平均数与加权平均数

合集下载

平均数和加权平均数

平均数和加权平均数
一班的卫生成绩为:
(95+90+90+85) ÷ 4=90
二班的卫生成绩为:
(90+95+85+90) ÷4 =90
三班的卫生成绩为:
(85+90+95+90) ÷ 4=90
因此,三个班的成绩一样高
算术平均数与加权平均数的区别和联系是: 算术平均数是加权平均数的一种特殊情况 当各项权重相等时,计算平均数时就要采 用算术平均数 当各项权重不相等时,计算平均数时就要 采用加权平均数
(1)如果根据三项测试的平均成绩 72 50 88 70 A 3 xB 85 74 45 68 3 xC 67 70 67 68 3
候选人A将被录用 .
例题
某广告公司欲招聘广告策划人员一名,对A, B,C三名候选人进行了三项素质测试。他们 的各项测试成绩如下表所示: 测试项目 测试成绩 A B C 72 85 67 创新 综合知识 语言 50 88 74 45 70 67
D)
x1, x2 ,, xn
,我们把
1 ( x1 x2 xn ) n
叫做这 n个数的算术平均数,简称平均数,记为 读作 x 拔. x ,
甲、乙两名学生进行射击练习,两人在相同条 件下各射靶5次,射击成绩如下: 第1次 第2次 第3次 第4次 第5次 甲命中的环数 乙命中的环数 7 8 7 9 7 8 8 8 10 7
(2)如果小明先骑自行车2小时,然后步行3小时, 那么他的平均速度是多少?
15 1 5 1 平均速度是 10 (千米/时) 2
15 2 5 3 平均速度是 9 (千米/时) 23
2、小明所在班级的男同学的平均体重是45kg,小亮所 在班级的男同学的平均体重是42kg,则下列判断正确 的是( C )

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数平均数和加权平均数是数学中常用的统计概念,用于对一组数据或事件进行概括和描述。

平均数指的是一组数值的总和除以这组数值的个数,而加权平均数是根据每个数据的重要程度对其进行加权后得到的平均数。

下面将详细介绍平均数和加权平均数的计算方法、应用场景以及它们的特点。

一、平均数的计算方法平均数通常用于概括一组数据的集中趋势,计算方法简单、直观。

对于给定的一组数据x1,x2,x3,......,xn,平均数的计算公式为:平均数= (x1 + x2 + x3 + … + xn) / n其中,x1,x2,x3,......,xn表示数据集合中的各个数据,n表示数据的个数。

举例来说,对于数据集合{1,2,3,4,5},其中包含5个数据,它们的平均数计算公式为:平均数 = (1 + 2 + 3 + 4 + 5) / 5 = 15 / 5 = 3二、加权平均数的计算方法加权平均数是考虑到数据的重要程度后进行计算的一种平均数。

在实际应用中,不同数据可能具有不同的权重,因此简单的平均数无法全面反映数据的真实特征。

加权平均数通过给不同数据赋予不同的权重来解决这个问题,计算公式为:加权平均数= (x1*w1 + x2*w2 + x3*w3 + … + xn*wn) /(w1 + w2 + w3 + … + wn)其中,x1,x2,x3,......,xn表示数据集合中的各个数据,w1,w2,w3,......,wn表示相应数据的权重。

权重可以根据数据的重要程度或其他因素进行设定。

举例来说,假设一个学生的期末成绩由作业成绩(权重为40%)、考试成绩(权重为60%)组成,他的作业成绩为80分,考试成绩为90分,那么他的加权平均成绩计算公式为:加权平均成绩 = (80*0.4 + 90*0.6) / (0.4+0.6) = (32 +54) / 1 = 86三、平均数和加权平均数的应用场景平均数和加权平均数在实际生活中有广泛的应用。

《平均数与加权平均数》

《平均数与加权平均数》

在预测股票市场时,加权平均数可以 用来考虑不同股票的权重和价格变化 ,从而预测市场的整体趋势。
03
数据分析
在数据分析中,加权平均数可以用来 分析不同类别的数据,例如人口统计 数据、考试成绩等,以反映整体的状 况。
03
平均数与加权平均数 的比较
定义与计算
平均数
定义为数据集中所有数值的和除以数值的数量,通常用算术平均数来表示。计算公式为: $\frac{\sum_{i=1}^{n} x_i}{n}$。
加权平均数是描述一组数据中不同数值的 相对重要性的指标,通常用于衡量数据的 综合水平。计算方法为将每个数值乘以对 应的权重后求和,再除以权重的总和。
平均数和加权平均数广泛应用于统计学、 经济学、管理学等领域,用于分析数据的 整体特征和不同数据之间的相对关系。
平均数和加权平均数也存在一定的局限性 ,如易受极端值影响、无法反映数据的分 布情况等。
展望:未来在数据分析中的应用和发展趋势
数据分析技术的进步
随着数据分析技术的不断发展, 未来平均数和加权平均数将更多 地与其他数据分析方法结合使用 ,以提供更全面、准确的数据分 析结果。
数据质量与数据源的 改善
随着数据质量不断提高和数据源 不断丰富,平均数和加权平均数 将有更多应用场景,如金融风控 、社会治理等领域。
平均数与加权平均数
2023-11-11
目 录
• 平均数 • 加权平均数 • 平均数与加权平均数的比较 • 平均数与加权平均数的实际应用 • 总结与展望
01
平均数
定义与计算
定义
平均数是所有数值的和除以数值的数量。
计算方法
将一组数据相加后除以数据的个数。
平均数的性质和特点

