据勾股定理可得:AB===3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B==,故选:A.7.(3分)下列四个三角形,与如图中的三角形相似的是()A.B.C.D.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边,4,,与给出的三角形的各边不成比例,故B选项错误;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边2,4,2,与给出的三角形的各边成正比例,故D选项正确.故选:D.8.(3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tan C等于()A.B.C.D.【分析】根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解.【解答】解:连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tan C==故选:B.二.填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC=9.【分析】根据平行线分线段成比例定理得出,得出CE的长度即可得出AC的长.【解答】解:∵DE∥BC,∴,∵AD=2,AE=3,BD=4,∴,∴CE=6,∴AC=AE+EC=3+6=9.故答案为:9.10.(3分)在等腰△ABC中,∠C=90°,则tan A=1.【分析】根据△ABC是等腰三角形,∠C=90°,求出∠A=∠B=45°,从而求出角A 的正切值.【解答】解:∵△ABC是等腰三角形,∠C=90°,∴∠A=∠B=45°,∴tan A=tan45°=1,故答案为1.11.(3分)如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°角时,第二次是当阳光与地面成30°角时,则第二次观察到的影子比第一次长4米.【分析】利用所给角的正切值分别求出两次影子的长,然后作差即可.【解答】解:第一次观察到的影子长为6×cot60°=2(米);第二次观察到的影子长为6×cot30°=6(米);所以两次观察到的影子长的差=62=4(米),故答案为4米.12.(3分)正方形ABCD的边长为1.如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D′处,那么tan∠BAD′=.【分析】根据题意画出图形.根据勾股定理求出BD的长,由旋转的性质求出BD′的长,再运用三角函数的定义解答即可.【解答】解:正方形ABCD的边长为1,则对角线BD=.∴BD′=BD=.∴tan∠BAD’==.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【分析】由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.故S△ACF=×7×7=(cm2).故答案为:.14.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,B的坐标是(6,4),那么点B′的坐标是(3,2)或(﹣3,﹣2).【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【解答】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,∴两矩形面积的相似比为:1:2,∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(﹣3,﹣2).故答案为:(3,2)或(﹣3,﹣2).15.(3分)如图所示,以O为圆心,任意长为半径画弧.与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于.【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【解答】解:连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故答案是:.16.(3分)如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m =AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是①③④.(多填或错填的得0分,少填的酌情给分).【分析】点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化.【解答】解:当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m 最大,则m>AC,①成立;①成立,那么②不成立;最小值为AB与底面重合,故n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.三、(本大题共3小题,每小题6分,共18分)17.(6分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.18.(6分)如图,△ABC中,AB=AC,∠BAC=108°(1)只用直尺和圆规作图,首先在BC上截取BD=AB,再作BD的中垂线,交AB于E,连接AD,DE.(2)与△BDE相似的三角形有△ADC、△ABC.(直接写出答案)【分析】(1)先以B为圆心,BA为半径,作弧,再作BD的中垂线即可;(2)根据相似三角形的判定进行判断即可得到答案.【解答】解:(1)如图,以B为圆心,BA为半径,作弧交BC于D,作BD的中垂线交BA于E,连接AD、DE.(2)答案为:△ADC和△ABC.19.(6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)【分析】易得α越大,梯子顶端达到最大高度,利用70°正弦值可得最大高度AC.【解答】解:当α=70°时,梯子顶端达到最大高度,(1分)∵sinα=,(2分)∴AC=sin70°×6=0.94×6=5.64,(2分)≈5.6(米).答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.(1分)四、(本大题共2小题,每小题8分,共16分)20.(8分)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于30度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).【分析】(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.【解答】解:(1)30;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=45°,∴△P AB为等腰直角三角形,在直角△PHB中,PB===20.在直角△PBA中,AB=PB=20≈34.6米.答:A,B两点间的距离是34.6米.21.(8分)如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2.(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)【分析】(1)取OA的中点A′,OB的中点B′,OC的中点C′,然后顺次连接即可;(2)根据勾股定理列式求出AC、A′C′的长,再根据周长公式列式进行计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求作的三角形;(2)根据勾股定理,AC==2,A′C′==,所以,四边形AA′C′C的周长为:1++2+2=3+3.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F 落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.【分析】(1)根据矩形的性质可知∠A=∠D=∠C=90°,△BCE沿BE折叠为△BFE,得出∠BFE=∠C=90°,再根据三角形的内角和为180°,可知∠AFB+∠ABF=90°,得出∠ABF=∠DFE,即可证明△ABF∽△DFE,(2)已知sin∠DFE=,设DE=a,EF=3a,DF==2a,可得出CE =EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,由(1)中△ABF∽△DFE,可得tan∠EBC=tan∠EBF==.【解答】(1)证明:∵四边形ABCD是矩形∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE,(2)解:在Rt△DEF中,sin∠DFE==,∴设DE=a,EF=3a,DF==2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,又由(1)△ABF∽△DFE,∴===,∴tan∠EBF==,tan∠EBC=tan∠EBF=.23.(9分)如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度;(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:≈1.414,≈1.73)【分析】(1)首先弄清题意,了解每条线段的长度与线段之间的关系,在△CDE中利用三角函数sin60°=,求出CD的长.(2)首先设出水箱半径OD的长度为x厘米,表示出CO,AO的长度,根据直角三角形的性质得到CO=AO,再代入数计算即可得到答案.【解答】解:(1)∵DE=76厘米,∠CED=60°,∴sin60°==,∴CD=38cm.(2)设水箱半径OD的长度为x厘米,则CO=(38+x)厘米,AO=(150+x)厘米,∵∠BAC=30°,∴CO=AO,38+x=(150+x),解得:x=150﹣76=150﹣131.48≈18.5cm.六、(本大题共2小题,每小题10分,共20分)24.(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比例相互唯一确定,因此,边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA==.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=1.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2.(3)如图②,已知∠C=90°,sin A=,其中∠A为锐角,试求sadA的值.【分析】(1)根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答;(2)求出0度和180度时等腰三角形底和腰的比即可;(3)在AB上取点D,使AD=AC,过点D作DE⊥AC于E,连接CD,设AD=AC=5x,则DE=3x,AE=4x.则CE=x.CD可求出,根据定义可求出答案.【解答】解:(1)根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.故答案为:1.(2)当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.(3)在AB上取点D,使AD=AC,过点D作DE⊥AC于E,连接CD,如图.∵在Rt△ADE中,=sin A=,设AD=AC=5x,则DE=3x,AE=4x.∴CE=x.∴在Rt△CDE中,CD==x.∴sad A===.25.(10分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2).(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.【分析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.(3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC 时分别得出即可.【解答】解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,∴∠H=∠CAG,∵∠ACG=∠B=45°,∴△AGC∽△HAB,∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;故答案为:△HAB和△HGA.(2)∵△AGC∽△HAB,∴AC:HB=GC:AB,即9:y=x:9,∴y=,∵AB=AC=9,∠BAC=90°,∴BC===9.答:y关于x的函数关系式为y=.(3)①当CG<BC时,∠GAC=∠H<∠HAG,∴AG<GH,∵GH<AH,∴AG<CH<GH,又∵AH>AG,AH>GH,此时,△AGH不可能是等腰三角形,②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,此时,GC=,即x=,③当CG>BC时,由(1)△AGC∽△HGA,所以,若△AGH必是等腰三角形,只可能存在GA=AH,若GA=AH,则AC=CG,此时x=9,如图(3),当CG=BC时,注意:DF才旋转到与BC垂直的位置,此时B,E,G重合,∠AGH=∠GAH=45°,所以△AGH为等腰三角形,所以CG=9,综上所述,当x=9或x=或x=9时,△AGH是等腰三角形.。
从不同位置观察单个物体 小学数学 测试卷
一、选择题
1. 小王从正面、左面和上面看一个几何体,看到的图形都是正方形。
这个几何体是()。
A.球B.圆柱C.正方体
2. 下面是红红站在车的不同方向拍照的汽车图片,请找出与图相对应的方位词.()
A.后面B.前面C.右侧面D.左侧面
3. 小男孩看到的是图()。
A.B.
