Flotherm教程4FurtherRefinementSolidTemperatures
Flotherm瞬态分析
如何设定瞬时问题??电子散热分析中,通常以稳态(Steady State)结果作为分析依据,在此状况下可以观察到整个模型热场流场稳定后的结果。
如需观察温度随时间变化的曲线图,则必须设定随时间变化的热源(Transient Attribute)、瞬时时间网格(Transient Grid),以便观察各时间点整体计算区域的热量传递速度及流体扰动状态。
以下以一实际案例解释FLOTHERM中瞬时设定的流程。
瞬时问题建立流程:一、模型建立与几何尺寸设定:模型建立请参照本公司之”FLOTHERM基础课程训练教材”一书。
以下为几何尺寸设定二、PCB板热源设定:三、瞬时热源设定:Enclosure的六个面上均提供如上图之发热量随时间变化的Transient Source。
四、数值结果显示及说明:由上图结果可以得知,在350秒的时候NC1芯片已超过最大容许温度摄氏125度,所以在350秒的时候此装置已无法正常运作。
五、图形化后处理:问答集Question 1:使用FLOTHERM解决瞬时问题需注意的事项。
Answer:(1) 必须设定材质的密度(Density)及比热(Specific Heat)。
一般求解稳态的案例中,因密度及比热不随时间的变化,所以可以忽略不设定。
(2) 时间网格( Transient Grid )。
FLOTHERM为一自动网格系动热流仿真软件,当设定瞬时热源以后,软件本身会自动设定其时间网格。
所以当求解瞬时问题时,可先设定瞬时热源再设定时间网格。
Question 2:如何设定瞬时热源?!Answer:瞬时热源顾名思义为发热量随时间而改变,FLOTHERM中提供以下几种热源设定。
Question 3:瞬时收敛性的问题。
Answer:瞬时问题收敛性有关于模型本身物理性的网格与时间性网格的设定。
当无法收敛的时候两者都必须作网格收敛性的测试。
详情请参阅Flomerics 网站( /)中的技术文件”Convergence and Transient Simulation”何谓局部加密?? <TOP>局部网格加密理论Validation - 1D ConductionWithout validation of the most basic of cases there is no way trust can be gained in the localized grid solution of more complex models. This model shows that a perfect linear variation in T in this conduction only analysis is predicted both with and without the use of localized grid. It is my belief that if this case was set up and solved in competitive codes that offered such a gridding capability there would be ‘kinks’ in the T profile, kinks that are highly sensitive to the quality of the grid.Validation - 2D Conduction,Getting slightly more complex...Validation - 2D Convection,The first graph indicates that there is a difference. The second graph is for a much finer grid both localized and non-localized. This therefore demonstrates that the difference observed in the first graph was because BOTH localized and non-localized were not grid independent." Don't assume that if localized does not equal non-localized that the localized grid is wrong some how"。
FloTHERM基础培训教程PPT课件
1 2
A1 V1 = A2 V2
V1 A1
1 2
p2 V2
V2 A2
12
FLOTHERM 软件介绍
全球第一个专门针对电子散热领域的CFD软件
— 通过求解电子设备内外的传导\对流\辐射,从而解决热设 计问题
据第三方统计,在电子散热仿真领域,FloTHERM 全球市场占有率达到70%
据我们的调查,98%的客户乐意向同行推荐 FloTHERM
保证模型准确度1515flothermpreprocessingmodelingmeshingboundaryconditionsinitialconditionssourcesmaterialpropertiesphysicalmodelssolvermonitoring1616flothermpostprocessingtemperatureprofilespeedvectorcommandcenter优化differentcasessolveprogress1717simplecase求解监控与后处理1818flothermprojectmanager项目管理器提供树状结构的几何体和模型数据管理drawingboard模型绘图板提供创立和修改几何模型的简易界面面向对象的建模技术专业针对电子热分析的参数化模型完全三维cad风格1919flothermtable数据表窗口提供输入输出参数的数据表输出visualeditor图形输出窗口提供结果的图形动态输出2020flotherm库文件区项目文件索引文件2121flotherm首先flotherm软件借助四个目录管理文件管理每个项目文件千万别去尝试去修改项目文件中名中的数字串项目文件夹2222定义求解域2323设置
核心热分析模块
FloTHERM.Pack
flotherm散热学习(中文教程)(2021年整理精品文档)
flotherm散热学习(中文教程)flotherm散热学习(中文教程)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(flotherm散热学习(中文教程))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为flotherm散热学习(中文教程)的全部内容。
FLOTHERM/China/1/06 V6 Issue 1.0练习题 1: FLOTHERM软件的基本操作本练习通过创建一个非常简单的算例让用户对Flotherm软件的操作有一个基本的了解。
本练习逐步指导用户完成安放在钢板的热模块的创建,具体步骤如下1.创建和保存一个新的项目2.创建实体3.定义网格、求解4.分析结果FLOTHERM/China/1/06 V6 Issue 1.0 Page 2练习题 1: FLOTHERM软件的基本操作从[开始/程序/ Flomerics/FLOTHERM 6。
1/FLOTHERM 6。
1]启动FLOTHERM或用桌面快捷键出现彩斑屏幕,接着项目管理窗口(ProjectManager以下简称PM)会自动打开.FLOTHERM/China/1/06 V6 Issue 1.0 Page 3单击项目管理窗口(PM)的顶部菜单条’Project’(项目),下拉菜单,选择‘Save As’(另存为).在顶部的数据框(文本‘Project Name'(项目名称)右边)中键入项目名称“Tutorial 1”,另外在‘Title’(标题)输入框中键入“FirstFlotherm Tutorial"点击按钮‘Notes’(备注),打开输入框让用户输入项目相关注释,如:在下面我们可以用改变的日志区分建模过程,现在,只要点击按钮‘Date’(日期) 把当前的日期加入文本区。
flotherm教学资料
6
學習項目 1
學習項目 熟悉各種工作視窗
7
熟悉各種工作視窗
No 1 2 3 4 5 6 7
工作視窗 Project Manager Drawing Board Flow Motion Tables Profiles FLO/MCAD Visualization
8
熟悉各種工作視窗
No 1 2 3 4 5 6 7
切換 指標/游擊手 叫出/關閉 繪圖列 隱藏物體 回覆至原來的畫面
16
細部操作 於上課中詳述
學習項目 3
學習項目 熟練各種模型的建法
17
熟練各種模型的建法
No 工作視窗 1 2 3 4 5 6 7
功能
產生一個 矩型體
用途
最常用 機殼上的通風口 CPU 的熱源
Cuboid
Resistance 產生一個 流阻 Source PCB Enclosure Fan Region
細部操作 於上課中詳述
25
學習項目 4
學習項目 利用MCD將Pro/E的圖型轉入Flotherm
首先, 將 Pro/E 的圖轉成 IGS 檔.