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数平均数与加权平均数是统计学中常用的概念,用于描述一组数据的中心位置。

本文将详细介绍平均数和加权平均数的定义、计算方法以及它们在实际应用中的意义。

一、平均数平均数是一组数据的总和除以数据的个数,用于表示这组数据的中心位置。

它是最常见、最简单的描述中心位置的指标。

计算平均数的公式如下:平均数 = 数据的总和 / 数据的个数平均数的计算方法简单直观,但在某些情况下并不能很好地描述一组数据的中心位置。

这时就需要引入加权平均数的概念。

二、加权平均数加权平均数是对一组数据进行加权处理后得到的平均值。

在加权平均数中,不同的数据具有不同的权重,权重越大表示该数据对平均值的贡献越大。

计算加权平均数的公式如下:加权平均数 = (数据1 × 权重1 + 数据2 × 权重2 + ... + 数据n × 权重n)/ (权重1 + 权重2 + ... + 权重n)加权平均数在实际应用中具有重要意义。

它常用于计算指标的平均值,如学生成绩的加权平均分、产品的加权平均价格等。

通过给不同的数据赋予不同的权重,加权平均数能够更准确地反映数据的实际情况。

三、平均数与加权平均数的应用平均数和加权平均数在各个领域都有广泛的应用。

以下是一些常见的应用场景:1. 统计数据分析:在统计学中,常常使用平均数和加权平均数来分析数据的中心位置。

通过计算平均数和加权平均数,可以获得对数据整体特征的初步了解。

2. 经济学:在经济学中,加权平均数常用于计算价格指数,如消费者物价指数(CPI)和生产者物价指数(PPI),以反映物价的变动情况。

3. 财务管理:在财务管理中,加权平均数被广泛应用于计算企业的成本和投资回报率。

例如,加权平均成本资本(WACC)被用来衡量企业的资金成本,从而影响决策者的投资决策。

4. 市场营销:在市场营销中,平均数和加权平均数被用于计算市场份额和顾客满意度指数。

这些指标可以帮助企业了解市场的竞争力和顾客对产品或服务的评价。

初中数学:统计量——众数、中位数、加权平均数、方差

初中数学:统计量——众数、中位数、加权平均数、方差

统计之数据的处理:常用统计量的计算(平均数、加权平均数、中位数、众数、方差)平均数的计算平均数是描述一组数据的常用指标,它反映了这组数据中各数据的平均大小或是集中趋势。

一组数据的平均数只有一个。

称这中位数的计算一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数。

即:n个数据按大小顺序排列,当数组的个数是奇数时,中间的那个数为这组数据的中位数;当数组的个数是偶数时,居于中间的两个数的平均数才是这组数据的中位数。

注意:(1)一组数据的中位数是唯一的;(2)当数据个数为奇数时,它的中位数一定是这组数据中的某一个数;当数据个数为偶数时,它的中位数不一定是这组数据中的某一个数。

众数的计算一组数据中出现次数最多的那个数据叫做这组数据的众数。

注意:众数着眼于对各数据出现次数的考察,一组数据中,众数可能不止一个。

方差的计算⎤。

⎥⎦(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.分析:(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出甲参赛更合适;根据射击成绩都在9环左右的多少可得出乙参赛更合适.解答:解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动小于乙的波动,则22乙甲s s ;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。

平均数加权法的公式

平均数加权法的公式

平均数加权法的公式平均数加权法是我们在数学学习中经常会碰到的一个重要概念。

这玩意儿,乍一听好像挺复杂,其实说白了,就是给不同的数据根据重要程度分配不同的“权重”,然后算出一个综合的平均数。

咱们先来说说这个公式:加权平均数 = (数值 1×权重 1 + 数值 2×权重2 + …… + 数值 n×权重 n)÷(权重 1 + 权重2 + …… + 权重 n)。

为了让您更明白这公式到底咋用,我给您讲个事儿。

前段时间,我们学校组织了一场趣味运动会。

其中有个项目是拔河比赛。

我们班和隔壁班对决。

比赛嘛,得有个评判标准,怎么决定哪个班赢呢?这时候就用到了平均数加权法。

咱先说说参赛的同学,男生力气大,女生力气相对小一点。

我们班参赛的同学里,男生有 10 个,女生有 5 个。

那给男生的力气“打分”,假设平均每个男生能使出 80 分的力,这 80 就是数值 1;而女生平均能使出 60 分的力,这 60 就是数值 2 。

但是,不能简单地把男生和女生的力气加起来除以人数,因为男生人数多呀。

这时候就得考虑权重了。

我们给男生的权重设为 10(因为有 10 个人),女生的权重设为 5 。

按照加权平均数的公式来算,我们班在拔河这个项目上的“综合力气”就是:(80×10 + 60×5)÷(10 + 5)= (800 + 300)÷ 15 = 70 分。