C.
4. 把4个同样大小的正方体纸箱按下面四种不同的方式摆放在墙角。
露在外面的面积最小的是()。
A.B.C.D.
5. 和此图相同的是()
B.
A.
C.
D.
二、填空题
6. 小朋友看到的是哪一幅图?在()里画“√”。
7. 从不同的位置观察一个正方体,最多能看到( )个面。
8. 哪张照片是丽丽拍的?请在下面的里画“√”。
9. 下面的小动物分别是从哪一面看杯子的?(填:前、后、左、右)
小熊小青蛙小蜗牛小老鼠
( )面( )面( )面( )面
10. 下面哪幅图是贝贝看到的?在括号里画“√”。
三、解答题
11. 从的上面看,看到的是什么图形?从它的右面看呢?要看到,应该从哪个方向看?
12. 有一个正方体,六个面上各有一个数字,分别是1、2、3、4、5、6,从不同角度观察结果如下所示。
正方体相对的两个面的数字分别是几?
13. 选一选。
(1)从上面看形状是的有________。
(2)从侧面看形状是的有________。
(3)③号图形从上面看到的形状是________。
14. 有一个立体图形,6个面上分别写着数字1、2、3、4、5、6。
从不同的角度观察,结果如下图所示,6的对面是几?。
苏教版四年级数学上册第三单元 观察物体精品优质课件
这是从右面看 到的。
这是从上面看 到的。
第三单元 从不同方向观察同一物体
观察物体的面时要注 意,正对观察的面, 从水平面观察,才能 看准是什么形状。
观察物体时, 要注意些什么?
练一练
第三单元 从不同方向观察同一物体
你能说出正方体的前面、右面和上面各是什么颜色的
吗?
上面
右 前面 面
练一练
第三单元 从不同方向观察同一物体
√( )
(
第三单元 从不同方向观察同一物体
这节课你们都学会了哪些知识?
从不同角度观察由几个小正方形摆成的物体,描述看 到的形状时,要注意小正方形的数量,还要注意小正方形 的相对的位置关系。
同学们,下课了!
从不同方向观察同一物体
从不同方向观察立体图形
情景导入
第三单元 从不同方向观察同一物体
用4个大小相同的 正方体,摆成下
面的形状。
探究新知
观察物体
从不同方向观察同一物体
情景导入
第三单元 从不同方向观察同一物体
仔细观察这个投 票箱。
探究新知
例1
第三单元 从不同方向观察同一物体
你能指出投票箱 的前面、右面和
上面吗?
第三单元 从不同方向观察同一物体
上面
投右
票前 面
面
箱
第三单元 从不同方向观察同一物体
投 票 箱
这是从前面看 到的。
投 票 箱
第三单元 从不同方向观察同一物体
用6个同样大的正方体摆成一个长方体(如图)。从前面、
右面和上面分别看一看,再在方格纸上画出看到的图形。
第三单元 从不同方向观察同一物体
从前面、右面和上面观察下面的物体,看到的分别 是什么形状?在下面方格里画出来。
从不同方向看教学反思
从不同方向看教学反思从不同方向看教学反思本节课的引入由于运用多媒体教学和采用了学生耳熟能详的故事,并配以优美的音乐,立即激发了学生浓厚的学习兴趣,把学生马上吸引到本节课的问题情境中,新知识引起学生强烈的探究欲望。
接下来精心设置的两个活动使学生亲身体验,从不同方向观察同一物体,可能得到不同的结论。
学生在亲身经历从不同方向观察物体的活动过程中,发展了空间观念,画三视图,增强了学生的探究能力,动手操作能力,突出了学生自主探究的学习方式。
在课的最后,我设置了体验成功、快乐共享环节,学生畅谈本节课的所获感想,有困惑的学生进行质疑,使每位学生都有不同程度的收获,体验数学课应是愉悦的、成功的,从而激发学生学习数学的潜能。
本课件利用多媒体的手段,使课堂为得更加生动有趣,身为老师需要不断学习,不断创新。
传统教学很少用电脑,现在几乎节节离不开电脑。
需教师会用几何画板,会做幻灯片,会处理图片。
老师不但会用,而且还可以利用电脑软件制作精美的课件,发挥了教师的创造力,新教材的使用为教师提供了拓展创新空间。
本节课的成功之处:(1)导入新颖。
课题提示自然,这是本节课的一大亮点。
(2)在教学的实际环节中,充分利用现代信息技术教学手段,将各种立体图形的形象,直观的电脑动画进行演示,让学生在视听结合的环境中,仔细观察,认真分析,小组内合作,小组间交流,通过自己的努力获取新的知识,学生始终在轻松愉快的氛围内开展学习。
(3)内容安排从简单到复杂。
从具体到抽象,从低层次的展开到高层次的结合,不断深化,在圆满完成本课教学内容之余,非常适宜地安排了课题拓展学习,培养了学生的空间想像能力。
(4)在学生已掌握本课知识后,设计了一个同位竞赛的活动,让学生自己搭建立方体画主视图和左视图,让学生充分发挥自己的想像力,赋予学生一个更为广阔的空间。
本课不足之处:(1)在探究过程中,没有进一步启发、诱导学生,进一步观察从右边看到的图形及从后面看到的图形。
(2)对圆锥、圆柱、棱柱等较难理解的三视图的问题,没有作补充,没有让学生有一个对此进行动手操作,充分认识。
1.4从不同的方向看(1)
1.4从不同的方向看(第一课时)一、教学目标知识与技能1.在观察的过程中让学生初步体会从不同方向观察物体可能看到不同的结果,从中发展学生的空间观念,积累学生的数学活动经验.2.能识别简单物体或简单组合体的三视图,会画简单物体或简单组合体的三视图.3.能在与他人交流的过程中,合理清晰地表达自己的思维过程.过程与方法1.结合一些具体的实物的情境,通过从不同方向观察,发现从不同方向观察同一物体可能看到不同的图形,然后过渡到讨论立方体及其简单组合体的三视图.2.本节课采用“实践—探究—发现”的方法,运用多媒体及其教具、学具,引导学生通过“看—做—想—做”等方式,让学生学会知识、熟练技能、掌握方法、形成能力.情感、态度与价值观有意识地培养学生学习数学的积极情感,激发学生对空间与图形学习的好奇心和学习数学的兴趣,养成善于观察、细心观察的良好习惯,初步形成与他人合作交流的意识.二、学情分析三、教学重点、难点及关键重点1.从数学的角度体会不同方向观察同一物体可能看到不同的结果并能合理的描述.2.能画简单立方体及其组合的三个视图.难点画简单立方体及其组合的三个视图.关键创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;多利用实物模型帮助学生认识三视图。
突破方法从采用小组交流合作和“分类与整合”的数学思想相结合的方法来突破难点.四、教法与学法导航教学方法演示法:把实物模型、教具或多媒体课件演示给学生看,使学生直观、具体、形象地感知图形,并且变课堂被动为主动。
通过观察、动手操作、探索发现、归纳总结,生成知识.实验法:让学生动手操作,搭建立方组合体,发展空间观念.学习方法讨论法:创设情境,让他们讨论,合作交流,互相促进、共同学习.练习法:精心设计随堂练习,使学生的知识水平得到恰当的发展和提高.五、教学准备教师准备:制作多媒体课件,教学模型.学生准备:1.准备实物:乒乓球、热水瓶、玻璃杯.2.自制模型:长方体(两种)、四棱锥、正方体、圆柱.六、教学过程(一)回顾与思考讲《盲人摸象》的故事,提请学生思考:为什么不同的盲人得出不同的大象形状?(学生自由回答,教师整理)【说明】认识物体,一个十分重要的方法是观察,从不同的角度观察得到的效果不一样.(二)、复习引入活动一创设问题情境,引入新课:问题1:(幻灯片1)展示一辆汽车从不同方向拍摄的照片,从这组照片你能感受到什么?问题2:(幻灯片2苏轼的《题西林壁》)《题西林壁》,谁能说说这首诗的意思呢?【说明】问题1:让学生意识到生活中确实存在从不同方向看的现象,另外跨越学科界限。
从正面、上面和侧面(左面或右面)三个不同的方向看一个
从正面看到的图形,称为正视图;
从上面看到的图形,称为俯视图;
从侧面看到的图形,称为侧视图,依 观看方向不同,有左视图、右视图。
俯视图方向
三视图的作图步骤
左视图方向
四棱柱
俯
左
四棱柱
(高)
(长)
(宽)
(宽)
(长)
(高)
四棱柱
例3.画出如图所示的圆柱的三视图。
圆柱
俯
左
圆柱
Φ Φ
Φ
(高) (高)
圆柱
例4.画出如图所示的圆锥的三视图。
圆锥 俯
左
圆锥
(高)
Φ
圆锥
Φ
例5.画出如图所示的球体的三视图。
球
俯
左
球
左
四棱锥
例7.画出如图所示的六棱柱的三视图。
1.确定主视图方向
2.布置视图
3.先画出能反映物体真实形 状的一个视图
主视图方向
4.运用长对正、高平齐1、原宽相等 则画出其它视图
主视图 左视图
5.检查
6.加深
俯视图
例1.画出如图所示的三通管的三视图。
俯视图方向 左视图方向
主视图方向
正视图 (从正面看)
左视图 (从左面看)
俯视图 (从上面看)
例2.画出如图所示的四棱柱的三视图。
六棱柱
俯
左
六棱柱
例8.画出如图所示的零件的三视图。
俯
左
画出教师出示的立体图形的三视图。
归纳:三视图的作图步骤
1.确定主视图方向 2.布置视图 3.先画出能反映物体真实形状的一个视图 4.运用长对正、高平齐、宽相等1 原则画出其它视图 5.检查 6.加深
1.4 从不同的方向看(1)练习
