2020年山西省中考数学预测卷四解析版
2020年山西省百校大联考中考数学模拟试卷(四) 解析版
2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。
2020年山西省中考数学模拟试卷 (含答案解析)
2020年山西省中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1. 计算(−47)÷(−314)÷(−23)的结果是( ) A. −169 B. −4 C. 4 D. −449 2. 下列四个图案中,不是轴对称图案的是( )A. B.C. D.3. 下列计算正确的是( )A. (a 4b)3=a 7b 3B. −2b(4a −b 2)=−8ab −2b 3C. aa 3+a 2a 2=2a 4D. (a −5)2=a 2−254. 四个大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.5. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为90m ,则这栋楼的高度为( )A. 54mB. 135mC. 150mD. 162m6. 不等式组{3x −1≥x +1x +4<4x −2的解集是( ) A. x >2 B. x ≥1 C. 1≤x <2 D. x ≥−17. 若点A(x 1,−6),B(x 2,−2),C(x 3,3)在反比例函数的图象上,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 3<x 1<x 2C. x 2<x 1<x 3D. x 3<x 2<x 18. 9.如图所示,有一个半径为2的扇形,∠AOB =90°,其中OC 平分∠AOB ,BE ⊥OC ,CD ⊥AO ,则图中阴影面积为( )A. π−1B. π−2C. 3π4−2D. 2π3−19.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是()A. 第8秒B. 第10秒C. 第12秒D. 第15秒10.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机向菱形ABCD内部掷一粒米,则米粒落到阴影区域内的概率是()A. 14B. 12C. 18D. 23二、填空题(本大题共5小题,共15.0分)11.计算:√32−√3(√6−√3)=______.12.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为______,第n个图形中的五角星(n为正整数)个数为______(用含n的代数式表示).13.为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看______ 的成绩更稳定.(填“甲”或“乙”)14.将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小正方形,剩余部分的面积为12,则剪去小正方形的边长x为_________.15.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为______.三、计算题(本大题共1小题,共10.0分)16.(1)计算:(12−3+56−712)÷(−136)(2)化简:(3a−2−12a2−4)÷1a+2四、解答题(本大题共7小题,共65.0分)17.“双十一”期间,合肥市各大商场起购物狂潮,现有甲、乙、两三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动倍息,解决以下问题(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王回满想买这一套衣服,应该选择家商场⋅(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元⋅(3)丙商场又推出“打折活动”(打折与满减只能参加一种),张先生买了一件标价为630元的上衣参加“打折活动”,张先生发现竟然比“满减活动”多付了48元钱,问丙商场先打了多少折后再参加活动⋅18.如图,PA、PB分别与⊙O相切于A,B两点,点C在⊙O上,∠P=60°,(1)求∠C的度数;(2)若⊙O半径为1,求PA的长.19.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是______亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)20.如图,在△ABC中,AB=5,AC=12,BC=13,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.21.图1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE高1.7m,AD长0.3m,踏板静止时从侧面看与AE上点B 重合,BE长0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)22.如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,∠EAF=45°.连接EF.将△ADF绕着点A顺时针旋转90°,得到△ABF′.(1)证明:△AEF≌△AEF′;(2)证明:EF=BE+DF.(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查了有理数的除法,关键是正确判断出结果的符号.根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数可得答案.【解答】解:原式=−(47×143×32)=−4,故选:B.2.答案:B解析:【分析】本题考查了轴对称图形的概念.轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,解答此题根据轴对称的定义解答即可.【解答】解:A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形.故选B.3.答案:C解析:解:A、(a4b)3=a12b3,故此选项不合题意;B、−2b(4a−b2)=−8ab+2b3,故此选项不合题意;C、aa3+a2a2=2a4,故此选项符合题意;D、(a−5)2=a2−10a+25,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及合并同类项法则和完全平方公式分别判断得出答案.此题主要考查了积的乘方运算以及合并同类项和完全平方公式,正确掌握相关运算法则是解题关键.4.答案:D解析:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.答案:A解析:解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴1.83=ℎ90,解得ℎ=54(m).故选:A.根据同一时刻物高与影长成正比即可得出结论.本题考查平行投影及相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.6.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.答案:B解析:【分析】本题考查了反比例函数图象上点的坐标特征及反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.先根据反比例函数y=−1x的系数−1<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据−6<−2<0<3,判断出x1,x2,x3的大小.【解答】解:∵k=−1<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵−6<−2<0<3,∴点A(x1,−6),B(x2,−2)在第四象限,点C(x3,3)在第二象限,∴x3<x1<x2.故选B.8.答案:B解析:分析:首先证明△COD,△BOE是等腰直角三角形,由OB=OC=2,推出OD=CD=OE=BE=√2,根据S阴=S扇形AOB−S△CDO−S△BOE计算即可.详解:∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠BOC=45°,∵BE⊥OC,CD⊥AO,∴△COD,△BOE是等腰直角三角形,∵OB=OC=2,∴OD=CD=OE=BE=√2,∴S阴=S扇形AOB−S△CDO−S△BOE=90π⋅22360−12×√2×√2−12×√2×√2=π−2,故选:B.点睛:本题考查扇形的面积,角平分线的性质,等腰直角三角形的判定和性质等知识.解题的关键是学会利用分割法求阴影部分的面积,是中考常考的题型.9.答案:B解析:【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y值越大,即可解答本题.【解答】解:由题意可得,当x=7+142=10.5时,y取得最大值,∵二次函数具有对称性,∴当t=8,10,12,15时,t取10时,y取得最大值,故选:B.10.答案:B解析:【分析】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴四边形HGFE的面积是菱形ABCD面积的12,∴米粒落到阴影区域内的概率是12.故选B.11.答案:3+√2解析:解:原式=4√2−3√2+3=3+√2.故答案为3+√2.先进行二次根式的乘法运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可. 12.答案:22 1+n +2n−1(n 为正整数)解析:【分析】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n 个图形五角星的个数的表达式是解题的关键.解:∵第1个图形中五角星的个数3=1+1+1,根据每个图形观察发现,每个图形上、左、右的五角星个数个图形序号一致,下方只有一个,根据规律即可求出答案.【解答】第2个图形中五角星的个数5=1+2+2,第3个图形中五角星的个数8=1+3+22,第4个图形中五角星的个数13=1+4+23,∴第5个图形中五角星的个数为1+5+24=22,则第n 个图形中的五角星(n 为正整数)个数为1+n +2n−1(n 为正整数).故答案为22;1+n +2n−1(n 为正整数).13.答案:甲解析:解:∵S 甲2=0.8,S 乙2=1.3,∴S 甲2<S 乙2,∴成绩最稳定的运动员是甲,故答案是:甲.根据方差的意义即可得.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.答案:√2解析:【分析】本题考查了一元二次方程的应用,读懂题意,找到等量关系准确的列出式子是解题的关键,注意:剩余部分面积用原矩形面积减去4个小正方形面积,用长方形的面积减去四个小正方形的面积即为剩余部分面积,根据已知可列出方程求解.【解答】解:如图,矩形ABCD 的长为5,宽为4,沿四个边剪去宽为x 的4个小正方形后,剩余部分如图,依题意得5×4−4x 2=12,解之得x=√2,x=−√2(不合题意,舍去).所以剪去小正方形的宽x为√2故答案为√2.15.答案:9:25解析:解:在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC=√32+42=5,∵∠C=∠C,∠ADC=∠CAB=90°,∴△ACD∽△BCA,∴AC2=CD⋅CB,∴CD=95,∴S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC=9:25,故答案为9:25.本题考查相似三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.根据S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC,只要求出CD、BC即可解决问题.16.答案:解:(1)原式=(12−3+56−712)×(−36)=−12+108−30+21=87;(2)原式=[3a+6(a+2)(a−2)−12(a+2)(a−2)]⋅(a+2)=3(a−2)(a+2)(a−2)⋅(a+2)=3.解析:(1)将除法转化为乘法,再利用乘法分配律计算可得.(2)先计算括号内分式的减法、将除法转化为乘法,再约分即可得.本题主要考查分式和实数的混合运算,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则.17.答案:解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270−200)=360(元);选丙商城需付费用为290+270−5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x−100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了y折后再参加活动,根据题意得:630×y10−(630−6×50)=48,解得y=6,答:丙商场先打了6折后再参加活动.解析:本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程进行求解.(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了y折后再参加活动,根据题意列方程求解即可.18.答案:解:(1)连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°−∠P=180°−60°=120°,∴∠C=12∠AOB=12×120°=60°.(2)连OP,∴∠APO=∠BPO=30°,∴OP=2OA=2,∴PA=√OP2−OA2=√3.解析:(1)先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠C的度数.(2)利用含30°的直角三角形的性质解答即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.19.答案:(1)①2038;②“知识技能”的增长率为:610−200200×100%=205%,“资金”的增长率为:20863−1000010000≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率=212=16.解析:解:(1)①由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;②见答案.(3)见答案.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金−2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.答案:解:连接DB,在△ACB中,∵AB2+AC2=52+122=169,又∵BC2 =132 =169,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=12−x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即52+(12−x)2=x2,解得x=16924,即CD=16924.