竖直面圆周运动(绳杆模型)
竖直面内的圆周运动(解析版)
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
球—绳模型(学生版)--竖直面内三种圆周运动模型
竖直面内三种圆周运动模型精讲精练模型球-绳模型【知识点精讲】球-绳模型实例球与绳连接在竖直面内圆周运动球沿竖直面圆周内轨道运动图示最高点无支撑最高点无支撑最高点受力特征重力、弹力,弹力方向向下或等于零重力、弹力,弹力方向向下、等于零或向上受力示意图力学特征mg+F N=mv2r临界特征F N=0,v min=gr过最高点条件v≥gr速度和弹力关系讨论分析①恰好过最高点时,v=gr,mg=mv2r,F N=0,绳、轨道对球无弹力②能过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N③不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动【方法归纳】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型物体过最高点的临界条件不同.(2)确定临界点:抓住球-绳模型中球恰好能过最高点时v=gR的临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.【针对性训练】1(2018•高考全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A 点相切。
BC为圆弧轨道的直径。
O为圆心,OA和OB之间的夹角为α,sinα=35,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。
重力加速度大小为g。
求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间。
2(12分)(2020新高考冲刺仿真模拟)某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0m的光滑圆形竖直轨道OAO′运动,玩具小车与水平面PB的阻力为其自身重力的0.5倍(g取10m/s2),PB=16.0m,O为PB中点.B点右侧是一个高h=1.25m,宽L= 2.0m的壕沟.求:(1)要使小车恰好能越过圆形轨道的最高点A,小车在O点受到轨道弹力的大小;(2)要求小车能安全越过A点,并从B点平抛后越过壕沟,则弹簧的弹性势能至少为多少?(3)若在弹性限度内,弹簧的最大弹性势能E pm=40J,以O点为坐标原点,OB为x轴,从O到B方向为正方向,在图乙坐标上画出小车能进入圆形轨道且不脱离轨道情况下,弹簧弹性势能E p与小车停止位置坐标x关系图.3(2024年5月四川宜宾质检)如图所示,在距地面上方h的光滑水平台面上,质量为m=4kg的物块左侧压缩一个轻质弹簧,弹簧与物块未拴接。
圆周运动绳杆模型讲解学习
轻绳模型
轻杆模型
常见 类型
过最高 点的临 界条件
由mg=mvr2 得v临= gr
由小球能运动即可得v临=0
(1)当 v=0 时,FN=mg,
FN 为支持力,沿半径背
讨论 分析
(1)过最高点时, v≥ gr,FN+mg= mvr2,绳、轨道对球 产生弹力 FN (2)不能过最高点 v< gr,在到达最高 点前小球已经脱离
(1)若要使盒子运动到最高点时与小球之间恰好无作用力, 则该同学拿着盒子做匀速圆周运动的周期为多少?
(2)若该同学拿着盒子以第(1)问中周期的12做匀速圆周运动, 则当盒子运动到如图所示(球心与 O 点位于同一水平面上)时,小 球对盒子的哪些面有作用力,作用力大小分别为多少?
【思维启迪】 mg=mR(2Tπ0)2→周期 T0→T′=T20→F′向= mR(T2′π )2→盒子对小球的作用力→小球对盒子的作用力
【尝试解答】 (1)设盒子的运动周期为 T0.因为在最高点时 盒子与小球之间刚好无作用力,因此小球仅受重力作用,由重力
提供向心力,根据牛顿第二定律得 mg=mR(2Tπ0)2
解之得 T0=2π
R g
(2)设此时盒子的运动周期为 T,则小球的向心加速度为 a0 =4Tπ22R
由第(1)问知 T0=2π Rg且 T=T20
一、模型建构:竖直平面内圆周运动的绳杆模型 1.模型概述 在竖直平面内做圆周运动的物体,按运动至轨道最高点时的 受力情况可分为两类.一是无支撑(如球与绳连接,沿内轨道的 “过山车”等),称为“绳(环)约束模型”,二是有支撑(如球与 杆连接,在弯管内的运动等),称为“杆(管道)约束模型”.
2.临界问题分析 物体在竖直平面内做的圆周运动是一种典型的变速曲线运 动,该类运动常有临界问题,并伴有“最大”“最小”“刚好” 等词语,现就两种模型分析比较如下:
绳模型和杆模型
(二)轻杆模型 A)特点: 小球在竖直平面内做圆周运动时,物体能被支持 B)临界条件 (1)能否到达最高点的临界条件: V=0
(2)拉力还是支持力的临界条件: C)讨论: F
1)当 V> rg 时,杆对小 球施加拉力,且速度越大, 拉力越大(此时杆子相当于 绳子) 2)当 0<V< rg 时,杆对球施加支 持力,速度越大,支持里越小
表演“水流星” ,需要保证杯 子在圆周运动最高点的线速度不 得小于 gr v gr 即:
V rg
K
E G
例1.如图所示,质量为m的小球置于正方
体的光滑盒子中,盒子的边长略大于球的直径。 某同学拿着该盒子在竖直平面内做半径为R的 匀速圆周运动,已知重力加速度为g,问: 图5-7-6
要使盒子在最高点时盒子与小球之间恰好无作用力,
则该盒子做匀速圆周运动的周期为多少?
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
[解析 ] 设此时盒子的运动周期为 T 0,因为在最高点时
盒子与小球之间恰好无作用力,因此小球仅受重力作用。 根据牛顿第二定律得
4 2 mg m 2 r T0
,
得
T0 2
r g
1)质量为m的小球在竖直平面内的圆轨道的内则运动, 经过最高点而不脱离轨道的临界速度为V,当小球以2V 的速度经过最高点时,对轨道的压力是多大? 解析: v m 由临界速度得:mg= r , 当小球的速度为2v时,
(2)当V2=4m/s时,杆受到的力大小,是拉力还 是压力?