您瞧,通过这样的计算,我们就能更合理地评估班级在拔河比赛中的综合实力。

再比如说,在考试成绩的统计中,也经常用到加权平均数。

比如说,期末考试占总成绩的 60%,平时作业成绩占 20%,课堂表现占 20%。

假设期末考试您考了 85 分,平时作业平均 90 分,课堂表现平均 80 分。

那么总成绩就是:(85×0.6 + 90×0.2 + 80×0.2)= 83 分。

所以说,平均数加权法在生活中的应用那可真是无处不在。

平均数加权平均数教程

平均数加权平均数教程

例1.植树节到了,某单位组织职工开展植树竞赛,下 图反应的是植数量与人数的关系.
参加活动者植树量统计图
参加活动者植树量统计图
你发现了植树总量、 植树量的平均数和人数 这三者之间的数量关系 吗?你能解释平均每人 植树4.8棵的含义吗?
(1)总共有多少人参加了本次活动?
(2)总共植树多少棵?
(3)平均每人植树多少棵?
单击页面即可演示
日常生活中,我们常用 平均数表示一组数据的“平
学均习水平目”标. :
了解算术平均数的意义,会求一组 数据的算术平均数
算术平均数的概念:
一般地,对于n个数 x1,x2,… xn ,那么
1 n
注意:算术平均数是一组数据的平均值,它的大小与
这组数据中的每个数据有关,一组数据的平均数只有一个, 它不一定是这组数据中的某个数据
如果三种糖果的进价不变,每种糖果的 用量发生改变,如下表所示:

售价

用量
甲 24元/千克
6千克
乙 19元/千克 丙 28元/千克
2千克 2千克
种类
售价
用量

24元/千克
2千克

19元/千克
6千克

28元/千克
2千克
2 461 922 822.3 8(元 /千克 622
2 421 962 822.1 8(元 /千克 262
解:(1)参加本次活动的总人数是1+8+1+10+8+3+1=32 (人).
(2)总共植树 3×8+4×1+5×10+6×8+7×3+8×1=155(棵).
(3)平均每人植树

求平均数的方法

求平均数的方法

求平均数的方法平均数是统计学中常用的一种描述数据集中趋势的指标,它能够反映出一组数据的集中程度。

在日常生活和工作中,我们经常需要计算平均数,比如统计班级学生的考试成绩平均分、公司员工的工资平均水平等。

那么,如何求平均数呢?下面将介绍几种常用的方法。

首先,最简单直接的方法是算术平均数。

算术平均数是一组数据之和除以数据个数,通常用符号“x¯”表示。

比如,有一组数据,2,4,6,8,10,求这组数据的算术平均数,就是将这些数相加,然后除以5(数据个数),即(2+4+6+8+10)/5=6。

这就是这组数据的算术平均数。

其次,还有一种方法是加权平均数。

加权平均数是指在计算平均值时,不同数据的权重不同,通过加权的方式来计算平均数。

比如,在某次考试中,数学占比40%,语文占比30%,英语占比30%,那么学生的总平均分就可以通过数学成绩乘以0.4,语文成绩乘以0.3,英语成绩乘以0.3,然后相加得出。

另外,调和平均数也是一种常用的平均数计算方法。

调和平均数的计算公式为数据个数除以所有数据的倒数的和。

比如,有一组数据,2,4,8,求这组数据的调和平均数,就是将这些数的倒数相加,然后除以数据个数的倒数,即1/2+1/4+1/8=7/8,再将结果取倒数8/7,这就是这组数据的调和平均数。