解析:本题考查了勾股定理的逆定理,线段的垂直平分线的性质,正确的作出辅助线是解题的关键,连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的性质可知DC=DB,设DC= DB=x,则AD=12−x,根据勾股定理即可得到结论.21.答案:解:由题意,得AE=DE−AD=1.7−0.3=1.4m,AB=AE−BE=1.4−0.2=1.2m,由旋转,得AC=AB=1.2m,过点C作CG⊥AB于G,过点C作CH⊥EF于点H,在Rt△ACG中,∠AGC=90°,∠CAG=42°,cos∠CAG=AG,AC∴AG=AC⋅cos∠CAG=1.2×cos42°=1.2×0.74≈0.9m,∴EG=AE−AG≈1.4−0.9=0.5m,∴CH=EG=0.5m.解析:过点C作CG⊥AB于G,通过解余弦函数求得AG,然后根据EG=AE−AG求得即可.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.22.答案:解:(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,B、C、F′三点共线,∵∠EAF=45°,∠BAD=90°,∴∠DAF+∠BAE=∠BAD−∠EAF=45°,∴∠EAF′=∠BAF′+∠BAE=∠DAF+∠BAE=45°=∠EAF,∵AF=AF′,∠EAF′=∠EAF,AE=AE,∴△AEF≌△AEF′(SAS);(2)∵△AEF≌△AEF′,∴EF=EF′=BE+BF′,又∵DF=BF′,∴EF=BE+DF;(3)设BE=x,∵EF=BE+DF,EF=5∴DF=5−x.又∵正方形ABCD边长是6,即BC=CD=6∴CE=BC−BE=6−x,CF=CD−DF=6−(5−x)=x+1,在Rt△CEF中,有CE2+CF2=EF2即(6−x)2+(x+1)2=52,解得x1=2,x2=3,∴线段BE的长为2或3.解析:本题考查了四边形的综合问题,主要考查旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理,证明△AEF≌△AEF′是解题的关键.(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,由“SAS”可证△AEF≌△AEF′;(2)由全等三角形的性质可得EF=EF′=BE+BF′,即可得结论;(3)设BE=x,可得DF=5−x,由勾股定理可求BE的长.23.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
2020年中考数学模拟试卷04含解析
2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。
2020年山西省中考数学试卷-解析版
2020年山西省中考数学试卷一、选择题(本大题共10小题,共30.0分))的结果是()1.计算(−6)÷(−13A. −18B. 2C. 18D. −22.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A. 3a+2a=5a2B. −8a2÷4a=2aC. (−2a2)3=−8a6D. 4a3⋅3a2=12a64.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A. B.C. D.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A. 图形的平移B. 图形的旋转C. 图形的轴对称D. 图形的相似6.不等式组{2x−6>0,4−x<−1的解集是()A. x>5B. 3<x<5C. x<5D. x>−5(k<0)的图象上,且7.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A. 80πcm2B. 40πcm2C. 24πcm2D. 2πcm29.竖直上抛物体离地面的高度ℎ(m)与运动时间t(s)之间的关系可以近似地用公式ℎ=−5t2+v0t+ℎ0表示,其中ℎ0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. 13B. 14C. 16D. 18二、填空题(本大题共5小题,共15.0分)11.计算:(√3+√2)2−√24=______.12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有______个三角形(用含n的代数式表示).13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中6甲12.012.012.211.812.111.9乙12.312.111.812.011.712.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.14.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为______cm.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为______.三、计算题(本大题共1小题,共10.0分)16.(1)计算:(−4)2×(−12)3−(−4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.x2−9 x2+6x+9−2x+1 2x+6=(x+3)(x−3)(x+3)2−2x+12(x+3)…第一步=x−3x+3−2x+12(x+3)…第二步=2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)2(x+3)…第四步=2x−6−2x+12(x+3)…第五步=−52x+6…第六步任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______.或填为:______;②第______步开始出现错误,这一步错误的原因是______;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.四、解答题(本大题共7小题,共65.0分)17.2020年5月份,省城太原开展了“活力太原⋅乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.19.2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.20.阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是______;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).21.图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED= 60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.22.综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE′FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE′的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.23.综合与探究x2−x−3与x轴交于A,B两点(点A在点B的左侧),与y轴如图,抛物线y=14交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,−3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.答案和解析1.【答案】C)=(−6)×(−3)=18.【解析】解:(−6)÷(−13故选:C.根据有理数的除法法则计算即可,除以一个数,等于乘以这个数的倒数.本题主要考查了有理数的除法,熟练掌握运算法则是解答本题的关键.2.【答案】D【解析】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.【答案】C【解析】解:A、3a+2a=5a,故此选项错误;B、−8a2÷4a=−2a,故此选项错误;C、(−2a2)3=−8a6,正确;D、4a3⋅3a2=12a5,故此选项错误;故选:C.直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:A.主视图的底层是两个小正方形,上层右边是一个小正方形;左视图底层是两个小正方形,上层左边是一个小正方形,故本选项不合题意;B.主视图和左视图均为底层是两个小正方形,上层左边是一个小正方形,故本选项符合题意;C.主视图底层是三个小正方形,上层中间是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;D.主视图底层是三个小正方形,上层右边是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;故选:B.主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间5.【答案】D【解析】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似, 故选:D .根据图形的变换和相似三角形的应用等知识直接回答即可.考查了相似三角形的应用、图形的变换等知识,解题的关键是了解物高与影长成正比,难度不大.6.【答案】A【解析】解:{2x −6>0,4−x <−1解不等式2x −6>0,得:x >3, 解不等式4−x <−1,得:x >5, 则不等式组的解集为x >5. 故选:A .先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取大”来求不等式组的解集.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.【答案】A【解析】解:∵反比例函数y =kx (k <0)的图象分布在第二、四象限, 在每一象限y 随x 的增大而增大, 而x 1<x 2<0<x 3, ∴y 3<0<y 1<y 2. 即y 2>y 1>y 3. 故选:A .根据反比例函数性质,反比例函数y =kx (k <0)的图象分布在第二、四象限,则y 3最小,y 2最大.本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.【答案】B【解析】解:如图,连接CD .∴OC=OD=CD=4cm,∴S阴=S扇形OAB−S扇形OCD=60⋅π⋅162360−60⋅π⋅42360=40π(cm2),故选:B.首先证明△OCD是等边三角形,求出OC=OD=CD=4cm,再根据S阴=S扇形OAB−S扇形OCD,求解即可.本题考查扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】C【解析】解:由题意可得,ℎ=−5t2+20t+1.5=−5(t−2)2+21.5,故当t=2时,h取得最大值,此时ℎ=21.5,故选:C.根据题意,可以得到h与t的函数关系式,然后化为顶点式,即可得到h的最大值,本题得以解决.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】B【解析】解:由图形知阴影部分的面积是大矩形面积的14,∴飞镖落在阴影区域的概率是14,故选:B.由图形知阴影部分的面积是大矩形面积的14,据此可得答案.本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.11.【答案】5【解析】解:原式=3+2√6+2−2√6=5.故答案为5.先利用完全平方公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.【答案】(3n+1)【解析】解:第1个图案有4个三角形,即4=3×1+1…按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).根据图形的变化发现规律,即可用含n 的代数式表示.本题考查了规律型−图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.13.【答案】甲【解析】解:甲的平均成绩为:16(12.0+12.0+12.2+11.8+12.1+11.9)=12秒, 乙的平均成绩为:16(12.3+12.1+11.8+12.0+11.7+12.1)=12秒; 分别计算甲、乙两人的百米赛跑成绩的方差为:S 甲2=16[(12.2−12)2+(11.8−12)2+(12.1−12)2+(11.9−12)2]=160, S 乙2=16[(12.3−12)2+2(12.1−12)2+(11.8−12)2+(11.7−12)2]=125,∵160<125,∴甲运动员的成绩更为稳定; 故答案为:甲.分别计算、并比较两人的方差即可判断.考查了方差及算术平均数的定义,解题的关键是了解方差及平均数的计算方法,难度不大.14.【答案】2【解析】解:设底面长为acm ,宽为bcm ,正方形的边长为xcm ,根据题意得: {2(x +b)=12a +2x =10ab =24, 解得a =10−2x ,b =6−x , 代入ab =24中,得: (10−2x)(6−x)=24,整理得:x 2−11x +18=0, 解得x =2或x =9(舍去),答;剪去的正方形的边长为2cm . 故答案为:2.根据题意找到等量关系列出方程组,转化为一元二次方程求解即可. 本题考查了一元二次方程的应用,解决本题的关键是根据题意找到等量关系列出方程组.15.【答案】5485【解析】解:如图,过点F 作FH ⊥AC 于H .在Rt △ABC 中,∵∠ACB =90°,AC =3,BC =4, ∴AB =√CB 2+AC 2=√42+32=5, ∵CD ⊥AB ,∴S △ABC =12⋅AC ⋅BC =12⋅AB ⋅CD ,∴CD =125,AD =√AC 2−CD 2=√32−(125)2=95, ∵FH//EC , ∴FH EC=AH AC,∵EC =EB =2,∴FH AH =23,设FH =2k ,AH =3k ,CH =3−3k , ∵tan∠FCH =FH CH =ADAD , ∴2k3−3k =95125,∴k =917,∴FH =1817,CH =3−2717=2417, ∴CF =√CH 2+FH 2=√(1817)2+(2417)2=3017, ∴DF =125−3017=5485,故答案为5485.如图,过点F 作FH ⊥AC 于H.首先证明FH :AH =2:3,设FH =2k ,AH =3k ,根据tan∠FCH =FHCH =ADAD ,构建方程求解即可.本题考查解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.16.