正余弦函数的性质PPT优秀课件

合集下载

5.4.2正弦函数、余弦函数的性质(教学课件)正弦函数、余弦函数的周期性和奇偶性)

5.4.2正弦函数、余弦函数的性质(教学课件)正弦函数、余弦函数的周期性和奇偶性)

当 = −1时,sin − 2π = sin.
知识梳理
知识点一:
1.函数的周期性
(1)一般地,设函数f(x)的定义域为D,如果存在一个 非零常数T,使得
对每一个x∈D都有x+T∈D,且 f(x+T)=f(x) ,那么函数f(x)就叫做周
期函数. 非零常数T 叫做这个函数的周期.
(2)如果在周期函数f(x)的所有周期中存在一个 最小的正数 ,那么这个
方法二(公式法)

1
= 中 = , 所以
2
2
2
=
= 4
1
2
学以致用
反思感悟
求三角函数周期的方法
(1)定义法,即利用周期函数的定义求解.
(2)公式法,对形如 y=Asin(ωx+φ)或 y=Acos(ωx+φ)(A,ω,φ 是常

数,A≠0,ω≠0)的函数,T=|ω|. (常用方法)
2 ;
1+sin x-cos2x
(3)f(x)=
.
1+sin x
π
x≠kπ+ ,k∈Z
解 (1)定义域为 x
2
|
,关于原点对称.因为
f(-x)=sin(-x)+tan(-x)=-sin x-tan x=-f(x),
所以函数 y=sin x+tan x 是奇函数.
学以致用
3x 3π

3x
(2)f(x)=sin 4
针每经过1小时运行一周.分针、时针的转动是否具有周期性?
它们的周期分别是多少?
具有周期性
分针的周期是1小时,时针的周期是12小时。
新知引入
那么观察正弦函数的图像,是否也具有同样的周期性的规律呢?
= sin

正弦函数、余弦函数的性质17页PPT

正弦函数、余弦函数的性质17页PPT
Hale Waihona Puke xRy [1,1]
x2k 时, ymax 1
x2k时,ymin 1
x [2k,2k] 增函数
x[2k,2k] 减函数
偶函数
2 对称轴: xk,kZ
对称中心:(2 k,0) k Z
例1 求下列函数的最大值和最小值,并写 出取最大值、最小值时自变量x的集合
(1) y=cosx+1,x∈R;
(2)y=-3sin2x,x∈R.
16
17
单调性 奇偶性 周期性 对称性
y=sinx
y
1
2
0
2
-1
3
2 5 x
2
2
xR
y [1,1]
x
2
2k
时, ymax
1
x
2
2k
时,ymin
1
x[-22k,22k] 增函数
x[22k,322k] 减函数
奇函数
2
对称轴:
x
2
k,
k
Z
对称中心: (k,0) kZ
y=cosx
y
1
0
2
3
2 5 x
2
2
-1
例2:比较下列各组数的大小:
(1)sin( )与sin( )
18
10
(2)cos(23 )与cos(17 )
5
4
例3:求函数 ysi1 nx()x , 2,2
23 的单调递增区间。
求函数 ysi n (1x)x , 2,2
32
的单调递增区间。
求函数 ycos2(x)
3
的单调递减区间。
谢谢!
具体做法:
(1)选择一个恰当的区间(这个区间的长为一个周期, 且仅有一个单增区间和一个单减区间)

正弦函数和余弦函数的图像与性质.ppt

正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10

正弦函数、余弦函数的图象PPT优秀课件

正弦函数、余弦函数的图象PPT优秀课件

y=sinx ,x[0,2]
y
1 -4 -3 -2 -

y=sinx , xR
正弦曲线
o
-1

2
3
4
5
6
x
学生活动
o sx 的图象. 用“五点法”画余弦函数yc
★观察图象特征
★找关键点 ★作y=cosx,x∈[0,2π]的图象 ★由周期性作出整个图象
Enter
1.5 1 0.5 0 0 -0.5 -1 -1.5 1 2 3 4 5 6 7 系列1
y
1
2
y=cosx,x[0, 2]
2
o
-1

3 2
2
x
y=sinx,x[0, 2]
课后思考
如何画下列函数的简图? (1)y= cos2x
(2)y=sinx - 1
谢谢大家!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