最后,还有一种方法是几何平均数。

几何平均数是一组数据的乘积的n次方根,其中n为数据的个数。

比如,有一组数据,2,4,8,求这组数据的几何平均数,就是将这些数相乘,然后开3次方根,即∛(248)=4,这就是这组数据的几何平均数。

总结一下,求平均数的方法有很多种,常用的有算术平均数、加权平均数、调和平均数和几何平均数。

在实际应用中,我们需要根据具体情况选择合适的方法来计算平均数,以反映出数据的真实情况。

希望本文介绍的方法能够帮助大家更好地理解和应用平均数的计算方法。

平均数与加权平均数的应用

平均数与加权平均数的应用

平均数与加权平均数的应用在统计学中,平均数是最常见的一种描述数据集中趋势的指标。

它代表了一组数据的中心位置,通常以算术平均值的形式呈现。

而加权平均数则是在计算平均值时,给予不同数据的权重,以体现其重要性或影响力。

平均数与加权平均数在实际应用中具有广泛的用途,本文将就其应用进行探讨。

一、平均数的应用平均数的最基本用途是用来概括一组数据的集中趋势。

它可以被用于以下情景:1. 调查统计:在进行群体调研或问卷调查时,通过计算平均数可以了解被调查者的普遍看法或态度。

例如,某项调查显示市民对某政策的满意度为8.5分,这就代表着平均来说,市民对该政策比较满意。

2. 经济指标:平均数在统计国民经济方面也具有重要地位。

例如,国内生产总值(GDP)就是以平均数的方式来衡量一个国家的经济总量。

而每人GDP则使用人口数作为权重,以反映人均经济水平。

3. 学术评价:在学术研究中,评估学生的学业成绩时常常使用平均数。

通过计算学生的平均分数,可以综合考虑他们的考试表现,进一步评估他们的学习水平。

二、加权平均数的应用加权平均数在某些情况下比简单平均数更为合适,特别是当不同数据对结果的影响程度不同的时候。

下面是一些加权平均数的应用场景:1. 股票价格指数:在计算股票市场的价格指数时,常常使用加权平均数。

对于不同市值的股票,需给予不同的权重。

这样可以更准确地反映整个市场的波动情况。

2. 学校绩效评估:在评估学校的绩效时,常常使用加权平均数。

例如,可以根据学生的人数、师生比等因素,给予不同的权重,从而计算出综合考虑各方面因素的绩效评分。

3. 统计报告:在撰写统计报告时,对不同数据进行加权平均可以更准确地反映整体情况。

例如,在报告某地区收入水平时,可以根据不同人群的收入水平进行加权平均,以得到更全面的情况。

加权平均数相对于简单平均数的优势在于,可以更准确地反映一组数据中不同数据的影响程度,从而得出更有说服力的结论。

总结:平均数和加权平均数在统计学中是常用的指标,用以描述数据集中趋势和权衡不同数据的影响力。

平均数加权平均数的概念和计算

平均数加权平均数的概念和计算

平均数加权平均数的概念和计算平均数和加权平均数,听起来有点高大上对吧?但其实它们就像我们的生活,简单而又有趣。

平均数就像是大家一起吃饭时分摊的账单。

想象一下,几个人一起吃了一顿大餐,最后把所有的钱加起来,然后平均分摊,最后每个人都知道自己该出多少。

这个数字就是平均数。

说白了,平均数就是把所有数据加在一起,再除以数据的个数,得出的一个“平常心”值。

谁都不想多出钱,更不想少出,所以这个方法就特别公平。

我们来聊聊加权平均数。

想象一下,你在学校,考试成绩不止一次,有的考试重要性不同。

数学考得好,语文只考了个普普通通,这时候你可能会觉得数学的分数更值得重视。

于是,加权平均数就来了,给每个科目赋予不同的“重量”。

就像大妈称菜时,一斤的白菜和一斤的西红柿,虽然同样是“一斤”,但白菜可能更便宜,所以加权平均数就像给这两种菜贴上了不同的标签,按照重要性来加权计算。

怎么算加权平均数呢?假设你有三门课,数学、语文和英语,分数分别是90、70和80。

可是,数学重要得多,给它个权重5,语文权重3,英语权重2。

先把分数和权重相乘,90乘5,得450;70乘3,得210;80乘2,得160。

然后把这些结果加起来,450加210再加160,得820。

最后再把820除以所有权重的和,也就是5加3加2,等于10。

这样,820除以10,得出的结果就是82。

瞧,这就是加权平均数的魅力,它能让每个分数的价值都得到体现。

所以说,平均数和加权平均数,虽然都是在计算“平均”,但它们的侧重点不同。

平均数更简单,大家平等地分摊;而加权平均数就像个会做选择的朋友,知道哪个分数更重要。

生活中常常需要用到这些概念,比如说买东西的时候,我们会关注不同产品的价格和质量,挑选出最划算的选择。

这种情况下,运用加权平均数能帮助我们做出更明智的决定。

再说了,平均数和加权平均数其实在我们的日常生活中随处可见。

想想你最喜欢的综艺节目,观众投票的结果就是一种加权平均数。

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数在统计学中,平均数是一种常用的数值表示方法,它可以用来描述一组数据的集中趋势。

加权平均数在某些情况下则更加实用,它考虑了不同数据的权重,更准确地反映了数据的分布情况。

一、平均数的概念与计算方法平均数,又叫算术平均数,是最简单常用的平均数。

它可以通过将一组数据的各个数据值相加,再除以数据的个数来计算得到。

例如,给定一个包含n个数据的集合X={x1, x2, x3, ..., xn},它们的平均数记作X,计算公式如下:X = (x1 + x2 + x3 + ... + xn) / n二、加权平均数的概念与计算方法加权平均数在一些实际问题中具有重要意义。

它不仅考虑了数据的数值大小,还考虑了数据的相对重要性或权重。

在计算加权平均数时,我们需要为每个数据值分配一个权重,并乘以对应数据的权重再相加,最后再除以总权重的值。

给定一个包含n个数据的集合X={x1, x2,x3, ..., xn}和对应的权重集合W={w1, w2, w3, ..., wn},它们的加权平均数记作X,计算公式如下:X = (x1w1 + x2w2 + x3w3 + ... + xnwn) / (w1 + w2 + w3 + ... + wn)在实际应用中,我们可以通过设定不同数据的权重来调整数据对加权平均数的贡献程度。