【答案】三分式的基本性质分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变五括号前面是“−”,去掉括号后,括号里面的第二项没有变号【解析】解:(1)(−4)2×(−12)3−(−4+1)=16×(−18)+3=−2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“−”,去掉括号后,括号里面的第二项没有变号;任务二:x2−9x2+6x+9−2x+12x+6=(x+3)(x−3)(x+3)−2x+12(x+3)…第一步=x−3x+3−2x+12(x+3)…第二步=2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)2(x+3)…第四步=2x−6−2x−12(x+3)…第五步=−72x+6…第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“−”,去掉括号后,括号里面的第二项没有变号.(1)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;(2)①根据分式的基本性质即可判断;②根据分式的加减运算法则即可判断;任务二:依据分式加减运算法则计算可得;任务三:答案不唯一,只要合理即可.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.同时考查了有理数的混合运算.17.【答案】解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+ 50%)x元,根据题意,得80%×(1+50%)x−128=568,解得x=580.答:该电饭煲的进价为580元.【解析】设该电饭煲的进价为x元,则售价为80%×(1+50%)x元,根据某顾客购买18.【答案】解:连接OB,如图,∵⊙O与AB相切于点B,∴OB⊥AB,∵四边形ABCO为平行四边形,∴AB//OC,OA//BC,∴OB⊥OC,∴∠BOC=90°,∵OB=OC,∴△OCB为等腰直角三角形,∴∠C=∠OBC=45°,∵AO//BC,∴∠AOB=∠OBC=45°,∴∠E=12∠AOB=22.5°.【解析】连接OB,如图,根据切线的性质得OB⊥AB,再利用平行四边形的性质得AB//OC,OA//BC,则∠BOC=90°,接着计算出∠C=∠OBC=45°,然后利用平行线的性质得到∠AOB=∠OBC=45°,从而根据圆周角定理得到∠E的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质和圆周角定理.19.【答案】300【解析】解:(1)2020年“新基建”七大领域预计投资规模按照从小到大排列为100、160、200、300、300、500、640,∴图中2020年“新基建”七大领域预计投资规模的中位数是300亿元,故答案为:300;(2)甲更关注在线职位的增长率,在“新基建”五大细分领域中,2020年一季度“5G基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大;W G D R X W(G,W)(D,W)(R,W)(X,W)G(W,G)(D,G)(R,G)(X,G)D(W,D)(G,D)(R,D)(X,D)R(W,R)(G,R)(D,R)(X,R)X(W,X)(G,X)(D,X)(R,X)由表可知,共有种等可能结果,其中抽到“”和“”的结果有种,∴抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率220=110.(1)根据统计图,将2020年“新基建”七大领域预计投资规模按照从小到大排列,再利用中位数定义求解可得;(2)分别从2020年一季度“5G基站建设”在线职位与2019年同期相比增长率和2020年预计投资规模角度分析求解可得;题所需数据及画树状图列出所有等可能结果是解题的关键.20.【答案】勾股定理的逆定理【解析】解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,QP=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°;(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(1)根据勾股定理的逆定理即可得到结论;(2)根据直角三角形的性质即可得到结论;(3)根据线段垂直平分线的性质即可得到结论.本题考查了勾股定理的逆定理,线段垂直平分线的性质,正确的理解题意是解题的关键.21.【答案】解:(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,在Rt△ABM中,∠AMB=90°,∠ABM=28°,AB=60cm,∵sin∠ABM=AMAB,∴AM=AB⋅sin∠ABM=60⋅sin28°≈60×0.47=28.2,∴MN=AM+DN+AD=2AM+AD=28.2×2+10=66.4,∴BC与EF之间的距离为66.4cm;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,180x −3=1802x,解得:x=30,经检验,x=30是原方程的根,当x=30时,2x=60,答:一个智能闸机平均每分钟检票通过的人数为60人.【解析】(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意列方程即可得到结论.本题考查了解直角三角形的应用,分式方程的应用,正确理解题意是解题的关键.22.【答案】解:(1)四边形BE′FE是正方形,理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE′B=90°,BE=BE′,∠EBE′=90°,又∵∠BEF=90°,∴四边形BE′FE是矩形,又∵BE=BE′,∴四边形BE′FE是正方形;(2)CF=E′F;理由如下:如图②,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,AE,DH⊥AE,∴AH=12∴∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),AE,∴AH=BE=12∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE′,∵四边形BE′FE是正方形,∴BE=E′F,∴E′F=1CE′,2∴CF=E′F;(3)如图①,过点D作DH⊥AE于H,∵四边形BE′FE 是正方形, ∴BE′=E′F =BE ,∵AB =BC =15,CF =3,BC 2=E′B 2+E′C 2, ∴225=E′B 2+(E′B +3)2, ∴E′B =9=BE ,∴CE′=CF +E′F =12,由(2)可知:BE =AH =9,DH =AE =CE′=12, ∴HE =3,∴DE =√DH 2+HE 2=√144+9=3√17.【解析】(1)由旋转的性质可得∠AEB =∠CE′B =90°,BE =BE′,∠EBE′=90°,由正方形的判定可证四边形BE′FE 是正方形;(2)过点D 作DH ⊥AE 于H ,由等腰三角形的性质可得AH =12AE ,DH ⊥AE ,由“AAS ”可得△ADH≌△BAE ,可得AH =BE =12AE ,由旋转的性质可得AE =CE′,可得结论; (3)利用勾股定理可求BE =BE′=9,再利用勾股定理可求DE 的长.本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.23.【答案】解:(1)令y =0,得y =14x 2−x −3=0,解得,x =−2,或x =6, ∴A(−2,0),B(6,0),设直线l 的解析式为y =kx +b(k ≠0),则 {−2k +b =04k +b =−3, 解得,{k =−12b =−1, ∴直线l 的解析式为y =−12x −1;(2)如图1,根据题意可知,点P 与点N 的坐标分别为 P(m,14m 2−m −3),N(m,−12m −1),∴PM=−14m2+m+3,MN=12m+1,NP=−14m2+12m+2,分两种情况:①当PM=3MN时,得−14m2+m+3=3(12m+1),解得,m=0,或m=−2(舍),∴P(0,−3);②当PM=3NP时,得−14m2+m+3=3(−14m2+12m+2),解得,m=3,或m=−2(舍),∴P(3,−154);∴当点N是线段PM的三等分点时,点P的坐标为(3,−154)或(0,−3);(3)∵直线l:y=−12x−1与y轴于点E,∴点E的坐标为(0,−1),分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,−3),D(4,−3),∴CD⊥y轴,∴ED=√CE2+CD2=√22+42=2√5,∴HE=ED=2√5,Q1H=2EH=4√5,∴Q1E=√Q1H2+EH2=10,∴Q1O=Q1E−OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴Q2GAO =EGOE,即Q2G2=EG1,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2√5,∴3EG=2√5,∴EG=2√53,∴Q2G=4√53,∴EQ2=√EG2+Q2G2=103,∴Q2(0,−13),3).综上,点Q的坐标为(0,9)或(0,−133【解析】(1)令y=0,便可由抛物线的解析式求得A、B点坐标,用待定系数法求得直线AD的解析式;m2−m−3),用m表示N点坐标,分两种情况:PM=3MN;PM=3PN.(2)设P(m,14分别列出m的方程进行解答便可;(3)分两种情况,Q点在y轴正半轴上时;Q点在y轴负半轴上时.分别解决问题.本题是一个二次函数的综合题,主要考查了二次函数的图象与性质,待定系数法,等腰三角形的性质与判定,勾股定理,第(2)、(3)小题的关键在于分情况讨论.。
2020年山西省百校大联考中考数学模拟试卷(四) 解析版
2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。
〖精选4套试卷〗山西省大同市2020年中考第四次模拟数学试题
2019-2020学年数学中考模拟试卷一、选择题1.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A.2B.3C.4D.5 2.分式方程216111x x x +-=--的解是( ) A .x =﹣2B .x =2C .x =3D .无解3.下列说法中: ①估计65的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a >b ,则a ﹣b >0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';正确的有( )A .1个B .2个C .3个D .4个4.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相垂直平分的四边形是正方形D .对角线互相平分的四边形是平行四边形5.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .2B .3C .3D .56.如图,直线AB :y =12x +1分别与x 轴、y 轴交于点A 、B ,直线CD : y =x +b 分别与x 轴、y 轴交于点C 、D .直线AB 与CD 相交于点P ,已知S △ABD =4,则点P 的坐标是 ( )A .(3,4)B .(8,5)C .(4,3)D .(12,54) 7.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC V 的面积为( )A .1B .2C .4D .88.如图,AD 是△ABC 外接圆的直径.若∠B =64°,则∠DAC 等于( )A .26°B .28°C .30°D .32°9.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,线段AB =1,点P 是线段AB 上一个动点(不包括A 、B )在AB 同侧作Rt △PAC ,Rt △PBD ,∠A =∠D =30°,∠APC =∠BPD =90°,M 、N 分别是AC 、BD 的中点,连接MN ,设AP =x ,MN 2=y ,则y 关于x 的函数图象为( )A. B.C. D.11.某城市轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( )A .30301.50.5x x +=B .30301.50.5x x -=C .30300.5 1.5x x +=D .30300.5 1.5x x-= 12.如图,点O 1是△ABC 的外心,以AB 为直径作⊙O 恰好过点O 1,若AC =2,BC =42,则AO 1的长是( )A .32B .26C .25D .210二、填空题 13.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,连接PD ,PG ,则PD+PG 的最小值为_____.14.不等式组()121231x x x +≤⎧+>-⎨⎩的解集为______. 15.如图,a ∥b ,∠1=110°,∠3=50°,则∠2的度数是_____.16.已知一次函数的图象经过点(-1,2)和(-3,4),则这个一次函数的解析式为________.17.△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是_____.18.分解因式:ax2﹣ax=_____.三、解答题19.如图,PA、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:∠APO=∠CPO;(2)若⊙O的半径为3,OP=6,∠C=30°,求PC的长.20.如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数;(3)若AO=4,DF=10,求tan ADF∠的值.21.先化简再求值:2 2221111x x xxx x--⎛⎫÷--⎪-+⎝⎭,其中x是不等式组30223xxx+>⎧⎪-⎨<+⎪⎩的最大整数解.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?23.某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.I.请问1辆大货车和1辆小货车一次可以分别运货多少吨;Ⅱ.目前有46.4吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完.其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?24.某市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车 乙种客车 载客量/(人/辆)30 42 租金/(元/辆) 300 400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)①既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,需租用几辆客车; ②求租车费用的最小值.25.