不等关系与不等式PPT优秀课件2

合集下载

不等关系与不等式-完整版PPT课件

不等关系与不等式-完整版PPT课件
21 等式性质与 不等式性质
知识整理
知识点一 不等式与基本事实 1不等式的定义 用不等号连接两个解析式所得的式子,叫作不等式 2比较两个实数大小的基本事实 对任意两个实数a,b, ①a-b>0⇔a>b; ②a-b<0⇔a<b宏观管理,实行征收附加税政策,已知某种酒 每瓶70元,不加收附加税时,每年大约销售100万瓶,若政府征收附加税,每销售 100元要征税R元税率R%,则每年的销售量将减少10R万瓶,要使每年在此项经 营中所收取的附加锐不少于112万元,R应怎样确定
解:设产销量为每年万瓶,则销售收入为每年70万元,从中征收的税金为 70·R%=100-10R由70100-10R·R%≥112
知识梳理
b=a a=c

3.1不等关系与不等式(二)

3.1不等关系与不等式(二)

(5) a b, c 0 ac bc ;
a b, c 0 ac bc
(6) a b 0, c d 0 ac bd
(7) a b 0, n N , n 1
a b , a
n n n n
*
b
(8) a b 0 a b 0 a0b
3 成立的有________个.
练习:
5. 若a、b、c∈R,a>b,则下列不等式 成立的是 ( C )
A. C. 1 a a c 1
2

1 b b c 1
2
B. a b
2
2
D. a c b c
练习:
6. 若、 满足 的取值范围是(

2


2
, 则
A. b a C. a b1 a 1 1 b b 1 a B. a D. 1 a 2a b a 2b a b b 1 b
练习:
4. 有以下四个条件: (1) b>0>a; (2) 0>a>b; (3) a>0>b; (4) a>b>0.
其中能使
1 a

1 b
1 b 1 b 1 a

1 a 1 a
0 0 1 b
0
讲解范例:
c c 例1. 已知 a b 0, c 0, 求证: . a b
讲解范例:
例2. 如果30<x<42,16<y<24,
求x+y,x-2y及
x y
的取值范围.
讲解范例:
例3. 已知

2

2

基本性质1 不等式两边都加上(或减去)同 一个数或同一个整式,不等号的方向不变.

课件高一数学必修:不等关系与不等式PPT课件_优秀版

课件高一数学必修:不等关系与不等式PPT课件_优秀版

x

0
y ≥ 0
这是一个二元一次不等式组的问题
例 1 比较(a+3)(a-5)与(a+2)(a-4)的大小.
解: ∵ (a 3)(a 5) (a 2)(a 4)
作差
(a2 2a 15) (a2 2a 8) 变形
7
∴ (a 3)(a 5) (a 2)(a 4) <0 定符号
转化为数学问题:a 克糖水中含有 b 克糖(a>b>0),
若再加 m(m>0)克糖,则糖水更甜了,为什么?
怎么解决这个数学问题?
分析:起初糖水的浓度为 b ,加入 m 克糖后的糖 a
水浓度为 b m ,只要证明 b m b 即可,怎么
am
am a
证呢? 这是一个不等式的证明问题
问题 2: 某杂志以每本 2.5 元的价格发行时,可以售出 8 万 册.经过调查,若价格每提高 0.1 元,销售量就相应减少 2000 册.要使杂志社的销售收入不低于 20 万元,每本杂志的价
得到相反的结论,从而误解。
1.不等关系和不等 0

a b ab 0

a b ab 0
3.作差法的步骤:
(1)作差→(2)变形→(3)定号→(4)结论
其中,变形的方法有:配方法;因式分解法;通分,分子 /分母有理化等,必要时进行讨论。
4、作商法步骤:(1)作商;(2)变形; (3)判断商与1的大小;(4)结论。
证明: =x2(x-1)+(x-1) ∵ b m b (b m)a (a m)b
作差
a m a (a m)a 今天的天气预报说:明天早晨最低温度t为7℃,明天白天的最高温度t为13℃;
=x2(x-1)+(x-1)

3-1《不等式与不等关系》课件(共29张PPT)

3-1《不等式与不等关系》课件(共29张PPT)
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.