26
啟動 FLOMCAD 視窗
27
呼叫 IGES 檔案 1
28
呼叫 IGES 檔案 2
選擇要轉入的 IGS 檔.
29
呼叫 IGES 檔案 3
轉入成功!
指標: 選取
14
學習項目 2
學習項目 熟練快速鍵
15
快速鍵
No 快速鍵 功能 1 2 3 4 No 快速鍵 功能
F3 F4 F5 F6
目錄管理:獨立出來 目錄管理:完全關閉 目錄管理:回到上一層 目錄管理: 完全展開
FLOTHERM经典教材
FLOTHERM Introductory一:创建和保存项目 (2)二:设置单位 (2)三:定义求解域 (2)四:定义求解域环境 (2)五:参考点设置 (3)六:画箱体 (3)七:箱体打孔 (3)八:增加热源 (4)九:设置监控点 (5)十:创建结构树 (5)十一:设置网格 (5)十二:观测温度: (5)十三:添加PCB (6)13.1:添加pcb材料 (6)13.2:设置pcb位置 (6)13.3:设置pcb尺寸 (7)13.4:加入元件 (7)13.5:加入元件功率 (7)十四:定义其它热源 (8)十六:观察机箱内 (8)十七:数据观察 (9)十八:更改求解域后恢复 (10)二十:添加风扇 (10)二十二:气流观察 (12)二十三:优化 (13)一:创建和保存项目在PM中选择[Project/New]并选择“Defaults” 表. 选中文件“DefaultSI” 并按OK. 这就按缺省设置(标准国际单位)打开一个新的工程文件,其它的设置参数也都回复为缺省值。
在PM中选择[Project/Save As](项目/保存为)。
—在Project Name (项目名称)栏中键入“Tutorial 2”。
—在Title(标题)栏中键入“Simple Electronics Box”。
—单击Notes(备注)按钮。
在文本编辑框中输入一些和项目有关的信息。
比如“This is an initial model of the electronics box.”。
单击Date(日期)和Time(时间)按钮,为项目创建日期和时间信息。
单击OK按钮,退出Edit Notes(备注编辑)对话框。
再单击确定(OK)来保存您的项目。
二:设置单位整体的缺省尺寸单位可在PM中设置。
在菜单条上, 选择[Option/Units].在‘Unit Class,’ 下面选中‘LENGTH’ 并在‘Use Units’ 中选择‘mm’。
FloTHERM基础培训教程PPT课件
31
材料定义
32
材料定义
1)直接定义;
2)使用库;
33
功耗定义
Thermal Attribution
Thermal Attribution
✓固定温度
✓固定热流量 ✓固定总功耗 ✓焦耳发热 ✓体积\面积热流 ✓热功耗随温升变化 ✓热功耗随时间变化
34
设定监控点
Step1:选定要监控的元件
监控点生成,默认位置为选 定元件的几何中心
热仿真基本理论
---控制方程
能量守恒方程
Hot component
T u T v T w T T T T
t x y z x c p x y c p y z c p z S T Tm11
Q
T2 m2
动量守恒方程
保证模型准确度flotherm1515preprocessingmodelingmeshingboundaryconditionsinitialconditionssourcesmaterialpropertiesphysicalmodelssolvermonitoringflotherm1616postprocessingtemperatureprofilespeedvectorcommandcenter优化differentcasessolveprogresssimplecase求解监控与后处理1717flotherm1818projectmanager项目管理器提供树状结构的几何体和模型数据管理drawingboard模型绘图板提供创立和修改几何模型的简易界面面向对象的建模技术专业针对电子热分析的参数化模型完全三维cad风格flotherm1919table数据表窗口提供输入输出参数的数据表输出visualeditor图形输出窗口提供结果的图形动态输出flotherm2020库文件区项目文件索引文件flotherm2121首先flotherm软件借助四个目录管理文件管理每个项目文件千万别去尝试去修改项目文件中名中的数字串项目文件夹定义求解域2222设置
Flotherm学习教程
Flotherm 介紹 2
CFD 软件在计算什么呢? 所有CFD软件均是在计算 压力, 速度, 温度, 此三个变数. 因
为此三个变数是构成流体力学, 热传学的基本物理量. 由于速度是向量, 所以在表达速度时, 习惯以X, Y, Z 三个方
向的分量来做表示. 亦即 Vx, Vy, Vz. 因此, CFD 软件在求解 五个变数,
2 Library.便会自动出现右边画面
3
在 Selection Form 下 选择 Project. 此时将 会出现 HS1
在中间栏位 输入 Heat Sink, 按 Save. (此 4 动作是在 Library 里建立一个Heat Sink 的
群组, 并将HS1存此此群组下.)