计算:()221122cos3022-⎛⎫-+-︒- ⎪⎝⎭【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B B D D D B C A D BD B 13.3﹣2 .14.x≤1.15.6016.1y x =-+17.20181218.ax (x ﹣1).三、解答题19.(1)详见解析;(2)63.【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC =90°,根据勾股定理求出AP ,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA 、PB 是⊙O 的切线,∴∠APO =∠CPO ;(2)解:∵PA 是⊙O 的切线,∴∠PAC =90°,∴AP 22OP 0A 33-=,在Rt △CAP 中,∠C =30°,∴PC =2AP =3.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.20.(1)见解析;(2)90AOD ??;(3)tan ∠ADF 的值为12. 【解析】【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.(3)根据(2)得到AO 2=OF·OD,再设OF=x,DO=10-x ,求出x 即可解答【详解】(1)在正方形ABCD 中,DA=AB,90DAF ABE ∠=∠=︒,又AF=BEAD AB DAF ABE AF BE =⎧⎪=⎨⎪=⎩∠∠ ∴DAF ∆≌ABE ∆ (SAS)(2)由(1)得 DAF ∆≌ABE ∆ ,∴ ∠ADF=∠BAE,又 ∠BAE+∠DAO=90︒,∴∠ADF+∠DAO=90︒90AOD ∴∠=︒(3)由(2)得∠AOD=900 ∴△AOF ∽△DOA ∴AO 2=OF·OD设OF=x,DO=10-x ∴x(10-x)=16 解得x=2或x=8(舍去)∴tan ∠ADF=48AO OD = ∴tan ∠ADF 的值为12. 【点睛】 此题考查了正方形的性质,三角形全等的判定和性质,三角形相似,解题关键在于利用好正方形的性质证明三角形全等21.13-【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+ (2)1(1)(1)(2)x x x x x x x -+=•+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0解不等式组,得﹣3<x≤2,则x 整数解为x =﹣2,﹣1,0,1,2,∴x =﹣2 原式=13-.【点睛】本题考查了分式方程的化简求值,不等式组的求解,中等难度,正确化简并利用分式有意义的条件求出x 的值代入是解题关键.22.运动1秒或5秒后△DPQ 的面积为31cm 2.【解析】【分析】设运动x 秒钟后△DPQ 的面积为31cm 2,则AP=xcm ,BP=(6-x )cm ,BQ=2xcm ,CQ=(12-2x )cm ,利用分割图形求面积法结合△DPQ 的面积为31cm 2,即可得出关于x 的一元二次方程,解之即可得出结论【详解】解:设运动x 秒钟后△DPQ 的面积为31cm 2,则AP=xcm ,BP=(6-x )cm ,BQ=2xcm ,CQ=(12-2x )cm , S △DPQ =S 矩形ABCD -S △ADP -S △CDQ -S △BPQ ,=AB•BC -12AD•AP -12CD•CQ -12BP•BQ, =6×12-12×12x -12×6(12-2x )-12(6-x )•2x, =x 2-6x+36=31,解得:x 1=1,x 2=5.答:运动1秒或5秒后△DPQ 的面积为31cm 2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.I.1辆大货车一次可以运货5吨,1辆小货车一次可以运货3.5吨;Ⅱ.当该货运公司安排大货车8辆,小货车2辆时花费最少.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货29吨、2辆大货车与6辆小货车一次可以运货31吨”列方程组求解可得;(2).设货运公司安排大货车m 辆,则小货车需要安排()10m -辆,根据46.4吨货物需要一次运完得出不等式,求出m 的范围,从而求出如何安排车辆最节省费用.【详解】解:I.设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨.根据题意可得3x 4y 292x 6y 31{+=+=,,解得x 5y 3.5{==,,答:1辆大货车一次可以运货5吨,1辆小货车一次可以运货3.5吨.Ⅱ.设货运公司安排大货车m 辆,则小货车需要安排()10m -辆,根据题意可得()5m 3.510m 46.4+-≥,解得m 7.6≥∵m 为正整数,∴m 可以取8,9,10.当m 8=时,该货运公司需花费500830024600⨯+⨯=元.当m 9=时,该货运公司需花费50093004800⨯+=元.当m 10=时,该货运公司需花费500105000⨯=元。
山西省大同市2020年中考第四次模拟数学试题
山西省大同市2020年中考第四次模拟数学试题一、选择题1.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.10 B.8 C.14 D.132.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为()A.32B.3 C.94D.1543.已知22xy=-⎧⎨=⎩是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣54.如图,是由4个大小相同的正方体组合而成的几何体,其主视图是( )A. B. C. D.5.若数轴上表示﹣2和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.3 D.56.如图,在▱ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论正确的是()A.DE=DFB.AG=GFC.AF=DFD.BG=GC7.如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG 、DF ,若AB =2,则DF+GF 的最小值为( )A. ﹣1B.C.3D.48.如图,点D 、E 分别在△ABC 的边AB 、AC 上,且AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则AE 的长为( )A .2B .92C .2或92D .3或929.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cmC .12cm D .1cm10.如图:A B C D E F ∠∠∠∠∠∠+++++等于( )A .180oB .360oC .540oD .720o 11.不等式组9511x x x m +<+⎧⎨>+⎩的解集是 x >2,则m 的取值范围是( ) A .m <1 B .m≥1 C .m≤1 D .m >112.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x > 二、填空题13.已知二次函数y =ax 2+2ax+3a 2(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且﹣2≤x≤1时,与其对应的函数值y 的最大值为6,则a 的值为_____.14.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.15.因式分解:a 3-ab 2=______________.16.在函数31x y +=中,自变量x 的取值范围是__________. 17.如图,在平面直角坐标系xOy 中,已知抛物线233384y x x =--与x 轴交于点A 、(B A 在B 左侧),与y 轴交于点C ,经过点A 的射线AF 与y 轴正半轴相交于点E ,与抛物线的另一个交点为F ,13AE EF =,点D 是点C 关于抛物线对称轴的对称点,点P 是y 轴上一点,且AFP DAB ∠∠=,则点P 的坐标是______.18.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.三、解答题19.如图,已知AB是⊙O的直径,⊙O与Rt△ACD的两直角边分别交于点E、F,点F是弧BE的中点,∠C=90°,连接AF.(1)求证:直线DF是⊙O的切线.(2)若BD=1,OB=2,求tan∠AFC的值.20.先化简,再求值:2211121x xx x x----÷++,其中x=sin60°﹣121.如图,将等腰直角三角形ABC的直角顶点置于直线l上,过A,B两点分别作直线l的垂线,垂足分别为D,E,求证:BE=DC.22.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.23.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.24.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=23,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.25.第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,这些球除颜色外都相同,分别从每个盒中随机取出一个球.(1)求取出的两个球中一个是白球,一个是黄球的概率;(2)若第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,其他条件不变,则取出的两个球都是黄球的概率为________.【参考答案】一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C B D D C A C D B C B二、填空题13.114.415.a (a+b )(a ﹣b )16.13x ≥-且2x ≠17.()0,6或1020,7P ⎛⎫-⎪⎝⎭ 18.(0,21009) 三、解答题19.(1)详见解析;(2)5【解析】【分析】(1)连结OF ,BE ,根得到BE ∥CD ,根据平行线的性质得到∠OFD=90°,根据切线的判定定理证明;(2)由OF ∥AC 可得比例线段求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,tan ∠AFC 的值可求.【详解】(1)证明:连结OF ,BE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD ,∴BE ∥CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C=∠OFD=90°,∴AC ∥OF ,∴△OFD ∽△ACD ,∴OF OD AC AD=, ∵BD=1,OB=2,∴OD=3,AD=5,∴251033AC ⨯==, ∴22AD AC -22105()3-553,∵CF CD OA AD=, ∴CD OA CF AD ⨯=∴tan ∠AFC=10AC CF == 【点睛】本题考查的是切线的判定、三角函数的计算,掌握切线的判定定理是解题的关键.20.﹣11x +;﹣3. 【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2211121x x x x x----÷++, =﹣1﹣2(1)(1)(1)1x x x x x +-⋅+- =﹣1+1x x + =11x x x --++ =﹣11x +, 当x =sin60°﹣1=2﹣1=﹣3. 【点睛】 本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE=DC.【点睛】此题考查三角形全等的判定与性质,难度不大22.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣32,﹣74)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23.(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】【分析】(1)将点A和点B的坐标代入抛物线的解析式得到关于b、c的方程组,然后求得a,b的值,从而得到问题的答案;(2)把A(﹣1,0)代入y=mx+12求得m的值,可得到直线AQ的解析式,设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),然后用含n的式子表示出PN、NF的长,然后依据PN=2NF列方程求解即可;(3)连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小,先求得点M的坐标,然后求得AM和DE的解析式,最后在求得两直线的交点坐标即可.【详解】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM 的函数解析式为y =32x+32. ∵D 为AC 的中点,∴D (﹣12,1). 设直线AC 的解析式为y =kx+2,将点A 的坐标代入得:﹣k+2=0,解得k =2,∴AC 的解析式为y =2x+2.设直线DE 的解析式为y =﹣12x+c ,将点D 的坐标代入得:14 +c =1,解得c =34, ∴直线DE 的解析式为y =﹣12x+34. 将y =﹣12x+34 与y =32x+32联立,解得:x =﹣38 ,y =1516 . ∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (﹣38,1516). 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、二次函数的性质,用含n 的式子表示出PN 、NF 的长是解答问题(2)的关键;明确相互垂直的两直线的一次项系数乘积为﹣1是解答问题(3)的关键.24.(1)3;(2)3;(3)22(03)(36)t S t +<=-<<…. 【解析】【分析】 (1)根据,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)分两种情形分别求解:当0<t≤3时,作CD ⊥FM 于D .根据S =S △MEB ﹣2S △MDC ,计算即可.②当3<t <6时,S =S △MEB .【详解】解:(1)在Rt △MON 中,∵∠MON =90°,ON =M =30°∴OM=6,∵△ABC 为等边三角形∴∠AOC =60°,∴∠OAM =90°∴OA ⊥MN ,即△OAM 为直角三角形,∴OA =12OM =12×6=3. 故答案为3.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,所以t =3.故答案为3.(3)易知:OM =6,MN =,S △OMN =12×6=∵∠M =30°,∠MBA =60°,∴∠BEM =90°.①当0<t≤3时,作CD ⊥FM 于D .∵∠ACB =60°,∠M =30°,∠FCB =∠M+∠CFM ,∴∠CFM =∠M =30°,∴CF =CM ,∵CD ⊥FM ,∴DF =DM ,∴S △CMF =2S △CDM ,∵△MEB ∽△MON , ∴2MEB MON S BM S MB ⎛⎫= ⎪⎝⎭V V , ∴S △MEB =23333822t -+, ∵△MDC ∽△MON , ∴2MDC MON S MC S MN ⎛⎫= ⎪⎝⎭V V , ∴S △MDC =23333848t -+, ∴S =S △MEB ﹣2S △MDC 2393+. ②当3<t <6时,S =S △MEB 233393 综上所述,S =22393(03)8433393(36)t t t +<⎪<<… . 【点睛】 本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(1)12(2)16【解析】【分析】(1) 找出1个白球、1个黄球所占结果数,然后根据概率公式求解(2)先计算出所有60种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解;【详解】(1)记第一个盒子中的球分别为白1、白2、黄1,第二个盒子中的球分别为白3、黄2,由列举可得:(白1白3)、(白2白3)、(黄1白3)、(白1黄2)、(白2黄2)、(黄1黄2),共6种等可能结果,即n=6,记“一个是白球,一个是黄球”为事件A,共3种,即m=3,∴P(A)=12;(2)画树状图为如下,则共有6种等可能的结果数,其中2个球都是黄球占1种所以取出的2个球都是黄球的概率=16.【点睛】此题考查了列表法和画树状图,解题关键在于列出可能出现的结果。