1.4 从不同的方向看(1)练习一、目标导航1.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形,能识别简单物体的三视图,会画立方体及其简单组合体的三视图.2.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.3.体会从不同方向看同一物体可能看到不同的结果.4.能画立方体及其简单组合的三视图.二、目标导航1. 观察图形,得到圆锥的三视图是( )A.主视图和俯视图是三角形,侧视图是圆.B.主视图和侧视图是三角形,俯视图是圆.C.主视图和侧视图是三角形,俯视图是圆和圆心.D.主视图和俯视图是三角形,侧视图是圆和圆心.2.观察长方体,判断它的三视图是( )A.三个大小不都一样的长方形,但其中有两个可能大小一样.B.三个正方形.C.三个一样大的长方形.D.两个长方形,一个正方形.3.物体的形状如图所示,则此物体的俯视图是( )A B C D4.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边5.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是( )主视图左视图俯视图A. 4B. 5C. 6D. 76.一张桌子上摆放着若干个碟子,从三个方向上看在眼里,三种视图如下图所示,则这张桌子上共有碟子为 ( )A.6个B.8个C.12个D.17个三、能力提升7.如图,桌子上放着一个圆锥和一个圆柱,请写出下面三副图中从哪具方向看到的?(1) (2) (3)8.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是什么?俯视图主视图9.下面是用几个小正方体搭成的四种几何体,分别画出它们(箭头指示为正面)的三视图.10.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是( )四、聚沙成塔右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )。
从不同方向看 (1)教学案
从不同方向看【步步高——学习目标】掌握立方体及其简单组合体的三视图的画法.理解简单物体的三视图的识别方法.认识三视图的定义.想快乐晋级吗?先准备一下吧!【探新必备】1.能分清前与后、左与右、上与下;2.能把一个较复杂的立体图形分解为几个简单几何体;3.会简单的画图.读者朋友,你真的准备好了吗?请完成以下诊断题目:1.图1-4-1中的儿童是贝贝,水果是葡萄、香蕉和苹果,则贝贝的前面、左侧、上方的水果分别是.2.如图1-4-2,图⑴中的立体图形可看作是由几何体与组成的;图⑵中的立体图形可看作是由几何体与组成的;图⑶中的立体图形可看作是由几何体与组成的.3.画圆的专用工具是.答案提示1.苹果,香蕉,葡萄 2.三棱锥四棱柱圆柱圆锥正方体球 3.圆规知识点1 不同方向看实物体【问题线索】【精要概括】物体因为发光或在光源下反射光,我们才能看到它,而光线是沿直线传播的,所以在不同的方向看物体时,由于物体自身及其他物体的遮挡等原因,观看到物体的形状是不同的.新知讲解实物体不同的图片实物体不同方向看抽象思维图1-4-1⑴⑵⑶图1-4-2哈哈哈,模拟实验很有效哦!1.一个实物体不同方向的图片的区分,关键在于实物体表面特征的观察;2.多个实物体不同方向的图片的区分,主要是分析各物体的前后、左右位置关系的变化.温馨提示:联系实际,融于情景,你的判断才能更加准确.【例题精析】例1.调皮的圆圆与手巾筒———小熊对视了一会,又爬到小熊的左边看了一会,最后站起来低头观察小熊.你能把圆圆看到的图1-4-3所示景象按先后顺序排一下吗?⑴⑵⑶图1-4-3命题意图:考查学生的生活常识及想象力.解题流程:解:圆圆看到的图1-4-3所示景象的先后顺序是⑵⑶⑴.指点迷津:对于所看物体的图片的先后顺序的判断,一般是先确定第一幅,再依次为参照物进一步判断即可.成功体验1.如图1-4-3,如果图⑶是圆圆正面看到的,那么图⑴⑵是圆圆分别从什么方向看到的?知识点2 画几何体的三视图【问题线索】【精要概括】本章所研究的三视图是对观察者而言的,将一物体置于观察者面前,从正面看到的图,称为主视图;从左面看到的图,称为左视图;从上面看到的图,称为俯视图.1.三视图是平面图形;2.对于同一物体,从正面与从后面看到的图是相同的,从左面与从右面看到的图是相同的,从上面与从下面看到的图是相同的.温馨提示:熟练掌握常见几何体的三视图是正确画出复合几何体三视图的基本前提.常见几何体的三视图为:(如图1-4-4)几何体三视图组合几何体的三视图从前、左、上方看组合左侧观察图片⑵是第1 ⑵是第1对视⑵是第1 低头圆锥圆柱球正方体俯视图俯视图俯视图俯视图左视图左视图左视图左视图主视图主视图主视图主视图图1-4-4【例题精析】例2.画出图1-4-5中所示几何体的主视图、左视图和俯视图.图1-4-5命题意图:考查学生的分析观察及画图能力.解题流程:解:如图1-4-6:主视图左视图俯视图图1-4-6指点迷津:已知组合几何体画它的主视图、左视图、俯视图,关键是确定它有几列、几行,以及每列、行小方块的个数.成功体验2.画出如图1-4-7所示几何体的主视图、左视图、俯视图.正方体 正方体的三视图组合几何体的三视图从前、左、上看 组合告诉你一个秘密:正方体、球的三视图都相等,圆柱、圆锥的主视图、左视图相等哦.图1-4-7知识点3 由三视图想象立体图形【问题线索】【精要概括】由视图到立体图形,也就是根据视图想象出所反映的物体 的形状,我们可称为读图.读图的一般知识: 主视图和俯视图的长度相等,主视图和左视图的高度相等,左视图和俯视图的宽度相等. 1.主视图的长与高、左视图的宽与高;俯视图的长与宽 分别与立体图形的长宽高相等;2.视图中的列数、行数与立 体图形的列数、行数相同.温馨提示:读图时,可从主视图上分清物体各部分的上下 和左右位置,从俯视图上分清物体各部分的左右和前后位置, 从左视图上分清物体各部分的上下和前后位置. 【例题精析】例3.请根据图1-4-8中所示的三视图画出原立体图形.主视图左视图俯视图图1-4-8命题意图:综合三视图确定几何体.解题流程:解:如图1-4-9:三视图 确定几何体列数、行数 几何体形状 分析列数、行数 综合哇哇哇!看来得买套积木训练一下我的抽象思维能力了.俯视图 特征长宽主视图长高宽高特征 左视图特征图1-4-9指点迷津:一般先根据俯视图确定立体图形的底层组合,再根据主视图、左视图确定列与行即可.成功体验3.一个物体的三视图如图1-4-10所示,试说明物体的形状.俯视图主视图主视图图1-4-10综合能力点【—探究示例】类型1 画物体的三视图例4.如图1-4-11所示是一个机器零件,请你画出它的三视图.主视图左视图俯视图图1-4-11 图1-4-12命题意图:考查学生综合立体图形的能力.解题流程:解:如图1-4-12.类型2 三视图的应用例5.某学校设计了如图1-4-13所示的一个雕塑,取名“阶梯”,现在工厂师傅打算用油漆喷刷所有暴露面,经测量,已知每个小立方体的棱长为 0.5 米,你能帮助工厂师傅算一下,需油漆的总面积是多少?常见几何体三视图综合立体图形的三视图 组合 画三视图原则:主俯长对正,主左高平齐,左俯宽相等.主视图左视图俯视图图1-4-13 图1-4-14命题意图:考查三视图的应用.解题流程:解:三视图如图1-4-14,则主视图与左视图的面积都是0.5×0.5×6=1.5(平方米),俯视图的面积是0.5×0.5×5=1.25(平方米).因为从左面看和从右面看到的是一样的,从前方看和从后面看到的是一样的,所以油漆总面积为: 1.5×4+1.25=7.25(平方米).【警示牌——错例分析】例6.如图1-4-15所示的几何体是由多少块小立方体组成的?图1-4-15错解:6 块. 错因分析:忽略了后排左侧下面一块看不见的小立方块.正确解答:7块. 思路分析:后排第一列 2 块,第二列 2 块,前排第一列1块,第二列2块,共2 + 2 + l +2 = 7(块)(满分100分,建议用时30分钟)【双基达标】1.如图1-4-17,从茶盒上方看到的图形是( )A .八边形B .六边形C .八棱柱D .六棱柱图1-4-17初试身手实物体 三视图 油漆总面积 不同方向看 前后、左右、上下视图相同主视图左视图俯视图图1-4-182.一个几何体的三视图如图1-4-18所示,这个几何体是()A.正方体B.球C.圆锥D.圆柱3.如图1-4-19,在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童.这个铅笔盒(左图)的左视图是()A.B.C.D.4.如图1-4-20是妮妮从不同方向所看物体的图像,如果图⑴是从正面看所得图像,那么图⑵、图⑶分别是从面、面看所得图像.⑴⑵⑶图1-4-205.展览厅内要用相同的正方体木块搭成一个三视图如图1-4-21所示的展台,则此展台共需这样的正方体______块.图1-4-216.如图1-4-22,小刚从正面看,小华从左面看,那么二人看到的主视图相同吗?若相同,画出小刚看到的左视图.图1-4-22【综合提高】7.如图1-4-23,请画出它的三视图.图1-4-19图1-4-238.如图1-4-24是一个包装盒的三视图,试求这个包装盒的体积.图1-4-249.请你根据图图1-4-25所示,叙述一下火星登陆车登陆火星的全过程.(文字在50字以上)图1-4-25【拓展深化】10.图1-4-26是由一些小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方体的个数,请你画出它的主视图.一变:请你在俯视图上加上几块小立方块,使其主视图变为“山”字;二变:若图1-4-26中小正方形中的数字变为 1, O, 5, O, 1.请你画出其左视图.51111图1-4-26主视图20cm左视图20cm俯视图。
冀教版二年级数学上册第一单元 观察物体(一)教案 第一课时 从不同的方向观察物体
第一课时从不同的方向观察物体◆教学内容教材第1~3页,从不同的方向观察同一物体。
◆教学提示学生在日常生活中时刻都在对身边的物体进行观察,他们也基本理解从不同的位置观察同一物体,该物体的形状可能不相同。
但是在本节课教师要积极的引导学生,使学生本来模糊的认识变得清晰、准确起来,从数学的角度来强化学生日常生活中形成的观察经验。