结束. 退出视窗. 可到Project 5 Manager/External/Library 里去检查是否有
学习项目 2
学习项目 熟练快速键
快捷键
No 快速键 功能
1 F3 目录管理:独立出来 2 F4 目录管理:完全关闭 3 F5 目录管理:回到上一层 4 F6 目录管理: 完全展开 5 F9 切换 指标/游击手 6 F7 叫出/关闭 绘图列 7 F12 隐藏物体 8 R 回覆至原来的画面
No
快速 键
以 单一 Smart Part 为例
步骤
1 先随便建一个 heat sink.
2
点选之, 按右键, 进入 Location. 便会 自动出现右边画面
选择 HS1. 按下 Load. (此动作是将 Library 里Heat Sink 群组下的HS1 3 呼叫进目前的专案.)
4 结束. 退出视窗
(2)将Library里的物体 呼叫进 现在的专案里(续)
FloTHERM基础培训教程PPT课件
t u x u u y u v z u w p x x u x y u y z u z S u Vp11
质量守恒方程
uvw 0
t x y z
1 2
A1 V1 = A2 V2
V1 A1
1 2
p2 V2
V2 A2
12
FLOTHERM 软件介绍
全球第一个专门针对电子散热领域的CFD软件
— 通过求解电子设备内外的传导\对流\辐射,从而解决热设 计问题
据第三方统计,在电子散热仿真领域,FloTHERM 全球市场占有率达到70%
据我们的调查,98%的客户乐意向同行推荐 FloTHERM
热仿真基本理论
---控制方程
能量守恒方程
Hot component
T u T v T w T T T T
t x y z x c p x y c p y z c p z S T Tm11
Q
T2 m2
动量守恒方程
热仿真软件-FloEFD 高级热测试仪
3
Contents
L1 – Introduction of Electronics cooling L2 – Basic theory of CFD L3 – Introduction of FLOTHERM L4 – Basic theory of using FLOTHERM to do simulation L5 – Build, solve and analyze a simple case L6 – Model popular electronics component L7 – Do a good grid L8 – Diagnose solution Problems L9 – Import your CAD model to do CFD simulation
flotherm教程
flotherm教程FloTHERM是一款热仿真软件,用于分析电子设备的热管理。
以下是FloTHERM的基本教程。
1. 软件安装:首先,下载并安装FloTHERM软件。
安装完成后,启动软件。
2. 项目设置:在打开的FloTHERM界面中,选择"File"菜单,然后选择"New Project"。
在弹出的对话框中,选择项目保存的位置和名称。
3. 几何建模:在FloTHERM界面左侧的"Geometry View"窗口中,创建设备的几何模型。
可以通过绘制和修改几何形状来精确建模设备。
确保几何模型准确地反映了实际设备的尺寸和形状。
4. 材料属性设置:在右侧的"Model Browser"窗口中,选择需要设置材料属性的几何模型部件。
然后,选择"Modify"菜单,再选择"Thermal Conductivity"或其他属性选项。
设置每个部件的材料属性,如热导率、密度等。
5. 边界条件设置:在"Model Browser"窗口中,选择需要设置边界条件的几何模型部件。
然后,选择"Modify"菜单,再选择"Boundary Conditions"。
根据设备的实际工作环境,设置边界条件,如环境温度、风速等。
6. 网格划分:在"Mesh Control"窗口中,选择网格划分选项,并设置网格密度。
通过调整网格密度,可以控制热仿真的精度和计算速度。
7. 热仿真计算:在FloTHERM界面左下方的"Analysis Control Panel"窗口中,选择"Calculate"按钮,开始进行热仿真计算。
软件将在计算过程中模拟设备的热传导和对流过程,并生成温度分布等结果。
8. 结果分析:在FloTHERM界面右侧的"Results Browser"窗口中,选择要查看的结果文件。
海基科技FLOTHERM使用教程(English)
FloTHERM(5.1) Tutorial研发厂商:Flomerics中国代理:海基科技FLOTHERM (5.1)What is FLOTHERM?FLOTHERM is a powerful 3D computational fluid dynamics software that predicts airflow and heat transfer in and around electronic equipment, including the coupled effects of conduction, convection and radiation.FLOTHERM is powerful 3D simulation software for thermal design of electronic components and systems. It enables engineers to create virtual models of electronic equipment, perform thermal analysis and test design modifications quickly and easily in the early stages of the design process well before any physical prototypes are built. FLOTHERM uses advanced CFD (computational fluid dynamics) techniques to predict airflow, temperature and heat transfer in components, boards and complete systems.Unlike other thermal simulation software, FLOTHERM is a Design-Class or industry-specific analysis tool specially designed for a wide range of electronic applications that include:∙computers and data processing,∙telecommunications equipment and network systems∙semiconductor devices, ICs and components∙aerospace and defense systems∙automotive and transportation systems∙consumer electronicsAs a Design-Class tool, FLOTHERM features specialization, built-in intelligence and automation not found in traditional analysis software. This functionality maximizes productivity for thermal design experts, minimizes the learning curve for mechanical design engineers and provides the highest levels of return on investment available from analysis software.In a small to medium-sized company, FLOTHERM can pay for itself several times over in just one year and even faster as the size of the company increases. Experience the benefits of using FLOTHERM for thermal design of electronics, that include:∙solving thermal problems before hardware is built∙reducing design re-spins and product unit costs∙improving reliability and overall engineering designHow to Run FLOTHERM?FLOTHERM is normally run interactively, so problem setup, flow calculation and results analysis can be completed in the same program session.To Start an Interactive SessionOn NT/Windows 2000/XP PlatformsIn the Flotherm51 group use the following menu sequence:Start -> Programs -> Flomerics -> FLOTHERM -> FLOTHERM 5.1Exiting FLOTHERM :To exit from FLOTHERM, in the Project Manager choose Exit from the Project menu.FLOTHERM then checks for project changes before exiting the program.If changes are detected, you are given the chance to save them using a query dialog. There are three options:a. [Yes] saves the project and solution data before exiting.If saving a new project, the Save Project Dialog, appears so you can give it a name, title and class.An existing project is overwritten.b. [No] does not save the project before exiting.c. [Cancel] cancels the exit request.Getting Started :-1. Creating a New Project:-∙Create a new project using the DefaultSI template.