八年级全等三角形检测题(WORD版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.

(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;

(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).

【答案】(1)过程见解析;(2)MN= NC﹣BM.

【解析】

【分析】

(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN

=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到

MN=BM+NC.

(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.

【详解】

解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,

∴∠DBC=∠DCB=30°

∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,

在△MBD与△ECD中,

∵BD CD

MBD ECD BM CE

∴△MBD≌△ECD(SAS),

∴MD=DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,

在△DMN与△DEN中,

∵MD DE

MDN EDN DN DN

∴△DMN≌△DEN(SAS),

∴MN=NE=CE+NC=BM+NC.

(2)如图②中,结论:MN=NC﹣BM.

理由:在CA上截取CE=BM.∵△ABC是正三角形,

∴∠ACB=∠ABC=60°,

又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,

∴∠MBD=∠DCE=90°,

在△BMD和△CED中

∵BM CE

MBD ECD BD CD

∴△BMD≌△CED(SAS),

∴DM= DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,

即:∠MDN =∠NDE=60°,

在△MDN和△EDN中

∵ND ND

EDN MDN ND ND

∴△MDN≌△EDN(SAS),

∴MN =NE=NC﹣CE=NC﹣BM.

【点睛】

此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

2.如图1,等腰△ABC中,AC=BC=42∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.

(1) 求证:△ACD≌△BCE;

(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求

PQ的长.

(3) 连接OE,直接写出线段OE的最小值.

【答案】(1)证明见解析;(2)PQ=6;(3)OE=422

-

【解析】

试题分析:()1根据SAS即可证得ACD BCE

≌;

()2首先过点C作CH BQ

⊥于H,由等腰三角形的性质,即可求得45

DAC

∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.

()3OE BQ

⊥时,OE取得最小值.

试题解析:()1证明:∵△ABC与△DCE是等腰三角形,

∴AC=BC,DC=EC,45

ACB DCE

∠=∠=,

45

ACD DCB ECB DCB

∴∠+∠=∠+∠=,

∴∠ACD=∠BCE;

在△ACD和△BCE中,

,

AC BC

ACD BCE

DC EC

=

∠=∠

⎪=

(SAS)

ACD BCE

∴≌;

()2首先过点C作CH BQ

⊥于H,

(2)过点C作CH⊥BQ于H,

∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45

DAC

∴∠=,

ACD BCE

≌,

45

PBC DAC

∴∠=∠=,

∴在Rt BHC中,

22

424

22

CH BC

=⨯=⨯=,

54

PC CQ CH

===

,,

3

PH QH

∴==,

6.

PQ

∴=

()3OE BQ

⊥时,OE取得最小值.

最小值为:42 2.

OE=-

3.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;

(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明

△DBE≌△CFD,得出EB=DF,即可得出结论;

相关文档
最新文档