玻璃马蹄焰窑炉介绍

合集下载

马蹄焰窑炉设计说明书

马蹄焰窑炉设计说明书

课程设计任务书学生姓名: 专业班级:指导教师:工作单位:题目: 33 t/d蓄热式马蹄焰池窑的设计初始条件:1、产品的品种:陶瓷熔块2、产量: 33 吨/天3、玻璃的成分陶瓷熔块成分(wt/%)表14、原料所用原料及基本要求表26、纯配合料熔化,不外加碎玻璃。

7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。

8、助燃空气预热温度:1198 ℃。

9、燃料:重油重油的元素组成表310、重油雾化介质:压缩空气,温度80℃,用量0.5Bm/kg油11、空气过剩系数:α取1.112、窑型:蓄热式马蹄焰流液洞池窑要求完成的主要任务:一、撰写设计说明书,主要内容包括:1、设计依据及相关政策、法律、法规及设计规范2、物料平衡计算(列出计算过程)2.1配料计算2.2去气产物及组成计算3、热平衡计算(列出计算过程)3.1燃料燃烧计算3.2玻璃形成过程所消耗的热量计算3.3燃料消耗量近似计算4、窑炉的结构设计详细说明各部位的作用,各主要参数选择依据,并进行方案对比。

4.1熔化部设计包括熔化部的面积、长、宽、深度、火焰空间及投料口的尺寸。

4.2工作部的设计包括工作部的面积、长、宽、深度及火焰空间的尺寸。

4.3玻璃液的分隔设备的设计4.4出料口的设计4.5小炉口的计算与设计4.6蓄热室的计算与设计4.7烟道与烟囱尺寸的确定5、窑炉耐火材料的设计与选择包括池壁、池底、胸墙、大碹、蓄热室的耐火材料及保温材料的设计与选择。

要求作方案对比,阐述选择依据。

6、窑炉主要技术经济指标①熔化量:②熔化率:③熔化部面积:④冷却部面积:⑤一侧蓄热室格子砖的受热面积:⑥单位熔化部面积所占格子砖受热面积:⑦每公斤玻璃液所消耗的热量:⑧燃料消耗量:⑨玻璃熔成率。

二、用CAD绘制一张窑炉总图(3#图打印)时间安排:18周讲课、查阅资料、设计计算、绘制草图;19周 CAD制图;20周撰写设计说明书、答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.设计依据及相关的法律法规 (1)1.1设计的依据:课程设计任务书 (1)1.2国家相关法律、法规及设计规范 (1)1.3马蹄焰窑炉的特点 (2)2.物料平衡计算 (2)2.1配料计算 (2)2.2去气产物及组成计算 (4)3.热平衡计算 (5)3.1燃料燃烧计算 (5)3.2玻璃形成过程中所消耗的热量 (6)3.3燃料消耗量近似计算 (7)4.窑炉的结构设计 (8)4.1熔化部的设计 (8)4.2工作部的设计 (11)4.3玻璃液的分隔设备(流液洞)的设计 (11)4.4出料口的设计 (12)4.5 小炉口的计算与设计 (12)4.6蓄热室的计算与设计 (13)4.7烟道与烟囱尺寸的确定 (15)5. 主要技术经济指标 (16)6. 参考文献 (16)7. 总结 (16)设计题目:33 t/d蓄热式马蹄焰池窑的设计1 设计依据及相关的法律法规设计依据及其基本原则:随着工业生产现代化水平的日益提高,能源供应日趋紧张,在本设计中,为了节约能源、降低成本,采用有效的保温措施。

马蹄焰窑发展历史

马蹄焰窑发展历史

马蹄焰窑是一种古代中国的陶瓷烧制窑炉,以下是其发展历史的简要概述:
起源:马蹄焰窑起源于中国的北方地区,最早出现在公元7世纪唐朝晚期。

它的名称来自于其窑炉顶部烟囱的形状,呈马蹄状。

唐代:唐代是马蹄焰窑的发展阶段。

在唐朝时期,马蹄焰窑已经成为中国陶瓷生产的主要窑炉之一。

这种窑炉采用了间隙式烧制技术,通过控制氧气的进入和排出,实现了温度的控制和瓷器的烧制。

宋代:宋代是马蹄焰窑的繁荣时期。

在北宋时期,马蹄焰窑得到了进一步的改进和发展。

窑炉结构更加完善,烧制技术更加精湛,瓷器的品质得到了大幅提升。

马蹄焰窑成为宋代北方窑炉的代表之一。

元代:元代是马蹄焰窑的衰落时期。

元代的政治动荡和社会变革对陶瓷产业造成了不利影响,马蹄焰窑逐渐失去了繁荣。

在元代后期,马蹄焰窑逐渐退出历史舞台,被其他窑炉所取代。

马蹄焰窑在中国古代陶瓷产业的发展中起到了重要的作用。

它代表了一种特定的窑炉结构和烧制技术,为瓷器的制作提供了有效的工具和方法。

尽管马蹄焰窑在元代后期逐渐式微,但其对中国陶瓷发展的贡献仍然不可忽视。

马蹄焰窑炉设计说明说-大连工业大学祥解

马蹄焰窑炉设计说明说-大连工业大学祥解

一、原始资料1、产品:高白料机制玻璃瓶罐。

2、出料量:每天熔化玻璃60吨。

3、玻璃成分(设计)(%):SiO2Al2O3CaO+MgO BaO Na2O+K2O71% 3.5% 10.5% 0.5% 14.5%4、料方及原料组成:原料料方%原料化学组成(%)外加水分% SiO2Al2O3CaO MgO Na2O Fe2O3其它失量石英砂51.985 99.350.2 0.1 0.05 0.05 15.0长石28.858 65.1319.940.24 0.11 14.03 0.12 0.43石灰石18.926 1 0.255.260.3 0.02 碳酸钠 99.2硝酸钠 98.12硫酸钠 0.14等等纯碱18.06 57.87 7.0 硝酸钠 1.162 1.5重晶石0.524 1.16 氧化钡 63.35合计119.5155、碎玻璃数量:占配合料量的33%。