要让学生以亲身体验、操作为主,经历知识形成的过程,积累学习数学的方法与策略。
◆教学目标知识与技能:初步体会从不同的位置观察同一物体,看到的物体形状可能不一样,能辨认从某个位置观察到的简单物体的形状。
过程与方法:通过观察、比较、辨认、想象等活动,使学生能够运用“从不同的位置观察物体的方法”辨认物体,发展形象思维和空间想象力。
情感态度与价值观:引导学生感受局部与整体的关系,激发学生学习数学的兴趣和积极性,培养学生的合作意识,◆重点、难点重点从不同的位置观察同一物体,看到的物体形状可能不一样,感受局部与整体的关系。
难点能区别从不同位置观察到的物体形状,会根据看到的形状图判断观察位置。
◆教学准备教师准备:玩具小猴子8只,数码照相机一台,多媒体课件学生准备:学生每四人一组围桌而坐。
◆教学过程一、创设情境,激趣导入1.巧用儿歌讲故事(课件出示“盲人摸象”的图片)师:同学们,你们听过“盲人摸象”的故事吗?谁能简单给大家说一说?生:…(简单叙述故事情节)师:今天老师把这个故事改编成了一首儿歌,想不想听一听?(投影,在图片旁边出示儿歌,并请一位同学读一读)四位盲人去摸象,一起来到大象旁,一人摸到象耳朵,说像蒲扇能扇凉,一人摸到象身体,又大又厚像堵墙,一人摸到大象腿,说像柱子高过房,还有一人摸尾巴,说像绳子细又长,小朋友们不要笑,快把叔叔帮一帮!师:小朋友们,为什么同是一头大象,盲人叔叔说出的结果却各不相同呢?生:因为他们摸到的只是大象身体的不同部分。
师:是啊,盲人叔叔看不见,以为他们摸到的那一部分就是大象了,怎样才能让盲人叔叔们真正了解到大象的样子呢?生1:让盲人叔叔们把大象完整的摸一遍……生2:我们把大象的样子仔细的说给盲人叔叔听……师:你们真是又聪明又善良的好孩子,我们要想把大象的样子描述给盲人叔叔听,一定要仔细的观察大象才行,今天,我们就来学习观察物体的方法。
七年级上册 第四章 几何图形初步 教材分析 文字稿及例题解析含答案
第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的学习有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何学习将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于学习的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章学习目标(1)通过从实物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;理解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)理解角的概念,掌握角的符号表示;会比较角的大小;认识度、分、秒,并会进行简单的换算,会计算角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题,培养学习图形和几何知识的兴趣,通过交流活动,初步形成积极参与数学活动、主动与他人合作交流的意识.3.本章知识结构图重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成良好的几何作图的习惯,体会和模仿几何计算的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的学习,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由实物形状想象(抽象)出几何图形,由几何图形想象出实物形状.(2)对图形的表示方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1 几何图形 4 课时4.2 直线、射线、线段 3 课时4.3 角 5 课时4.4 课题学习 2 课时小结 2 课时二、教学建议1. 总体教学建议(1) 教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简单几何体和平面图形有一些感性的了解,能结合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从不同方向(前面、侧面、上面)看到的物体的形状图,能认识最简单的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活实物、图片、多媒体工具演示等要学生充分去体验激发学生兴趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生学习的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识. (3)要重视画图技能的培养.应注意要求学生养成良好的习惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的学习态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用. (4)要重视几何语言的教学.几何图形是“空间与图形”的研究对象,对它的一般描述表示是按“几何模型→图形→文字→符号”这种程序进行的.其中,图形是将几何模型第一次抽象后的产物,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.显然,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究对象的三种数学语言的综合描述,有了这种整体认识,三种语言达到融汇贯通的程度,就能基本把握对象了.要注意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外习题等各个环节,逐步训练学生的几何推理表达. 这些不仅是学习好本章的关键,同时对于学好以后各章也是很重要的.(5)在学习中通过对比(如直线、射线、线段)和类比(线段和角)加深理解. (6)注意训练几何推理书写方式,纠正用算术式进行几何计算的习惯: 【“旧”习惯】90245÷=【“新”写法】11904522COB AOB ∠=∠=⨯= 【为什么习惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学. 例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个重要性质:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.线段有这样一条重要性质:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.这两个性质是研究几何图形的基础,复习时应抓住性质中的关键性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复习角的概念时,应注意理解两种方式来描述,即一种是从一些实际问题中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些事实:(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改变.如一个37°的角放在放大或缩小若干倍的放大镜下它仍然是37°不能误认为角的大小也放大或缩小若干倍.另外对角的表示方法中,当用三个大写字母来表示时,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误认为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生学习积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析习惯,为后续学习打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的习题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在后面的章节还要再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.在教学中,可以从看图分析图形特点进行想象或先动手做再分析图形,两方面同时进行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的习惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何学习起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练习,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1 立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,注意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也可以认识棱台或圆台.知识点2:从不同角度看立体图形得到平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要求学生记忆,重要的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在后面圆一章中还能够再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.2. 