《正弦函数、余弦函数的图象》三角函数精美版课件

《正弦函数、余弦函数的图象》三角函数精美版课件
用“五点法”作三角函数的图象
分析:构造三角不等式→画函数图象→求函数定义域
函 数
正弦函数
余弦函数
解析式
y=sin x
y=cos x
定义域
R
R
(5)作函数图象最基本的方法是什么?如果用描点法作正弦函数
y=sin x在[0,2π]内的图象,可取哪些点?
提示:作函数图象最基本的方法是描点法;用描点法作正弦函数
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数
x,cos x看作是关于变量x的函数?
形结合的方法:在同一平面直角坐标系中画出两个函数的图象,观察它们交点的个数,即得方程根的个数.
解析:因为y=cos(x+3π)=-cos x,所以其图象与余弦函数y=cos x的图象关于原点和x轴都对称.
(1)列表:

3
x
0
π

2
2
sin x(或 cos x)
0(或 1) 1(或 0) 0(或-1) -1(或 0) 0(或 1)
y
y1
y2
y3
y4
(2)描点:在平面直角坐标系中描出下列五个点:
(0,y1),
π
,
2 2
,(π,y3),

,
2 4
,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
利用三角函数线解sin x>a(或cos x>a)的方法
(3)确定sin x>a(或cos x>a)的解集.
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数

正弦,余弦函数的单调性和奇偶性[优质ppt]

正弦,余弦函数的单调性和奇偶性[优质ppt]
x 内的任意一个 ,都有 f(x)f(x)则称 f (x) 为
这一定义域内的偶函数。偶函数的图像关于 y
轴对称。
定义:一般地,如果对于函数 f ( x)的定义
域内的任意一个 x都 f(x)f(x),则称 f (x)
为这一定义域内的奇函数。奇函数图像关于原 点对称。
x 注意:1、 是任意的
2.奇函数,偶函数的定义域必须关于原点对称
正弦、余弦函数的性质
(奇偶性、单调性)
X
知识回顾 y
1
3 5 2
2 3
2

2
O 3 2 5 3 x
2
2
2
1
y=sinx (xR) 定义域 xR
值 域 y[ - 1, 1 ]
y=cosx (xR) 周期性 T = 2
y
1
3 5 2
x( , )
x( , )
且f(x)(x)si nx)(
且f(x)1si nx)(
xsinx
1sin x
f (x)
f(x)f(x)且 f(x)f(x)
函数 yxsinx是偶函数 y 1sinx是非奇非偶函数
判断下列函数的 ( 1)yxsinx
再观察正弦函数图像
y
1
3 5 2
2 3
2

2
O 3 2 5 3 x
2
2
2
1
正弦函数 ysinx在
在每个闭区间 [2k,2k]k (Z)上是增函数,
22
其函数值从-1增大到1
在每个闭区间 [2k,32k](kZ)是减函数,
其关于原点的对称点 P'(x,sinx) , 由诱导公式 sinx()sixn, 即 P'(x,sinx()) 故P '也在正弦函数的图像上。

正弦定理和余弦定理ppt课件

正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

正弦函数、余弦函数的性质( 数学 优秀课件

正弦函数、余弦函数的性质( 数学 优秀课件
解析:利用周期函数的定义,找到T,使得 思考:这些函数的周期跟解析式中哪些量有 f(x+T)=f(x) 关系?有什么关系?
课后思考
• 用几何画板y=Asin(wx+ψ)图像.gsp作 y=Asin(wx+ψ)的图像,探究该类函数的周 期。 • 试着发现:A、w、ψ分别决定了图像的什 么?
小结
正弦函数的性质:
sin(x 2k ) sin x
正弦函数的周期:2k (k z且k 0) 最小正周期: 2
性质3:单调性
在一个周期上(如[ ,
2
3
2
] )考虑:
[

, ] 2 2

x

2
,sinx= 值。
x

2
或x
,sinx=-1,为最小
1.4.2 正弦函数、余弦函数的性质
主讲人:黄凡
复习回顾
①正弦函数、余弦函数的图像是什么?
(物理中简谐运动的图像) (一波未平,一波又起—波涛汹涌)
②我们是如何得到正弦函数的图像的? 几何画图法—单位圆中的正弦线 五点作图法—五个关键点确定形状
引入新课
• 一次函数与图像 • 指数函数与图像 • 对数函数与图像
利用周期性,不难得到:
正弦函数在每一个闭区间[ 2 2k , 2 2k ]( k z ) 上都是增函数,其值从-1增大到1;在每一 3 [ 2 k , 2k ]( k z ) 上都是减 个闭区间 2 2 函数,其值从1减小到-1.
3 正弦函数当且仅当 2 2k (k z)
• 1、周期性(最小正周期为 2 ) • 2、奇偶性(奇函数) • 3、单调性
余弦函数的性质:

正弦函数、余弦函数的图象和性质PPT课件.ppt

正弦函数、余弦函数的图象和性质PPT课件.ppt

1






7 4 3 5 11
6
6 3 2 3 6 2

2 0

2
5


11
6 32 3 6


x

5
6
-1



3
sin(2k +x)= sinx (k Z)
y y=sinx (xR)
1
2 0
-1
2 3 4 5
6 x
二、正弦函数的“五点画图法”
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2

3
2
2
sinx 0 1 0 -1 0
1+sinx 1 2
1
0
1
y
2

y=1+sinx x [0, 2 ]
1●



o


3
2
x
2
2
(2)按五个关键点列表
x
0
2

3
2
2
cosx 1 0 -1 0 1
y
y=sinx的图象
1
2 0 3 2 3
2 -1 2
2
4 5
y=cosx的图象
6 x
余弦函数的“五点画图法”
(0,1)、(
2
,0)、( ,-1)、( 3 2
,0)、(2, 1)
y
1●

o



3
2

正弦函数、余弦函数的性质 课件

正弦函数、余弦函数的性质  课件

类型二 三角函数奇偶性的判断
【典例】1.(沧州高一检测)函数f(x)= 的奇偶性为 ( )
sin2x2
A.奇函数
B.偶函数
C.既奇又偶函数 D.非奇非偶函数
2.判断函数f(x)=sin (3 x 3) 的奇偶性.
42
【审题路线图】1.奇偶性⇒定义域⇒是否关于原点对称 ⇒f(-x)与f(x)的关系. 2.奇偶性⇒定义域⇒是否关于原点对称⇒f(-x)与f(x)的 关系.
2
是偶函数,故选C.
2.选D.因为f(x)的最小正周期为T=π,
所以 f( 5 π)=f( 5 π-2π)=f(-π ),
3
3
3
又y=f(x)是偶函数,
所以f(-x)=f(x).
所以 f( 5 π)=f(-π )=f( π )=sin π= 3 .
3
33
32
【延伸探究】若本例2中的“偶函数”改为“奇函数”, 其他条件不变,结果如何?
类型三 三角函数周期性与奇偶性的综合应用
【典例】1.下列函数中周期为 ,且为偶函数的
2
是( )
A.y=sin4x
C.y=sin(4x+π ) 2
B.y=cos 1 x
4
D.y=cos( 1 x-π ) 42
2.定义在R上的函数f(x)既是偶函数,又是周期函数,若
f(x)的最小正周期为π,且当x∈ [0,] 时,f(x)=sinx,
4.若函数是以2为周期的函数,且f(3)=6,则f(5)= ________. 【解析】因为函数是以2为周期的函数,且f(3)=6,则 f(5)=f(3+2)=f(3)=6. 答案:6
5.根据函数奇偶性的定义判断函数y=lgcosx是 ________函数.(填写奇或偶)

正弦、余弦函数的图像和性质PPT课件

正弦、余弦函数的图像和性质PPT课件

函数 y sin x , x 0 , 2 图象的几何作法
y
作法: (1) 等分 (2) 作正弦线
/
1P 1
p1
(3) 平移 (4) 连线

3

6
-
-
-
o1
M
-1 A
1
o
6

2
2 3
5 6

7 6
4 3
3 2
5 3
11 6
2 2
x
-1 -
正弦曲线
y
1-
6
-
2

3 3 2
2
2 2
xx
y sin x , x [ 0 , 2 ]
y cos x , x [ 0 , 2 ]
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图
(2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
四川省天全中学数学组
-
图象的最高点
( 0 ,1 ) ( 2 ,1)
1-
与x轴的交点
-1
o
6

3

2
2 3
5 6

7 6
4 3
3 2
5 3
11 6
2
x
( , 0 ) ( 32 , 0 ) 2
( , 1 )
-
图象的最低点
-1 -
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π] (2)y=-cosx , x∈[0,2π] 解:(1)列表 (2)
正 弦 函 数、余 弦

正弦定理和余弦定理-PPT课件

正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.