6、配合料水分:靠石英砂和纯碱的外加水分带入,不另加水。

7、玻璃熔化温度:1400℃。

8、工作部玻璃液平均温度:1300℃。

9、重油。

元素组成(%)低热值(千卡/公斤)加热温度(℃)C H O N S A W86.42 12.16 0.55 0.2 0.15 0.02 0.5 10000 125 10、雾化介质:用压缩空气,预热到120℃,用量为0.6m3/公斤油。

11、喷嘴砖孔吸入的空气量:0.5m3/公斤油。

12、助燃空气预热温度:1050℃。

13、空气过剩系数a:取1.2。

14、火焰空气内表面温度:熔化部1450℃,工作部1350℃。

15、窑体外表面平均温度(℃):窑顶侧胸墙前后胸墙电容锆砖池墙池底熔化部250 180 200 160 130 17516、熔化池内玻璃液温度(℃):液面窑池上部(平均)窑池上下部交接层窑池下部(平均)池底1400 900 1280 1265 1250池深方向玻璃液温降:窑池上部为2℃/cm,窑池下部为1℃/cm。

马蹄焰玻璃窑炉设计技术培训 ppt课件

马蹄焰玻璃窑炉设计技术培训 ppt课件

一、玻璃窑炉马蹄焰池窑简介
1.熔化池结构: 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑 的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加 速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔 技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔 化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控 制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的 限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物 理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之 间较为合适。池底温度的提高可使熔化率提高。但池底温度高于 1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底 的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生 产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气 氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻 璃球窑,其垂直温降约为15—30℃/100mm。
一、玻璃窑炉马蹄焰池窑简介
6. 小炉: 目前小炉设计仍以实践经验为主,一个成功的设计者 应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验。
(1) 小炉下倾角一般在18—35°范围内选用,燃油小炉一般 选用22—25°,燃烧天然气和干气的小炉下倾角可以大些。在实际 生产行中油枪有5°左右的上仰角,在采用天然气和干气时的仰角 还要更大些,其目的是让火焰与玻璃液面平行。
(2) 小炉喷出口速度(或小炉出口面积),由于燃油雾化后 喷入窑炉空间的燃烧过程中伴随着油雾的气化过程,因此燃料混合 物喷出的速度大,气化膨胀的阻力也大,油类燃料在窑内的停留时 间一般比天然气燃料的时间长,因此燃油小炉喷出的速度可以稍低。 当改用天然气时,如果喷出速度太低,会造成燃烧不完全。小炉喷 出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比 较合适。小炉喷出的助燃空气要有一定的容积厚度,取其宽高比为 2—3.5。 为了使火焰不直接冲刷胸墙,两座小炉内侧间距应不小于 0.6,小炉外侧与胸墙间距不小于0.3。

玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计

第二章结构设计熔化部设计熔化率K值确定瓶罐玻璃池窑设计K值在—为宜。

熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取(m2·d)。

理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在以上,而我国却在左右,偏低的原因:(1)整个池窑缺少有助于强化熔融的配套设计。

(2)操作管理,设备,材料等使得窑后期生产条件恶化。

由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。

在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。

采取了K= t/(m2·d)。

熔化池设计(1)确定来了熔化率K值:熔化部面积 100/=40m2。

(2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm本设计取长宽比值为。

长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。

窑长应≥4m 。

在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取~1.2 m )。

窑池宽度约为2~7m。

长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。

具体的池底排列会在后面设计的选材方面进行说明。

这里先不做细讲。

综上,本次选用L=8m ,B=5m。

窑池深度一般根据经验确定。

池深一般在900—1200mm为宜。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

池底温度的提高可使熔化率提高。

但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。

马蹄焰玻璃窑炉窑炉气氛的控制

马蹄焰玻璃窑炉窑炉气氛的控制

马蹄焰玻璃窑炉内火焰气氛的控制朱柏杨玻璃液对窑内气氛的变化反应极为灵敏。

在无特殊要求的情况下,一般以中性焰为佳,但实际上多数采用弱还原焰。

器皿玻璃配合料在使用芒硝做澄清剂时,应将熔化部的前半部调整为还原性火焰,而在澄清部应保持中性或弱氧化性气氛。

澄清部采用氧化气氛利于氧化亚铁的氧化与玻璃液的澄清。

特别对保温瓶和铅玻璃的熔制,必须采用氧化气氛,否则,铅玻璃及其原料会被还原出金属铅。

1、窑炉火焰气氛的概念:窑炉火焰气氛是指在熔制的过程中,窑炉内的燃烧产物中所含的游离氧与还原成分的百分比,一般将窑炉火焰气氛分为氧化气氛和还原气氛两种。

1.1、窑炉火焰游离氧含量在8%以上的称为强氧化气氛,游离氧含量在4%~5%的称为普通氧化气氛,游离氧含量1%~1.5%的称为中性气氛,当游离氧的含量小于1%,并且CO含量在3%以下时,称为弱还原气氛,CO含量在5%以上的称为强还原气氛。