∙Name the New Project :Choose Save As... from the Project menu.Name = BasicsTitle = Fundamentals of FLOTHERM∙Add Reminders :Click on [Notes] to call the notepad editor dialog. Using the Edit Notes dialog you can add notes to accompany the project. For example a change log could be included to identify the modeling process followed.For the purposes of this exercise just type "Learning the fundamentals of FLOTHERM" and append the date to the text by clicking on [Date] and click [OK] in the Edit Notes dialog.2. How to Set the Size of the Solution Domain :-∙Display the System Menu:Move the mouse over the System node and right-click to display the System menu.∙Open the Overall Solution Domain dialog:Choose Location... from the System menu.∙Set Size of Solution Domain:Leave the Position settings at zero, but define the Size as:X=0.07m, Y=0.40m, Z=0.30m.3. Creating a Large Plate :-∙Create the GeometryRepresent a large plate in the project by adding a cuboid made of mild steel.∙Open the New Object Palette∙Click on the Root Assembly to select it and click the palette icon at the top of the Project Manager to open the New Object∙Call the Edit Primitive Dialog to change the Cuboid Defaults :Right-click the new cuboid and choose Location... from the pop-up menu to call the Edit Primitive Dialog.∙Define the Large Plate :In the Edit Primitive dialog, changeName to Large Plateand set position to:X=0.03 m, Y=0.10 m and Z=0.10 mand set size to:X=0.005 m, Y=0.1 m 0, Z=0.15 mClick [Apply] to confirm the settings.Note that the numbers entered are converted to scientific notation, however, they can be entered in any format. Click [OK] to dismiss the dialog and the cuboid can be seen renamed in the tree.∙Attach a Material using the Library :Open the Library Manager Open the Library Manager by either clicking again on the palette button, or the Library Manager button∙Access the Alloy Materials:∙Attach Attribute:Left click-drag Steel (Mild) onto the Large Plate.4. How to Create a Heated Block : Add a cuboid with an attached Alumina ceramic property to represent a heated block.∙Create the Geometry.∙Add a Cuboid. Select the Root Assembly and add another cuboid.∙Open Edit Primitive dialog. Right-click the new cuboid and choose Location...from the pop-up menu.∙Change the Cuboid Definition.Make the following settings in the Edit Primitive dialog:Rename the object to Heated BlockSet Position to: X=0.035 m, Y=0.12 m, Z=0.14 m Set Size to: X=0.005 m, Y=0.04 m, Z=0.04 m and click [OK].∙Attach a Property using the Library.∙Attach a Material Property to the Heated BlockExpand the Libraries node down to: Libraries->Flomerics_Libraries->Materials->CeramicsLeft click-drag Alumina (Typical) onto the Heated Block.∙∙Close the Library Manager:∙Close the library by clicking on the double arrow, the palette icon or the F7 function key.∙Attach a Thermal Attribute using the Dialogs:Because the thermal attribute now required is not in the library, now create a new attribute.∙Call the Thermal Selection Dialog:Right-click the Heated Block cuboidand choose Thermal from the pop-up menuto call the Thermal selection dialog.∙Create a New Thermal Attribute:Click [New...] in the Thermal Dialog to displaythe Thermal Attribute.Now make the following settings:Name = Block HeatThermal Model kept as ConductionTotal Power = 8 WClick [OK] to return to the Thermal selection dialog.∙Attach the New Thermal:With Block Heat highlighted in the Thermal list, click on [Attach].Note that the Currently Attached field updates when the attribute is successfully attached.[Dismiss] the dialog.∙Save the Project:Choose Save from the Project menu or click the save button.Note: During model set up it is a very good idea to save the project at regular intervals.5. How to Set the Grid :-The Drawing Board can be used to view the grid as well as the geometry structure.