具有较高权重的数据对加权平均数的影响更大,而具有较低权重的数据对加权平均数的影响相对较小。

三、平均数与加权平均数的比较平均数适用于数据分布相对均匀的情况,但当数据分布不均匀时,平均数可能无法准确地反映整体数据的特点。

在这种情况下,加权平均数更具有优势,它可以根据数据的权重对数据进行相应的调整,更准确地描述数据分布情况。

举例来说,假设某公司有100名员工,其中80名员工的工资为5000元,20名员工的工资为10000元。

如果我们使用平均数计算公司员工的工资,结果为6600元。

然而,这个平均数可能会导致误导,因为大部分员工的工资都远低于6600元。

平均数的概念与计算

平均数的概念与计算

平均数的概念与计算平均数是数学中常见的概念,用来表示一组数据的集中趋势。

它可以帮助我们了解数据的总体情况,并进行比较和分析。

本文将介绍平均数的概念与计算,并提供相关的实例来帮助读者更好地理解。

一、平均数的概念平均数是一组数据的总和除以数据的个数所得到的值。

它代表了数据的集中趋势,可以看作是一组数据的代表值。

平均数在日常生活和各个领域中都有广泛的应用,比如考试成绩的平均分、商品价格的平均值等。

二、平均数的计算方法计算平均数有多种方法,常见的是算术平均数和加权平均数。

1. 算术平均数算术平均数也称为简单平均数,它是一组数值相加后除以数值的个数得到的结果。

计算算术平均数的公式为:平均数 = 总和 / 数据的个数举个例子,我们有一组数据:5, 7, 9, 11, 13。

首先将这些数值相加得到总和为45,然后除以数据的个数5,得到平均数为9。

因此,这组数据的算术平均数为9。

2. 加权平均数加权平均数是根据每个数值的权重来计算的,相比算术平均数更具灵活性。

计算加权平均数的公式为:加权平均数 = (数值1 ×权重1 + 数值2 ×权重2 + ... + 数值n ×权重n)/(权重1 + 权重2 + ... + 权重n)举个例子,假设我们要计算一组考试成绩的加权平均数,其中数值是分数,权重是每个考试的比重。

如下所示:考试1:分数90,比重40%考试2:分数85,比重30%考试3:分数95,比重30%根据加权平均数的计算公式,我们可以得到加权平均数为:(90 ×0.4 + 85 × 0.3 + 95 × 0.3)/(0.4 + 0.3 + 0.3)= 89.67。

因此,这组考试成绩的加权平均数为89.67。

三、实际应用举例平均数在各个领域都有广泛的应用。

下面以几个实际例子来说明平均数的计算和应用。

1. 股票收益率的平均数假设我们有一只股票连续5天的收益率分别为2%,3%,-1%,4%,5%。

算术平均数与加权平均数

算术平均数与加权平均数
算术平均数与加权平均数
x x +x +....+x 算术平均数:一般地,对于n个数x1, x2, …, xn,我们把
x=
+
1
2
3
n
n
叫做这n个数的算术平均数,简称平均数.
加权平均数:在实际生活中,一组数据中各个数据的重要程度是不同的,所以我们在计算这组数据的平均数的时 候往往根据其重要程度,分别给每个数据一个“权”。这样,计算出来的平均数叫做加权平均数。
一般地,若n个数x1,x2,…,xn的权分别Biblioteka w1,w2,…,wn,则x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
某超市新进了三种糖果,应顾客要求,妈妈打算把糖果混合成杂拌糖 出售,具体进价和用量如下表:
种类
售价
质量

24元/千克
2千克

19元/千克
2千克

28元/千克
6千克
你能计算出杂拌糖的售价吗?
想一想
种类
售价

24元/千克

19元/千克

28元/千克
质量
2千克 2千克 6千克
24 19 28 23.7(元 / 千克) 3
思考:你认为小明的做法有道理吗?为什么?
正确解答: 24 2 19 2 28 6 25.4(元 / 千克)
226
小结 算术平均数与加权平均数的区别和联系 1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);
2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数, 当各项权相等时,计算平均数就要采用算术平均数.

平均数的计算与应用

平均数的计算与应用

平均数的计算与应用在数学中,平均数是一种常见的统计量,用于衡量一组数据的集中趋势。

它是将所有数据的总和除以数据的个数得到的结果。

平均数的计算与应用广泛存在于我们的日常生活中,涵盖了各个领域,从学术研究到商业分析,都离不开平均数的计算和使用。

一、平均数的计算方法计算平均数主要有算术平均数、几何平均数和加权平均数三种常见方法。

1. 算术平均数:是最为人熟知的平均数计算方法,它将一组数据的总和除以数据的个数。

例如,对于一组数据{2,4,6,8,10},它们的算术平均数为(2+4+6+8+10)/5=6。

2. 几何平均数:适用于一组数据存在倍数关系的情况,例如计算连续多年的增长率。

几何平均数是将一组数据的乘积开根号得到的结果。

例如,计算三年的增长率,数据分别为1.2、1.5和1.3,则它们的几何平均数为√(1.2×1.5×1.3)=1.324。

3. 加权平均数:适用于不同数据具有不同的权重或重要性的情况。

加权平均数的计算方法是将每个数据与其对应的权重相乘,然后将所有乘积的总和除以权重的总和。

例如,某班级的考试成绩有5名学生,他们的分数分别为60、70、80、90、100,而他们的权重分别为1、2、3、4、5,那么他们的加权平均数为(60×1+70×2+80×3+90×4+100×5)/(1+2+3+4+5)=83.33。

二、平均数的应用场景平均数的应用非常广泛,在各个领域都有着重要的作用。

以下列举了几个典型的应用场景:1. 经济领域:平均数常用于描述一个国家或地区的经济状况。

例如,国内生产总值(Gross Domestic Product,GDP)是衡量一个国家经济发展水平的重要指标,它是一个国家一定时期内所有最终产品和劳务的市场价值的总和,除以该时期的居民人数得到的平均数。

