第3章 小结 电机与拖动基础 课件 ppt
合集下载
《电机与拖动基础》课件

1 电机与拖动在现代工业中的重要性
强调电机与拖动在现代工业中的关键作用和重要性,为学生们带来更深的认识。
2 未来电机与拖动技术的发展趋势
展望未来电机与拖动技术的发展方向和趋势,激发学生们的兴趣和思考。
3 课程总结与展望
对本课程进行简要总结,并展望学生们在电机与拖动领域的未来发展。
探讨直流电机和交流电机的异同,分析
三相电机的特点与应用
4
它们在不同场景中的优势和劣势。
介绍三相电机的独特特点,并探讨它们 在工业领域中的广泛应用。
拖动基础
拖动的概念与基原理
解释拖动的基本概念以及背后的基本原理,为后续 内容打下基础。
拖动装置的分类与应用
介绍不同类型的拖动装置及其在各种应用中的案例 和使用场景。
传动系统的结构与特点
探讨传动系统的各个组成部分以及其特点,让您对 其运作有更深入的了解。
传动过程中的性能参数与选型原则
详细分析传动过程中的关键性能参数,并提供选型 指导原则,帮助您做出明智的选择。
电机与拖动控制
电机与拖动的控制方式
介绍电机和拖动控制的不同方式,并探讨其在工 程和自动化应用中的应用。
《电机与拖动基础》PPT 课件
这是一份关于电机与拖动基础的PPT课件,将融合丰富的图像、精炼的文字以 及多种布局方式,让学习变得生动有趣。
电机基础
1
电机的概念与分类
探索电机的定义和不同类型,介绍其在
电机的工作原理
2
各个领域中的应用。
揭示电机背后的工作原理,深入了解不
机与交流电机的比较
传动系统的控制策略与实现方法
提供传动系统控制的不同策略和实现方法,以满 足不同需求和应用场景。
电机控制回路的结构与特点
强调电机与拖动在现代工业中的关键作用和重要性,为学生们带来更深的认识。
2 未来电机与拖动技术的发展趋势
展望未来电机与拖动技术的发展方向和趋势,激发学生们的兴趣和思考。
3 课程总结与展望
对本课程进行简要总结,并展望学生们在电机与拖动领域的未来发展。
探讨直流电机和交流电机的异同,分析
三相电机的特点与应用
4
它们在不同场景中的优势和劣势。
介绍三相电机的独特特点,并探讨它们 在工业领域中的广泛应用。
拖动基础
拖动的概念与基原理
解释拖动的基本概念以及背后的基本原理,为后续 内容打下基础。
拖动装置的分类与应用
介绍不同类型的拖动装置及其在各种应用中的案例 和使用场景。
传动系统的结构与特点
探讨传动系统的各个组成部分以及其特点,让您对 其运作有更深入的了解。
传动过程中的性能参数与选型原则
详细分析传动过程中的关键性能参数,并提供选型 指导原则,帮助您做出明智的选择。
电机与拖动控制
电机与拖动的控制方式
介绍电机和拖动控制的不同方式,并探讨其在工 程和自动化应用中的应用。
《电机与拖动基础》PPT 课件
这是一份关于电机与拖动基础的PPT课件,将融合丰富的图像、精炼的文字以 及多种布局方式,让学习变得生动有趣。
电机基础
1
电机的概念与分类
探索电机的定义和不同类型,介绍其在
电机的工作原理
2
各个领域中的应用。
揭示电机背后的工作原理,深入了解不
机与交流电机的比较
传动系统的控制策略与实现方法
提供传动系统控制的不同策略和实现方法,以满 足不同需求和应用场景。
电机控制回路的结构与特点
电机及拖动基础第三章

第二节 生产机械的负载转矩特性
生产机械运行时常用负载转矩标志其负载的大小。不同的生产机 械转矩随转速变化规律不同,用负载转矩特性来表征,即生产机械的 转速n与负载转矩TL之间的关系n=f(TL)。各种生产机械特性大致可分 为以下三种类型。 一、恒转矩负载特性
恒转矩负载是指负载转矩TL的大小不随转速变化,TL=常数,这 种特性称为恒转矩负载特性。它有反抗性和位能性两种: 1.反抗性恒转矩负载
为恒定值,即
就是说,负载转矩与转速成反比。例如,一些机床切削加工, 车床粗加工时,切削量大(TL大),用低速档;精加工时,切削量小 (TL小),用高速档。恒功率负载特性曲线如图3-7所示。