人教版高中数学2不等式与不等关系(共23张PPT)教育课件

人教版高中数学2不等式与不等关系(共23张PPT)教育课件






















,都是一源自种生活境


























































































































:









不等关系与不等式_优质PPT课件

不等关系与不等式_优质PPT课件
26
[解]解法一 : 设f 2 mf 1 nf 1(m, n为待定系数),
则4a 2b m a b n a b,
即4a 2b m n a n m b,
于是得
mn4 n m 2
,
解得
m
n
3 ,
1
f 2 3f 1 f 1.
又Q 1≤f 1≤2, 2≤f 1≤4,
5≤3f 1 f 1≤10,
25
【典例4】 设f(x)=ax2+bx,1≤f(-1)≤2, 2≤f(1)≤4,求f(-2)的取值范围. [分析] 利用f(-1)与f(1)表示出a,b,然后再代入f(-2)的表
达式中,从而用f(-1)与f(1)表示f(-2),最后运用已知条件 确定f(-2)的取值范围.此题还可用线性规划求解.
1
2 n.
n1 n
39
[方法与技巧] 作商法需要注意商式分母必须为正,一般 地,比较指数式的大小用作商法较简单(如a,b>0时,比较 aa•bb与ba•ab的大小).本题用作差法也比较简单,同学们不 妨一试.
glg12
a
,
35
又0 x 1, 0 x2 1 0 1 x2 1;
又0 1 x 1 x 0 1 x 1, 1 x
所以lg 1 x2
1 x
1
0, lg 1
x
0,
lg 2a
0,
可得 loga 1 x 2 loga 1 x 2 0,
即 loga 1 x loga 1 x .
视x,y∈N*.
17
类型二
不等式性质的应用
解题准备:不等式的性质就其逻辑关系而言,可分为推出关系 (充分条件)和等价关系(充要条件)两类,同向可加性和同向 可乘性可推广到两个或两个以上的不等式,同向可乘时,应 注意a>b>0,c>d>0.深刻理解不等式的性质时,把握其逻辑 关系,才能正确应用不等式性质解决有关不等式的问题.

不等关系与不等式的性质教学课件ppt

不等关系与不等式的性质教学课件ppt

不等式在经济学中的应用
不等式在物理学中的应用
不等式在计算机科学中的应用
不等式的实际应用
不等式与方程的联系与区别
04
在数学表达式中,不等式和方程都包含未知数,这使得它们都可以用来描述数量之间的关系。
表达式中都包含未知数
在求解不等式和方程的过程中,我们都会使用到一些相同的数学方法,比如因式分解、配方等。
柯西不等式的证明
柯西不等式可以通过数学归纳法和向量的性质进行证明。
柯西不等式的应用
柯西不等式在数学和物理中有着广泛的应用,如最优化问题、信号处理等。
柯西不等式的形式
柯西不等式可以表达为`∑(a_i^2) * ∑(b_i^2) ≥ (∑a_i * b_i)^2`,其中a_i和b_i是实数。
柯西不等式
在购买产品时,不同品牌或型号的产品质量之间存在不等关系,如优良和一般。
产品质量不等
03
角度不等
在几何学中,不同的角之间存在角度不等关系,如锐角和钝角。
数学中的不等关系
01
大小不等
在数学中,不同的数之间存在大小不等关系,如大于和小于。
02
距离不等
在几何学中,不同的点之间的距离之间存在不等关系,如靠近和远离。
03
不等式的定义
02
01
不等式的性质
加法单调性
即同向不等式相加,不等号不改变方向。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以(或除以)正数,不等号不改变方向。
反对称性
如果a>b,则b<a;如果a<b,则b>a。
反身性
即任何实数都大于0。
不等式的证明方法

第1讲 不等关系与不等式 课件(共63张PPT)