通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2 点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这部分学生在小学阶段就有了相应的体验,关键是学生能进一步抽象理解这些概念,如对点的认识,它只表示一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2 直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称图像表示延伸端点度量直线 1.直线AB(或直线BA)2.直线l 向两端无限延伸0 不可度量射线 1.射线AB2.射线l 向一端无限延伸1 不可度量线段 1.线段AB(或线段BA)2.线段a不可延伸 2 可度量知识点2:几何语言和作图;点和直线教学建议:1.应该学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只有”等说法,并能画出相应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学建议:要让学生理解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.强调中点必须在线段上,可以提出探究性问题“MA=MB,能否断言M就是线段AB的中点?”,可以要学生利用尺规作图进行探究.2.合理利用中点进行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.建议此时不上难题、综合题,目的是先解决“三种语言”的问题,也为后续研究角的计算打好基础,分散难点.4.3.1 角知识点1:角的两种定义方法教学建议:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到0和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范问题.2.书写时尽量写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学建议:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2 角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来学习“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型习题:A CM BN4.3.3 余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅表示数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则往往会出现两个角互为余角/补角,可以用来计算角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4 课题学习制作长方体形状的包装纸盒通过这一学习体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:可以安排与立体图形展开图教学结合进行.第四章几何图形初步小结复习1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形结合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例2.点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计算时常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形结合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从不同方向看例1.将两个大小完全相同的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,得到的平面图形是()第解析:从上面往下看,可以看到上面杯子的底和两杯子的口都是圆形,应用实线表示,故选C. 例2.图2是一个几何体的实物图,从正面看这个几何体,得到的平面图形是()解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C. 2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()解析:圆锥的展开图是一个圆和一个扇形,D 选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是DC B A 图1图2图3图4________.解析:将正方体的展开图折成正方体,可以得到2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6. 3 .线段的性质与计算例5. 在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接得到答案. 应填“两点之间,线段最短. ”例6.如图5,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =12,AC =8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4. 又因为D 是BC 的中点,所以CD=12BC=2.故填2. 4. 角度的计算例7.如图6所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°解析:由∠1=40°及平角定义,可求出∠BOC 的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°. 又因为OD 是∠BOC 的平分线,所以∠2=12∠BOC=70°. 故选D. 例8.如图7,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD=45°,则∠COE 的度数是()A. 125°B. 135°C. 145°D. 155° 解析:因为OE ⊥AB ,所以∠BOE=90°.因为∠BOD=45°,所以∠DOE=45°. 所以∠COE=180°-∠DOE=135°. 故选B. 5. 余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.12ABO C D 图6ACBEDO 图7 图5解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.(2)由补角定义,这个角是:180°-36°35′=143°25′.故填143°25′.6. 规律探究问题例10.平面上不重合的两点确定1条直线,不同三点最多可确定3条直线,若平面上不同的八个点最多可确定直线()A. 25条B. 26条C. 27条D. 28条解析:用n 表示平面上的点数,当n=2时,有1条直线;当n=3时,最多有直线:2+1=3(条);当n=4时,最多有直线: 3+2+1=6(条),…,由此可见,平面内有n 个点时,最多可画出2)1(-n n 条直线. 所以平面上不同的八个点最多可确定直线:8(81)2-=28(条).故选D.四、易错点点拨举例易错点1 对概念、性质把握不准例1 有下列说法:①直线是射线长度的2倍;②线段AB 是直线BA 的一部分;③直线、射线、线段中,线段最短. 其中说法正确的有( )A. 3个B. 2个C. 1个D. 0个错解:选A.分析:错解没有真正理解直线、射线的延伸性,这种延伸决定了直线、射线不能度量其长度,不能比较其长短,所以①③是错误的.正解:选C.易错点2 角的表示错误例2如图1所示,∠1,∠2,∠3用字母怎样表示?错解:∠1可表示为∠A ,∠2可表示为∠D ,∠3可表示为∠C.分析:错误的原因在于不能正确理解角的表示方法,同一顶点处有多个角时,必须用三个字母表示.正解:∠1可表示为∠CAD ,∠2可表示为∠ADC ,∠3可表示为∠ECF.易错点3换算之间的错误A CB D E1 2 3 图1例3计算:(1)30°52′+43°50′;(2)106°9′-34°58′.错解:(1)30°52′+43°50′=74°2′;(2)106°9′-34°58′=71°51′.分析:与度、分、秒有关的角度计算,应把度、分、秒分别计算,同时还要注意它们之间是60进制.错解错在把度、分、秒之间的进制当成了100进制.正解:(1)30°52′+43°50′ =(30°+43°)+(52′+50′)=73°102′=74°42′;(2)106°9′-34°58′=(105°+69′)-(34°+58′)=(105°-34°)+(69′-58′)=71°11′.易错点4 拼图识图错误例4如果将标号为A,B,C,D的正方形沿图中的虚线剪开后从新拼接得到标号为P,Q,M,N的四个图形,如图2所示,A,B,C,D分别与哪个图形对应?图2错解:A与P对应,B与Q对应,C与M对应,D与N对应.分析:本题错误的原因是观察图形不细心,像这样的问题,最好动手剪一剪,拼一拼.正解:A与M对应,B与P对应,C与Q对应,D与N对应.。
从不同方向看1
背面
左 面
上面
正面
右面
注意: 从正面看到的图是主视图; 从左面看到的图是左视图; 从上面看到的图是俯视图。
请说出下面三幅图分 别是从哪个方向看到 的?