2. 教育领域:平均数常用于表示学生的学术表现或班级的整体水平。

平均数和加权平均数 公开课获奖教案

平均数和加权平均数  公开课获奖教案

20.1数据的集中趋势20.1.1平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究探究点一:平均数【类型一】已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()A.8B.5C.4D.3解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】已知一组数据的平均数,求新数据的平均数已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是() A.6B.8C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】 以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( )A .14岁B .14.3岁C .14.5岁D .15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】 以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( )A .87分B .87.5分C .88分D .89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】 以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】 加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究: 方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE+S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计 1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1 平均数与加权平均数(2)第课时1.理解加权平均数的意义,了解“权”的含义.2.会计算一组数据的加权平均数.3.能说出算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.1.在实际问题情境中理解加权平均数的意义,体会数学与生活之间的密切联系.2.通过利用平均数解决实际问题,发展数学应用能力.3.通过探索算术平均数和加权平均数的联系和区别,发展求同和求异思维.1.通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.通过小组合作活动,培养学生的合作意识,激发学生学习兴趣,体验成功的快乐.【重点】加权平均数的计算及算术平均数与加权平均数的区别和联系.【难点】探索算术平均数和加权平均数的联系和区别.【教师准备】多媒体课件.【学生准备】预习教材P6~8.导入一:复习提问:1.什么叫算术平均数?2.如何求一组数据的平均数?3.当一组数据中同一个数据出现多次时常采用什么简便方法计算?【师生活动】学生思考回答,教师点评.导入二:【课件展示】在一次数学考试中,八年级(1)班和(2)班的考生人数和平均成绩如下表:【问题】1.表格中“86分”所反映的实际意义是什么?2.求这两个班的平均成绩.【师生活动】学生思考后小组合作交流,小组代表发言,教师展示学生可能出现的两种解法,引导学生对比、思考,得出正确的解法,教师导出新课.[设计意图]通过复习算术平均数的概念,做好新旧知识的衔接,以贴近学生实际生活的实例导入新课,渗透“权”的意义,激发学生的学习兴趣,体会数学与生活之间的密切联系,迈上从“算术平均数”到“加权平均数”的一个台阶,让学生顺利完成新知识的构建,为本节课的学习做好铺垫.共同探究加权平均数的概念【课件展示】假期里,小红和小惠结伴去买菜,三次购买的西红柿价格和数量如下表:从平均价格看,谁买的西红柿要便宜些?思路一【师生活动】学生思考后小组合作交流解题思路,独立完成解答过程,小组代表展示,教师点评.【课件展示】≈2.67(元/千克),解:小红=3(元/千克).小惠从平均价格看,小红买的西红柿要便宜些.追加提问:1.有的同学认为每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克).这样解答是否正确?为什么?2.有的学生是这样思考的:购买的总量虽然相同,但小红花了16元,小惠花了18元,所以平均价格不一样,小红买的西红柿要便宜些.这样的想法正确吗?为什么?3.如果小红三次购买的数量分别为2,1,3,小惠三次购买的数量分别为1,3,2,她们购买的西红柿的平均价格分别是多少?4.通过上面的计算,小红和小惠每次购买西红柿的数量不同,所求的平均数是否相同?【师生活动】学生思考、计算、回答,教师点评,引导出“权”的概念.思路二【课件展示】思考小亮和小明的下列说法,你认为他们谁说得对?为什么?小亮的说法:每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克).小明的说法:购买的总量虽然相同,但小红花了16元,小惠花了18元,所以平均价格不一样,小红买的西红柿要便宜些.【师生活动】小组内合作交流,判断两个人的说法谁正确,教师对学生的回答进行点评,并引导学生通过计算平均数比较谁买的西红柿更便宜,学生独立完成计算平均数的过程,教师点评.【课件展示】小红购买不同单价的西红柿的数量不同,所以平均价格不是三个单价的≈平均数.实际上,平均价格是总花费金额与购买总量的比,因此,小红2.67(元/千克),=3(元/千克).小惠从平均价格看,小红买的西红柿要便宜些.追加思考:1.如果小红三次购买的数量分别为2,1,3,小惠三次购买的数量分别为1,3,2,她们购买的西红柿的平均价格分别是多少?2.通过上面的计算,小红和小惠每次购买西红柿的数量不同,所求的平均数是否相同?【师生活动】学生思考、计算、回答,教师点评,引导出“权”的概念.[设计意图]通过解决生活实际问题,引导学生思考重要性的差异对平均数的影响,为加权平均数概念的形成做好铺垫,在探究过程中,充分发挥学生的主观能动性,让学生积极思考,合作交流,在数学活动中逐步形成概念.