第1讲 不等关系与不等式  课件(共63张PPT)
解析
解决此类题目常用的三种方法 (1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是 否成立时要特别注意前提条件. (2)利用特殊值法排除错误答案. (3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可 以利用指数函数、对数函数、幂函数等函数的单调性进行判断.
1.如果 a>0>b 且 a2>b2,那么以下不等式中正确的个数是
解析 答案
角度 2 作商法 例 3 设 a,b 都是正数,且 a≠b,则 aabb 与 abba 的大小关系是________. 答案 aabb>abba 解析 aaabbbba=aa-b·bb-a=aba-b.若 a>b,则ab>1,a-b>0,∴aba-b>1,∴ aabb>abba;若 a<b,则 0<ab<1,a-b<0,∴aba-b>1,∴aabb>abba.
解析 答案
作商法的步骤 (1)作商;(2)变形;(3)判断商与 1 的大小;(4)结论.
4.若 a>0,且 a≠7,则( ) A.77aa<7aa7 B.77aa=7aa7 C.77aa>7aa7 D.77aa 与 7aa7 的大小不确定 解析 777aaaa7=77-aaa-7=7a7-a,则当 a>7 时,0<7a<1,7-a<0,则7a7-a>1, ∴77aa>7aa7;当 0<a<7 时,7a>1,7-a>0,则7a7-a>1,∴77aa>7aa7.综上, 77aa>7aa7.
6.若 0<a<b<1,则 ab,logba,log b 的大小关系是________. 答案 log b<ab<logba 解析 ∵0<a<1,∴1a>1.又 0<b<1, ∴log b<log 1=0.∵0<ab<a0=1,logba>logbb=1, ∴log b<ab<logba.

3.1.2不等关系与不等式(二)课件ppt(北师大版必修五)

3.1.2不等关系与不等式(二)课件ppt(北师大版必修五)
所以 f(-2)=3(a-b)+(a+b).又因为 1≤a-b≤2, 所以 3≤3(a-b)≤6 因为 2≤a+b≤4. 所以 5≤3(a-b)+(a+b)≤10.即 5≤f(-2)≤10. 法二 设xy==aa+-bb,, 即 a=x+2 y,b=y-2 x.
所以f(-2)=4a-2b=2(x+y)-(y-x)=3x+y, 而1≤x=a-b≤2,2≤y=a+b≤4,所以5≤f(-2)≤10.
本题把所求的问题用已知不等式表示,然后利用 同向不等式的性质 加以解决,解决此类问题常用的方法是 方程组思想与待定系数法.
课前探究学习
课堂讲练互动
[正解] 法一 (待定系数法): 设 f(-2)=4a-2b=m(a-b)+n(a+b),
所以-m+m+n=n=4,-2, 解得mn==13.,
答案 3
课前探究学习
课堂讲练互动
题型二 利用不等式性质证明简单不等式
【例2】 (1)已知 a>b,e>f,c>0,求证:f-ac<e-bc; (2)已知 a>1,m>n>0,求证:am+a1m>an+a1n. [思路探索] (1)对不等式进行变形,利用不等式的性质证 明;(2)将不等式两边相减,转化为比较与0的大小问题.
课堂讲练互动
想一想:若a>b>0,当n<0时,an>bn成立吗?
提示 不成立,如当 a=3,b=2,若 n=-1,则 3-1= 13<2-1=12,所以原式不成立.
课前探究学习
课堂讲练互动
名师点睛
1.对不等式性质的理解 (1)不等式的性质是不等式的基础知识,是不等式变形的 依据,每一步变形,都应有根有据,记准适用条件是关 键,不准强化或弱化它们成立的条件,盲目套用. (2)性质4中①当c>0时,得同向不等式.②当c<0时,得 异向不等式.③当c=0时,ac=bc. (3)性质5是同向不等式相加得同向不等式并无相减式. (4)性质6是均为正数的同向不等式相乘,得同向不等式, 并无相除式.

不等式与不等关系课(共32张PPT)

不等式与不等关系课(共32张PPT)

【错因分析】 作差比较大小,变形后的结果难以
确定时,一般要分类讨论,但需要有统一的分类标 准.这里分类不完全,在 x<-1 时,x2>0,不应有1+x2 x ≤0,最好把 x=0 分一类进行讨论,这样比较恰当.
【正解】 ∵1+1 x-(1-x)=1+x2 x, 而 x2≥0, (1)当 x=0 时,1+x2 x=0,∴1+1 x=1-x.

至少

大于等于 ≥
不少于 ≥
小于等于 ≤
不多于 ≤
探究点2 作差法比较两个实数大小
关于实数a,b大小的比较,有以下事实:
如果a-b是正数,那么a>b;如果a-b等于零, 那么a=b;如果a-b是负数,那么a<b.反过来也对.
这可以表示为
a b 0 a b; a b 0 a b; a b 0 a b.
C.ad >bc
D.ad <bc
【解析】选 D.因为 c<d<0,所以-c>-d>0,即
得 1 > 1 >0,又 a>b>0,得 a > b >0,从而有 a < b .
-d -c
-d -c
dc
1.已知a>b,c>d,且cd≠0,则C( )
A.ad>bc
B.ac>bc
C.a+c>b+d
D.a-c>b-d
a>b>0⇒___a_n_>__b_n
(n∈N,n≥2)
a>b>0⇒__n_a___n__b
(n∈N,n≥2)

a,b同 为正数
例 已知 a ,b ,m 都是正数,且 a b ,求证: b m b .