1.2、气氛对熔制影响也很大,有时甚至是关键因素。

在实际生产中,采用何种气氛制度来熔化玻璃配合料,要根据玻璃配方中原料的组成以及熔制过程中各阶段的熔化反映情况来确定。

当玻璃配合料中所含氧化物和碳较少,且粘性低、含铁量较高时,适合氧化气氛熔化,反之,则适合于还原气氛。

1.3、气氛会影响玻璃配合料在高温下的熔化反应速度与均化澄清效果,尤其对器皿玻璃的颜色、透光度和表面质量的影响,更显突出。

如果在熔窑液面上长期被煤气覆盖,即使空气过剩系数再大,烟气中CO的含量再小,火焰气氛也是还原性的。

反之,如果在熔窑液面上长期被助燃风覆盖,则火焰气氛是氧化性的。

但不利于微气泡的吸收和排除,单纯调整助燃风量基本不起作用。

2、窑炉火焰气氛对产品性能的影响:玻璃产品在烧成过程中会发生一系列的物理化学反应,如水分的蒸发,盐类的分解,有机物、碳和硫化物的氧化,晶型的转变,晶相的形成等。

这些物理化学反应的速度,除了受温度影响之外,气氛对其也有很大的影响,如果控制不当,就会使玻璃产品产生各种缺陷。

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介1.熔化池结构窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。

而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

池底温度的提高可使熔化率提高。

但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。

当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。

2.工作池选择半圆形工作池时,其半径R决定于制球机台数与布置方式。

一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。

3.投料池为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。

投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。

一般其距离可定在0.8—1.0m。

4.流液洞流液洞的功能是降温和均化。

采用沉式流液洞比采用直通式流液洞温降大。

而均化效果受液洞高度影响较大。

如高度越小则均化效果越好。

所以设计流液洞宽度一般应大于其高度。

在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。

5.胸墙高度胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

马蹄焰窑炉的司炉操作要点

马蹄焰窑炉的司炉操作要点

马蹄焰窑炉的司炉操作要点摘要:马蹄焰窑炉的整个运行中,司炉操作是重中之重,特别是窑炉投产之初的工艺摸索及工艺参数的设定,笔者参加过多次马蹄焰窑炉投产之初的司炉操作设计,再此进行总结,以供从事相关专业的人员进行交流切磋。

关键词:马蹄焰窑炉操作要点一、前言马蹄焰窑炉是玻璃窑炉的一种,因其结构与其他玻璃窑炉有着明显的不同,其主要构成有烟道、蓄热室、小炉、熔化池、流液洞、工作池、(料道、马弗炉)等,简要示意如下:马蹄焰窑炉结构示意图二、马蹄焰窑炉的司炉操作要点说明1.燃烧火焰状态的调整窑炉投产运行以后,加料使玻璃液面达到规定的高度,开始调整燃烧火焰的状态。