【课件展示】已知n个数x1,x2,…,x n,若w1,w2,…,w n为一组正数,则把叫做n个数x1,x2,…,x n的加权平均数,w1,w2,…,w n分别叫做这n个数的权重,简称为权.教师提问:1.在“共同探究”中,加权平均数是多少?哪些数是权?(小红购买的西红柿平均价格约为2.67元/千克,它是数4,3,2的加权平均数,三个数的权分别为1,2,3)2.你能举出用加权平均数计算平均数的生活实例吗?【师生活动】学生小组合作交流,创设不同的求平均数的生活情境,小组代表展示问题后,其他学生完成解答,教师进行点评,以鼓励学生的参与为主.[设计意图]教师设计开放性题目,学生通过合作交流,共同创设问题情境,体会“权”对平均数的影响,加深学生对加权平均数的理解,提高学生的发散性思维,达到学生数学能力的提升.例题讲解【课件展示】(教材7页例1)某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课外体育活动)、期中考试和期末考试成绩按比例3∶2∶5计入学期总成绩.甲、乙两名同学的各项成绩如下:分别计算甲、乙的学期总成绩.【师生活动】学生独立完成后,小组内交流答案,小组代表板书解答过程,教师在巡视过程中帮助有困难的学生,对学生的展示进行点评.【课件展示】解:三项成绩按3∶2∶5的比例确定,就是分别用3,2,5作为三项成绩的权,用加权平均数作为学期总成绩.甲的学期总成绩为=89(分),乙的学期总成绩为=87(分).【思考】1.分配的“权”不同,甲、乙二人的总成绩是否发生变化?2.算术平均数和加权平均数的区别和联系是什么?【师生活动】学生小组合作交流,教师对有困难的学生进行引导思考,对学生的回答进行点评并补充完整.【课件展示】算术平均数与加权平均数的区别和联系:区别:由于权的不同导致结果不同,所以权的差异对结果有影响.联系:算术平均数是加权平均数各项的权都相等的一种特殊情况.[设计意图]通过计算加权平均数解决实际问题,让学生再次体会到“权”的重要性,发展数学应用能力,培养学生归纳总结能力.做一做【课件展示】某电视节目主持人大赛要进行专业素质、综合素质、外语水平和临场应变能力四项测试,各项测试均采用10分制,两名选手的各项测试成绩如下表所示:(1)如果按四项测试成绩的算术平均数排名次,名次是怎样的?(2)如果规定按专业素质、综合素质、外语水平和临场应变能力四项测试的成绩各占60%,20%,10%,10%计算总成绩,名次有什么变化?【师生活动】学生独立完成后,小组内交流答案,教师在巡视过程中帮助有困难的学生,小组代表板书解答过程,教师点评.(板书)解:(1)甲、乙各项成绩的算术平均数分别为:=8.45(分),甲=8.65(分).乙比较算术平均数,乙排名第一,甲排名第二.(2)甲、乙的加权平均成绩分别为:=9.0×60%+8.5×20%+7.5×10%+8.8×10%=8.73(分),甲=8.0×60%+9.2×20%+8.4×10%+9.0×10%=8.38(分).乙比较加权平均数,甲排名第一,乙排名第二.提问:1.按照算术平均数和加权平均数的计算方法分别求平均数,对排名有影响吗?2.按算术平均数排名和加权平均数排名有什么区别?【师生活动】学生思考回答,教师点评并补充,让学生理解权的意义.归纳:按测试成绩的算术平均数排名次,实际上是将四项测试成绩同等看待.而按加权平均数排名次,则是对每项成绩分配不同的权,体现每项成绩的重要程度不同.如专业素质成绩的权重为60%,说明专业素质对主持人最重要.当各数据的重要程度不同时,一般采用加权平均数作为一组数据的代表值.[设计意图]通过做一做,进一步理解加权平均数的意义,体会权的重要性,加深对加权平均数和算术平均数的区别的理解和掌握,提高学生应用意识.[知识拓展]1.数据中的“权”反映数据的相对“重要程度”,其表现形式有:数据所占的百分比、各个数据所占的比值,数据出现的次数.权越大,该数据所占的比重越大,反之则越小.2.算术平均数是加权平均数的一种特例.加权平均数的实质是考虑不同权重的平均数,当加权平均数的各项权相同时,就变成了算术平均数.1.加权平均数的概念.2.权的意义:权代表重要程度.3.算术平均数与加权平均数的区别和联系.4.计算加权平均数.5.加权平均数在实际问题中的应用.1.学校生物兴趣小组11人到校外采集标本,其中有2人每人采集6件,4人每人采集3件,5人每人采集4件,则这个兴趣小组平均每人采集标本()A.3件B.4件C.5件D.6件解析:=4(件),即这个兴趣小组平均每人采集标本4件.故选B.2.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩为优秀的是(A.甲B.乙、丙C.甲、乙D.甲、丙解析:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1(分),乙的总评成绩=88×50%+90×20%+95×30%=90.5(分),丙的总评成绩=90×50%+88×20%+90×30%=89.6(分),∴甲、乙的学期总评成绩是优秀.故选C.3.某中学随机调查了50,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是.解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故填6.4小时.4.某广告公司欲招广告策划人员一名,对甲、乙、丙三名候选人进行三项素质测试,它们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新能力、综合知识、计算机操作三项测试的得分按4∶3∶1的比例确定各人的测试成绩,那么谁将被录用?解:(1)甲的平均成绩是×(72+50+88)=70(分),乙的平均成绩是×(85+74+45)=68(分),丙的平均成绩是×(67+70+67)=68(分),因为70>68=68,所以候选人甲将被录用.(2)甲的测试成绩是=65.75(分),乙的测试成绩是=75.875(分),丙的测试成绩是=68.125(分),因为75.875>68.125>65.75,所以候选人乙将被录用.第2课时共同探究加权平均数的概念形成概念例题讲解做一做一、教材作业【必做题】教材第8页习题A组第1,2,3题.