芳纶纤维的结构青岛大学课件

合集下载

芳纶纤维概述

芳纶纤维概述

芳纶纤维凡聚合物大分子的主链由芳香环和酰胺键构成,且其中至少85%的酰胺基直接键合在芳香环上,每个重复单元的酰胺基中的氮原子和羰基均直接与芳香环中的碳原子相连接并置换其中的一个氢原子的聚合物称为芳香族聚酰胺纤维,我国定名为芳纶纤维。

芳纶纤维有两大类:全芳族聚酰胺纤维和杂环芳族聚酰胺纤维。

全芳族聚酰胺纤维主要包括对位的聚对苯二甲酰对苯二胺和聚对苯甲酰胺纤维、间位的聚间苯二甲酰间苯二胺和聚间苯甲酰胺纤维、共聚芳酰胺纤维以及如引入折叠基、巨型侧基的其它芳族聚酰胺纤维。

杂环芳族聚酰胺纤维是指含有氮、氧、硫等杂质原子的二胺和二酰氯缩聚而成的芳纶纤维,如有序结构的杂环聚酰胺纤维等。

1、聚对苯二甲酰对苯二胺(PPTA)纤维PPTA纤维是芳纶在复合材料中应用最为普遍的一个品种。

中国于80年代中期试生产此纤维,定名为芳纶1414(芳纶II)。

芳纶纤维具有优异的力学、化学、热学、电学等性能。

PPTA纤维具有高拉伸强度、高拉伸模量、低密度、优良吸能性和减震、耐磨、耐冲击、抗疲劳、尺寸稳定等优异的力学和动态性能;良好的耐化学腐蚀性;高耐热、低膨胀、低导热、不燃、不熔等突出的热性能以及优良的介电性能。

2、聚对苯甲酰胺(PBA)纤维中国于80年代初期曾试生产此纤维,定名为芳纶14(芳纶I)。

芳纶I的拉伸强度比芳纶II低约20%,但拉伸模量却高出50%以上。

芳纶I热老化性能好,这些性能用作某些复合材料的增强剂是很有利的。

3、芳纶共聚纤维采用新的二胺或第三单体合成新的芳纶是提高芳纶纤维性能的重要途径。

(1)对位芳酰胺共聚纤维它是由对苯二甲酰氯与对苯二胺及第三单体3,4'-二氨基二苯醚在N,N'-二甲基乙酰胺等溶剂中低温缩聚而成的。

共聚物溶液中和后直接进行湿法纺丝和后处理而得的各种产品。

(2)聚对芳酰胺苯并咪唑纤维一般认为它们是在原PPTA的基础上引入对亚苯基苯并咪唑类杂环二胺,经低温缩聚而成的三元构聚芳酰胺体系,纺丝后再经高温热拉伸而成。

芳纶纤维

芳纶纤维

纤维的内部是垂直于 纤维轴的层状结构所 组成,层状结构则由 近似棒状(苯环结构 使它的分子链难于旋 转、不能折叠,又呈 伸展状态形成棒状结 构,因而纤维具有高 模量)纤维的晶粒所 组成,晶粒长度依赖 于分子量。Kevlar49 的平均分子量约为 40000,存在一些贯穿 数层的长晶粒,它们 加强了纤维的轴向强 度,层中的晶粒互相 紧密排列。
聚合物的分子链间由于氢键作用促使分 子链排列得十分紧密,单位体积内可容纳很 多聚合物分子,这种高的密实性使纤维具有 较高的强度。
与此同时,由于苯环内的电子的共轭作 用,使纤维具有化学稳定性。又由于苯环结 构的刚性,使高聚物具有部分晶体的特征, 因此纤维具有高温尺寸稳定性,例如高温下 不致热塑化。并在高温下不发生分解。
2.2.3 耐化学稳定性
除强酸与强碱以外,芳纶几乎不受有机溶剂、油 类的影响。芳纶的湿强度几乎与干强度相等。对饱和 水蒸气的稳定性,比其它有机纤维好。芳纶对紫外线 是比较敏感的。若长期裸露在阳光下,其强度损失很 大,因此应加能阻挡紫外光的保护层。 KevIar纤维表面缺少化学活性基团,用等离子体 空气或氯气处理纤维表面,可使Kevlar纤维表面形成 一些含氧或含氮的官能团,提高表面活性及表面能, 显著地改善对树脂的浸润性和反应性,增加界面粘结 强度。
近晶型
(ii)向列型:棒状分子虽然也平行 排列,但长短不一,不分层次,只有 一维有序性,在外力作用下发生流动 时,棒状分子易沿流动方向取向,并 可流动取向中互相穿越。
向列型
(iii)胆甾型:棒状分子分层平行排列, 在每个单层内分子排列与向列型相似, 相邻两层中分子长轴依次有规则地扭转 一定角度,分子长轴在旋转3600后复原。 两个取向相同的分子层之间的距 离称为胆甾型液晶的螺距。