2020年山西省中考数学模拟试卷及答案解析
2020年山西省中考数学模拟试卷及答案解析一.选择题(共10小题,满分30分,每小题3分)1.如图是我市三月份某一天的天气预报,该天的温差是( )A .2℃B .5℃C .7℃D .3℃解:该天的温差为5﹣(﹣2)=5+2=7(℃),故选:C .2.已知直线l 1∥l 2,将一块含30°角的直角三角板ABC 按如图所示方式放置,若∠1=85°,则∠2等于( )A .35°B .45°C .55°D .65°解:∵∠A +∠3+∠4=180°,∠A =30°,∠3=∠1=85°,∴∠4=65°.∵直线l 1∥l 2,∴∠2=∠4=65°.故选:D .3.不等式组{x +1>23x −5≤4的解集是( ) A .1<x ≤3 B .x >1 C .x ≤3D .x ≥3解:{x +1>2①3x −5≤4②, 解①得:x >1,解②得:x ≤3,∴不等式组的解集为:1<x ≤3,故选:A .4.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①3a +2a =5a 2;②3x 3•(﹣2x 2)=﹣6x 5;③(a 3)2=a 5;④(﹣a )3÷(﹣a )=﹣a 2A .1B .2C .3D .4解:①3a +2a =5a ,故计算错误;②3x 3•(﹣2x 2)=﹣6x 5,故计算正确;③(a 3)2=a 6,故计算错误;④(﹣a )3÷(﹣a )=a 2,故计算错误;综上所述,正确的个数是1.故选:A .5.2019年12月25日是中国伟大领神毛泽东同志诞辰126周年纪念日,某校举行以“高楼万丈平地起,幸福不忘毛主席”为主题的演讲比赛,最终有15名同学进入決赛(他们決赛的成绩各不相同)、比赛将评出一等奖1名,二等奖2名,三等奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他需要知道这15名学生成绩的( )A .平均数B .方差C .众数D .中位数解:∵进入决赛的15名学生所得分数互不相同,共有1+2+4=7个奖项,∴这15名同学所得分数的中位数低于获奖的学生中的最低分,∴某参赛选手知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数, 如果这名参赛选手的分数大于中位数,则他能获奖,如果这名参赛选手的分数小于或等于中位数,则他不能获奖.故选:D .6.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,。
2020年中考数学仿真试卷四(含解析)
2020年中考数学仿真试卷(四)一、选择题1.﹣7的绝对值是()A.7B.﹣7C.D.﹣2.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b63.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为()A.πB.πC.πD.2π5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20次“移位”后,他所处顶点的编号是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)7.若代数式1+在实数范围内有意义,则实数x的取值范围为.8.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=.9.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.11.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.12.如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是.三、(本大题共6小题,13,14题每题3分,15-18题每小题3分,共30分)13.计算:|1﹣|+20200﹣﹣()﹣1;14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证:四边形MFCG是矩形.15.解不等式组:,并将解集在数轴上表示.16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.18.如图,一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0)和点B,与反比例函数y=(x>0)相交于点C(2,m).(1)填空:k1=,k2=;(2)若点P是反比例函数图象上的一点,连接CP并延长,交x轴正半轴于点D,若PD:CP=1:2时,求△COP的面积.四、(本大题共3小题,每小题8分,共24分)19.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.小亮将笔记本电脑水平放置在桌子上,显示屏OA与底板OB所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO'后,电脑转到BO′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm,O′C⊥OB于点C,O′C=14cm.(参考数据:≈1.414,≈1.732,≈2.236)(1)求∠CBO'的度数.(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果)21.如图,AB是⊙O的直径,C,D在⊙O上两点,连接AD,CD.(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD 为⊙O的直径,当∠CGB=∠HGB,BG=2OF=6时,求⊙O半径的长.五、(本大题共2小题,每小题9分,共18分)22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.六、(本大题共12分)24.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形(1)概念理解①根据上述定义举一个等补四边形的例子:;②如图1,四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°,求证:四边形ABCD是等补四边形.(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD与等边垂直,求CD的长.参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣7的绝对值是()A.7B.﹣7C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.解:|﹣7|=7.故选:A.2.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6【分析】根据同类项合并、整式的除法、完全平方公式和积的乘方判断即可.解:A、a与a2不能合并,错误;B、a6b÷a2=a4b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣ab3)2=a2b6,正确;故选:D.3.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为()A.πB.πC.πD.2π【分析】连接OB、OC,根据圆内接四边形的性质求出∠A的度数,根据圆周角定理求出∠BOD的度数,利用弧长公式计算即可.解:连接OB、OC,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠A=180°﹣∠C=40°,由圆周角定理得,∠BOD=2∠A=80°,∴==π,故选:B.5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选:A.6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20次“移位”后,他所处顶点的编号是()A.1B.2C.3D.4【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.解:根据题意,小宇从编号为2的顶点开始,第1次移位到点4,第2次移位到达点3,第3次移位到达点1,第4次移位到达点2,…,依此类推,4次移位后回到出发点,20÷4=5.所以第20次移位为第5个循环组的第4次移位,到达点2.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.若代数式1+在实数范围内有意义,则实数x的取值范围为x≠1.【分析】直接利用分式有意义的条件分析得出答案.解:∵代数式1+在实数范围内有意义,∴x﹣1≠0,解得:x≠1,∴则实数x的取值范围为:x≠1.8.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=2.【分析】根据一元二次方程的根与系数的关系求得a+b、ab的值,然后将其代入所求的代数式并求值.解:∵a,b是一元二次方程x2+2x﹣4=0的两个根,∴由韦达定理,得a+b=﹣2,ab=﹣4,∴a+b﹣ab=﹣2+4=2.故答案为:2.9.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是1<k<3.【分析】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k <0,k﹣3<0,即可求解;解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.11.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为10.【分析】设P(x,x2﹣x﹣4)根据矩形的周长公式得到C=﹣2(x﹣1)2+10.根据二次函数的性质来求最值即可.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.12.如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是(2,)或(2,)或(6,﹣).【分析】先将A点的坐标代入反比例函数求得k的值,然后将x=4代入反比例函数解析式求得相应的y的值,即得点C的坐标;然后结合图象分类讨论以A、B、C、D为顶点的平行四边形,如图所示,找出满足题意的D的坐标即可.解:把点A(2,3)代入y=(x>0)得:k=xy=6,故该反比例函数解析式为:y=.∵点B(4,0),BC⊥x轴,∴把x=4代入反比例函数y=,得y=.则C(4,).①如图,当四边形ACBD为平行四边形时,AD∥BC且AD=BC.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y A﹣y D=y C﹣y B,故y D=.所以D(2,).②如图,当四边形ABCD′为平行四边形时,AD′∥CB且AD′=CB.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y D′﹣y A=y C﹣y B,故y D′=.所以D′(2,).③如图,当四边形ABD″C为平行四边形时,AC=BD″且AC∥BD″.∵A(2,3)、B(4,0)、C(4,),∴x D″﹣x B=x C﹣x A即x D″﹣4=4﹣2,故x D″=6.y D″﹣y B=y C﹣y A即y D″﹣0=﹣3,故y D″=﹣.所以D″(6,﹣).综上所述,符合条件的点D的坐标是:(2,)或(2,)或(6,﹣).故答案为:(2,)或(2,)或(6,﹣).三、(本大题共6小题,13,14题每题3分,15-18题每小题3分,共30分)13.计算:|1﹣|+20200﹣﹣()﹣1;【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及二次根式性质计算即可求出值.解:原式=﹣1+1﹣3﹣4=﹣2﹣4.14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证:四边形MFCG是矩形.【分析】由题意可得点M在AC,BC的垂直平分线上,可得∠MFC=90°,∠MGC=90°,即可得结论.【解答】证明:连接CM,∵Rt△ABC中,∠ACB=90°,M为AB中点,∴CM=AM=BM=AB.∴点M在线段AC的垂直平分线上.∵在等腰△ADC中,AC为底边,∴AD=CD.∴点D在线段AC的垂直平分线上.∴MD垂直平分AC.∴∠MFC=90°.同理:∠MGC=90°.∴四边形MFCG是矩形.15.解不等式组:,并将解集在数轴上表示.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.【分析】(1)在图1中,画一个以AB为边的直角三角形即可;(2)在图2中,画一个菱形,要求其中一边在BE上即可.解:(1)如图,Rt△AOB即为所求;(2)如图,菱形BFCD即为所求.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:(1)搅匀后从中任意摸出1个球,恰好是红球的概率为=,故答案为:.(2)画树状图为:共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为.18.如图,一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0)和点B,与反比例函数y=(x>0)相交于点C(2,m).