首先调整窑压,以加料口观察为基准调节总烟道闸板,使窑压处于理想的微正压(5Pa)状态。

调整喷枪,使火焰覆盖面积大而稳定。

调整过程中及时在工作池上方观察孔判断熔化池火焰状态。

燃烧火焰应满足明亮但不透明;贴近液面处的火焰不发卷、不发黑,而且流股平稳;火焰尾部能顺利转向,而没有明显上飘现象。

通过蓄热室换向操作,观察调整的状态要稳定一致2.窑炉熔化温度的测量一般窑炉为监控熔化温度,在窑炉的不同部位设置不同的测温装置,通过显示和操作实现控制。

(1)在加料口近侧设置辐射温度计,测量火焰的温度。

此温度测量值因受火焰直接影响有不稳定现象,但应大致稳定在一定的范围内。

这一温度值表明火焰的燃烧状态,并影响配合料的熔化效果。

(2)在窑炉中后部安装另一辐射高温计,测量窑炉中部低层空间的温度。

这一温度值应相对稳定。

熔化池的控制温度可依此作为参考。

这一温度的高低和变化直接影响玻璃液的澄清和均化过程。

在半分隔玻璃窑炉中,这一温度值同时影响工作池的温度,对玻璃的均化和产品的质量具有实际意义。

(3)在窑炉后2/3碹顶的中央安装热电隅测温装置,测量窑内空间上部温度。

依此作为全窑温度的测量控制点。

此温度因受火焰干扰较小,温度较为稳定。

实测的结果显示温度值略低于玻璃液面实际温度。

另外,这一温度也反映碹顶硅砖的工作温度,大碹的安全情况依此温度实施监控。

《玻璃工业窑炉》教学课件—02马蹄焰窑

《玻璃工业窑炉》教学课件—02马蹄焰窑

池壁
(2)玻璃液分隔装置 平板池窑采用浅层分隔,其余池窑都用深层
分隔,以流液洞最为普遍。 A、流液洞的作用:撇渣器和冷却器的作用。 对玻璃液的选择作用。 玻璃液的冷却作用好。 减少玻璃液的循环对流,减少热损失。 提高玻璃液的均匀性。
B、流液洞的形式
1)平底式。减少工作部的回流,提高玻璃 液的温度均匀性。
2.1.5 分隔装置设计 (1)气体空间分隔装置 全分隔:工作池温度只受玻璃液流动的影响,
便于控制,减少熔化部的热量支出。采用两 道墙或一道墙设置。工作池要单独加热。
部分分隔:花格墙借格孔大小、墙高度和位置 来调节分隔程度。约为(60~80)%。
熔化部池壁、流液洞、花格墙
熔化池大碹
花格墙
流液洞
长L:保证玻璃液在窑内停留一段时间,
满足其澄清。 满足燃料充分燃烧,不造成大温差,不直
接烧吸火口。 横火焰池窑长按小炉对数而定。
熔化面积与池窑长宽比(L/B)的关系
马蹄焰池窑: 长度L:保证玻璃充分熔化和澄清,与火焰
燃烧配合。 宽度B:火焰扩散范围,小炉宽、中墙宽和
小炉与胸墙间距来定。 燃油池窑长宽比受油枪形式而变化。 国外马蹄焰窑偏小(日本东洋公司1.42)。
F G/2
碹类型结构
碹名
半圆碹 标准碹 倾斜碹 悬拱 平拱
升高f/ 横推力F
用途
跨度B
1/2

烟道、燃烧室
1/3~1/7 小 蓄热室、炉条碹
1/8~1/10 大
熔化池大碹
1/12
0
大型窑
由相似三角形,楔型砖基本设计公式为 (a+c)/(b+c)=(R+δ)/R 其中:a为楔型砖大头尺寸,b为小头尺寸,c为砖