芳纶纤维PPT演示课件

芳纶纤维PPT演示课件
8
独特而稳定的化学结构赋予芳纶1313诸多优异性能,通过对 这些特性加以综合利用,一系列新产品不断地开发出来,在安 全防护、高温过滤、电气绝缘、结构材料等领域的应用越来越 广,普及程度越来越高,已成为军事、产业、科技等许多领域 不可或缺的重要基础材料。
由于芳纶1313生产工艺极其复杂、技术难度大、投资成本 居高不下等原因,长期以来,世界上仅美国、日本有能力生产, 并控制着全球芳纶市场。值得骄傲的是,在我国,异军突起的 烟台氨纶股份有限公司经过数年攻关,冲破各种艰难险阻,终 于掌握了芳纶1313关键技术,并成功地实现了工业化生产,纽 士达(NEW STAR),使我国成为世界上第四个芳纶生产国,打 破了少数发达国家在这一领域的市场垄断。
CO
CO NH
NH
n
O
O
Cl C
C Cl + NH2
NH2
这一类纤维有Kevlar、 Kevlar-29、 Kevlar-49
Twaron(荷兰恩卡公司)、我国的芳纶II(芳纶1414)。 这一类纤维是目前世界上生产的主要品种,也是重要的复合 材料的增强材料
11
为制得更高强度和模量的纤维,改进 纤维的耐疲劳性能,采用各种芳环和杂环 的二胺和二酰氯,与对苯二酰氯和对苯二 胺共聚。尚处于研制和试生产阶段。
4
主要品种:
Kevlar-29 Kevlar-49
主要用于绳索、电 缆、涂漆织物、带 和带状物,以及防 弹背心等。
用于航空、 宇航、造船 工业的复合 材料制件。
Kevlar
主要用于橡胶增强,制造轮 胎、三角皮带、同步带等
5
2.2.4 芳纶的分类
6
聚间苯二甲酰间苯二胺纤维
CO CO NH
NH n

203527_第八章_芳纶纤维

203527_第八章_芳纶纤维

用途:航空材料、体育器材、建
筑材料等。其中用作防弹材料是一 个重大飞跃。
美军的PASGT头盔
QGF- 02防弹头盔
(采用我国自行研制的芳纶纤维制造的)
芳纶1313
全称:聚间苯二甲酰 间苯二胺纤维
O O C H N H N n
分子结构式:
C
合成:
由间苯二甲酰氯与间苯二胺缩聚而成
+ ClO C CO Cl HN NH OC CO
④ 密度:
Kevlar纤维比CF(1.7~1.8)、GF(2.5左右)、BF(3.9)都要低,而 KF仅1.4左右。
几种增强纤维的比强度和比模量
热性能:
GF:软化点: 550~580 ℃; 200~250 ℃以下,GF强度不变。
热膨胀系数:48×10-6 ℃-1