《正余弦函数的性质》课件

《正余弦函数的性质》课件

对称性
正余弦函数关于原点对称
正余弦函数关于y轴对称
正余弦函数关于x轴对称
正余弦函数关于直线y=x对 称
正余弦函数的应用
第五章
在三角函数中的应用
正余弦函数是三角函数的基础,广泛应用于解三角形、解析几何等领域 正余弦函数在解三角形中的应用:利用正余弦定理求解三角形的边角关系 正余弦函数在解析几何中的应用:利用正余弦函数表示圆、椭圆、双曲线等曲线的方程 正余弦函数在物理、工程等领域中的应用:如振动、电磁场、机械运动等
斜边与对边的比值
正矢函数:y=sinhx, 表示双曲正弦函数
余矢函数:y=coshx, 表示双曲余弦函数
正双曲函数: y=tanhx,表示双曲
正切函数
余双曲函数: y=cothx,表示双曲
余切函数
三角恒等式与变换
正余弦函数的三角恒等式:sin(x) = cos(π/2 - x),cos(x) = sin(π/2 + x)
余切函数在区间[0, π/2]上是单调 递减的
凹凸性
正弦函数:在定义域内是单调递增 的,因此是凹函数
正切函数:在定义域内是单调递增 的,因此是凹函数
添加标题
添加标题
添加标题
添加标题
余弦函数:在定义域内是单调递减 的,因此是凸函数
余切函数:在定义域内是单调递减 的,因此是凸函数
零点
正弦函数的零点:x=nπ,n为整数 余弦函数的零点:x=nπ+π/2,n为整数 正切函数的零点:x=nπ/2,n为整数 余切函数的零点:x=nπ,n为整数
图像变换
平移:沿x轴或y 轴移动图像
伸缩:改变图像 的大小和形状
旋转:改变图像 的方向和角度
反射:将图像翻 转或镜像

1.4正弦函数,余弦函数的性质ppt

1.4正弦函数,余弦函数的性质ppt

自变量x增加2π时函数值不断重复地出现的
x o y x o 6π 12π 4π 8π
3.T是f(x)的周期,那么kT也一定是f(x)的周期. (k为非零整数)
求下列函数的周期:
(1) y 3 cos x, x R (2) y sin 2 x, x R 1 (3) y 2 sin( x ), x R 2 6
-
o

· · · ·
2 3 4
结合图像:在定义域内任取一个 , 由诱导公式可知: sin(x 2k ) sin x
x
f ( x 2k ) f ( x) 正弦函数y sin x( x R)是周期函数,周期是 2k

思考3:余弦函数是不是周期函数?如 果是,周期是多少? 由诱导公式可知:

(3)已知函数 y sin(x ), 0 的周期为 3 ,则 3 6 ___
(4)函数
y cos (1 x) 的最小正周期是 2
4
练习题.
求下列函数的周期: x (2) y cos (1) y sin 3x 3 T 6 2 T
3
x (3) y 3 sin 4
解:(1) ∵对任意实数
x

f ( x) 3 sin x 3 sin(x 2 ) f ( x 2 )
cos x 是以2π 为周期的周期函数.
(2)
sin(2 x) sin(2 x 2 ) sin 2( x ) , y sin 2 x 是以π 为周期的周期函数.
周期函数
非零常数T叫做这个函数的周期 2.对于一个周期函数f(x),如果在它所有的周 期中存在一个最小的正数,那么这个最小 的正数就叫做f(x)的最小正周期。

正弦余弦函数的图像性质(周期、对称、奇偶)经典课件25页PPT

正弦余弦函数的图像性质(周期、对称、奇偶)经典课件25页PPT

新知探究 :
1、正弦函数的单调性 y
1
y
1
2
o
2
o
-1
-1
3
2
2
x x
y=sinx x[0,2]
y
y=sinx xR
-4 -3
-2
1
- o
-1
正弦曲 线
2
3
4
5 6 x
新知探究:
1、正弦函数的单调性
y
-4 -3
-2
- 2
1
o
-1
2
2
3
4
5 6 x
x
2

0

正 正弦弦函数余.余弦弦函函数的数图象对和称性质性
-
-
-
6
4
2
对称轴:无数条
xk,kZ
2
-
-
-
6
4
2
对称轴:无数条 x=kπ,k∈Z
-
y
正弦 函数 y=sinx的 图象
1-
-
-
-
o - 1-
2
4
6
x
对称中心:无数个
(kπ,0),k∈Z
y
余 弦函 数 y =co sx的 图象
1-
-
-
-
o
复习回顾
一、正弦函数、余弦函数的图像及画法
正弦曲线
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
6
4
余弦曲线
y-
1
2
o-
-1
2
4
6
探索发现