马蹄焰

马蹄焰

马蹄焰窑的工作原理或生产过程是什么,在蓄热室设计时,是让烟气直接通过蓄热室进入烟道,而蓄热室是一个用耐火材料砌成的空心格子的加热室。

发生炉煤气池窑的蓄热室同时预热空气和煤气,并在小炉内相互混合和预燃。

因此,冷空气和发生炉煤气进入蓄热室后经反复上升与下沉,将格子砖上的热量充分吸收并充分预热,使燃料释放出更多的热量。

烟气在反复上升与下沉的过程中,热量被格子砖充分吸收并蓄积,只有少量热量被废气所带走,绝大部分热量被充分利用到工作中去。

针对浮法玻璃熔窑在超期运行过程中出现的一系列烧损现象,采用多种措施对窑炉进行热修,使窑龄延长一年多。

介绍了在各部位进行热修的具体实施方法。

窑炉的正确使用以及关键部位的维护、保养是延长窑炉使用寿命、延长全线设备使用周期、提高经济效益的根本。

在窑炉后期,热修和维护的工作量会更大,如果维护和保养不及时,方法不创新,达到设计窑龄尚且是难事,更谈不上延长窑炉寿命。

国内某浮法厂在窑炉后期,通过大胆创新的热修、热补以及工艺改进措施,使窑炉使用寿命延长了一年多,为其他浮法玻璃企业在延长窑炉使用寿命方面提供了宝贵经验。

该浮法玻璃熔窑原设计窑龄为3年,至1999年初,已安全运行了3年2个月,超过了设计窑龄。

运行期间,该熔窑先后经历过5次改色,其烧损状况及设备老化状况已严重危及到生产的安全与稳定,按常规计划必须进行冷修。

为减少投资,降低生产成本,决定将该浮法线本届窑龄延长1~1.5年。

熔窑经过三年多的运行,池底、池壁及胸墙、大碹、格子体、小炉碹顶、蓄热室前墙、小熔化部顶碹等部位严重烧损,针对不同部位,采取不同措施,使该处的状况得以缓解。

2 技术措施2.1 加固角铁解决池底砖缝变大的问题上届冷修时,为节约成本,熔窑池底砖没有更换,当时,3#小炉之前的池底砖缝已大于20mm。

在冷修期间专家对该情况作出鉴定:该浮法线以生产着色玻璃为主,本届窑期不能生产粘度较小的透明玻璃,以尽量减小玻璃液的流速,缓解对池底砖的冲刷。

第二章玻璃马蹄焰窑炉结构设计

第二章玻璃马蹄焰窑炉结构设计

第二章玻璃马蹄焰窑炉结构设计
玻璃马蹄焰窑炉是一种用于玻璃加工的特殊类型玻璃熔融装置,具有
高温、高效、节能等优点。

它的结构设计对于降低能耗、提高产能和改善
产品质量具有重要意义。

本文将从炉体结构、炉墙结构和燃烧系统三个方
面讨论玻璃马蹄焰窑炉的结构设计。

首先,炉体结构是玻璃马蹄焰窑炉的基础部分,它直接关系到炉膛的
稳定性和工作效果。

炉体结构应该采用耐火材料,以抵御高温和化学侵蚀。

常用的耐火材料有高铝砖、硅酸盐砖等。

此外,炉体结构还应具备一定的
隔热性能,以减少散热损失。

为了提高炉膛的稳定性,可以在炉体内部设
置加强筋或钢结构支撑,增加整体的承载能力。

其次,炉墙结构对于炉膛的保温和传热有着重要的影响。

炉墙结构通
常由内壁、外壁和隔热层组成。

内壁常用耐火砖,用于抵御玻璃的高温冲
击和化学侵蚀。

外壁通常采用碳钢材料,并带有冷却装置,用于冷却炉壁
和减少外界对炉体的热辐射。

隔热层通常由耐火纤维或耐火浇注料构成,
其作用是减少炉体的热传导和散热损失,提高炉膛的热效率。

综上所述,玻璃马蹄焰窑炉的结构设计对于提高生产效率、降低能耗
和改善产品质量具有重要意义。

炉体结构、炉墙结构和燃烧系统是重要的
设计要素,需要考虑耐火性能、隔热性能、稳定性和高效率等因素。

在设
计过程中,还需要根据具体的生产要求和工艺流程进行优化和调整,以实
现最佳的设计效果。

马蹄焰玻璃窑炉内火焰长度的控制

马蹄焰玻璃窑炉内火焰长度的控制

马蹄焰玻璃窑炉内火焰长度的控制朱柏杨马蹄焰玻璃窑炉对熔化池内火焰的长度是有要求的,因为出喷火口火焰的长度对熔化池大璇内的火焰空间温度、玻璃液面温度和大璇内表面温度以及熔化池内玻璃液的液流方向都会产生不同程度的影响。

因此,合理地组织煤气在喷火口及大璇内燃烧是稳定玻璃窑炉各项工艺参数,熔化好配合料,达到节能降耗的目的的一项重要举措。

出喷火口的火焰有长度、亮度、刚度和角度等四个特征,这四个特征相互联系,对火焰在整个大璇内的热交换过程有极大的影响。

而火焰长度表现为燃料燃烧时间的长短和燃烧完全的程度,煤气完全燃烧后的烟气中的CO含量一般在2.5%~4%范围内。

一、对马蹄焰熔化池内最佳火焰长度的要求:马蹄焰熔化池内对火焰长度最佳要求是第一要考虑向整个熔化池玻璃液面传递最大热量和有效利用燃料热量,第二是要满足沿着熔化池长度方向玻璃熔化过程中产量与质量的要求。

大璇内表面的温度和火焰空间的温度以及熔化池玻璃液面上的温度分布密切相关,熔化池热点温度要求符合以下两个条件:1、热点温度要满足大炉达到规定产量和玻璃配合料熔制工艺要求。

2、热点温度要满足大璇空间耐火材料在使用寿命周期内的运行要求。

由于马蹄焰窑炉的火焰在大璇空间内最容易出现局部过热部位,因此,马蹄焰熔化池火焰的长度是否合理是保证熔化池玻璃配合料按照工艺要求进行熔化、澄清、均化等过程进行的关键。

二、煤气与空气混合燃烧出预燃室至喷火口火焰的控制3、出小炉喷火口火焰的控制对热点、泡界线位置的影响:3.1、出小炉火焰的长短、高低、刚度、亮度变化:熔化部火焰末端1.2~1.8m范围内的温度是最高的,让火焰亮度末端尽量靠近配合料堆,尽量控制在加料与熔化部区域熔化大部分,而熔化部热点的位置不超过其长度的2/3,泡界线在熔化部的1/2~2/3范围内。

3.2、热点位置如控制得好,可以加大熔化池内玻璃液的两个内循环的强度,出加料池的配合料向喷火口方向的移动度加大,泡界线位置较明显,加热料层熔化加快,这样火焰的相对热量利用率提高、吨玻璃单耗减少。

第4章 马蹄焰池窑

第4章 马蹄焰池窑

第4章马蹄焰池窑 窑内火焰呈马蹄形流动(在窑内呈U形),仅在熔化部的前端设置一对小炉的玻璃池窑称为马蹄焰池窑(有时亦称U形池窑)。

其示意图如图4—1所示。

马蹄焰池窑的优点是:ⅰ.热利用率高。

马蹄形火焰在窑内呈“U”形,长度可达熔化池长度的1.3~1.5倍,行程较长,因而燃料燃烧充分,同时窑体表面积小,热散失量较少,可提高热利用率,降低燃料消耗。

目前先进的大型马蹄焰池窑比相同熔化面积的横焰池窑热耗量低15~20%。

ⅱ.结构简单,造价低,只有一对小炉布置在熔化池端墙上,而横焰池窑一般有3对以上的小炉,且布置在熔化池两侧,这将使横馅池窑结构复杂,砌筑困难,同时横焰池窑占地面积大,建窑和建厂房的费用都比马蹄焰池窑高,建一座马蹄焰池窑的费用比建同等规模的横焰池窑低25%~30% 马蹄焰池窑的缺点是: ⅰ.沿窑长方向难以建立必要的热工制度,火焰覆盖面积小,在炉宽度上的温度分布不均匀,尤其是火焰换向带来了周期性的温度波动和热点(即玻璃液最高沮度的位置)的移动, ⅱ.一对小炉限制了炉宽,也就限制了炉的规模; ⅲ.燃料燃烧喷出的火焰有时对配合料料堆有推料作用,不利于配合料的熔化澄清,并对花格墙、流液洞盖板和冷却部空间砌体有烧损作用。

马蹄焰池窑与横焰池窑的比较见表4—1。

由于以上特点,马蹄焰池窑已被广泛用于制造对玻璃质量无特别要求的各种空心制品(如瓶罐、器皿、化学仪器、泡壳、玻璃管)、压制品和玻璃球等,其最大熔化面积可达90m2。