CF: 高于1500℃,强度才开始下降。
缩聚实施方法:工业常用低温溶液缩聚和界面缩聚的方法
性能:
1)力学性能:高强度、高模量、密度低、韧性好的特点。 2)耐化学性能:对普通有机溶剂、盐类溶液等具有很好的 耐化学药品性,除了少数几种强酸和强碱外;对紫外线敏 感。 3)热稳定性:高温下不熔,短时间暴露在300oC以上,强 度几乎不发生变化。
92sic纤维sic纤维的制备先驱丝法复合法chclclsinasich分子重排400c以上si熔融纺丝纤维不熔化处理不熔化丝具有不熔的交联结构空气ar保护张力1000c以上高温烧结高性能sic纤维聚硅烷pdms碳化硅纤维的化学组成元素si摩尔比100129038010含量54330011802sic纤维的性能
热膨胀系数:平行于纤维方向:负值 -0.72~-0.90×10-6℃-1
垂直于纤维方向:正值 32~22×10-6℃-1

芳纶纤维

芳纶纤维

2. 对位芳香族聚酰胺纤维 (1)聚对苯甲酰胺(聚对胺基苯甲酰)纤维Poly(P-benzamide) 聚对苯甲酰胺(聚对胺基苯甲酰)纤维 聚对苯甲酰胺 ( ) 简称PBA纤维。 纤维。 简称 纤维
NH
CO n
(2)聚对苯二甲酰对苯二胺纤维 聚对苯二甲酰对苯二胺纤维 Poly(P-Phenlene terephthalamide)简称 ( )简称PPTA纤维 纤维
简单流程图 第一阶段
第二阶段
1. Kevlar的缩聚工艺 Kevlar的缩聚工艺 (1)原料 ) 1)对苯二甲酰氯 ) 2)对苯二胺 ) 3)溶剂 ) (2)缩聚反应 )
(3)操作方式和特点
方式名称 操作过程 方法特点
间隙缩聚 N2气保护下聚合物单体溶 设备利用率低 液在反应器中缩聚, 液在反应器中缩聚,除去 限制大规模生产 产物中的盐酸和溶剂( 产物中的盐酸和溶剂( 聚合物成本低 连续缩聚 气相缩聚 将对苯二胺和对苯二甲酰 不需要溶剂 氯及氮气在反应器中进行 产物纯度高 气相缩聚 纤维性能高
液晶的基本概念
物质的状态:固态,液态,气态 物质的状态:固态,液态,
气态: 气态: 液态:具有高的流动性, 液态:具有高的流动性,构成液体的分子能够在整个体积中自由 移动,不具有长程有序,各向同性。 移动,不具有长程有序,各向同性。 固态:具有一定的形状, 固态:具有一定的形状,构成固体的分子或原子在固体中具有有 序规整的排列,具有长程有序,具有各向异性。 序规整的排列,具有长程有序,具有各向异性。 液晶( ):是介于各向同性的液体和完全有序的晶 液晶(Liquid Crystals):是介于各向同性的液体和完全有序的晶 ): 体之间的一种取向有序的流体,它既有液体的流动性, 体之间的一种取向有序的流体,它既有液体的流动性,又有晶体 的双折射等各向异性的特征;是一种中间态。 的双折射等各向异性的特征;是一种中间态。