∙Display the Drawing BoardClick the button in the Project Manager to launch the Drawing Board.In the Drawing Board we can see the two blocks we have just created in 2D or 3D views. ∙Display the GridPress g on the keyboard to display the grid.Note that, at present, the grid is created by the geometry boundaries alone (i.e. the key point grid). This will not be sufficient to achieve a solution, so more grid must be added.∙Adding Grid:∙Display the System Grid DialogThere are a number of methods available, but here we will use a pre-set system grid. In the Drawing Board, choose System Grid... from the Grid menu to display the System Grid dialog.∙Add a Fine GridIn the System Grid dialog activate the Dynamic Update and click on [Fine]. The grid display in the Drawing Board updates.The program defines positions for the minimum and maximum cell sizes using a smoothing algorithm. 6. Solving the Project :-∙The solver requires less than 35 iterations for the solution to converge.∙Start the Solution∙Click in either the Drawing Board or Project Manager to start the solution. A sanity check is performed first and the message window appears indicating an open external boundary does not have an ambient attached.For now, ignore this since the default ambient (set in the Global System Settings dialog) will besufficient for our purposes.∙After the sanity check has been performed, the solution continues and the Profiles window opens and the progress bar displayed.∙The solution completes to show a converged plot.7. Visualizing the Results :-FLOMOTION can be used to display plots of results superimposed over the model.∙Display FLOMOTIONClick to launch FLOMOTION.A 2D view of the geometry is shown.∙Change to a 3D View: Press "i" in the keyboard to change to a 3D isometric view.∙Add a Plane PlotIn the Plane Plot Panel, change the direction to Z.and click the Create Plane button∙ A temperature contour fill plot is displayed.∙Change Geometry to Wireframe∙Press "w" in the keyboard to make thegeometry wireframe.∙The geometry becomes transparent allowingthe hidden results to be seen. Warning: under some conditions, theresults will also b ecome wireframe, so you can’t see them.8. Tabulating the Results :-In addition to viewing a graphical representation of the results, we can look at tabulations of data using the Tables window. For example, we can investigate the amount of heat conducted from the heated block, or, the amount of heat convected from the surface of the heated block to the air.∙Display the Tables Window: Click to launch the Tables window.The default view shows a summary of the geometry set up.∙Choose Data for Solid ConductorsClick to display the Geometry Table Selections dialog.Check Solid Conductors and click [OK].∙Display Summary Results∙Click to page down to display the summary table forsolid conductors. As you scroll across the surfacetemperature, conducted heat and convected heatare displayed for each surface of the conductingcuboids.Extra Points: Here we won’t be providing as much detail, so you’ll need to do some investigating on your own.1. Now add a monitoring point to the heated block so we can determine its temperature.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add the Monitoring Point.∙Call the Edit Monitor Point to change the Monitor Point Position:Right click the Monitoring Point and choose Location…from the pop-up menu to call the Edit Monitor Point.∙Positioning the Monitoring Point:In the Edit Monitor Point, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates. Choose coordinates to place the monitoring point in the center of the heated block.2. Now add a heat sink to your heated block.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add a Heat Sink.∙Call the Edit Smart Part to change the Heat Sink Position:Right click the Heat Sink and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Heat Sink:In the Edit Smart Part, change the Name and Location to place your heat sink on top of the heated block. Check to make sure that the heat sink has been placed in the proper location. You may need to experiment a bit. You will see that the heat sink is placed in the x-y dimension with the find extending in the z dimension, which isn’t what we want. Go to Tools-Rotate Clockwise to rotate the heat sink to the proper orientation. You will also need to pick a material and geometry for your heat sink. Aluminum is the most common material. Choose whatever geometry you’d like (pin fins or channels, heat sink height, etc.)3. Now add an enclosure, and cut holes in it for a fan and for an exhaust vent.