4.1 马蹄焰池窑的结构4.1.1 窑池 马蹄焰池窑结构设计的内容是根据生产规模的大小来因地制宜地确定窑池各部位的形第89页式、尺寸和材料。

设计要依据窑炉热工理论、池窑工作原理和生产实践经验,还要进行必要的经验计算。

(1)窑池尺寸 窑池是玻璃熔窑的主要部分。

它的熔化面积、长宽比和池深等几何尺寸必须符合工艺与结构的要求。

①熔化面积熔化部窑池面积按已定的熔窑规模(日产量)和熔化率(常用K表示)估算。

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍一、结构介绍玻璃马蹄焰窑炉由炉体、燃烧器、炉墙、炉托、冷却系统和控制系统等组成。

炉体通常由耐火材料制成,能够承受高温和化学腐蚀。

燃烧器位于炉体底部,用于提供高温燃烧产生的火焰。

炉墙通过隔离空气,保持炉体内外温度的稳定。

炉托用于支撑炉体,使其保持水平和稳定。

冷却系统用于控制炉体内的温度,防止过热和损坏。

控制系统用于监测和调节炉体的温度、压力和其他参数,确保生产过程的稳定和安全。

二、工作原理1.燃烧过程:燃烧器将燃料和空气混合后点火燃烧,产生高温火焰。

火焰经过炉墙进入炉内,使得炉体内的温度升高。

2.玻璃熔融:原料中的玻璃在高温下熔化,形成熔状玻璃。

炉体内的高温环境导致玻璃变得流动,以便进行下一步的成型和加工。

3.循环燃烧:炉体内的燃烧产生的废气经过特殊的循环路径,被引导回到燃烧器重新燃烧。

这种循环燃烧可以提高能量利用率,降低能源消耗。

4.冷却过程:通过冷却系统对炉体进行控制,使得玻璃逐渐冷却并固化。

冷却过程需要严格控制温度,以保证玻璃成型的质量和效率。

三、应用领域1.高效生产:玻璃马蹄焰窑炉具有高温高效的特点,能够在较短的时间内完成玻璃的熔融和成型,提高生产效率。

2.质量控制:炉体内的温度和气氛控制可以实现对玻璃成品质量的控制,确保产品具有一致的性能和外观。

3.节能环保:循环燃烧系统可以有效提高能源利用率,降低能源消耗。

同时,炉体的冷却系统可以减少能源浪费,保护环境。

4.灵活适应性:玻璃马蹄焰窑炉可以根据不同的生产需求进行调整和优化,以适应不同类型和规格的玻璃生产。

综上所述,玻璃马蹄焰窑炉是一种高效、质量可控、节能环保的玻璃熔融和成型设备。

其独特的结构和工作原理使得它在玻璃行业的应用范围广泛,并在生产效率和质量上具有竞争优势。

马蹄焰窑炉的司炉操作要点

马蹄焰窑炉的司炉操作要点

马蹄焰窑炉的司炉操作要点摘要:马蹄焰窑炉的整个运行中,司炉操作是重中之重,特别是窑炉投产之初的工艺摸索及工艺参数的设定,笔者参加过多次马蹄焰窑炉投产之初的司炉操作设计,再此进行总结,以供从事相关专业的人员进行交流切磋。

关键词:马蹄焰窑炉操作要点一、前言马蹄焰窑炉是玻璃窑炉的一种,因其结构与其他玻璃窑炉有着明显的不同,其主要构成有烟道、蓄热室、小炉、熔化池、流液洞、工作池、(料道、马弗炉)等,简要示意如下:马蹄焰窑炉结构示意图二、马蹄焰窑炉的司炉操作要点说明1.燃烧火焰状态的调整窑炉投产运行以后,加料使玻璃液面达到规定的高度,开始调整燃烧火焰的状态。

首先调整窑压,以加料口观察为基准调节总烟道闸板,使窑压处于理想的微正压(5Pa)状态。

调整喷枪,使火焰覆盖面积大而稳定。

调整过程中及时在工作池上方观察孔判断熔化池火焰状态。

燃烧火焰应满足明亮但不透明;贴近液面处的火焰不发卷、不发黑,而且流股平稳;火焰尾部能顺利转向,而没有明显上飘现象。

通过蓄热室换向操作,观察调整的状态要稳定一致2.窑炉熔化温度的测量一般窑炉为监控熔化温度,在窑炉的不同部位设置不同的测温装置,通过显示和操作实现控制。

(1)在加料口近侧设置辐射温度计,测量火焰的温度。

此温度测量值因受火焰直接影响有不稳定现象,但应大致稳定在一定的范围内。

这一温度值表明火焰的燃烧状态,并影响配合料的熔化效果。

(2)在窑炉中后部安装另一辐射高温计,测量窑炉中部低层空间的温度。

这一温度值应相对稳定。

熔化池的控制温度可依此作为参考。

这一温度的高低和变化直接影响玻璃液的澄清和均化过程。

在半分隔玻璃窑炉中,这一温度值同时影响工作池的温度,对玻璃的均化和产品的质量具有实际意义。

(3)在窑炉后2/3碹顶的中央安装热电隅测温装置,测量窑内空间上部温度。

依此作为全窑温度的测量控制点。

此温度因受火焰干扰较小,温度较为稳定。

实测的结果显示温度值略低于玻璃液面实际温度。

另外,这一温度也反映碹顶硅砖的工作温度,大碹的安全情况依此温度实施监控。

玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计首先,玻璃马蹄焰窑炉的基本结构包括窑体、燃烧室、燃烧系统、温度控制系统和排放系统。