三、通风机型负载特性 通风机型负载的特点是负载转矩的大小与转速n的二次方成正比,
即
式中K——比例常数。 常见的这类负载如鼓风机、水泵、液压泵等,通风机型负载特性
本章中首先介绍电力拖动系统的运动方程式,然后介绍生产机械 的转矩特性和三相异步电动机的机械特性,最后主要研究三相异步电 动机拖动应用的三大问题——起动、制动、调速。
第一节 电力拖动系统的运动方程式
电力拖动系统中所用的电动机种类很多,生产机械的性质也各不 相同。因此,需要找出它们普遍的运动规律,予以分析。从动力学的 角度看,它们都服从动力学的统一规律。所以,我们首先研究电力拖 动系统的动力学,建立电力拖动系统的运动方程式。 一、单轴电力拖动系统的运动方程式
曲线如图3-8所示。 必须指出,以上三类是典型的负载特性,实际生产机械的负载特
性常为几种类型负载的综合。例如起重机提升重物时,电动机所受到 的除位能性负载转矩外,还要克服系统机械摩擦所造成的反抗性负载 转矩,所以电动机轴上的负载转矩TL应是上述两个转矩之和。
(最新整理)《电机与拖动基础》PPT课件

2021/7/26
6
0.2本教材内容、课程性质和教学目的
0.2.1教材内容
《电机基础》课程是以电力拖 动系统中应用最广泛的电机为重点, 从使用的角度介绍交、直流电机、 变压器等的基本结构、工作原理、 主要工作特性以及运行特性等。
2021/7/26
7
教材与参考书
教材:
电机原理及拖动.彭鸿才主编.机械工业出 版社,1996年10月 参考书:
由于电机铁芯采用软磁材料制成,其磁
滞回线瘦窄,在进行磁路计算时,为了简化 计算,不考虑磁滞现象,而用基本磁化曲线 来表示B与H之间的关系,故通常所讲的铁磁 材料的磁化曲线是指基本磁化曲线。
2021/7/26
32
0.4.3交流磁路中的铁心损耗
交流磁路中存在铁芯损耗,铁芯损耗又分为磁滞损 耗和涡流损耗。
答疑时间:每周
午00:00-00:00
地点:四教西913,电话:88802861
实验前做好预习报告,实验时注意安全,实验 后完成实验报告。
总评成绩:作业10%,实验20%,考试70%。
20本电磁定律
学习本课程中常要用到的基本电 磁定律有:全电流定律、磁路欧姆定律、 电磁力定律、电磁感应定律、 基尔霍夫电流定律和电压定律等。
2021/7/26
22
2. 磁路基尔霍夫第二定律
根据麦克斯韦方程(式(5))可得出: 在闭合的磁路中,各段磁压降的代数和等于 闭合磁路中磁动势(mmf)的代数和,即有
HLIN(8)
上式中,H——磁场强度,A/m; L——各段磁路的长度,m; N——线积分线路所包围的导体数; I——每根导体所流过的电流,A。
基尔霍夫第一定律
电路中任意节点的电流的代数和等于
电机与电力拖动基础 (全)课件

智能家居领域
在智能家居领域,电机控制技 术主要用于智能家电、智能照 明、智能安防等系统中,提高 家居生活的便利性和舒适性。
电动汽车领域
在电动汽车领域,电机控制技 术是实现车辆稳定运行和高效 驱动的关键技术之一,对于提 高电动汽车的性能和降低能耗 具有重要意义。
04
电机与电力拖动系统的维护与检修
维护与检修概述
电机与电力拖动基础 (全)课件
目
CONTENCT
录
• 电机学基础 • 电力拖动基础 • 电机控制技术 • 电机与电力拖动系统的维护与检修 • 电机与电力拖动系统的设计
01
电机学基础
电机概述
电机是利用电磁感应原理实现电能与机械能转换的 装置。
电机广泛应用于工业、农业、交通运输、国防等领 域。
电机主要由定子和转子组成,通过磁场相互作用产 生旋转运动。
工作机
被拖动的机械设备,如机床、 泵等。
电力拖动系统的特性
80%
调速性能
通过改变电动机的输入电压或电 流,可以方便地调节电动机的转 速,从而实现对工作机的速度控 制。
100%
启动和制动性能
通过控制装置可以实现对电动机 的启动和制动控制,以满足工作 机在各种工况下的运动需求。
80%
负载特性
工作机的负载特性对电力拖动系 统的性能有很大影响,不同的负 载特性需要选择不同类型的电动 机和控制装置。