(1)填空:k1=,k2=12;(2)若点P是反比例函数图象上的一点,连接CP并延长,交x轴正半轴于点D,若PD:CP=1:2时,求△COP的面积.【分析】(1)先根据点A求出k1,再根据一次函数解析式求出m值,利用待定系数法求反比例函数的解析式;(2)先根据三角形相似求得P点的坐标,然后利用三角形的面积差求解.S△COP=S△COD ﹣S△POD.解:(1)∵一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0),∴﹣2k1+3=0,解得k1=,∴一次函数为:y1=x+3,∵一次函数y1=x+3的图象经过点C(2,m).∴m=×2+3=6,∴C点坐标为(2,6),∵反比例函数y=(x>0)经过点C,∴k2=2×6=12,故答案为,12.(2)作CE⊥OD于E,PF⊥OD于F,∴CE∥PF,∴△PFD∽△CED,∴=,∵PD:CP=1:2,C点坐标为(2,6),∴PD:CD=1:3,CE=6,∴=,∴PF=2,∴P点的纵坐标为2,把y=2代入y2=求得x=6,∴P(6,2),设直线CD的解析式为y=ax+b,把C(2,6),P(6,2)代入得,解得,∴直线CD的解析式为y=﹣x+8,令y=0,则x=8,∴D(8,0),∴OD=14,∴S△COP=S△COD﹣S△POD=×8×6﹣=16.四、(本大题共3小题,每小题8分,共24分)19.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).20.小亮将笔记本电脑水平放置在桌子上,显示屏OA与底板OB所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO'后,电脑转到BO′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm,O′C⊥OB于点C,O′C=14cm.(参考数据:≈1.414,≈1.732,≈2.236)(1)求∠CBO'的度数.(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果)【分析】(1)通过解直角三角形即可得到结果;(2)通过解直角三角形求得AO,由C、O′、A′三点共线可得结果;(3)显示屏O′A′应绕点O′按顺时针方向旋转30°,求得∠EO′A′=∠FO′B=30°,既是显示屏O′A′应绕点O′按顺时针方向旋转30°.解:(1)在Rt△CBO′中,∵O′C:O′B=14:28=0.5,∴∠CBO′=30°;(2)A′C=A′O′+O′C=28+14=42(cm)AO•sin60°=14≈24.25(cm)42﹣24.25≈17.8(cm);(3)显示屏O'A'应绕点O'按顺时针方向旋转30°.理由如下:如图,电脑显示屏O'A’绕点O'按顺时针方向旋转α度至O'E处,O'F∥OB.∵电脑显示屏O'A’与水平线的夹角仍保持120°,∴∠EO'F=120°.∴∠FO'A=∠CBO'=30°.∴∠BO'A'=120°.∴∠EO'A'=∠FO'B=30°,即α=30°.∴显示屏O'A'应绕点O'按顺时针方向旋转30°.21.如图,AB是⊙O的直径,C,D在⊙O上两点,连接AD,CD.(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD 为⊙O的直径,当∠CGB=∠HGB,BG=2OF=6时,求⊙O半径的长.【分析】(1)如图1,连接BC,根据圆周角定理得到∠ACB=90°,得到∠ABC=∠P,求得∠ABP=90°,于是得到结论;(2)如图2中,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.想办法证明OM=ON =GN,MG=DN,设OM=ON=a,构建方程求出a即可解决问题.解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ABC=∠D,∠D=∠P,∴∠ABC=∠P,∴∠P+∠PAB=90°,∴∠ABP=90°,∴BP与⊙O相切;(2)如图2,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.∵CD,AB是直径,∴OA=OD=OC=OB,∵∠AOD=∠BOC,∴△AOD≌△BOC(SAS),∴AD=BC=2OF=6,∵OA=OB,∠AON=∠BOM,∠ANO=∠BMO=90°,∴△AON≌△BOM(AAS),∴OM=ON,AN=BM,设OM=ON=a,∵∠CGB=∠HGB,∴∠OGH=2∠CGB,∵∠BOG=∠OCB+∠OBC=2∠GCB,∠GCB=∠BGC,∴∠BOG=∠OGH,∴∠AOG=∠AGO,∴AO=AG,∵AN⊥OG,∴ON=NG=a,∵BG=AD,BM=AN,∠AND=∠BMG=90°,∴Rt△BMG≌Rt△AND(HL),∴MG=DN=3a,OD=OA=OB=OC=4a,∴BM==a,在Rt△CBM中,∵BC2=BM2+CM2,∴36=15a2+9a2,∵a>0,∴a=,∴MG=CM=3a=,∴DG=2a=,∴CD=2×+=4,∴⊙O半径的长为2.五、(本大题共2小题,每小题9分,共18分)22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.【分析】(1)利用待定系数法,即可求得日销售量y(件)与销售价x(元/件)之间的函数关系式(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x(元/件)之间的函数关系式,再依据函数的增减性求得最大利润.(3)根据(2)中的最大利润,可求得除去其他支出的利润,即可判断能否在一年内还清所有债务解:(1)由图象可得,当40≤x<58时,设y=k1x+b1,代入得,解得∴y=﹣2x+140(40≤x<58)当58≤x≤71时,设y=k2x+b2,代入得,解得∴y=﹣x+82(58≤x≤71)故日销售量y(件)与销售价x(元/件)之间的函数关系为:y=(2)由(1)得利润w=整理得w=故当40≤x<58时,w=﹣2(x﹣55)2+450∵﹣2<0∴当x=55时,有最大值450元当58≤x≤71时,w=﹣(x﹣61)2+441∵﹣1<0∴当x=61时,有最大值441元综上可得当销售价为55元时,该店的日销售利润最大,最大利润为450元(3)由(2)可知每天的最大利润为450元则有450﹣250=200元一年的利润为:200×365=73000元所有债务为:30000+38000=68000元∵73000>68000∴该店能在一年内还清所有债务23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=6,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.六、(本大题共12分)24.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形(1)概念理解①根据上述定义举一个等补四边形的例子:;②如图1,四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°,求证:四边形ABCD是等补四边形.(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD=∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:等补四边形的“等补对角线”平分“等边补角”(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD与等边垂直,求CD的长.【分析】(1)①正方形是等补四边形.②如图1中,作DM⊥BA于M,DN⊥BC于N,则∠DMA=∠DNC=90°,证明△ADM ≌△CDN(AAS),推出AD=DC,即可解决问题.(2)③根据弦,弧,圆周角之间的关系解决问题即可.④根据“等补对角线”,“等边补角”等定义,利用③中结论即可解决问题.(3)分两种情形:①如图3﹣1中,当BD⊥AB时.②如图3﹣2中,当BD⊥BC时,分别求解即可.【解答】(1)①解:正方形是等补四边形.②证明:如图1中,作DM⊥BA于M,DN⊥BC于N,则∠DMA=∠DNC=90°,∵∠A+∠BCD=180°,∠BCD+∠DCN=180°,∴∠A=∠DCN,∵BD平分∠ABC,∴DM=DN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AD=DC,∴四边形ABCD是等补四边形.(2)③解:如图2中,∵AD=AB,∴=,∴∠ACD=∠ACB.故答案为=.④解:由题意,等补四边形的“等补对角线”平分“等边补角”.故答案为等补四边形的“等补对角线”平分“等边补角”.(3)解:如图3﹣1中,当BD⊥AB时,∵∠ADC+∠ABC=180°,∠ABC=120°,∴∠ADC=60°,∵∠ABD=90°,∴AD是⊙O的直径,∴∠ACD=90°,∴∠DAC=∠DBC=30°,∵BA=BC,∠ABC=120°,∴∠BAC=∠ACB=30°,∴∠BAC=∠BDC=30°,∴∠CBD=∠CDB,∴DC=BC=2.如图3﹣2中,当BD⊥BC时,∵∠DBC=90°,∴CD是⊙O的直径,∵BA=BC,∠ABC=120°,∴∠BAC=∠ACB=30°,∴∠BAC=∠BDC=30°,∴CD=2BC=4,综上所述,满足条件的CD的值为2或4.。
〖精选4套试卷〗山西省运城市2020年中考数学第四次押题试卷
2019-2020学年数学中考模拟试卷一、选择题1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④2.轨道环线通车给广大市民带来了很大便利,如图是渝鲁站出口横截面平面图,扶梯AB的坡度i=1:2.4,在距扶梯起点A端6米的P处,用1.5米的测角仪测得扶梯终端B处的仰角为14°,扶梯终端B 距顶部2.4米,则扶梯的起点A与顶部的距离是()(参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)A.7.5米B.8.4米C.9.9米D.11.4米3.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.4.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是()A.必然事件B.不可能事件C.随机事件D.以上都有可能5.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合6.如图,在矩形ABCD中,E是AB边的中点,沿EC折叠矩形ABCD,使点B落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长交AD于点Q.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论为()A .①②B .①②③C .①③④D .②③ 7.已知m 是方程好x 2-2x -1=0的一个根,则代数式2m 2-4m +2019的值为( ) A .2022B .2021C .2020D .2019 8.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形 9.如图,直线AD ∥BC ,若∠1=42°,∠BAC =78°,则∠2的度数为( )A.42°B.50°C.60°D.68°10.如图,在Rt △ABC 中,已知∠ACB =90°,BC =3,AB =5,扇形CBD 的圆心角为60°,点E 为CD 上一动点,P 为AE 的中点,当点E 从点C 运动至点D ,则点P 的运动路径长是 ( )A .2πB .6πC .πD .3211.5、25、2的大小关系是( ) A .5<25<2 B .25<5<2 C .2<25<5 D .2<5<25 12.如图,抛物线2y ax bx c =++,交x 轴于(1,0),(3,0)A B -,交y 轴的负半轴于点C ,顶点为D.有下列结论:①20a b +=②23c b <;③当△ABD是等腰直角三角形时,则12 a=;④当△ABC是等腰三角形时,a的值有3个,其中,正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)2⎡⎤⎣⎦=_____;(2)若[3+]6x=,则x的取值范围是_____.14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.15.分解因式:mn2-2mn+m=_________.16.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_____名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.17.如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.18.2019年4月10日,全球六地同步发布“事件视界望远镜”获取的首张“黑洞”煕片,这个位于室女座足系团中的黑洞,质量约为太阳的6500000000倍.将6500000000用科学记数法表示为_____.三、解答题19.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M.(1)求证:△ABF≌△CBN;(2)求CMCN的值.20.(1)解不等式组:31122(6)5xxx x-⎧+>⎪⎨⎪--≥⎩,并求其整数解.(2)先化简,再求代数式(2124aa a++-)÷12aa-+的值,其中011|4|2tan6012()3a-=-+-+.21.先化简,再求值:24()224a a aa a a÷----,其中a2+2.22.近年来一些搜题软件(作业帮,小猿搜题等)陆续进入学生视野,并受到学生的追捧;只需轻松一拍,答案立马浮现,但各界人士关于学生使用搜题软件的利弊的讨论从未停息,某校为了解本校学生使用搜题软件的情况(分为“总是、较多、较少、不用四种情况),就“是否会使用搜题软件辅助完成作业”随机在九年级抽取了部分学生进行调查,绘制成如下不完整的统计图请根据图中信息,回答下列问题:(1)本次接受调查的学生有 名,图1中的a = ,b = ;(2)“较少”对应的圆心角的度数为 .(3)请补全条形统计图;(4)若该校九年级共有1500名学生,请估计其中使用搜题软件辅助完成作业为“较多”的学生约有多少名?23.某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x 天)的关系如下表:时间(第x 天)1≤x<50 50≤x≤90 x+50 90任务完成后,统计发现销售员小王90天内日销售量p (件)与时间(第x 天)满足一次函数关系p =﹣2x+200.设小王第x 天销售利润为W 元.(1)直接写出W 与x 之间的函数关系式,井注明自变量x 的取值范围;(2)求小生第几天的销售量最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?24.如图,已知⊙O 经过△ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为»BD的中点,且BD =8,AC =9,sinC =13,求⊙O 的半径.25.