高中数学必修4(1.4.2正弦函数、余弦函数的性质)PPT课件

高中数学必修4(1.4.2正弦函数、余弦函数的性质)PPT课件

∴函数 y2sin1x(),x.正弦函数、余弦函数的性质
例1) 3y.求s下in列( x函数的)周期:
3 2) y cos 3x
3) y 3 sin ( 1 x ), x R 一般
35
结论:
函 数 yAsin(x)及 yAcos(x),xR (A,,为 常 数 ,A0,. 0)的 周 期 T2 8
.
15
结论:正弦函数是奇函数,余弦函数是偶 函数
.
9
正弦、余弦函数的图象和性质
-4 -3
-2
y
1
- o
-1
2
3
4
y=sinx (xR) 定义域 xR
值 域 y[ - 1, 1 ]
y=cosx (xR) 周期性 T = 2
y
1
-4 -3
-2
- o
-1
2
3
4
.
5 6 x
5 6 x
10
正弦、余弦函数的奇偶性
对于函数f(x),如果存在一个非零常数T, 使得当x取定义域内的每一个值时,都有
f(x+T)=f(x)
那么函数f(x)就叫做周期函数.非零常数T 叫做这个函数的周期.
注意:如果在周期函数f(x)的所有周期中
存在一个最小的正数,那么这个最小正数
就叫做f(x)的最小正周期.
.
6
例:求下列函数的周期 ( 1 ) y 3 cx ,o x R s( 2 ) y s2 x i ,x n R ( 3 ) y 2 s1 i x n ) 26 解:(1)∵cos(x+2π)=cosx, ∴3cos(x+2π)=3cosx ∴函数y= 3cosx,x∈R的周期为2π

高一数学必修第一册正弦函数、余弦函数的性质课件

高一数学必修第一册正弦函数、余弦函数的性质课件

上都单调递减,其值从1减小到-1.
最大值与最小值
【整理】从上述对正弦函数、余弦函数的单调性的讨论中容易得到:

+ ( ∈ ) 时取得最大值1,


当且仅当 = − + ( ∈ ) 时取得最小值-1;

①正弦函数当且仅当 =
②余弦函数当且仅当 = ( ∈ ) 时取得最大值1,
【1】周期性:观察正弦函数的图像,可以发现,在图像上,横坐标每隔2π个单位
长度,就会出现纵坐标相同的点,这就是正弦函数值具有的“周而复始”的
变化规律.实际上,这一点既可以从定义中看出,也能从诱导公式中得到反映.即自
变量 的值加上2π的整数倍时所对应的函数值,与 所对应的函数值相等.数学
上用周期性来定量地刻画这种“周而复始”的规律.
如何用自变量的系数表示上述函数的周期呢?
事实上,令 = + ,那么由 ∈ 得 ∈ ,且函数 = , ∈ 及函数
= , ∈ 的周期都是.
因为 + = + + = +




+ ,所以自变量增加 ,函数值




+ ,
+ ( ∈ ) 上都单调递减,其值从1减小到-1.


单调性











同样的道理结合余弦函数的周期性我们可以知道:
余弦函数在每一个闭区间
在每一个闭区间
− + , ( ∈ ) 上都单调递增,其值从-1增大到1;
, + ( ∈ )
关于y轴对称.所以正弦函数是奇函数,余弦函数是偶函数.

正余弦函数图像和性质PPT课件

正余弦函数图像和性质PPT课件

(2)余弦函数“五点作图法”:
y 1 y=cosx
3 2
2
o
2
-1
3 2
Y=sinx 2 5 3 x
2
五个关 键点:
( 0 ,1),
( ,0 ), 2
( , 1), ( 3 , 0 ) , ( 2 ,1)
2
(3)正、余弦函数图象的关系
cosx=sin(x+
2
y=cosx
y
) sinx=cos( -x)=cos(x- )
定义域 值域 周期性 对称性 单调性
性质的应. 用
3
一.基础知识复习
(一)正、余弦函数图象
“五点作图法”
(1)正弦函数“五点作图法”:
y
1
4
3
2
-
3 2
-
-
2
o
2
3 2
2
3
4 x
-1
五个关键点:
( 0 , 0 ) ,(
2
, 1 ) , ( , 0 ) ,( 3
2
, 1)(, 2 , 0 )
正 余弦函数的图象与性质(1)
y
1
ysinx,x[0,2
3p
π
2