第10章芳纶纤维

第10章芳纶纤维

两种干喷混纺装置示意图
第四节 凯芙拉纤维的制品
凯芙拉纤维可以制成各种连续长纤维的粗、细纱,并可以 纺织加工成各种织物。 粗纱和细纱的物理力学性能见表4。 粗纱也用于缠绕制品及挤拉成型工艺。 芳纶纤维制品的型号和规格见表5;凯芙拉-49织物的性质 见表6。 凯芙拉-49织物具有高的拉伸性能和低的断裂延伸率。 表6所列的有机纤维织物与玻璃纤维织物在结构上很类似, 在用途上也有相似的适用性。
表4
凯芙拉-49细钞和粗纱的物理力学性能
性能 数值
160 500 无强度损失 无强度损失 3170 2720 无模量损失 无模量损失 113.6 110.3
在空气中高温下长期使用的温度(℃) 分解温度(℃) 拉伸强度 (MPa) 在室温下16个月 在50 ℃空气中2个月 在100 ℃空气中 在200 ℃空气中 在室温下16个月 拉伸弹性模量 (GPa) 在50 ℃空气中2个月 在100 ℃空气中 在200 ℃空气中
燃烧热(KJ/g)
34.8
表5 常用芳纶织物
注:拉伸试验的试样宽度为1cm。
第五节 芳纶纤维及其复合材料的应用
芳纶纤维主要用作环氧、聚酯和其他树脂的增强材料, 制成各种航空、宇航和其他军事用途的构件。 在航空方面:各种整流罩、机翼前缘、襟翼、方向舵、 安定面翼尖、尾锥、应急出口系统构件等。 在航天方面:火箭发动机壳体和压力容器、宇宙飞船的 驾驶舱、氧气、氮气和氦气的容器以及通风管道等。 其他军事方面:防护材料,如坦克、装甲车、飞机、艇 的防弹板以及头盗和防弹衣等。 芳绝增强复合材科可大幅度减轻制品的质量,故在民用 工业方面应用也十分广泛,造船工业,体育用品。
(2)聚N ,N,-间苯双-(间苯甲酰胺)对苯二甲酰胺纤维 其分子结构式为:

芳纶纤维复合材料讲解33页文档

芳纶纤维复合材料讲解33页文档

芳纶纤维复合材料讲解
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

芳纶纤维的结构

芳纶纤维的结构

芳纶纤维的结构、制备及应用综述摘要:芳纶是一种高科技特种纤维,它具有优良的力学性能,稳定的化学性质和理想的机械性质。

它的全称为“芳香族聚酰胺纤维”,1974年,美国贸易联合会将它们命名为“aramidfibers”,其定义是:至少有85%的酰胺链(—CONH—)直接与两个苯环相连接。

我国则将它们命名为芳纶,其全称也可简化为“芳酰胺纤维”。

它有一系列的产品,可用于航空航天工业、IT(信息技术)产业、国防工业、汽车工业等。

关键词:芳纶1313,芳纶1414,芳纶纤维结构,芳纶纤维应用、发展及制备一、芳纶纤维的简介芳纶全称芳香族聚酰胺纤维,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸碱、重量轻等优良性能,还具有良好的绝缘性和抗老化性能,具有很长的生命周期。

二、芳纶的结构和性能芳纶可分为邻位、对位和间位3种,而邻位无商业价值。

自20世纪60年代由美国杜邦公司成功开发出芳纶纤维并率先产业化后,在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过度的历程,价格也降低了一半。