左视图
俯视图
主视图Βιβλιοθήκη 回顾与思考现在我们学习了从不同方向看同一物体。并得知 “从不同方向观察同一物体时,可能 看到不同的图形 ”。在生活中我们也应从不同角度,多方面地去看待一件 在生活中我们也应从不同角度, 事物,分析一件事情。 事物,分析一件事情。 数学中我们只从三个不同方向看同一物体,所以,每 数学中我们只从三个不同方向看同一物体,所以, 一个物体都有三视图 三视图。 一个物体都有三视图。 从正面看到的图形 从左面看到的图形 从上面看到的图形
主视图
俯视图
左视图
看谁画得好
画出左图的主视图、 左视图、俯视图
主视图
左视图
俯视图
看谁画得好
画出图中几何体的三视图
主视图
左视图
俯视图
作业
习题1.6 习题 知识技能: 、 知识技能:1、2
1.4 从不同的方向看 (一) 一
一辆小汽车从小明的面前经过, 一辆小汽车从小明的面前经过,请按 照汽车被摄入镜头先后顺序给下面的 照片编号. 照片编号.
①
②
③
④
⑤
②①⑤④③
下面的四幅图形, 下面的四幅图形,分别是在 哪个方向看到的? 哪个方向看到的?
右后
左面
左后
右面
下面五幅图分别是从什么方向看到的?
主视图
左视图
俯视图
看谁找得快
下面是右图几何 体的主视图是( B ) 体的主视图是(
(A)
(B)
冀教版二年级上册数学1.1 从不同方向观察同一物体课件
1 观察物体(一)
从不同方向观察同一物体
课前导入
探究新知
课堂练习
课堂小结
课后作业
从不同方向观察同一物体
课前导入
小朋友,四个盲人摸同一头 大象为什么说的不一样呢?
像一面墙。
像…。。。
像根大柱子
像一条绳子
从不同方向观察同一物体
从数学角度分析:观察物体的角度不 同,所看到物体的形状是不同的。
这两张照片分别是谁拍的?
小兔子在房子的侧 面所以拍到的是房
子的侧面。 →小兔子
→小猴子 小猴子在 房子的上 面所以拍 到的是房 顶。
从不同方向观察同一物体
练一练
1.下面四幅图分别是谁看到的,填在(
亮亮
)里。
红红
聪聪
丫丫
丫丫
丫丫
红红
红红
聪聪
聪聪
亮亮
亮亮
从不同方向观察同一物体
2.下面四张照片分别是从汽车的前面、后面、 例 1 侧面和上面拍的,在( )里写出拍照的位
从不同方向观察同一物体
连一连
我从上面看
从不同方向观察同一物体
连一连
从不同方向观察同一物体
课堂小结
这节课你们都学会了哪些知识?
1.从数学角度分析:观察物体的角度不同, 所看到物体的形状是不同的。
2.能根据具体的事物、图片和照片,直观辨 认从不同角度观察到的简单物体。
从不同方向观察同一物体
探究新知 下面四幅图分别是谁看到的?
聪聪在大象的正 面,所以能看到 聪聪 大象正面的脸。
亮亮在大象 的左侧所以 看到的大象 头在左侧。
聪聪
丫丫
九折
5.4从三个方向看(1)
教师提问:你能举出日常生活中遇到的上述现象吗?
然后介绍主视图同左视图、俯视图,并向学生说明一般将左视图画在主视图的左边,将俯视图画在主视图的下面,然后引导学生总结归纳三个视图之间的关系。
主视图与俯视图不变的是什么?主视图与左视图不变的是什么?左视图与俯视图不变是什么?投影显示带包装带的长方体,学生练习后教师将学生所画图形投影显示,再次体会三视图之间的关系。
(1)如图桌面上放着一个物体
下图中的三幅图分别是从那个方向看到的?说出这三个视图的名称
(2)画出下列所示物体的三个视图
(3)下图物体有多少个小立方块?请画出它的三个视图
观赏图片,跟音箱低声吟诵苏轼诗“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”多美的山,多美的诗,学生讨论回答,说说这首诗的含义,并说出日常生活中的类似体验。
学生思考后,分组讨论,画出图形,并踊跃展示
从生活实际出发,观察探究,初步感知从不同方向看同一物体所看到的形状往往是不同的。
通过操作,培养学生观察力,发展学生的抽象思维能力,并在活动中引导学生自主探索、合作交流,初步体验二维与三维空间的转换关系。学生参加活动更加活跃,并对物体的三视图产生浓厚的兴趣,培养合作交流能力、空间想象能力。
学生模拟,归纳,与位置有关的演绎,实际操作等一系列尝试,观察与投影,视图与感知与构造,直观与推理互相交织,最后得出正确结论
通过思考和简单的试验,很快能得出答案
从正面、上面、侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,就是视图。这样就把一个物体转化为平面的图形。
从正面所看到的图形,称为正视图;从上面所看到的图形,称为俯视图;从侧面所看到的图形,称为侧视图;依观看方向不同,侧视图又分为左视图、右视图。它们统称为三视图。
新人教版四年级下册数学(新插图)1 从不同位置观察同一物体的形状 教学课件
从上面和左面看,图形相同。
从前面看 从上面看 从左面看
从前面看 从上面看 从左面看
不同形状的立体图形从同一方向进行观察, 所看到的形状可能不同,也可能相同。
摆一摆,看一看。 这3个图形,从哪面看到的图形相同?从哪面看到的图形不同?
形状相同的
从左面看 → 从上面看 →
摆一摆,看一看。 这3个图形,从哪面看到的图形相同?从哪面看到的图形不同?
从右面观察下面的立体图形,看到的图形是( B )。
A
B
C
从左面观察下面的立体图形,看到的图形是( C )。
A
B
C
涂一涂 给从左面看到的图形涂上颜色。
给从上面看到的图形涂上颜色。
这节课你们都学会了哪些知识?
从左面看 从上面看 从前面看
小华
不同位置观察一个立体图形,所看到的形状是不同的。
2 观察物体(二)
交流:下面的图形分别是小华从什么位置看到的?
小华
从前面看 从上面看 从左面看
不同位置观察一个立体图形, 所看到的形状是不同的。
下面的图形分别是小强从什么位置看到的?连一连。
小强
从前面看 从上面看 从左面看
从左面看 从上面看 从前面看
小强
同一方向观察不同几何体,所
小华
看到的形状可能是相同的。
填一填 从(左面)看 从(前面)看 从(上面)看
说一说:可以从哪几个位置观察物体?
从上面观察 从左面观察
从前面观察
交流:下面的图形分别是小华从什么位置看到的?
小华
从前面看 从上面看 从左面看
交流:下面的图形分别是小华从什么位置看到的?