已知,O e 的半径为1;直线CD 经过圆心O ,交O e 于C 、D 两点,直径AB CD ⊥,点M 是直线CD 上异于C D O 、、的一个动点,直线AM 交O e 于点N ,点P 是直线CD 上另一点,且PM PN =.(Ⅰ)如图1,点M 在O e 的内部,求证:PN 是O e 的切线;(Ⅱ)如图2,点M 在O e 的外部,且30AMO ︒∠=,求OP 的长.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C D C D A B D C AC B 13.916x ≤<14.315.m(n-1)216.517.18.5×109三、解答题19.(1)见解析;(22. 【解析】【分析】(1)根据等腰三角形三线合一的性质证得CE ⊥AF ,进一步得出∠BAF=∠2,由ASA 可以证得△ABF ≌△CBN ;(2)设出正方形的边长为m ,利用相似三角形的性质表示出BN ,进而得出结论.【详解】(1)证明:∵CF=CA ,CE 是∠ACF 的平分线,∴CE ⊥AF ,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB ,∴∠BAF=∠2,在△ABF 和△CBN 中, 290BAF AB CB ABF CBN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ABF ≌△CBN (ASA );(2)解:设正方形的边长为m ,则2,∵2,∴BF=2)m ,∵△ABF ≌△CBN ,∴BN=BF=-1)m ,∵BN ∥CD ,∴△BNM ∽△DCM ,∴1m 1MN BN CM CD m===),∴111MN CM CM ++==, ∴,∴CM CN = . 【点睛】本题考查了正方形的性质,勾股定理的运用,等腰三角形三线合一的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.本题属于中考常考题型.20.(1)﹣1,0,1,2;(2)65. 【解析】【分析】(1)先分别解两不等式得到x<3和x≥﹣1,,再利用大小小大中间找确定不等式组的解集,然后在x 的取值范围内找出所有整数即可.(2)先根据分式混合运算的法则把原式进行化简,再求出a 的值代入进行计算即可.【详解】 (1)31122(6)5,x x x x -⎧+>⎪⎨⎪--≥⎩①② 由不等式①,得x <3,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<3,它的整数解是:﹣1,0,1,2;(2)211,242a a a a a -⎛⎫+÷ ⎪+-+⎝⎭()()()212,221a a a a a a -++=⋅+-- 2211,21a a a a -+=⋅-- ()211,21a a a -=⋅-- 1,2a a -=-当011|4|2tan 60()4373a -=-+=+=时, 原式=715.726-=-【点睛】考查不等式以及分式的混合运算,掌握分式混合运算的法则是解题的关键.21.2,12a a ++-【解析】【分析】先把括号内通分,再把除法转化为乘法约分化简,然后把a +2代入计算即可.【详解】 解:24()224a a a a a a ÷---- =(2)42(2)(2)a a a a a a a +-÷-+- =(2)2(2)(2)a a a a a a -÷-+- =22a a a a+⋅- =22a a +-,当a +2时,原式===1+ 【点睛】 本题考查了分式的化简求值,以及二次根式的混合运算,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分,并熟练掌握二次根式的运算法则.22.(1) 200,20,21;(2)72°;(3)详见解析;(4)315.【解析】【分析】(1)根据不用的人数是38,所占的百分比是19%,据此 即可求得本次接受调查的学生总人数;用较多的人数除以总人数求出b ,根据各组百分比的和为1,求出a 的值;(2)用360度乘以较少所在的百分比即可;(3)根据百分比的意义求得较少,总是两项的人数,从而补全条形图;(4)用该校九年级学生总数乘以样本中较多所占的百分比即可.【详解】解:(1)3819%200÷=(名),即本次接受调查的学生有200名. 较多所占百分比为:4221%21200b ∴=,=, %119%40%21%20%a ∴=﹣﹣﹣=,20a ∴=.故答案为200,20,21;(2)“较少”对应的圆心角为36020%72︒⨯︒=.故答案为72°;(3)“较少”的人数是:20020%40⨯=(人),“总是”的人数是:20040%80⨯=(人),条形统计图补充如下:(4)150021%315⨯=(名).答:估计其中使用搜题软件辅助完成作业为“较多”的学生约有315名.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要信息是解题关键.23.(1)221802000(150)W=10010000(5090)x x xx x⎧-++≤<⎨-+≤≤⎩;(2)小王第45天的销售利润最大,最大利润为6050元;(3)小王一共可获得6200元奖金.【解析】【分析】(1)依据题意销售利润=销售量×(售价-进价)易得出销售利润为W(元)与x(天)之间的函数关系式;(2)依据(1)中函数的增减性求得最大利润;(3)根据销售利润为W(元)与x(天)之间的函数关系式,求出利润超过4800元的天数即可求得可获得的奖金金额.【详解】(1)依题意:(50)(150) W=90(5090)p x xp x+≤<⎧⎨≤≤⎩,整理得221802000(150) W=10010000(5090)x x xx x⎧-++≤<⎨-+≤≤⎩;(2)①当1≤x<50时,W=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵﹣2<0,∴抛物线开口向下,∴当x=45时,W有最大值为6050;②当50≤x≤90时,W=﹣100x+10000,∵﹣100<0,∴W随x的增大而减小,∴当x=50时,W有最大值为5000,∵6050>5000,∴当x=45时,W的值最大,最大值为6050,即小王第45天的销售利润最大,最大利润为6050元;(3)①当1≤x<50时,令W=4800,得W=﹣2(x﹣45)2+6050=4800,解得x1=20,x2=70,∴当W>4800时,20<x<70,∵1≤x<50,∴20<x<50;②当50≤x≤90时,令W>4800,W=﹣100x+10000>4800,解得x<52,∵50≤x≤90,∴50≤x<52,综上所述:当20<x<50时,W>4800,即共有51﹣21+1=31天的销售利润超过4800元,∴可获得奖金200×31=6200元,即小王一共可获得6200元奖金.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.⊙O的半径为256.【解析】【分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH 中,根据BH2+OH2=OB2,构建方程即可解决问题。
山西省运城市2020年中考数学第四次押题试卷
山西省运城市2020年中考数学第四次押题试卷一、选择题1.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A.232π-B.23πC.2π-D.π-2.在平面直角坐标系中,P 点关于原点的对称点为P 1(-3,-83),P 点关于x 轴的对称点为P 2(a ,b( ) A .-2B .2C .4D .-43.已知一个矩形的两条对角线夹角为60°,一条对角线的长为10cm ,则该矩形的周长为( ) A .20cmB.C .20(cmD .10(cm4.若正比例函数y =(a ﹣4)x) A.a ﹣3 B.3﹣aC.(a ﹣3)2D.(3﹣a )25.如图,E 是▱ABCD 边AB 延长线上的一点,AB=4BE ,连接DE 交BC 于F ,则△DCF 与四边形ABFD 面积的比是( )A .4:5B .2:3C .9:16D .16:256.不等式组21331563x x x +≥-⎧⎪-⎨--⎪⎩>的解集在数轴上表示正确的是( )A.B .C .D.7.如图,在ABCD □中,点E 在BC 边上,DC AE 、的延长线交于点F ,下列结论错误的是( )A .AF BCFE CE= B .CE CBEF AE= C .EF CEAF CB= D .AE ABEF CF= 8.将抛物线21y x =+先向左平移1个单位长,再向上平移1个单位长,得到新抛物线( ) A.2(1)y x =+B.2(1)2y x =++C.2(1)y x =-D.2(1)2y x =-+9.《居室内空气中甲醛的卫生标准》(GB/T16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g/m 3.将0.00008用科学记数法可表示为( ) A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯10.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%11.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()Px y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .2412.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A .CE =EFB .∠BDF =90°C .△EOD 和△COF 的面积相等 D .∠BDC =∠CEF+∠A二、填空题13.一元二次方程x 2﹣x=0的根是_____. 14.分解因式a 3﹣a 的结果是_____.15.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变化.如图,已知正方形ABCD ,顶点A (1,3),C (3,1).若正方形ABCD 经过一次上述变化,则点A 变化后的坐标为 ,如此这样,对正方形ABCD 连续做2015次这样的变化,则点D 变化后的坐标为 .16.某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有_____人.17.如图,在△ABC 中,∠C=90°,∠A=30°,a ∥b ,点B 在直线b 上,∠1=138°,则∠2=______度.18.若代数式24x x --的值是2,则x =_____. 三、解答题19.如图,已知AB 是⊙O 的直径,AC 是弦(不是直径),OD ⊥AC 垂足为G 交⊙O 于D ,E 为⊙O 上一点(异于A 、B ),连接ED 交AC 于点F ,过点E 的直线交BA 、CA 的延长线分别于点P 、M ,且ME =MF . (1)求证:PE 是⊙O 的切线. (2)若DF =2,EF =8,求AD 的长.(3)若PE =6,sin ∠P =13,求AE 的长.20.如图所示,甲、乙两船同时由港口A 出发开往海岛B ,甲船沿东北方向向海岛B 航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B 岛,其速度仍为20海里/小时. (1)求港口A 到海岛B 的距离;(2)B 岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?21.已知,如图,在△ABC和△A'B'C'中,AD,A'D'分别是△ABC和△A'B'C'的中线,AB=A'B',BC=B'C',AD=A'D'.求证:△ABC≌△A'B'C'.22.如图所示,在建筑物顶部有一长方形广告牌架CDEF,已知CD=2m,在地面上A处测得广告牌架上端C的仰角为37︒,前进10m到达B处,在B处测得广告牌架下端D的仰角为60︒,求广告牌架下︒≈取1.73)端D到地面的距离(结果精确到0.1m).(参考数据:tan370.7523.某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(1)如果在线下购买甲、乙两种书架共30个,花费8280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.24.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1800名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查的总人数是,统计表中a的值为.(2)求扇形统计图中排球一项的扇形圆心角度数.(3)试估计全校1800名学生中最喜欢乒乓球运动的人数.25.如图,V ABC 中,AB AC = ,以AB 为直径的O 与BC 相交于点D ,与CA 的延长线相交于点E ,O 的切线DF 交EC 于点F .(Ⅰ)求DFC ∠的度数;(Ⅱ)若3AC AE =,12BC = ,求O 的直径AB .【参考答案】一、选择题二、填空题13.x 1=0,x 2=114.a (a+1)(a ﹣1). 15.(-1,-3);(-3,-3) 16.300 17.12 18.6 三、解答题19.(1)详见解析;(2)3)【解析】 【分析】(1)连接OE ,根据余角的性质和等腰三角形的性质得到∠D =∠OED ,求得OE ⊥PE ,于是得到结论; (2)根据垂径定理得到CD AD =,求得∠FAD =∠AED ,根据相似三角形的性质得到结论; (3)设OE =x ,解直角三角形即可得到结论. 【详解】(1)证明:连接OE ,∵OD⊥AC,∴∠DGF=90°,∴∠D+∠DFG=∠D+∠AFE=90°,∴∠DFG=∠AFE,∵ME=MF,∴∠MEF=∠MFE,∵OE=OD,∴∠D=∠OED,∴∠OED+∠MEF=90°,∴OE⊥PE,∴PE是⊙O的切线;(2)∵OD⊥AC,∴CD AD=,∴∠FAD=∠AED,∵∠ADF=∠EDA,∴△DFA~△DAE,∴AD DF DE AD=,∴AD2=DF•DE=2×10=20,∴AD=(3)解:设OE=x,∵sin∠P=13 OEOP=,∴OP=3x,∴x2+()2=(3x)2,解得:x=3,过E作EH垂直AB于H,sin∠P=EH1PE3==,∴EH=,∵OH2+EH2=OE2,∴OH=1,∴AH=2,∵AE2=HE2+AH2,∴AE=【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,相似三角形的判定和性质,正确的作出辅助线是解题的关键.20.(1)港口A 到海岛B 的距离为2)乙船先看见灯塔. 【解析】 【分析】(1)作BD ⊥AE 于D ,构造两个直角三角形并用解直角三角形用BD 表示出CD 和AD ,利用DA 和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可. 【详解】(1)过点B 作BD ⊥AE 于D在Rt △BCD 中,∠BCD =60°,设CD =x ,则BD =,BC =2x在Rt △ABD 中,∠BAD =45°则AD =BD ,AB由AC+CD =AD 得20+x解得:x =+10故AB =答:港口A 到海岛B 的距离为(2≈4.1小时乙船看见灯塔所用时间:11 4.02++≈小时 所以乙船先看见灯塔. 【点睛】此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答. 21.