现在国外芳纶无论是研发水平还是规模生产都日趋成熟。

在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国。

如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。

间位芳酰胺纤维的品种有 Nomex、Conex、Fenelon纤维等。

下面我们主要介绍一下对位芳纶和间位芳纶的代表产品,邻位因为无商业价值将不做介绍。

1、芳纶1414的结构和性能芳纶1414由对苯二胺(PPD)和苯二酰氯(TPC)这两种单体聚合而成。

在缩聚反应中,TPC和PPD反应生成聚合物聚对苯二甲酰对苯二胺,也就是PPTA。

结构式为;结构特点可以归纳为:1)分子链沿纤维轴向高度结晶排列。

2)纤维含有氢键系,这种氢键系沿其轴线有规则地折叠,并沿径向分布。

复合材料第十章-芳纶纤维

复合材料第十章-芳纶纤维

复合材料第三部分 复合材料的增强材料教学目的:通过本章的学习,掌握芳纶纤维的定义、 分子结构式、结构及性能特点,芳纶纤维的优点、缺 点及主要应用。

重点内容: 1、芳纶纤维的结构特征及与性能的关系。

2、常见几种芳纶纤维的分子式及特点 难点:芳纶纤维分子结构与性能的关系。

第十章 芳纶纤维1熟悉内容:芳纶纤维的发展历史及目前的主要应用。

2主要英文词汇: Kevlar---凯芙拉 Poly[P-benzamide]---对位芳香族聚酰胺纤维 Poly[p-phenlene terephthalamide]--聚对苯二甲酰对苯二胺纤维 Aromatic Polymide Fibre---芳香族酰胺纤维 Kevlar, KF参考教材或资料:1、复合材料学----周祖福 (武汉理工大学出版社,2004年) 2、现代复合材料----陈华辉 邓海金 李 明 (中国物质出版社,1998) 3、复合材料概论----王荣国 武卫莉 (哈尔滨工业大学出版社,1999) 4、复合材料--------吴人洁(天津大学出版社,2000) 5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002) 6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003) 7、高性能复合材料学---郝元恺,肖加余 (化学工业出版社,2004) 8、新材料概论--- 谭毅, 李敬锋(冶金工业出版社,2004) 9、先进复合材料----鲁 云 朱世杰 马鸣图 (机械工业已出版社,2004) 10、复合材料--------周曦亚(化学工业出版社,2005)3410、芳纶纤维 芳纶纤维:芳香族聚酰胺类纤维的通称。

国外商品牌号为凯芙拉(Kevlar)纤维(美国杜 邦公司1968年开始研究,1973年研制成功),我国命 名为芳纶纤维。

特点:高强度、高模量、耐高温、耐腐蚀、低密度的 新型有机纤维。

用于:增强塑料、同步带、绳索、防弹板、复合材料 的增强材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学方面的原因(主要原因)
a. 官能团的分解,使增长的分子链失去活性。 b. 单体组分的非当量比,使分子链未端带的是相 同的官能团,发生“链封闭”作用,而使增长着的 分子链失去活性。 c. 原料中混有单官能团杂质也会发生“链端封 闭”作 用。 d. 分子链内部发生环化反应或分子间发生环化 反应等都会发生链端封闭作用而使反应终止。
Tf
脆化温 度Tb
线型无定型态高分子物的形变--温度曲线
玻璃化 温度Tg
粘流温 度Tf
第五节 合成纤维
一、基础知识
纤维:长径比几十倍以上(长:1mm~几 百 米;径:几微米(μm)~几十微米)
纤度:单位长度纤维的重量 。 旦:克数/9000米; 特(tex):克数/1000米; 分特:克数/100米
而增加,链增长过程是逐步完成的。
2.缩聚反应的历程
① 链的开始 ② 链的增长
aAa + bBb
aABb + ab
③ 链终止
缩聚反应链终止的原因。
物理方面的原因
a. 随着缩聚反应的进行,单体浓度越来越小, 官能团发生反应的机会减少。 b.缩聚物的粘度增加,整个分子链移动困难, 碰撞机会减少。
C.粘度大,生成的低分子排不出去,发生可 逆反应。
树 脂: 指尚未与各种添加剂混合的高聚物。 填 料:(又称添加剂)提高制品的强度和耐热性并 可降低成本。20~50%)。 增塑剂:(又称软化剂)使制品具有韧性。增强可塑 性,降低脆性和刚性。 稳定剂:防止塑料老化,延长使用寿命。 润滑剂:防止塑料在成型过程中粘附压模,造成脱 落困难。 固化剂:加速高聚物分子间发生交联、硬化。 色 料: 使制品美观。

玻璃态 渡 高弹态

粘流态
称为高分子的高弹态。如 橡胶。
温度
Tb Tg
Tf
线型无定型态高分子物的形变--温度曲线
玻璃化 温度Tg
粘流态:
继续增加温度,链的运动更加活泼,可发生滑
移运动,成为流动状粘液,称为高分子的粘流状
态。如粘合剂。
形变(%)
低分子物只有玻璃态
和粘流态,无高弹态。
体型高聚物只有一种
形变(%)