从左面看见第一排和第二排 各1个正方形。即:
《4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图》教案、同步练习(附导学案)
4.1.1 立体图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》教案【教学目标】:1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.【教学重点】:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.【教学难点】:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.【教学过程】:一、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题:(1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?二、立体图形的展开图1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究:正方体的平面展开图共有哪些形状?5.交流总结:正方体的平面展开图形状:141型:(共6个).231型:(共3个).33型:(1个).222型:(1个).6.练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是( )(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.2.下图是一个立方体纸盒的展开图,其中三格已经分别填入一个数,请在其余三个正方形内填入所有可能的数,使得折成立方体后相对面上的两个数绝对值相等,则填入正方形间A,B,C内的数依次为.4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》同步练习一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a 在展开前所对的面上的数字是( ).A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是 ( )6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A. B. C. D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形.12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件底面积×高).的体积(π取3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱) ;【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》导学案【学习目标】:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.【学习重点】:识别并会画出从不同方向看简单几何体所得到的平面图形.【学习难点】:识别并会画出从不同方向看简单组合体所得到的平面图形.【使用要求】:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.【学习过程】一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)。
1.4从不同方向看
1.4 从不同方向看 画三视图: 练习题: 例 1: 教学 反思
课堂 练习
课堂 练习
学 校 课 题
调兵山市六中
教师
闻立萍
1.4 从不同方向看 课型 新授 [知识目标]1.通过从不同方向观察物体的活动过程,发展空间观念。2.熟练 掌握由实物图画三视图。3.灵活准确由俯视图画画其它两视图的方法。 三维 [过程目标]经历观察实物图画三视图,由俯视图画其它两视图的过程,发展 逆向思维能力 目标 [情感目标]感受观察探索乐趣,培养学生动手实践与观察的习惯。 由三视图画实物图,由俯视图直接画其它两视图。 由俯视图直接猜想再画其它两视图。 活动参与法 讨论交流法 教 教学 学 过 程 设计意图 时间 教具 5 个正方体、 多媒体 课堂 小结 课后 作业 思考题
生猜想及动手 操作能力,发 展空间想象, 拓展思维。 这样的几何体只有一种吗?它最少需要多少个小立 方块?最多需要多少个小立方块? 3.想一想:上题中的主视图与俯视图的几何体,最少 块数时有几种摆法? 1. 由实物图画三视图注意。2.由俯视图画主视图、 左视图方法。 2. A 组:26 页知识 1 B 组:26 页理解 1、2 下图是用小立方块搭成的几何体的主视图和左视图。 试问,这样的几何体只有一种吗?它最少需要多少个 小立方块?画出最少时的俯视图。 左视图 主视图 05 发展语言表达 能力和归纳总 结能力 设计分层次作 03 业关注不同层 次学生。 进一步挖掘学 04 生思维,培养 学生积极思 维、多角度分 析问题的能 力。 10
重 点 难 点 教学 方法
师生活动 物体的三视图分别是指从哪几个方向看到的?源自内容 导入 新课 积极 探索
例题 讲解
回顾旧知,为 新知识作好准 03 1.教材 25 页做一做: (1)用 5 个小立方块搭几何体。 备。 (2)画出这三种搭法的三视图。 教师引导学生观察确定列数、行数、排数,学生动手 明确三视图的 三视图。 画法,发展观 05 2.分组竞赛:每 4 人一小组用 5 个立方体搭几何体, 察学生能力。 看哪组所搭几何体最多,画出所搭几何体三视图。 讲解例 1:由图中俯视图画主视图、左视图。 发展学生学习 05 的热情与积极 性,进一步培 教师启发提示,学生集体合作交流,分组讨论,画另 养观察与实践 两视图。 能力。 1. 由 俯 视 图 画 主 视 图 、 左 视 图 。 及时反馈,检 查所学 05 2. 用小立方块搭一个几何体,使得它的主视图和 俯视图如图所示. 05 进一步培养学 板书 设计
从不同方向看物体
谈谈收获 1、三视图的概念; 2、会画简单立体图形的三视图.
圆锥三视图
正视图
侧视图
· 俯视图
画出如图4.2.3和图4.2.4 所示的正方形和圆柱的三 视图。
解:如图4.2.5,正方体的三视图都是正方形。
4.2.3
正视图
左视图
4.2.5
俯视图
首页
4.2.4
如图4.2.6,圆柱 的正视图和左视图都 是长方形,俯视图是 圆。
正视图
左视图 4.2.6
俯视图
首页
如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面. 其中正对着我们的叫做正面. 正面下方的叫做水平面, 右边的叫做侧面. 一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面 内得到的由前向后观察物体的视图,叫做主视图(从前面看);
在水平面内得到的由上向下观察物体的视图,叫做俯视图(从上面看)
主视图
左视图
主视图
左视图
俯视图(3)
俯视图(4)
驶向胜 利彼岸
理一理:
1、从正面看到的图形叫做主视图,从上 面看到的图形叫做俯视图,从左面看到的 图形叫做左视图。
2、画三视图必须遵循的法则:“长对齐,高平齐,
宽相等”
3、基本几何体的三视图: (1)正方体的三视图都是正方形。
(2)圆柱的三视图中有两个是长方形,另 一个是圆。
动手设计
请画出下面立体图形的三视图。 俯视方向 注意:根据“长对正,高平齐,宽相等” 画 三视图必须遵循的法则作图。
画好后,请你自己参照课本65页的图3—21给自己画的 图打分,并把画得不够好的地方修改过来,加油!
辨一辨,说一说:
1、一个几何体的视图是唯一的,但从 视图反过来考虑几何体时,它有多种 可能性。请你举一些例子加以说明。
新人教版《观察物体(二)》课件(完整版)1
从不同位置观察同一个物体,得到的图形可能
(2)从左面看到的是B的有(
)。
最多能看到这个物体的三个面。
从任意位置观察同一物体:
从不同方向观察同一组物体
(1)从不同方向观察同一组物体
(2)从同一方向观察不同的立体图形
(2)从左面看到的是B的有(
)。
(2)从左面看到的是B的有(
)。
(2) 从左面看是图②的立体图形有(
(2)从同一方向观察不同的立体图形
从同一位置观察由相同个数的小正方体摆成的不同的物体,所看到的图形可能相同,也可能不相同。
从不同位置观察同一个物体,得到的图形可能
(2)从左面看到的是B的有(
)。
下面的立体图形从前面、左面、上面看到的分别是什么图形?
从不同位置观察同一物体,把观察到的图形画出来,并与题中的图形对照,得出正确的答案。
从左面看这3个物体,图形相同吗? 从左面看,图形相同。
从前面看这3个物体,图形相同吗? 从前面看,图形不相同。
归纳总结:
1.从同一位置观察不同物体: 从同一位置观察由相同个数的小正方体摆成的不同 的物体,所看到的图形可能相同,也可能不相同。 2.从任意位置观察同一物体: 最多能看到这个物体的三个面。
体图形是( A )。
大家学会怎样观察物体了吗?
1.从不同位置观察同一个物体,得到的图形可能 是相同的,也可能是不同的。
2.从同一位置观察由相同个数的小正方体摆成的 物体,所看到的图形可能相同,也可能不相同。
(2)从左面看到的是B的有(
)。
(2)从左面看到的是B的有(
)。
(1)从不同方向观察同一组物体
摆一摆,看一看。
这3个物体,从哪面看到的图形相同? 从哪面看到的图形不同?