THANK YOU
感谢聆听
状态监测
通过各种传感器和检测 设备实时监测设备的运 行状态,及时发现异常
。
故障诊断
根据设备运行数据和故 障现象,分析故障原因
,确定维修方案。
修复性维修
对已经发生的故障进行 修复,恢复设备性能。
电机及拖动基础优秀PPT完整PPT

电机及拖动基础
iax I m
转子绕组作“两并一串”联接, 并且通入直流后所建立的磁动 势和磁场的基波分布图
iby
1 2
Im
icz
1 2
Im
绕线转子异步电动机的转子绕组通入直流电流 后,就成为一个电磁铁。
不论旋转磁极与电磁铁在起始时的相对位置如 何,结果总是旋转磁极的N极和S极分别与电磁铁 的S极和N极相吸。旋转磁极以同步转速旋转,则 必然拉着电磁铁也以同步转速旋转。这时异步电 动机就作同步运行。
恒功率、变励磁、不 计凸极效应时同步电 动机的电动势相量图
(二)转速特性及起动步骤
无平均电磁 转矩的情况
(s)t0
Te(t)
m UE0
Xds
sins
t
0
m U2
2s
1 Xq
1 Xd
sin2s
t
0
T
平均电磁转矩 Teav 0 Te(t)dt 0
第二节 无换向器电动机——自控式同步电动机 一、分类
串并联式
涡轮式
永磁同步电动机的转子结构图
2、磁路与参数问题 永磁体为横向结构的永磁同步电动机磁路示意图
3、起动问题
永磁同步电动机起动特性
1——异步转矩 2——发电机制动转矩 3——磁阻转矩 4——合成转矩
三、步进电动机
三相反应式步进电动机示意图
位置一
位置二
位置三
三相反应式步进电动 机的典型结构示意图
有最大电 磁转矩
无电磁转矩
有最大电 磁转矩
三、特点
1、维护简便 2、调速范围宽 3、控制方便 4、电动机能够使用于条件较恶劣的场合 5、快速性好
第三节 其他同步电动机
一、磁阻同步电动机
iax I m
转子绕组作“两并一串”联接, 并且通入直流后所建立的磁动 势和磁场的基波分布图
iby
1 2
Im
icz
1 2
Im
绕线转子异步电动机的转子绕组通入直流电流 后,就成为一个电磁铁。
不论旋转磁极与电磁铁在起始时的相对位置如 何,结果总是旋转磁极的N极和S极分别与电磁铁 的S极和N极相吸。旋转磁极以同步转速旋转,则 必然拉着电磁铁也以同步转速旋转。这时异步电 动机就作同步运行。
恒功率、变励磁、不 计凸极效应时同步电 动机的电动势相量图
(二)转速特性及起动步骤
无平均电磁 转矩的情况
(s)t0
Te(t)
m UE0
Xds
sins
t
0
m U2
2s
1 Xq
1 Xd
sin2s
t
0
T
平均电磁转矩 Teav 0 Te(t)dt 0
第二节 无换向器电动机——自控式同步电动机 一、分类
串并联式
涡轮式
永磁同步电动机的转子结构图
2、磁路与参数问题 永磁体为横向结构的永磁同步电动机磁路示意图
3、起动问题
永磁同步电动机起动特性
1——异步转矩 2——发电机制动转矩 3——磁阻转矩 4——合成转矩
三、步进电动机
三相反应式步进电动机示意图
位置一
位置二
位置三
三相反应式步进电动 机的典型结构示意图
有最大电 磁转矩
无电磁转矩
有最大电 磁转矩
三、特点
1、维护简便 2、调速范围宽 3、控制方便 4、电动机能够使用于条件较恶劣的场合 5、快速性好
第三节 其他同步电动机
一、磁阻同步电动机
电机及拖动ppt课件

4. 只由n <n0 旋转磁场和转子导体有相对运动,转子才受到电磁转矩。 如果磁极极对数是p,整个圆周有p个完整正弦波,相当于p × 360°。
磁极下所占槽数来表示, Z为总数,P极为对数
Z 2p
节距 y (跨距) • 跨越的槽数表示。
y
电角度
电角度=p×机械角度
三相单层集中整距绕组
三相:A、B、C 单层:每槽中只放一个线圈边 集中:每一相只有一个线圈 整距:线圈的节距等于一个极距
三相绕组结构特点 三相绕组展开图 三相绕组的Y连接 三相绕组的轴线
单层分布绕组的展开图
7-2 分析绕组时常用的几个量
极距τ P0= m1I02r1 +PFe+Pm(忽略转子铜耗及附加损耗Pcu2+Ps)