高二数学不等关系与不等式2(2)PPT课件

高二数学不等关系与不等式2(2)PPT课件

解: ∵ (a 3)(a 5) (a 2)(a 4)
作差
(a2 2a 15) (a2 2a 8) 变形
7
∴ (a 3)(a 5) (a 2)(a 4) <0 定符号
∴ (a 3)(a 5) (a 2)(a 4) 确定大小
-
5
例 2 已知 x≠0,比较 (x2 1)2 与 x4 x2 1的大小.
判断两个实数大小的依据是:
abab0 a b ab 0
作差比较法
abab0
这既是比较大小(或证明大小)的基本方法,又是 推导不等式的性质的基础.
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
-
3

-
4
例 1 比较(a+3)(a-5)与(a+2)(a-4)的大小.
-
9

-
10
解: ∵ (x2 1)2 (x4 x2 1)
作差
x4 2x2 1 (x4 x2 1) x2
变形
∴当 x 0 时, (x2 1)2 (x4 x2 1) 0 定符号
∴当 x 0 时, (x2 1)2 (x4 x2 1) 确定大小
-
6
例 3 已知 a 、b 、m 都是正数,且 a b ,求证: b m b am a
am a
am a
-
定符号 确定大小
7
课堂练习: 在下列各题的横线中填入适当的不等号.
⑴ ( 3 2)2 __<___ 6 2 6;
< ⑵ ( 3 2)2 ____( 6 1)2;
⑶ 1 __<____ 1 ;
52
6 5
> ⑷若0 a b , log1a ____ log1 b.