O
p
x
2
-1
思考4:观察函数y=sin在[0,2π]内的 图象,其形状、位置、凸向等有何变化 规律?
《正弦函数、余弦函数的图象和性质》的知识框架
正弦线 正弦函数的图象 平移变换 余弦函数的图象
正弦函数的性质 “五点法”作 图
余弦函数的性质
⑤奇偶性:
奇偶性的y1定义y=:sif f n( ( x x x ) ) ( x ff R( ( x x )) ) ff( ( x x ) ) 为 为 偶 奇 函 函 数 数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


0
2
2
1
Y
yyccoxosxs
1
Y
1
3 2 3 2


2

2
1
0 02
2
1
3
2
X
2 5
3
7
4
2
2
3 2 3
2
2 2
5 2
5 2
3 3
X 7 X
2 7 2
sx i n 0 x k ,k Z ;
y 2sint
又 x R ,故 t (x ) R 4
1 sint 1
2 2sint 2
即 2 2sin(x ) 2
函数值域为[
4 -
2
,2 ]
点评:利用正弦、余弦函数的有界性是解题的关键。
提问:1将(1)中xR换成x[ , ]; 42
小结
• 通过这节课的学习,要初步掌握正、余 弦函数的性质,以及性质的应用,并利 用性质解决一些相关问题。
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
2将(2)中系数 2换成2;
3将(2)中xR换成x[ , 5] 44
思考题
求y=sin x +cosx, x∈R的值域.
解 : y sin x cos x可化为 y 2 sin( x ) 4 又 x R , 1 sin( x ) 1. 4 2 y 2 ,值域为 [ 2 , 2 ].
7
4
2
2
3 2

2
0
2
1
X
3
2
5 2
3
7 2
2
yysciox nx,,sxx R R 当当 xx 2k2k,,kkZZ时 时函函数数值值 有有 最大 最值大 11 值
2
当当 xx 22kk,,kkZ时 Z时函函数 数值 值有有最最小小 值1值 1
2
4、函数值的正负所对应的自变量的区间如何分? Y ysinx 1

0
2
2
1
Y
ycoxs 1
3 2

2
0
2
1
3
2
X
2 5
3
7
4
2
2
X

3
2
n 0 x (2 k ,2 k )k , Z ;
six n 0 x (2 k ,2 k )k , Z . co x 0 s x ( 2 k , 2 k )k , Z ; 22 co x 0 s x ( 2 k ,3 2 k )k , Z . 22
ysi5nx、f(1Yx)=0的解集是什么?
3 2


2
0
2
1
3
2
X
2 5
3
7
4
2
2
X
3
2
2
5 2
3
7 2
值域都是 [-1,1],即|sin x|≤1,|cos x|≤1。
3、正弦、余弦函数的最值情况如何?
Y
ysinx 1

0
2

2
1
ycoxs Y 1
3
2
X
2 5
3
正弦、余弦函数的性质一
一、复习
1、正弦函数
y sin x ,( x R )的图像是:
Y
X
0

2

2
3
2
2、余弦函数 y cos x,(x R)的图像是:
Y
0
X


2
3 2
2
观察正弦和余弦曲线,思考以下几个问题:
1、正弦、余弦函数的定义域是什么? 2、正弦、余弦函数的值域是什么? 3、正弦、余弦函数的最值如何? 4、函数值的正负所对应的自变量的区间如何分? 5、f (x)=0的解集是什么?
1、正弦、余弦函数的定义域是什么?
Y
ysinx 1

0
2
2
1
ycoxs Y 1
3
2
2 5
3
2
3 2


2
0
2
1

3
2
2
5 2
3
X
7
4
2
X
7 2
定义域都是 R
2、正弦、余弦函数的值域是什么? Y
ysinx 1

0
2
2
1
Y
ycoxs 1
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
函数定[义 2 域 k]为 k , Z 63
• 例2,求下列函数的值域:
(1 )y cx o 1 ,s x R
(2 )y 2 six n )x (, R
解: (1)1cosx1
4
0cosx12 即 0y2.
函数的值域[ 0为, 2 ]
(2)令 x t 4
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
2
2 k 即 cx o xs2 0 k 3,k Z
2
2
定义2 域 k 是 , 2k ( 3)k , Z
2
2
(3)y co3sx
解:由题意得 cos3x 0
2k3x2k
2
2
2k x2k ,k Z
63
63
cox s0 xk,kZ. 2
例题讲解
• 例1:求定义域.
(1)y1+s1inx
解由 :题意 1得 sin x: 0
(2)ylg(cox)s
解:由题意-得 co: sx0
six n 1
x2k,kZ 函数定 {x义 |x2域 2k 是 ,kZ }
相关文档
最新文档