N
如果用一原动机或其它
T
转矩去拖动异步电动机,
使它的转速超过同步转速,
n >n0 ,S<0,旋转磁场切割转
n0
子导体的
n
方向相反,导体中的电动势与电流方向都反向。由左手 定则知电磁力与旋转磁场和转子的旋转方向相反,这是制动 转矩。这时原动机对异步电动机输入机械功率,而通过电磁 感应由定子向电网输送电功率,电动机处在发电机状态。
可以用短路实验方法求参数。
气隙磁场,转子绕组导体切 电磁转矩指转子电流I2与主磁通φm相互作用产生的电磁力形成的总力矩。
间距离,可以用所跨槽数表示,也可
已知总槽割数Z该、极磁对数场p:α产=(P生×36感0)/Z应电势。由
定子铁心core——磁路部分,放置定子绕组。
于转子绕组处于短路状态会 如果异步电动机的外转矩使转子逆着旋转磁场的方向旋转,即n<0,S>1,此时转子导体中的电动势和电流反向仍和电动机一样,电磁转矩
电机与拖动课件

拖动系统往往是复杂的,有的生产机械需要通过传动机构进行转 速匹配,因此增加了很多齿轮和传动轴;有的生产机械需要通过 传动机构把旋转运动变成直线运动,比如:刨床、起货机等。对 这样一些复杂的电力拖动系统,如何来研究其力学问题呢?一般 来说,有两种解决办法:
1)对拖动系统的每根轴分别列出其运动方程, 用连列方程 组来消除中间变量。这种解法会因方程较多,计算量大而比较繁 杂。
jL = /L = n / nL
如果要考虑传动机构的损耗,可以在折算公式中引入传动效
率c 。由于功率传送是有方向的,因此引入效率c 时必须注意:
要因功率传送方向的不同而不同。现分两种情况讨论:
1) 电动机工作在电动状态, 此时由电动机带动工作机构, 功率由电动机各工作机构传送,传动损耗由运动机构承担,即电
J L
1 jL
2
从式可知,折算到单轴拖动系统的等效转动惯量J等于折算前 拖动系统每一根轴的转动惯量除以该轴对电动机轴传动比jL 的平 方之和。当传动比jL 较大时,该轴的转动惯量折算到电动机轴上 后,其数值占整个系统的转动惯量的比重就很小。
根据式表示的GD2 = 4gJ 的关系,可以相应地得到折算到电动 机轴上的等效飞轮转矩
TL
TL jL
c
对于系统有多级齿轮或皮带轮变速的情况,设已知各级速比为j1, j2,…,jn,则总的速比为各级速比之积,即
n
j j1 j2 ... jn ji i 1
在多级传动时,如果已知各级的传递效率为: c1, c2,…, cn,则总效率 c 应为各级效率之积,即
n
c ci i 1
2.转动惯量和飞轮矩的折算 将图中 两轴系统中的电动机转动惯量 Je 和生产机械的负载 转动惯量JL,折算到电动机轴的等效系统的转动惯量J,其等效原 则是:折算前后系统的动能不变,即有
1)对拖动系统的每根轴分别列出其运动方程, 用连列方程 组来消除中间变量。这种解法会因方程较多,计算量大而比较繁 杂。
jL = /L = n / nL
如果要考虑传动机构的损耗,可以在折算公式中引入传动效
率c 。由于功率传送是有方向的,因此引入效率c 时必须注意:
要因功率传送方向的不同而不同。现分两种情况讨论:
1) 电动机工作在电动状态, 此时由电动机带动工作机构, 功率由电动机各工作机构传送,传动损耗由运动机构承担,即电
J L
1 jL
2
从式可知,折算到单轴拖动系统的等效转动惯量J等于折算前 拖动系统每一根轴的转动惯量除以该轴对电动机轴传动比jL 的平 方之和。当传动比jL 较大时,该轴的转动惯量折算到电动机轴上 后,其数值占整个系统的转动惯量的比重就很小。
根据式表示的GD2 = 4gJ 的关系,可以相应地得到折算到电动 机轴上的等效飞轮转矩
TL
TL jL
c
对于系统有多级齿轮或皮带轮变速的情况,设已知各级速比为j1, j2,…,jn,则总的速比为各级速比之积,即
n
j j1 j2 ... jn ji i 1
在多级传动时,如果已知各级的传递效率为: c1, c2,…, cn,则总效率 c 应为各级效率之积,即
n
c ci i 1