窑体是玻璃熔化的主要区域,需要具备一定的承重能力和耐高温的特性。

一般情况下,窑体会采用耐火材料进行修建,例如高铝砖、耐火石棉板等。

此外,窑体还应具备良好的隔热性能,以减少能源的浪费。

燃烧室是窑体内部的燃烧区域,通常位于窑体的一侧或底部。

其主要作用是燃烧燃料产生高温火焰,以供给窑体进行玻璃熔化。

燃烧室的结构设计应考虑到燃料的种类和供氧情况,确保燃烧效果良好且稳定。

同时,为了方便清理和维护,燃烧室通常还会设计有可拆卸的燃烧室内壁。

燃烧系统是玻璃马蹄焰窑炉的关键部分,包括燃料供应、燃烧风机、点火装置等。

燃料供应系统一般选择液体燃料或气体燃料,如天然气、液化石油气等。

燃烧风机用于提供燃烧室所需的氧气,保证燃烧过程中火焰的正常运行。

点火装置则用于点燃燃料并维持火焰的稳定运行。

温度控制系统是玻璃马蹄焰窑炉的重要组成部分,其主要功能是控制窑体内的温度,确保玻璃熔化过程的稳定性。

温度控制系统一般由温度传感器、控制器和执行机构组成。

温度传感器位于窑体内部,用于实时监测温度变化。

控制器接收传感器的信号,并通过执行机构控制燃料供应量、燃烧风速等,以实现对温度的自动控制。

排放系统主要用于处理产生的废气和废渣。

废气一般经过过滤和净化设备进行处理,以减少对环境的污染。

废渣则通过排渣装置进行收集和清理,以便后续处理或回收利用。

综上所述,玻璃马蹄焰窑炉的结构设计应考虑到窑体的强度和隔热性能,燃烧室的燃烧效果和可维护性,燃烧系统的燃料供应和稳定性,温度控制系统的温度监测和控制精度,以及排放系统的废气和废渣处理。

只有在这些方面的综合考虑下,才能设计出高效节能且安全可靠的玻璃马蹄焰窑炉。

第五章玻璃马蹄焰窑炉设计总结

第五章玻璃马蹄焰窑炉设计总结

第五章玻璃马蹄焰窑炉设计总结第五章设计总结9.1设计结果简述(1)设计生产能力:100t/d(2)熔化部熔化率: 2.5t/m2d熔化面积:100/2.5=40m2熔化池:L/B=1.6、长×宽×深=8000㎜×5000㎜×1200mm、深澄清区加深200mm、为1400mm。

火焰空间:在窑宽5000mm的基础上,两边各加宽200mm,即火焰空间宽度为5400㎜,高度为:1500mm,碹升高1/8,为675mm,火焰空间的长度为窑炉长度8000mm(3)工作部:长×宽×高=1200㎜×500㎜×600mm工作池面积:6.0㎡,占熔化部面积的15%。

(4)分隔装置采用倾斜式流液洞,熔化部与工作部两道墙完全分隔流液洞尺寸:流液洞长×宽×高=1200㎜×500㎜×300mm(5)小炉小炉长宽比为4.2,水平通道长度为2750mm,小炉中心线与窑炉中心线夹角为6o,空气碹下倾角25 o,下底板上倾15 o。

油枪上倾5 o。

喷火口面积占熔化面积的20.5%本次设计小炉的最大特点为:扁而宽,小炉位置高。

(6)蓄热室格子体形式八角筒形格子体,八角筒形格子砖尺寸:160×160mm,细长比2.56,蓄熔比为51:1左右格子体体积/熔化面积3.07m3/m2格子体体积为122.8 m3,使通道内气体保持了最有利的速度蓄热室格子体主要尺寸:4180×3200×9600(mm)(7)加料方式摆动式加料加料池为梯形,大预熔池设计,以期形成“圈式”料流。

(8)采用窑坎窑坎设置在熔池中鼓泡点(窑炉的2/3处)以后766.7mm处,窑坎高度600mm,为双层砖铺排,总宽度为400mm。

(9)利用先进鼓泡技术鼓泡点在窑炉长度的2/3处,共设置11个鼓泡点,两边鼓泡点距离池壁为500mm,其他相邻鼓泡点之间距离为400mm。

玻璃工业窑炉2马蹄焰窑B

玻璃工业窑炉2马蹄焰窑B

熔化部
液面面
5
10
积(m2)
W值 (W/ m2 105000 熔化部)
93000
20
75600
30
67500
50
55800
60
52300
80以 上
46500
向周围空间的散热量与熔化部液面面积的关系
Q=Q1+Q2+Q3=Pq玻+K1Q+W Q=( Pq玻+W)/(1-K1) 火焰空间砌体温度不是1400℃时需修正。 经平衡式计算可得V煤和B油。
A=F蓄/F熔 当玻璃t熔上升或预热t空、t煤上升时,A 增
加;
充分利用烟气时, A增加; 低热值燃料 A增加; 格子砖受热性能好,A增加。
A 值确定后,求出F 蓄。 燃油熔窑,即为F 空。 烧煤气发生炉熔窑,为F 空 + F 煤。 k= F 空/F 煤=1.5~2.0(max2.5)
2
2
4)两砖厚砌体
n
4
2(a 1 x)(b x)(c x) 2(a x)(b 1 x)(c x) (a x)(b x)(c x)
2
2
5)堆状砌体(如多层窑底)
n
1
(a x)(b x)(c x)
(2)弓形碹计算
楔型砖
锁砖
拱角砖
fδ R
α B
跨度 B
升高 f 厚度 δ
θ
中心角 θ
热负荷值——每小时每m2熔化面积上消 耗热量,W/ m2;
单位耗热量——熔化每千克玻璃液所耗 总热量,kJ/kg玻璃;
耗煤量或耗油量——熔化每千克玻璃液 耗用的标准煤量或油量,kg煤/kg玻璃 或kg油/kg玻璃。
玻璃池窑先进燃耗指标表