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to setup an Enclosure. Make an enclosure large enough to enclose your whole system, with some room left over.∙You can see that the Enclosure has six walls, so we can introduce a hole wherever desired.∙Choose a location for your fan and for the exhaust vent. Click on the wall where a hole is to beadded and select the icon.∙In order to position the hole, we allocate the co-ordinates as desired.∙Call the Edit Smart Part to change the Hole’s position:Right click the Hole and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Hole: In the Edit Smart Part, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates. Pick any reasonable size for the wholes for your vent and fan.4. Now add a fan.∙Display the Project manager window. Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add a Fan.∙Call the Edit Smart Part to change the Fan’s Position:Right click the Fan and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Fan:In the Edit Smart Part, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates.∙Go back to the fan menu to change the construction of the fan. Check out the various options available. For example, you can set a fixed flow rate, or you can even enter your own fan curve. For this exercise, choose any reasonable fixed flow rate.5. Now re-solve the project.∙Start the Solution∙Click in either the Drawing Board or Project Manager to start the solution. A sanity check is performed, after the sanity check has been performed, the solution continues and the Profiles window opens and the progress bar is displayed.∙Spend some time investigating to solution in FLOMOTIONThis ends the Flotherm Tutorial. If you have extra time available, spend some time investigating other aspects of the program or add some new element to your project. It will take quite a bit of time before it becomes easy for you to use this (or any other CFD) program!Possible Solution Scenarios:When the solution process is initiated, the most likely scenario is that the solution will converge, but there are the following possibilities reflected by the residual error plots shown below.Controlling the SolutionIf your solution fails to converge or converges extremely slowly, then you can reset the solution control panels, but first consider the following rules for assessing a solution convergence problem as the problem may well lie in the project set-up.Rules for Assessing Convergence Problems1. If a solution diverges, it is almost guaranteed to be a problem definition problem. Be immediatelysuspicious of the set up and check all defined objects and attributes before proceeding to alter any solution control parameters.2. If a solution fails to converge successfully, then it is important to check the grid. If there are pooraspect ratio grid cells and large jumps in grid size between adjacent grid cells, then this is the likely cause of the problem.3. If you are happy with the set up and the grid, then and only then should the solution controlparameters be adjusted.4. Do not waste time forcing low-level stable or low-level oscillation convergence profiles downto a residual error level of 1. Use the monitor points and error field to sensibly assess whether the solution is converged to a defined level of accuracy, and then stop the solution.If you do need to change the control parameters, then the following section provides an overview of how to resolve and manage the solution process.Techniques for Controlling the SolutionFLOTHERM contains a number of techniques, both automatic and manual, which can be used to optimize the solution process. In discussing their use, it is important to note that it is only possible to give general guidelines rather than hard and fast rules on how they should be altered for particular situations.In FLOTHERM, extremely complex and highly non-linear systems involving multiple modes of heat transfer are being modeled and it is impossible to automatically generate appropriate solution control parameters that will guarantee convergence under all circumstances. The automatic settings have been designed to give a reasonable convergence profile for the majority of applications, but may need to be adjusted in more complex situations.Much of this tutorial has been copied directly from the online Flotherm manual. It has been put together in this form by Girish Suppa with additions/modifications by Nicole Okamoto.。