2.转动惯量和飞轮矩的折算 将图中 两轴系统中的电动机转动惯量 Je 和生产机械的负载 转动惯量JL,折算到电动机轴的等效系统的转动惯量J,其等效原 则是:折算前后系统的动能不变,即有
电机与拖动基础总复习ppt课件

2. 结构 凡是旋转电机,其基本结构总是由定子和转子两大部分组成。
直流电机结构参见教材29页图3.4 。 其定子和转子的基本构成如下
3. 额定值 额定值是电机长期运行时允许的各物理量的值。主要有 ·额定电压(V) U N ·额定励磁电压(V)U fN ·额定电流(A) I N ·额定励磁电流(A) I fN
答:直流电机的电磁功率指的是由电功率和机械功率相互转换的功率, 所以,电磁功率PM以电功率形式表示时,等于电枢电动势与电枢电流 的乘积;以机械功率形式表示时,等于电磁转矩与机械角速度的乘积, 即
PM = Ea Ia = TΩ
直流发电机的电动势和电枢电流方向相同,说明是发出电功率。 同时电磁转矩和角速度方向相反,说明必须输入—个和电磁转矩大小 相等、方向相反的转矩才能维持发电机稳定运行,也就是需要输入机 械功率。所以,直流发电机的电磁功率就是将机械功率转换为电功率 的功率。
答:由于电枢电动势和转速成正比,因此,如果把他励发电机转速升 高20%,则其电枢电动势就升高20%。而空载端电压等于电枢电动势, 因此它也就升高20%。
在并励发电机个,空载端电压也随转速的升高而升高,端电压 升高引起励磁电流增大,使电枢电动势和空载端电压进一步升 高.所以,并励发电机电压升高得比他励发电机的大.
3. 电枢反应
电枢磁通密度Box分布呈“马鞍形”。在负载运行时,电枢 磁场对空载磁场的影响称作电枢反应。
(三) 直流电机的电动势、功率、转矩平衡
1. 直流电动势表达式
Ea
pz 60a
n
Ce
n
(1) 对直流电动机:它为反电势(Ea与Ia反向) (2) 对直流发电机:它为正电势(Ea与Ia同向)
结构参数p、a、z 分别为极对数、并联支路数、电枢绕组总
直流电机结构参见教材29页图3.4 。 其定子和转子的基本构成如下
3. 额定值 额定值是电机长期运行时允许的各物理量的值。主要有 ·额定电压(V) U N ·额定励磁电压(V)U fN ·额定电流(A) I N ·额定励磁电流(A) I fN
答:直流电机的电磁功率指的是由电功率和机械功率相互转换的功率, 所以,电磁功率PM以电功率形式表示时,等于电枢电动势与电枢电流 的乘积;以机械功率形式表示时,等于电磁转矩与机械角速度的乘积, 即
PM = Ea Ia = TΩ
直流发电机的电动势和电枢电流方向相同,说明是发出电功率。 同时电磁转矩和角速度方向相反,说明必须输入—个和电磁转矩大小 相等、方向相反的转矩才能维持发电机稳定运行,也就是需要输入机 械功率。所以,直流发电机的电磁功率就是将机械功率转换为电功率 的功率。
答:由于电枢电动势和转速成正比,因此,如果把他励发电机转速升 高20%,则其电枢电动势就升高20%。而空载端电压等于电枢电动势, 因此它也就升高20%。
在并励发电机个,空载端电压也随转速的升高而升高,端电压 升高引起励磁电流增大,使电枢电动势和空载端电压进一步升 高.所以,并励发电机电压升高得比他励发电机的大.
3. 电枢反应
电枢磁通密度Box分布呈“马鞍形”。在负载运行时,电枢 磁场对空载磁场的影响称作电枢反应。
(三) 直流电机的电动势、功率、转矩平衡
1. 直流电动势表达式
Ea
pz 60a
n
Ce
n
(1) 对直流电动机:它为反电势(Ea与Ia反向) (2) 对直流发电机:它为正电势(Ea与Ia同向)
结构参数p、a、z 分别为极对数、并联支路数、电枢绕组总
电机与电力拖动基础 (全)PPT教学课件

1
If —— 激磁绕组中的激磁电流; Rm —— 该段的磁组; Ф—— 磁通量
Φ
说明:当I较小时磁路的磁阻为气隙
2
磁阻且为常数,故If与Φ是线性的 If较大时铁心饱和,磁阻加大Φ增
加变慢If与Φ为非线性关系. 电机的饱和程度对电机的性能有很
0
大的影响.