不等关系与不等式PPT优秀课件2

不等关系与不等式PPT优秀课件2
不等关系与不等式(一)
1
不等关系与不等式(一)
内容要点: “世界上没有相同的两片树叶”,不等关系是 普遍存在的.怎样研究不等关系呢? 比较两数大小的方法是什么?
2
不等关系与不等式(一)
一、知识学习
二、例题分析
问题情境
不等式的 1 概念 实数大小 1 比较
例1
例2
例3
三、课外练习
作业:课本
3
问题一:
这个数学问题怎么解决?
这是一个不等式的证明问题
5
问题三:设点A与平面a的距离为d, B为平面a上的任意一点, 则d≤│AB│
A
d
O
B
6
问题四: 某杂志以每本 2.5 元的价格销售时,销售量为 8 万 册.经过调查,若价格每提高 0.1 元,销售量就减少 2000 册.要使杂志社的销售收入不低于 20 万元,每本杂志的价 格应定在怎样的范围内?
∴当 x 0 时, ( x2 1)2 ( x4 x2 1) 0
∴当 x 0 时, ( x2 1)2 ( x4 x2 1)
作差
变形
定符号
确定大小
12
bm b b 、m 都是正数,且 a b ,求证: 例 3 已知 a 、 am a
b m b (b m)a (a m)b 证明: ∵ am a (a m)a ab ma ab bm (a m)a m(a b) (a m)a ∵a、 b 、m 都是正数,且 a b ∴ m 0, m a 0, a 0, a b 0
60
Байду номын сангаас
6 0
4
问题二: 生活中为什么糖水中加的糖越多越甜呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这是一个二元一次不等式组的问题
返回
8
不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式. 说明: (1)不等号的种类:>、<、≥(≮) 、≤(≯) 、≠. (2)解析式是指: 代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集 R.
那么不等式是否与等式有类似的性质呢?
y y2 1 4.已知 x y 0 ,比较 2 与 的大小. x x 1 2 5.已知 a R ,比较 a 1 与 的大小. a
作业:课本
15
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享�
∴当 x 0 时, ( x2 1)2 ( x4 x2 1) 0
∴当 x 0 时, ( x2 1)2 ( x4 x2 1)
作差
变形
定符号
确定大小
12
bm b b 、m 都是正数,且 a b ,求证: 例 3 已知 a 、 am a
b m b (b m)a (a m)b 证明: ∵ am a (a m)a ab ma ab bm (a m)a m(a b) (a m)a ∵a、 b 、m 都是正数,且 a b ∴ m 0, m a 0, a 0, a b 0
bm b bm b 0∴ ∴ am a am a
作差
变形
定符号
确定大小
13
课堂练习: 在下列各题的横线中填入适当的不等号.
⑴ ( 3 2) 2 _____ < 6 2 6;
2 ⑵ ( 3 2) 2 ____( 6 1) ; <
1 1 < ⑶ ______ ; 52 6 5
返回
10
例 1 比较(a+3)(a-5)与(a+2)(a-4)的大小. 作差 解: ∵ (a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8)
变形
7 ∴ (a 3)(a 5) (a 2)(a 4) <0 定符号
这个数学问题又怎么解决?
分析:若杂志的定价为 x 元,则销售的总收入为 x 2.5 (8 0.2) x 万元。那么不等关系“销售 0.1 的总收入不低于 20 万元”可以表示为不等式 x 2.5 (8 0.2) x ≥20 0.1
这是一个解不等式的问题
7
问题五: 某钢铁厂要把长度为 4000mm 的钢管截成 500mm 和 600mm 两种,按照生产的要求,600mm 钢管的数量不能超过 500mm 钢管的 3 倍。应怎样截更好?
∴ (a 3)(a 5) x≠0,比较 ( x 1) 与 x x 1的大小.
2 2
4 2
解:
∵ ( x2 1)2 ( x4 x2 1)
x4 2 x 2 1 ( x 4 x 2 1) x2
不等关系与不等式(一)
1
不等关系与不等式(一)
内容要点: “世界上没有相同的两片树叶”,不等关系是 普遍存在的.怎样研究不等关系呢? 比较两数大小的方法是什么?
2
不等关系与不等式(一)
一、知识学习
二、例题分析
问题情境
不等式的 1 概念 实数大小 1 比较
例1
例2
例3
三、课外练习
作业:课本
3
问题一:
60
6 0
4
问题二: 生活中为什么糖水中加的糖越多越甜呢?
转化为数学问题:a 克糖水中含有 b 克糖(a>b>0), 若再加 m(m>0)克糖,则糖水更甜了,为什么?
b 分析:起初糖水的浓度为 ,加入 m 克糖后的糖 a bm bm b 即可,怎么 水浓度为 ,只要证明 am am a 证呢?
> log 1 b. ⑷若0 a b , log 1 a ____
2 2
14
课外练习: 1.已知 x, y R ,比较 x2 y 2 3x 3 y 与 x y 6 的大小. 2.已知 a, b R ,比较 a 2 2ab 2b 2 与 2a 3 的大小. 3.已知 ,比较 1 cos 与 sin 的大小. 2
这个数学问题怎么解决?
这是一个不等式的证明问题
5
问题三:设点A与平面a的距离为d, B为平面a上的任意一点, 则d≤│AB│
A
d
O
B
6
问题四: 某杂志以每本 2.5 元的价格销售时,销售量为 8 万 册.经过调查,若价格每提高 0.1 元,销售量就减少 2000 册.要使杂志社的销售收入不低于 20 万元,每本杂志的价 格应定在怎样的范围内?
对于不等式在初中我们已经接触过 ,知道不等式的基本性 质与等式的基本性质是有所不同的,为什么会这样呢? 这一章主要从实数的基本性质及不等式的基本概念出发 , 一步步系统认识不等式,掌握一些不等式,从而为以后进一步学 习数学和其它学科运用不等式打好基础.
首先从实数大小比较说起……如4和3谁大?如果比较?
分析:假设截得 500mm 的钢管 x 根, 截得 600mm 的钢管 y 根. 根据题意,应有如下的不等关系: ⑴解得两种钢管的总长度不能超过 4000mm; ⑵截得 600mm 钢管的数量不能超过 500mm 钢管数量的 3 倍; ⑶解得两钟钢管的数量都不能为负。
500 x 600 y ≤ 4000 由以上不等关系,可得不等式组: 3x ≥ y x ≥ 0 y≥0
返回
9
对于任意两个实数 a、b,在 a>b,a = b,a<b 三种关系中有且仅有一种成立.
判断两个实数大小的依据是: a b ab 0 a b ab 0 a b ab 0
作差比较法
相关文档
最新文档