FloTHERM基础培训教程PPT课件
7
热设计的基本要求
满足设备可靠性的要求 满足设备预期工作的热环境的要求 满足对冷却系统的限制要求
热设计工程师 —— 与EE, ME, Layout等项目
相关人员紧密配合,力求提高产品各方面性能并 降低成本
8
了解散热性能的方法
实验研究
— 优点:直观,可靠 — 缺点:昂贵,周期长
数值仿真(CFD)
Table 数据表窗口 提供输入输出参数的数据表输出
19
FloTHERM文件结构
索引文件 库文件区 项目文件
20
FloTHERM文件结构
首先FLOTHERM软件借助四 个目录管理文件管理每个项 目文件
项目文件夹
千万别去尝试去修改项 目文件中名中的数字串
21
定义一个新项目
定义项目名称 定义散热环境以及散热方式 定义求解域
Step2:点击monitor point
也可以不选择元件,直接建 立监控点并把位置设置到关 心的地方
35
网格定义
36
求解器设置
设置求解方式 设置迭代次数 附加选项
37
错误检查与初始化
错误检查
— Error:Data error interrupting solution — Warning:flags set up problems such as incorrect location of
总部: 英国伦敦
分公司:
英国、美国、俄罗斯 匈牙利、法国、德国 意大利、瑞典、日本 中国、印度、新加坡
研发中心:
伦敦、波士顿、硅谷 圣迭戈、法兰克福、 布达佩斯、莫斯科、 班加罗尔
代理商:
以色列、韩国、日 本、台湾、澳大利 亚、巴西
FloEMC_Flotherm中文教程
教程4—利用FLOMCAD进行CAD几何模型导入该教程希望通过练习以下一些操作加深对FLOMCAD的理解:1. 导入一个在CAD工具里建立的2U的机箱(名为2U pizza box)。
2. 简化该模型,去除与EMC分析意义无关的部分3. 把几何模型转换为FLOEMC实体4. 将几何模型导入FLOEMC5. 在FLOEMC中检查确认导入的模型是否正确I"訓dUbl 他Us/rinjEzIwUij UnM教程4—利用FLOMCAD CAD几何模型导入从开始菜单[Start/Programs/Flomerics/FLOEMC 6.1/FLOEMC6.1]启动FLOEMC,或直接用桌面快捷方式窗口弹出,任务管理器P roject Ma nager (PM)即打开。
点击FLOMCAD快捷键同时打开,关闭Message窗口。
注意:也可以[Start/Programs/Flomerics/FLOEMC,FLOMCAD 和Message窗口会I IH I*舅ffl lUHJBTlCTT r- 2f .'Piceci 立)如fenriMF i曲加5A 垂^* Ffe^= H种站■H EU爭时v rfe /金亍芒并壬]唱-;:,O H r tdw以HQ I SvJan■ ft^gl^yp^bk令I" 11CifrV話易■rtwaiE Jl P pi教程4—利用FLOMCAD进行CAD几何模型导入FLOMCAD 启动后,操作External/lmport SAT,找到并打开Open 2UP izzaBox.SAT由于可能会报告出错信息,因此在模型简化过程中不要关闭窗口。
3DTipr-^TEPII .'I.I 鈕*t -V5'All||_&0&f.SAT* ]UJXM=*n^e« JA7Atii-Tfdiiiy S4TAhijti.5*T ^Apc-satA啊.皿ArilonriewMt在打开模型过程中会弹出MCAD Monitor Window的窗口,观察窗口中的信息,可以看到FLOMCAD正在转换已经在CAD 工具中命名过了的模型部件。
FLOTHERM经典教材
FLOTHERM Introductory一:创建和保存项目 (2)二:设置单位 (2)三:定义求解域 (2)四:定义求解域环境 (2)五:参考点设置 (3)六:画箱体 (3)七:箱体打孔 (3)八:增加热源 (4)九:设置监控点 (5)十:创建结构树 (5)十一:设置网格 (5)十二:观测温度: (5)十三:添加PCB (6)13.1:添加pcb材料 (6)13.2:设置pcb位置 (6)13.3:设置pcb尺寸 (7)13.4:加入元件 (7)13.5:加入元件功率 (7)十四:定义其它热源 (8)十六:观察机箱内 (8)十七:数据观察 (9)十八:更改求解域后恢复 (10)二十:添加风扇 (10)二十二:气流观察 (12)二十三:优化 (13)一:创建和保存项目在PM中选择[Project/New]并选择“Defaults” 表. 选中文件“DefaultSI” 并按OK. 这就按缺省设置(标准国际单位)打开一个新的工程文件,其它的设置参数也都回复为缺省值。
在PM中选择[Project/Save As](项目/保存为)。
—在Project Name (项目名称)栏中键入“Tutorial 2”。
—在Title(标题)栏中键入“Simple Electronics Box”。
—单击Notes(备注)按钮。
在文本编辑框中输入一些和项目有关的信息。
比如“This is an initial model of the electronics box.”。
单击Date(日期)和Time(时间)按钮,为项目创建日期和时间信息。
单击OK按钮,退出Edit Notes(备注编辑)对话框。
再单击确定(OK)来保存您的项目。
二:设置单位整体的缺省尺寸单位可在PM中设置。
在菜单条上, 选择[Option/Units].在‘Unit Class,’ 下面选中‘LENGTH’ 并在‘Use Units’ 中选择‘mm’。
FloTHERM基础培训教程PPT课件
故
障
20%振动
55%温度
率
(
10
6%粉尘
万
小
时
)
19%潮湿
(Source : GEC Research)
资料来源:GEC研究院
(Source : US Air Force Avionics Integrity Program)
资料来源:美国空军航空电子整体研究项目
发热问题被确认为电子设备结构设计所面临的三大 问题之一…(强度与振动、散热、电磁兼容)
FloMCAD.Bridge
1. 支持多种EDA格式:方便电子工 程师与热工程师协同工作
2. 包含走线、器件参数、过孔等详 细信息的模型读入:保证模型准 确性
3. 准确的模型简化方法:保证结果 准确度的同时减少计算时间
CAD软件接口模块
1. 支持多种模型格式:适用范围广 泛
2. 方便的操作:缩短建模时间
1D
2D
3D
(1,2)
f4 f1 (0,1) (1,1) (2,1)
f2 f3
(1,0)
10
热仿真基本理论
---传热的三种基本方式
导热
— Fourier 定律:Qc=-AλΔT
对流
— Newton 冷却定律:Qh=-hAΔT
辐射
— Stefan-Bolzman 定律:Q=A(T14T24)
11
Contents – Cont’d
L10 – Model refinement L11 – Further refinement: solid temperature L12 – Extending the solution domain and tools for grid L13 – Cooling techniques: fans and heat sinks L14 – Introduction of command center L15 – Introduction of IC package L16 – Build a detail or compact chip model L17 – Do a good post process L18 – Use FLOTHERM to optimize your design
Flotherm练习题 4
Tutorial 4
练习 4 模型细化
本练习指导用户改进电子机箱的表示,请完成以下步骤: 1. 用离散元件替代 PCB 中元件的均匀表示。 2. 增加辐射热传递处理 3. 求解和分析结果。 练习 4 模型细化 Tutorial Tutorial Load Load(读取) “Tutorial 3”并将它保存为“Tutorial 4”。 title Refined 将’title title’(标题)设为 “Refined model of the set top box box”。 PM Electronics 在项目管理窗口(PM PM)中,对名为“Electronics 的组件和简单部件 Electronics” PCB PCB 1:0"改为"PCB 1"。 PCB “PCB 1”进行扩展。将 PCB 板的名称由"PCB 1:0 Component 删除位于 PCB 1 上的元件“Component Component”。 Apply 我们现在要定义此‘Apply over board board’(均布于整个板)热源并将它 建模为独立的元件,同时仍将其余部分保留为均匀分布热源。 PCB Component 选中“PCB 1”,点击‘Component Component’(元件)简单部件图标 ,此图