北师大版一年级下册第2单元 观察物体_第01讲 实物的观察(教师版讲义含答案)
知识图谱实物的观察知识精讲从不同方向观察同一个物体,看到的形状可能是不同的,即观察点不同,看到的物体的形状可能不同.观察者与被观察物体的位置发生变化时,观察者所看到的物体形状可能会发生变化.可以先通过观察、比较分析物体的前、后、左、右各是什么形状的,再判断从某一个方向所能看到的物体的形状.典型例题(1)从不同方向看看,说说你看到了什么.(2)小霞看到的是哪幅图?(画“√”)名师学堂理解题意.(1)从图中看到:小霞坐在小兔的前面观察小兔,小宇坐在小兔的侧面观察小兔,他们坐在不同的位置观察同一物体.小霞坐在小兔的前面,能看到小兔头上有漂亮的小花,还能看到小兔的眼睛、鼻子、嘴巴等.小宇坐在小兔的侧面,能看到小兔的一只耳朵和小兔一侧的身体.(2)从图中可以看到,小霞坐在小兔的后面观察小兔,三幅图片中,只有一幅图片符合小霞看到的小兔的样子,要向正确地选出图片,必须知道从小霞的位置观察到的小兔是什么样子的.小霞坐在小兔的后面,能够看到小兔的两只耳朵、小兔头的背面和身后的小尾巴,看不到眼睛、鼻子、嘴等部位.(可以把自己想象成小霞,在小霞的位置观察物体的特征.)所以,小霞看到的是小兔的后面,选第二幅图片.三点剖析重点:能从不同方向辨认所观察到的同一物体的形状.难点:理解从不同方向观察同一物体所看到的形状可能是不同的.感受立体图形与平面图形的联系.易错点:有些物体从不同的方向看,看到的形状可能是相同的.从不同角度观察一个物体例题例题1、连一连【答案】略【解析】理解图意,小女孩正好在小车的前面、后面和侧面观察.在前面能看到小车的车牌和车前方的窗户等,在后面能看到小车后面的车牌和后面的窗户等;在侧面能看到小车的车轮和侧面的窗户等.连线如图.例题2、下面是乐乐为小猴子拍的四张照片,你知道他是站在小猴子的哪个方向拍的吗?(填“前面”“左面”“后面”“右面”)离开了猴馆,我们就来到恐龙馆.【答案】前面;右面;后面;左面【解析】前面;右面;后面;左面例题3、他们分别看到的是什么?连一连.【答案】【解析】例题4、填一填.下面的图分别是从前面、右面、上面哪个方向看到的?【答案】右面;前面;上面【解析】右面;前面;上面随练随练1、下面各图分别是谁看到的?请指出来.【答案】图1是小明看到的;图2是小亮看到的;图3是小红看到的;图4是小刚看到的.【解析】有图可知,图2和图3是从恐龙的前面和后面观察到的,而图2看到了恐龙的嘴巴眼睛等,所以应该是从前面看到的,观察者应该是小亮;图3看到了恐龙的尾巴,所以是小红看到的.图1和图4是从恐龙的侧面观察的,所以观察者应该是小明和小刚,图1和图4的方向不同,小明看到的恐龙的头在左边,所以是图1;图4是小刚看到的.随练2、连一连.它们分别看到的是什么?【答案】【解析】随练3、选一选.下面第()幅图是从小猴后面拍的,第()幅图是从小猴右面拍的.A B C D【答案】【解析】C;B随练4、如下图,一个正方体的六个面上分别写着“我”“们”“热”“爱”“数”“学”这六个字中的一个.“我”的对面是(),“们”的对面是(),“数”的对面是().【答案】热;爱;学【解析】热;爱;学根据看到的物体,判断观察者例题例题1、连一连【答案】略【解析】由图可知,小猫在大象的前面观察,可以看到大象的鼻子、眼睛等;猴子在大象的侧面观察,可以看到大象的身体一侧.连线如图.例题2、下面三幅图分别是谁看到的?连一连.【答案】【解析】例题3、三个人分别看到的是哪幅图?连一连.【答案】【解析】例题4、下面的图分别是谁看到的?在()里写上他们的名字.()()()【答案】元元;贝贝;丽丽【解析】元元;贝贝;丽丽随练随练1、连一连.【答案】略【解析】小猪在警长的前面,所以能看到警长的眼睛、嘴巴等;小兔子在警长的后面,所以能看到警长的尾巴和警长头的后面,看不到眼睛等;小猴子在警长的侧面,能看到放下的手和身体一侧;狐狸在警长的侧面,能看到举起的右手,但是看不到放在身侧的手.连线如图.随练2、下面三幅图分别是谁看到的?请写上名字.看了猴子的表演,又欣赏了恐龙化石,最后我们来到了动物表演乐园,正巧三只小动物在小屋的旁边表演.【答案】小亮;小刚;小敏【解析】小亮;小刚;小敏随练3、长颈鹿看到的是哪幅图?(画“√”)【答案】()(√)()【解析】()(√)()随练4、小光看到的是().A B C【答案】【解析】C拓展拓展1、分别是谁看到的?连一连.【答案】【解析】拓展2、下面哪幅图是小红看到的?(画“√”)小红()()【答案】【解析】拓展3、填一填.下面的数字分别是谁看到的?(填序号)【答案】②;③;①【解析】②;③;①拓展4、连一连.他们分别看到的是哪幅图?【答案】【解析】拓展5、下面各图分别是谁看到的?连一连.【答案】【解析】拓展6、它们谁说得对?对的在□里画“√”,错的画“×”.【答案】×;√;×【解析】×;√;×拓展7、下面的图分别是谁拍摄(shè)的?连一连.小方小玉小丽小林【答案】【解析】拓展8、他们分别看到了什么?连一连.【答案】【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你知道这张照片吗?
都是同一个建筑物,为 什么会有不同画面呢?请说 说每幅照片的拍摄方向。
看一看
桌上放着一个茶杯、一个水杯、一 个乒乓球请4位学生从各自的方向观察, 并把看到的现象说出来。
如果想同时看到茶杯和乒乓球, 那么他们应该站在什么位置?
议一议
1.以小组为单位按要 求摆放三个几何体 ,然 后分别按前、后、左、右、 上面五个方向观察,在小 组内交流能看到的结果, 展开讨论,由组长统一把 结果记录下来 。
2. 请说一说课本第16页下面的五幅图分别 是从什么方向看到的?
试一试 以小组为单 位按要求摆放 五个几何体 , 从正面、上面、 左面观察。
从上面看
从左面看
从正面看
我们从不同的方向观察同一物体时, 把从正面看到的图叫做 主视图,从左 面看到的图叫做左视图,从上面看到 的图叫做俯视图。
练一练
下面是右图几何 体主视图的是( B )
(A)
(B)
图是( B ), 主视图是( A ),俯视图 是( D )
(A)
(B)
(C)
(D)
看谁画得好
画出左图的主视图、 左视图、俯视图
主视图
左视图
俯视图
9
甲、乙丙、丁四人分别面 对面坐在一个四边形桌子旁边, 桌上一张纸上写着数字“9”, 甲说他看到的是“6”,乙说 他看的是“ ”,丙说他看到 的是“ ”丁说他看到的是 “9”,则下列说法正确的 D 是……( ) A、甲在丁的对面,乙在甲 的左边,丙在丁的右边; B、丙在乙的对面,丙 的左 边是甲,右边是乙; C、甲在乙的对面,甲的右 边是丙,左边是丁; D、甲在丁的对面,乙在甲 的右边,丙在丁的右边。
探索题
有一个正方体,在它的各个面上分别标 上字母A、B、C、D、E、F,甲、乙、丙 三位同学从不同的方向去观察其正方体, 观察结果如图所示。问这个正方体各个面 上的字母对面各是什么字母?
F A D C
B
A
E
D C
作业提示
1、课本第18页练习2,第19页习题1。 2、数学日记。 3、作业本第6页。