玻璃态 渡 高弹态

粘流态
温度
Tb Tg
Tf
线型无定型态高分子物的形变--温度曲线
玻璃态:
低温下,链间的作用力大,大分子链的运动方式是在 自己的位置振动。不易形变。特征是硬而脆,弹性很小。 称为高分子的玻璃态。如室温下的塑料。
高弹态:
形变(%)
在较高温度下,链运动 加剧,链节构象转变容易。 高分子在外力下发生较大 的形变,且能恢复原形。
H2C CH + HC C
X
H2 X
.
R' CH2 CH CH2 CH2
Cl
Cl
H
H2C CH X
C X
C H2
RM1+ M 单体
游离基
RM 2
二聚体
游离基
M RM3 M
三聚体
游离基
M RMn
n聚体 游离基
② 离子历程
正离子聚合反应
A
++
δ-
H2C
δCH+
R
负离子聚合反应
B - +H2δC+ δCH-
1.直链结构,拉伸后排列紧密,结晶度35~45%,强力 大,4.3~6.5克/旦。
2. 共平面,具有刚性,织物挺括,尺寸稳定。 3.链上缺少亲水基,故吸水性差,穿着不适,易起球,
但易洗,快干。 4.染色性差。 5. 遇碱水解,耐酸不耐强碱。
用途:纯涤纶织物。混纺织物:毛涤、棉涤、仿真 丝织物等。
聚酯纤维改性:化学改性、物理改性
特殊高分子、功能高分子、仿生高分子、生物高分子、 医药高分子、高分子试剂、高分子催化剂。
通用高分子——用量最大,面也广。 四烯:聚乙烯、聚氯乙烯、聚丙烯、聚苯
乙烯
四纶:涤纶、锦纶、腈纶、维纶
四胶:丁苯橡胶、顺丁橡胶、异戊橡胶 、 乙丙橡胶
五、高分子化合物的命名
1. 高分子命名一般习惯上用俗名。纤维、淀粉
2. 在单体前加个“聚”字。 聚氯乙烯
3. 缩聚反应制得的高聚物,在原料后加“树脂”二 字。酚醛树脂、环氧树脂
4. 商品名称:腈纶、的确良(聚对苯二甲酸乙二酯 纤维)、电木(酚醛树脂)
第二节 高分子化合物的合成反应
一、缩聚反应
由一种或两种以上的单体,通过缩合形成高分子化合 物,同时脱去水、卤化氢或醇等小分子的反应,叫~。
高分子链结构
高分子的化学组成及构型(一级结构) 高分子的构象(二级结构)
单键的绕轴 旋转
柔顺性\弹性
聚集态结构是指高分子材料整体的内部结构 (三级结构)。
高分子链聚集时其链段之间相对空间位置 有紧密或疏松、规整或凌乱之分,链段间作 用力也不同。
无定形态、结晶态、半结晶态 结晶度
二、线型无定形高分子物的物理状态
四、高分子化合物的分类
1. 按来源分类:天合然成高高分分子子((天合然成橡橡胶胶、、纤合维成素纤、维淀、粉塑)料) 2. 按工艺性质和应用分类:塑料、橡胶、纤维 3.按高分子主链结构分类 :碳链高分子化合物、
杂链高分子化合物等。
4. 按合成高分子化合物的反应类型分类:加聚物、缩聚物 5. 按应用功能分类:
(拉伸过程中,利用拉伸力大小控制结晶度和强力。)
合成纤维、天然纤维链靠范德华力 和氢键连接。当纤维结晶度高时,链的 作用力大。利用这一特性,合成纤维在 成纤后,都通过热牵引增加结晶度,而 增加其强度。
线型无定形高聚物的物理状态
高分子具有多重运动单元,在不同温度或外力条件下可 呈现不同的物理状态。(称力学状态)
按产物结 构分类
线型缩聚 体型缩聚
均缩聚
一种单体
按单体种类 数目分类
混缩聚 共缩聚
两种单体 多种单体
1. 缩聚反应的特点
+ NH 2 (CH2)6 NH 2
HOOC (CH2)4 COOH
己二胺
己二酸
HO