【选做题】教材第9页习题B组第1,2题.二、课后作业【基础巩固】1.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,()A.92分B.93分C.94分D.95分2.则他们本轮比赛的平均成绩是(A.7.8环B.7.9环C.8.1环D.8.2环3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2B.2.8C.3D.3.34.某校八年级(1)班一次数学考试的成绩为:100分的3人,90分的13人,80分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩约是.(结果保留到个位)5.为了调查某一路段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天284辆,4天290辆,12天312辆,10天314辆,那么这30天该路口同一时段通过的汽车平均辆数为 .6.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小明和小丽的成绩如下表所示,则小明的总平均分是 ,小丽的总平均分是 .7.某次射击训练中,8环,那么成绩为9环的人数是 .8.分(1)计算小青该学期平时测验的平均成绩;(2)如果学期总评成绩根据如图所示的权重计算,请计算小青该学期的总评成绩.9.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力,他们的成绩(单位:分)如下表:(1)若公司根据经营性质和岗位要求认为形体、口才、专业水平、创新能力按照5∶5∶4∶6确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取;(2)若公司根据经营性质和岗位要求认为面试成绩中形体占10%,口才占30%,笔试成绩中专业水平占40%,创新能力占20%,那么你认为该公司应该录取谁?【能力提升】10.某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,求投进3个球和4个球的各有多少人.【拓展探究】11.本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,则第二次测试中,得4分、5分的学生分别有多少人?【答案与解析】1.C(解析:根据题意,去掉一个最高分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,为94分.故选C.)2.C(解析:由题意可得他们本轮比赛的平均成绩为(7×4+8×2+9×3+10×1)÷(4+2+3+1)=8.1(环).故选C.)3.C(解析:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3,故30名学生参加活动的平均次数是3.故选C.)4.79分(解析:全班数学考试的平均成绩=≈79(分).故填79分.)5.306辆(解析:=306(辆).故填306辆.)6.79.0580.1(解析:按照加权平均数公式计算,小明的总平均分为80×10%+75×30%+71×25%+88×35%=79.05(分),小丽的总平均分为76×10%+80×30%+68×25%+90×35%=80.1(分).)7.3(解析:设成绩为9环的人数是x,根据题意得(7×3+8×4+9·x)÷(3+4+x)=8,解得x=3,则成绩为9环的人数是3.故填3.)8.解:(1)小青该学期平时测验的平均成绩为(88+72+86+98)÷4=86(分).(2)小青该学期的总评成绩为86×10%+90×30%+81×60%=84.2(分).9.解:(1)5+5+4+6=20.甲:86×+90×+96×+92×=90.8(分);乙:92×+88×+95×+93×=91.9(分).因为90.8<91.9,所以乙将被录取.(2)甲:86×10%+90×30%+96×40%+92×20%=92.4(分);乙:92×10%+88×30%+95×40%+93×20%=92.2(分).因为92.4>92.2,所以甲将被录取.10.解:设投进3个球的人数为a,投进4个球的人数为 b.根据已知有=3.5,=2.5,即-解得故投进3球的有9人,投进4球的有3人.11.解:(1)根据题意知得4分的学生有50×50%=25(人).(2)根据题意得平均分==3.7(分).答:本次测试的平均分为3.7分.(3)设第二次测试中得4分的学生有x人,得5分的学生有y人,根据题意得解得答:第二次测试中得4分的学生有15人,得5分的学生有30人.本节课是在学习了算术平均数的基础上继续学习加权平均数,在教学设计中首先以学生熟悉的实际问题引入教学,让学生带着问题学习,在接下来的教学中,结合买菜的具体问题情境,让学生通过小组合作学习,体会每次购买重量的变化会引起平均价格的改变,体会“权”在实际问题中的作用及意义,从而自然形成加权平均数的概念及计算公式,最后通过学生独立完成练习的解答,进一步理解加权平均数的计算公式,同时体会算术平均数与加权平均数的区别与联系.在整个教学过程中,教师只是一个参与者,和学生一起发现问题、解决问题,善于发现和鼓励学生的闪光点,引导学生在愉悦的氛围中学习数学.数学学习的过程就是学生对教学内容进行探索的过程,在教学设计中,设计了数学活动让学生参与课堂内容的探索,教师只是学习活动的组织者,但在实际操作中,对“权”的认识的讲解还是较多,总是担心学生不能突破难点,在以后的教学中,教师要注重问题的引导的设计,对难点的突破要在教师的引导下,给学生充足的时间思考、交流,让学生真正成为课堂的主体.本节课的重点是理解加权平均数,会在实际问题中计算加权平均数,在教学设计中,应注重学生探索知识的过程,让学生成为学习活动的主体,教师是学习活动的组织者,引导者.首先以生活实际问题导入新课,既体会数学与生活的密切联系,又让学生带着问题学习,激发学生学习兴趣.再以生活实际问题为问题情境,学生通过教师的引导,小组合作交流,体会“权”的意义,从而自然地引出概念及计算公式,然后学生独立完成例题的解答,小组内交流答案,体会算术平均数与加权平均数的区别与联系.在整个教学设计中,学生通过数学活动经历知识的形成过程,逐步提高数学思维和数学能力.。

相关文档
最新文档