见解析. 【解析】 【分析】依据BD =B'D',AB =A'B',AD =A'D',即可判定△ABD ≌△A'B'D',再根据∠B =∠B',AB =A'B',BC =B'C',即可得判定△ABC ≌△A'B'C'. 【详解】∵AD ,A'D'分别是△ABC 和△A'B'C'的中线,BC =B'C', ∴BD =B'D',又∵AB =A'B',AD =A'D', ∴△ABD ≌△A'B'D'(SSS ), ∴∠B =∠B',又∵AB =A'B',BC =B'C', ∴△ABC ≌△A'B'C'(SAS ). 【点睛】本题考查了全等三角形的性质和判定的应用,能求出△ABD≌△A′B′D′是解此题的关键.22.广告牌架下端D到地面的距离约为9.7米.【解析】【分析】过点D作DH⊥AB,垂足为H,设DH=x,在Rt△DBH中,利用∠DBH的正切,用x表示出BH的长,在Rt △AHC中,利用∠A的正切列关于x的方程,求出x的值即可.【详解】过点D作DH⊥AB,垂足为H.设DH=x在Rt DBH中,DBH=60∠︒,由DHDBH=BH tan∠,xBH.∴BH=x3.在Rt AHC中,A=37∠.由CHA=AH tan∠,得3 4≈∴≈9.7.答:广告牌架下端D到地面的距离约为9.7米.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.23.(1)甲种书架购买了12个,乙种书架购买了18个.(2) 当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元.【解析】【分析】(1)设线下购买甲种书架x个,购买乙种书架y个,根据在线下购买甲、乙两种书架30个共花费8280元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购买乙种书架的数量不少于甲种书架的3倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质结合m为整数即可解决最值问题.【详解】(1)设线下购买甲种书架x个,购买乙种书架y个,依题意,得:302403008280x y x y +=⎧⎨+=⎩,解得:1218x y =⎧⎨=⎩.答:甲种书架购买了12个,乙种书架购买了18个.(2)设线上购买总花费为w 元,购买甲种书架m 个,则购买乙种书架(30﹣m )个, 依题意,得:w =(210+20)m+(250+30)(30﹣m )=﹣50m+8400. ∵买乙种书架的数量不少于甲种书架的3倍, ∴30﹣m≥3m, 解得:m≤712. ∵m 为整数, ∴m≤7. ∵﹣50<0,∴w 值随m 值的增大而减小,∴当m =7时,总花费最小,最少费用为8050,此时30﹣m =23.答:当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元. 【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的最值,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)由总价=单价×数量,找出w 关于m 的函数关系式. 24.(1)150人,39;(2)36°;(3)504人. 【解析】 【分析】(1)用喜欢篮球的人数除以其所占的百分比即可求得调查的总人数,用调查的总人数乘以羽毛球所占的百分比即可求得a ;(2)用调查的总人数减去其他求得b 值,求出排球所占百分比即可求得排球一项的扇形圆心角度数; (3)用全校人数乘以喜欢乒乓球的人所占的百分比即可. 【详解】解:(1)∵喜欢篮球的有33人,占22%, ∴抽样调查的总人数为33÷22%=150(人); ∴a =150×26%=39(人); 故答案为:150人,39;(2)b =150﹣42﹣39﹣33﹣21=15(人); 扇形统计图中排球一项的扇形圆心角度数为:360°×15150=36°; (3)最喜欢乒乓球运动的人数为:1800×42150=504(人). 【点睛】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.25.(Ⅰ)90DFC ∠=︒;(Ⅱ)AB =【解析】 【分析】(Ⅰ)连接OD .由切线的性质可知OD ⊥DF .再由AC=AB ,OB=OD 可证明∠ODB=∠C ,从而可证明OD ∥AC ,再由平行线的性质可证明DF ⊥AC ;(Ⅱ)连结BE ,根据直径所对的圆周角为直角得出90AEB ∠=°,设AE k =,根据已知用k 表示出AB 、EC,然后根据勾股定理列出关于k 的方程求解即可. 【详解】解:(Ⅰ)连接OD , ∵=OB OD , ∴B ODB ∠=∠, ∵AB AC =, ∴B C ∠=∠, ∴ODB C ∠=∠, ∴OD AC ∥, ∵DF 是O 的切线∴OD DF ⊥, ∴DF AC ⊥,∴90DFC ODF ∠=∠=︒;(Ⅱ)连接BE ∵AB 是直径, ∴90AEB ∠=°,∵AB AC =,3AC AE = , ∴3AB AE =,4CE AE = ,设AE k =,则3AB k =,3AB AC k ==,4EC k = , ∴在Rt ABE △中,22228BE AB AE k =-=,在Rt BEC 中,222BE EC BC +=.∵12BC =,∴22281612k k +=,∴26k =∴k =(负舍),∴直径3AB AE ==【点睛】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理以及圆周角的性质定理,根据勾股定理列出方程是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年山西省中考数学预测卷四
注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用 2B 铅笔填涂
第 I 卷 选 择 题 ( 共 30 分)
一、 选择题 (本大题共 10 个小题, 每小题 3 分, 共 30 分, 在每个小题给出的四个选项中, 只有 一 项 符 合 题 目 要 求,请 选 出 并 在 答 题 卡上将 该 项 涂 黑 )
答案卷 第 I 卷 选择题(共 30
分)
一、 选择题 (本大题共 10 个小题, 每小题 3 分, 共 30 分, 在每个小题给出的四个选项中, 只有 一 项 符 合 题 目 要 求,请 选 出 并 在 答 题 卡上将 该 项 涂 黑 )
1.(2019·宿迁)2019 的相反数是( )
A. 1 2019
20.(本题 9 分)(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图 1,明朝科学家徐 光启在《农政全书》中用图画描绘了筒车的工作原理.如图 2,筒车盛水桶的运行轨迹是以轴 心 O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦 AB 长为 6 米,∠OAB=41.3°,若 点 C 为运行轨道的最高点(C,O 的连线垂直于 AB),求点 C 到弦 AB 所在直线的距离. (参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
A.
B.
C.
D.
【答案】A 【解析】从正面看易得第一层有 2 个正方形,第二层最右边有一个正方形.故选 A. 【名师点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.(2019•河南)如图,在四边形 ABCD 中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点 A,C 为
圆心,大于 1 AC 长为半径作弧,两弧交于点 E,作射线 BE 交 AD 于点 F,交 AC 于点 O.若点 2
O 是 AC 的中点,则 CD 的长为( )
A.2 2
B.4
6.(2018·山东滨州)把不等式组
确的为( )
A.
B.
C.3
D. 10
中每个不等式的解集在同一条数轴上表示出来,正
C.
D.
23.(本题 13 分)(2019•广西南宁)如果抛物线 C1 的顶点在拋物线 C2 上,抛物线 C2 的顶点也在拋
物线 C1 上时,那么我们称抛物线 C1 与 C2“互为关联”的抛物线.如图 1,已知抛物线 C1:y1= 1 x2+x 4
与 C2:y2=ax2+x+c 是“互为关联”的拋物线,点 A,B 分别是抛物线 C1,C2 的顶点,抛物线 C2 经 过点 D(6,–1). (1)直接写出 A,B 的坐标和抛物线 C2 的解析式; (2)抛物线 C2 上是否存在点 E,使得△ABE 是直角三角形?如果存在,请求出点 E 的坐标;如 果不存在,请说明理由; (3)如图 2,点 F(–6,3)在抛物线 C1 上,点 M,N 分别是抛物线 C1,C2 上的动点,且点 M, N 的横坐标相同,记△AFM 面积为 S1(当点 M 与点 A,F 重合时 S1=0),△ABN 的面积为 S2(当 点 N 与点 A,B 重合时,S2=0),令 S=S1+S2,观察图象,当 y1≤y2 时,写出 x 的取值范围,并求 出在此范围内 S 的最大值.
1.(2019·宿迁)2019 的相反数是( )
A. 1 2019
B.-2019
2.(2019·南充)下列各式计算正确的是(
C. 1 2019
)
D.2019
A. 2a(a 2)(a 2)
B. (x2 )3 x5
C. x6 x2 x3
D. x x2 x3
3.(2019•河南)下列计算正确的是( )
圆心,大于 1 AC 长为半径作弧,两弧交于点 E,作射线 BE 交 AD 于点 F,交 AC 于点 O.若点 2
O 是 AC 的中点,则 CD 的长为( )
A.2 2
B.4
【答案】A 【解析】如图,连接 FC,则 AF=FC.
C.3
D. 10
∵AD∥BC,∴∠FAO=∠BCO.
FAO BCO
在△FOA 与△BOC 中, OA OC
【答案】B
B.-2019
C. 1 2019
D.2019
【解析】2019 的相反数是-2019.故选 B.
【名师点睛】本题考查了相反数.
2.(2019·南充)下列各式计算正确的是( )
A. 2a(a 2)(a 2)
B. (x2 )3 x5
C. x6 x2 x3
D. x x2 x3
【答案】D
6.(2018·山东滨州)把不等式组 确的为( )2a+3a=5a,A 错误;(-3a)2=9a2,B 错误;
(x-y)2=x2-2xy+y2,C 错误; 3 2 2 2 2 ,D 正确,故选 D.
【名师点睛】本题考了合并同类型、积的乘方、完全平方公式、无理数计算. 4.(2019•长春)如图是由 4 个相同的小正方体组成的立体图形,这个立体图形的主视图是( )
7.(2018·连云港)地球上陆地的面积约为 150 000 000km2.把“150 000 000”用科学记数法表示为( )
A. 1.5×108
B. 1.5×107
C. 1.5×109
D. 1.5×106
8.(2018·盐城)已知一元二次方程 x2+kx-3=0 有一个根为 1,则 k 的值为( )
的解为__________.
15.(2019•本溪)在平面直角坐标系中,点 A,B 的坐标分别是 A(4,2),B(5,0),以点 O
为位似中心,相似比为 1 ,把△ABO 缩小,得到△A1B1O,则点 A 的对应点 A1 的坐标为__________. 2
三、解答题(本大题共 8 个小题,共 75 分. 解答应写出文字说明,证明过程或演算步骤) 16.( 本 题 共 2 个小题,每小题 5 分 , 共 10 分 )
A.2a+3a=6a
B.(-3a)2=6a2
C.(x-y)2=x2-y2
D. 3 2 2 2 2
4.(2019•长春)如图是由 4 个相同的小正方体组成的立体图形,这个立体图形的主视图是( )
A.
B.
C.
D.
5.(2019•河南)如图,在四边形 ABCD 中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点 A,C 为
19.(本题 8 分)(2019•宿迁)超市销售某种儿童玩具,如果每件利润为 40 元(市场管理部门规
定,该种玩具每件利润不能超过 60 元),每天可售出 50 件.根据市场调查发现,销售单价每
增加 2 元,每天销售量会减少 1 件.设销售单价增加 x 元,每天售出 y 件. (1)请写出 y 与 x 之间的函数表达式; (2)当 x 为多少时,超市每天销售这种玩具可获利润 2250 元? (3)设超市每天销售这种玩具可获利 w 元,当 x 为多少时 w 最大,最大值是多少?
(1)(2018•衢州)计算:|﹣2|﹣ +23﹣(1﹣π)0.
(2)(2019•天津)方程组
3x 6x
2y 2y
7 11
17.(本题 7 分)(2019•南京)如图,D 是△ABC 的边 AB 的中点,DE∥BC,CE∥AB,AC 与 DE 相交于点 F.求证:△ADF≌△CEF.
18.(本题 9 分)(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别 一次性额外购买若干次维修服务,每次维修服务费为 2000 元.每台机器在使用期间,如果维修 次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费 500 元; 如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费 5000 元,但无需支付工时费.某公司计划购买 1 台该种机器,为决策在购买机器时应同时一次性额 外购买几次维修服务,搜集并整理了 100 台这种机器在三年使用期内的维修次数,整理得下表; 维修次数 8 9 10 11 12 频率(台数) 10 20 30 30 10 (1)以这 100 台机器为样本,估计“1 台机器在三年使用期内维修次数不大于 10”的概率; (2)试以这 100 机器维修费用的平均数作为决策依据,说明购买 1 台该机器的同时应一次性额 外购 10 次还是 11 次维修服务?
21.(本题 8 分)(2019•天津)在平面直角坐标系中,O 为原点,点 A(6,0),点 B 在 y 轴的正半轴 上,∠ABO=30°.矩形 CODE 的顶点 D,E,C 分别在 OA,AB,OB 上,OD=2.
(Ⅰ)如图①,求点 E 的坐标; (Ⅱ)将矩形 CODE 沿 x 轴向右平移,得到矩形 C′O′D′E′,点 C,O,D,E 的对应点分别为 C′, O′,D′,E′.设 OO′=t,矩形 C′O′D′E′与△ABO 重叠部分的面积为 S. ①如图②,当矩形 C′O′D′E′与△ABO 重叠部分为五边形时,C′E′,E′D′分别与 AB 相交于点 M,F, 试用含有 t 的式子表示 S,并直接写出 t 的取值范围;
【解析】A、x+x2,无法计算,故此选项错误;B、(x2)3=x6,故此选项错误;
C、x6÷x2=x4,故此选项错误;D、x·x2=x3,故此选项正确,故选 D.
【名师点睛】本题考查了整式的运算.
3.(2019•河南)下列计算正确的是( )
A.2a+3a=6a
B.(-3a)2=6a2
C.(x-y)2=x2-y2
庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最
适合的统计图是__________.