O
H
N端
NH (CH2)6 N C (CH2)4
聚己二酰己二胺
C OH n
C端
① 所用单体至少有两个相互作用的官能团。 ② 缩聚反应是通过一连串的缩合反应来完成的。 ③ 反应过程有小分子析出,高聚物的化学组成与单体不同。 ④ 缩聚反应大都是可逆平衡反应。 ⑤ 缩聚物的分子量不是很大(与加聚物比较)。 ⑥ 反应不是瞬间完成的,高聚物的分子量随时间的增长
2.聚酰胺纤维(PA)
① 各链节以 —CONH— 相连结
② 商品名称:锦纶(又称尼龙)、耐纶等; ③锦纶纤维两大类:
➢己内酰胺开环聚合而得,如锦纶6 ➢二元胺和二元酸缩聚而得,如锦纶66
锦纶6的合成
(1) 苯酚法 生产工艺是由苯酚加氢制 得环己醇,环己醇脱氢成环
己酮,环己酮和硫酸 羟胺反应生成环己酮肟,环己酮肟再 在发烟硫酸 作用下经贝克曼重排反应得到己内酰胺,开环 聚合的锦纶6。
二、高分子化合物的组成 链节
高分子化合物的化学组 成一般都比较简单
CH2 CH Cl
n
聚合度
分子量 = 聚合度*链节分子量
三、高分子化合物的特点
1. 从分子量和组成看,高分子化合物的分子 量很大,具有“多分散性”。
2. 从性能上看,通常处于固体状态,有较好的 机械强度,绝缘性能,耐腐蚀性能,可塑性,高 弹性。
断裂强度和延伸度:断裂强度,克/旦,纤维断裂 时的伸长。
回弹率:指受力变形后可恢复的弹性伸长与不能 恢复的塑性伸长之比。
回弹率=a/b (a:恢复;b:不恢复。)
分类:
纤维
植物纤维:如棉花、麻等。 天然纤维
动物纤维:丝、毛等。
化学纤维 人造纤维: 如粘胶纤维、硝化纤维等 合成纤维:如尼龙、涤纶、丙纶等 。
二、成纤的基本条件
1.具有线型分子结构,分子链排列规整。
2.分子量大小要适当,才有利于拉丝和保证足够的 强度。(104)。
3.分子链间要有较强的吸引力 4.能溶解或熔融。
三、几种重要的合成纤维
1. 聚酯纤维
① 各链节以—COO—相连结 ② 商品名称:涤纶、的确良等 例:的确良——聚对苯二甲酸乙二酯纤维
二、加聚反应
由许多相同或不同单体在一定条件下, 通过互相加成形成的高 分子化合物的反应叫 加聚反应。
❖ 由一种单体发生的加聚反应称为均聚反应。 ❖ 由两种以上的单体共同聚合称为共聚反应。
1.加聚反应的特点
① 单体是带有不饱和键的化合物。
② 反应过程中没有低分子化合物析出,生成 高分子化合物的化学组成与单体相同,其分 子量为单体分子量的整数倍。
X
AC
+
CH 活性中心是正离子
H2 R
BC H2
CH 活性中心是负离子
X
第三节 高分子化合物的化学反应
高分子化学反应特点:
(1)官能团反应活性低; (2)反应不完全:活性不足,转化率低。 (3)产物多样性; (4)副产物多。
一、聚合度不变的反应
NaOH
Cellulos e-OH
Cellulos e-ONa
纺织化学电子教案
----纺织工程专业
第七章 高分子化合物与合成纤维
青岛大学
教学内容
第一节 基本概念 第二节 高分子化合物的合成 第三节 高分子化合物的化学反应 第四节 高分子化合物的结构与性能 第五节 合成纤维
第一节 基本概念
一、 高分子化合物的涵义
高分子化合物是指以共价键结合成主链的高分子量的 化合物,其分子量一般可自几万至几十万、几百万、甚 至上千万。由于高分子化合物一般都是由低分子化合物 聚合而成,所以又称高聚物或大分子化合物。
相关文档
最新文档