标在调色板中(可通过热键 F7 或点击图标 打开调色板) 如果对网格进行了改动会有一窗口弹出,点击‘No’(否)。 Construction Comp1 右键点击此元件进入‘Construction Construction’菜单。并更名为“Comp1 Comp1”。 为此元件分配一个 7.0W 的功率。 7.0W Xo=35mm Top 定义位置:Xo=35mm Yo=30mm 选择‘Top Top’(位于 PCB 板上部); Xo=25mm Yo=25mm, Zo=7mm.。 尺寸:Xo=25mm Yo=25mm Zo=7mm Xo=25mm, Continued… Continued…
FloTHERM基础培训教程PPT课件
15
FloTHERM使用流程
Post-Processing
Command center 优化
Temperature Profile Speed Vector
Different Cases Solve Progress
16
A simple case
FloTHERM基础介绍 FloTHERM仿真的基本操作和流程 电子设备常见原件的建模 网格划分 求解监控与后处理
故
障
20%振动
55%温度
率
(
10
6%粉尘
万
小
时
)
19%潮湿
(Source : GEC Research)
资料来源:GEC研究院
(Source : US Air Force Avionics Integrity Program)
资料来源:美国空军航空电子整体研究项目
发热问题被确认为电子设备结构设计所面临的三大 问题之一…(强度与振动、散热、电磁兼容)
31
材料定义
32
材料定义
1)直接定义;
2)使用库;
33
功耗定义
Thermal Attribution
Thermal Attribution
✓固定温度
✓固定热流量 ✓固定总功耗 ✓焦耳发热 ✓体积\面积热流 ✓热功耗随温升变化 ✓热功耗随时间变化
34
设定监控点
Step1:选定要监控的元件
监控点生成,默认位置为选 定元件的几何中心
FloMCAD.Bridge
1. 支持多种EDA格式:方便电子工 程师与热工程师协同工作
2. 包含走线、器件参数、过孔等详 细信息的模型读入:保证模型准 确性
flotherm高级教程-文档资料
Read Only:只读属性
数据库的管理
数据库的导入导出可借助于数 据库文件.library来进行
高级培训:网格划分技巧
40min 俞丹海 Flomerics中国代表处
求解域设定
• 在某些特殊场合必须要放大求解区域
– 自然对流换热系统 – 封闭系统 – 外部边界条件对内部影响较大的情况
• 在强迫对流散热系统中,通常不需要放大求解域
壳体采用局域化网格
散热器采用局域化网格
FLOTHERM 要求在局域化区 域与求解域之间最少两个网格 单元进行描述.
局域化网格
• 局域化网格不能相 互部分重叠,但可以 紧邻. – 包括膨胀区域
局域化网格
• 如果有部分重叠的 局域化网格,可以采 用多个相邻局域化 空间来组合完成,避 免产生网格冲突.
如果意外导致项目文件不可用!!
1: 在目录:项目文件\PDProject下,将文件group拷出
2: 将group文件添加后缀后.pdml
3: 重新读入该pdml文件即可,便可恢复该文件,但计算结果无法恢复
IDF导入
可导入的文件包括IDF2.0及IDF3.0 IDF文件包括 Board 文件(.brd or .emn) Library文件(.lib or .emp)
求解域扩大原则
2y x y z – 除重力反方向外,其余按照装 置尺寸在各个方向扩大一倍 – 重力反方向放大两倍尺寸 z x
z
x
网格约束
• 网格约束用于在几何实体上设定网格
点击打 开膨胀 设置
网格约束
Minimum Number和 Maximum Size 分别设置最 小单元数,或者最大网格单元 尺寸.建议采用Maximum Size.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ρ Board Volume . conductor
10
Flotherm 4.1 Lecture 4 << Index >>
Options for conductivity model
Layer Definition
– Set number of layers – Set thickness and
All require dielectric and conductor materials
All result in a single PCB with an othotropic conductivity
7
Flotherm 4.1 Lecture 4 << Index >>
Options for conductivity model
T0220 Component
Compact to Detailed
13
Flotherm 4.1 Lecture 4 << Index >>
Components
Increased detail means: Increased accuracy Increased realism But also: Solutions take longer Design changes take
Modeling PCBs II
Changing the Modeling level to Conducting
The size section now requires a thickness in the Z direction.
The Dielectric and Conductor Materials must be specified.
coverage for each layer
11
Flotherm 4.1 Lecture 4 << Index >>
Modeling PCBs II
The PCB SmartPart can always be overwritten with other cuboids lower in the project manager list to represent ground-planes, thermal vias etc.
Alternatively the PCB structure could be constructed in greater detail using individual cuboids to represent the layered structure.
Area of increased conductivity to account for thermal vias
6
Flotherm 4.1 Lecture 4 << Index >>
Modeling PCBs II
There are three choices for conductivity model
– Percentage Conductor by Volume – Board Mass – Layer definition
5
Normal Conductivity (W/mK)
Flotherm 4.1 Lecture 4 << Index >>
Modeling PCBs I
The PCB Smart Part will internally create a cuboid with Orthotropic Material Properties The Summary section details the computed values of In Plane and Normal Conductivity together with other useful information relating to the PCB SmartPart
Percentage conductor by volume
9
Flotherm 4.1 Lecture 4 << Index >>
Options for conductivity model
Board Mass
– Minimum value
ρ Board Volume . dielectric
<< Index >>
Lecture 4A
Further Refinement: Solid Temperatures
Review
Flotherm 4.1 Lecture 4 << Index >>
Started simply
– Base modeling Level
– Enclosure Walls Thin – PCB Conducting – Components as heat sources over whole PCB
Give more detailed results
– Accurate air flow and temperatures local to the components
– Solid temperature for components
4
Flotherm 4.1 Lecture 4 << Index >>
Only gives general results
– Air flow patterns – Air temperatures
2
Flotherm 4.1 Lecture 4 << Index >>
Refine the Model
Add detail to the PCB
– Options for conductivity model – Discrete components
Layered cuboids of FR4 Copper
Detailed PCB Structure
12
Flotherm 4.1 Lecture 4 << Index >>
Components
Components can be represented by: PCB Component Compact Component Cuboids & Thermals Sources