马蹄焰窑炉工艺

马蹄焰窑炉工艺

马蹄焰窑炉工艺嘿,朋友!今天咱来聊聊马蹄焰窑炉工艺,这可是个相当有趣又重要的玩意儿。

你知道吗,马蹄焰窑炉就像一个神奇的魔法盒子,能把各种原材料变成我们需要的宝贝。

它的工作原理就好像是一个厨艺高超的大厨在精心烹饪一道美味佳肴。

先说这窑炉的结构,它就像是一座精心设计的城堡。

炉体那可是坚实的根基,支撑着整个工艺的进行。

而燃烧系统呢,就像是城堡里的炉灶,提供着源源不断的能量。

再说说它的工作流程,原材料们被小心翼翼地送进这个“魔法盒子”,然后在高温的作用下,发生着奇妙的变化。

这就好比一群小伙伴参加了一场冒险,经过重重挑战,最终都变成了勇敢的战士。

温度控制在这个工艺里那可是至关重要啊!温度太高,就像夏天里的大火炉,能把一切都烤焦;温度太低呢,又像冬天里的小火苗,根本没法让变化顺利进行。

这是不是就像我们洗澡,水太烫不行,太凉也不行?还有那气氛的控制,就如同给一场派对调节氛围。

气氛合适,一切都顺顺利利;气氛不对,那可就要出乱子啦。

在操作马蹄焰窑炉的时候,可得像照顾小宝宝一样细心。

稍有不慎,可能就会影响到最终的产品质量。

这就好像我们走路,一步没走好,就可能摔个大跟头。

而且,维护这个窑炉也不是一件轻松的事儿。

定期检查就像是给它做体检,发现问题及时解决,才能让它一直保持良好的工作状态。

不然,它要是闹起脾气来,那可就麻烦大了。

总之,马蹄焰窑炉工艺是一门相当有讲究的技术。

只有我们用心去了解它,掌握它的脾气,才能让它为我们创造出更多的价值。

你说是不是这个理儿?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻璃窑炉马蹄焰池窑简介
1.熔化池结构
窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。

而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

池底温度的提高可使熔化率提高。

但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。

当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。

2.工作池
选择半圆形工作池时,其半径R决定于制球机台数与布置方式。

一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。

3.投料池
为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。

投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。

一般其距离可定在0.8—1.0m。

4.流液洞
流液洞的功能是降温和均化。

采用沉式流液洞比采用直通式流液洞温降大。

而均化效果受液洞高度影响较大。

如高度越小则均化效果越好。

所以设计流液洞宽度一般应大于其高度。

在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。

5.胸墙高度
胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

6.小炉
小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。

不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。

燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与
燃料喷出的交角、助燃空气的温度、燃油雾化的程度、油枪在小炉内的布置等因素不仅决定了火焰形状、燃料燃烧状况,而且还影响到火焰对玻璃熔池的热辐射。

目前小炉设计仍以实践经验为主,一个成功的设计者应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验。

(1)小炉下倾角一般在18—35°范围内选用,燃油小炉一般选用22—25°,燃烧天然气和干气的小炉下倾角可以大些。

在实际生产行中油枪有5°左右的上仰角,在采用天然气和干气时的仰角还要更大些,其目的是让火焰与玻璃液面平行。

(2)小炉喷出口速度(或小炉出口面积),由于燃油雾化后喷入窑炉空间的燃烧过程中伴随着油雾的气化过程,因此燃料混合物喷出的速度大,气化膨胀的阻力也大,油类燃料在窑内的停留时间一般比天然气燃料的时间长,因此燃油小炉喷出的速度可以稍低。

当改用天然气时,如果喷出速度太低,会造成燃烧不完全。

小炉喷出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比较合适。

小炉喷出的助燃空气要有一定的容积厚度,取其宽高比为2—3.5。

为了使火焰不直接冲刷胸墙,两座小炉内侧间距应不小于0.6,小炉外侧与胸墙间距不小于0.3。

燃烧器布置在小炉下面,一般为2—3只,烧嘴间距为0.4—0.5m。

采用天然气和干气燃烧时,如蓄热池宽度小于6m,燃气喷嘴最好放在小炉两侧,不然容易产生不完全燃烧。

7.蓄热室
目前对蓄热室的研究比较多,可以通过热工计算进行设计。

由于热气流在冷却过程中由上而下的流向,可以使同一截面的气流温度趋于均匀,而气体被加热时由下而上的流动又使截面间气体的温度也趋向均匀,采用立式蓄热室的气流正符合这种规则,而且具有占地少、容易清灰的优点,被广泛采用。

蓄热室的热工计算包括蓄热室热平衡和蓄热室传热计算,二者的结果必须相符。

即热平衡中空气吸收的热量,必须在传热中实现,否则要重新假设和计算,直至相符为止。

相关文档
最新文档