If
二、主磁极磁势产生的气隙磁密在空间的分布
气隙磁密的概念:
本课程的性质、任务及学习方法
1、性质:在工业电气自动化专业中,《电机原 理及拖动》是一门十分重要的专业基础课或称 技术基础课。
2、任务:我们所从事的专业决定了我们是从使 用的角度来研究电机的。因此,我们着重分析 各种电机的工作原理和运行特性,而对电机设 计和制造工艺涉及得不多。但对电机的结构还 要有一定深度的了解。
1.静止部分 (1)主磁极:由极身和极掌组成,固定在磁轭
(机座)上.在磁极上套入激磁绕
组(线圈).主磁极总是偶数,且N
磁轭
极和S极相间出现.极掌对激磁
极掌极身
线圈 绕组起支撑作用,且使磁通在气
隙中有较好的分布波形.
(2)换向极:它位于相邻两主磁极之间,构造与主磁极相似,其 作用是为了消除在运行过程中换向器产生的火花.
自锁电路目录?第一章直流电机原理?第二章电力拖劢系统的劢力学基础?第三章直流电劢机的电力拖劢?第四章发压器?第五章三相异步电劢机原理?第六章三相异步电劢机的电力拖劢?第七章同步电劢机?第八章控制电机?第九章电力拖劢系统中电劢机的选择3学习方法
电机及拖动基础
电路
由金属导线和电气以及电子部件组成的导电回路称为电路。 电路导通叫做通路,只有通路才有电流通过。 电路在某一处位置断开,叫做断路或开路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电动机的工作特性
1.转速特性
nC U e NNC e R aNIan0C e R aNIa
2.转矩特性
T=CTΦIa
3.效率特性
P2 1 p
P1
UNIa
工作特性
n,T,
n = f(Ia) = f(Ia)
T = f(Ia)
TCTIa P2 P2
P1 P2 p
nn0
Ra CeN
Ia
60
直流电机的绕组
单叠绕组: 元件的两个出线端连接于相邻两个换向片上。 并联支路数等于磁极数,a=p; 单波绕组: 同极性下各元件串联起来组成一条支路, 支路对数a=1,与磁极对数p无关。
电枢电动势与电磁转矩
电枢感应电势为:
Ea Cen
Ce
pz 60 a
电磁转矩为:
TCTIa
CT
pz
2a
CT = 9.55Ce
直流电动机惯例
M
他励直流电动机功率流程图
直流电动机
TT2T0Jd d tG 37 2 D d d 5n t
TT2 T0
U=Ea+Ia·Ra Ea=CeΦ·n,
P1=UI=UIa=Ia(Ea+IaRa)=EaIa+Ia2Ra P1=PM+pCua PMTEaIa
PM=P2+p0 p0=pFe+pm+pad
第3章小结
直流电机的基本结构总结
主要由定子、转子两部分组成
直流电机
ቤተ መጻሕፍቲ ባይዱ
定子
转子
机座 主磁极
电枢铁心
电枢绕组
换向极
电刷装置 换向器
风扇 转轴
轴承
3.2.2 电机的铭牌数据
★
直流发电机: PN=UN·IN
直流电动机: PN=UN·IN ·
电动机轴上输出 的额定转矩:
T2N
PN N
2PnNN
9.55PN nN
0
Ia(P 2)
图 1- 36 他 励 (并 励 )直 流 电 动 机 工 作 特 性
直流电动机的机械特性
nCUeCReCTRa2 T
降压U,串电阻R,弱磁Φ
固有特性
其他象限工作情况
n
注意:稳定运行
n0
即:T = TL
o
Ts T
电枢回路串电阻的人为特性
降低电枢电压的人为特性
弱磁的人为特性
他励直流发电机惯例
M
S
基本方程式
直流发电机
T1TT0JddtG 372Ddd5nt
T1 TT0
Ea=U+Ia·Ra
P1=PM+p0 PMTEaIa p0=pFe+pm+p
s
Ea=U+Ia·Ra , IaU=IaEa-Ia2·Ra ,P2=PM-pCua
P2P1
p 1
p
P1 P1
P2p
Σp=pFe+pm+pad+pCua=p0+pCua