A
B
3)如图:在A与B点,杆对球 的力是( AD ) A)A处可能为拉力,B处为拉力 B)A处可能为拉力,B处为压力 C)A处可能为支持力,B处为压力 D)A处可能为支持力,B处为拉力
圆周运动绳杆模型
悬索桥的吊索通过绳杆模型将主梁与主缆连接,使主梁能够 悬挂在主缆上并保持平衡。
卫星轨道的设计与运行
人造卫星轨道
人造卫星的轨道通过绳杆模型与地球 连接,通过地球引力与绳杆模型的拉 力平衡,使卫星能够绕地球做圆周运 动。
月球探测器轨道
月球探测器的轨道通过绳杆模型与月 球连接,通过月球引力与绳杆模型的 拉力平衡,使探测器能够绕月球做圆 周运动。
05
绳杆模型在现实生活中的应用
游乐场的旋转设施
旋转木马
绳杆模型在旋转木马中起到支撑和传动的作用,通过绳索与木马连接,实现木马 的旋转运动。
摩天轮
摩天轮的旋转臂通过绳索与座舱连接,使座舱在旋转臂上做圆周运动,同时绳索 也起到安全保护的作用。
桥梁的拉索设计
斜拉桥
斜拉桥的拉索通过绳杆模型将主梁与桥墩连接,使主梁能够 承受载荷并保持稳定。
双摆运动
总结词
双摆运动是指两个单摆同时进行摆动,其运动轨迹为两个圆弧或椭圆弧的组合,适用于分析具有两个 固定圆心和摆长的双摆系统。
详细描述
双摆运动是两个单摆同时进行摆动的组合运动,其运动轨迹为两个圆弧或椭圆弧的组合。在双摆运动 中,两个单摆的摆线长度和初始角度都可以不同,但它们都受到重力的作用。在摆动过程中,双摆系 统的角速度、角加速度、回复力、动能和势能等物理量都随时间变化。
运动。
向心力的方向始终指向圆心,与 速度方向垂直。
绳杆模型中的离心力分析
离心力:当物体做圆周运动时, 若没有向心力作用,物体将沿 切线方向飞出。
在圆周运动绳杆模型中,离心 力与向心力大小相等、方向相 反。
离心力的大小与物体的质量、 速度和圆周半径有关。
04
圆周运动绳杆模型的实例分析
竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
2022年高考物理模型专题突破-绳杆模型
真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。
现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。
当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。
已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。
设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。
圆周运动中的绳杆模型
• 对应力的计算
结
• 对应能量的计算
- mg
=
mv 2 r
G
24
竖
物理情景
直
平
细绳拉着小球在竖直 平面内运动
面
内
圆
小球在竖直放置的光
周
滑圆环内侧运动
运
动
小球固定在轻杆上在
的
竖直面内运动
临
界
问
小球在竖直放置的光 滑管中运动
题
图示
在最高点的临界特点
T=0
mg
v2 m
r
v gr
N=0
mg
v2 m
r
v gr
V>0 F向>0 F向=FT+mg 或F向=mg-Fn
【解答】解:A、B、在最高点时,绳对小球的拉力和重力的合力提供向心力,则得:mg+T=m
得:T=
- mg…①
由图象知,T=0时,v2=b.图象的斜率k= ,则得: =
得绳长 L= 当v2=0时,T=﹣a,由①得:﹣a=﹣mg,得 g= ;故A正确,B正确;
C、只要v2≥b,绳子的拉力大于0,根据牛顿第二定律得:
A.①④ C.③④
B.②④ D.②③
.
【解答】解:对于第(1)种情况,当v0较大时,小球能够通过最高点,这时小球在最高 点处需要满足的条件是mg≤m ,又根据机械能守恒定律有
mv2+2mgr=
,可求得v0≥2 m/s;
对于第(2)种情况,当v0较小时,小球不能通过最高点,这时对应的临界条件是小球 上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr≥
则此时小球对管道的内壁的作用力为3mg
.
(高中段)专题微课(三) 竖直面内的圆周运动2
方向与篮球运动方向相反;f2=k2v,方向与篮球运动方向垂直。下列
说法正确的是
()
A.k1、k2是与篮球转动角速度无关的常量 B.篮球可回到原高度且角速度与释放时的角速度相同 C.人站得足够高,落地前篮球有可能向上运动 D.释放条件合适,篮球有可能在空中持续一段水平直线运动
解析:如果篮球转动的角速度为零,则不会产生偏转 力f2,因而公式f2=k2v中的k2与篮球转动的角速度有 关,A错误。由于阻力与篮球运动方向相反,做负 功,偏转力与运动方向垂直,不做功,故篮球的机械能将减少,由能量 守恒定律可知,篮球不可能回到原高度处,B错误。篮球下落过程中受 力如图所示,如果人站得足够高,随着速度不断增大,空气施加的阻力 f1和偏转力f2在竖直方向的向上的分量足够大时,就有可能使篮球在落地 前向上运动,C正确。如果篮球沿着水平直线运动,则在竖直方向上重 力和偏转力f2大小相等,由于水平方向有与水平速度方向相反的阻力f1, 故篮球的水平速度将减小,而水平速度大小的变化会影响f2的大小,竖 直方向上重力和f2的大小不再相等,所以篮球不可能在空中持续一段水 平直线运动,D错误。
专题微课(三) 竖直面内的圆周运动
圆周运动是历年高考必考的运动形式,特别是竖直面内的圆周运 动,在高考中考查的频率较高。该部分内容主要以竖直面内圆周运动的 三类典型模型(绳模型、杆模型和外轨模型)为依托,考查向心力的分析 及其方程应用,有时会涉及圆周运动知识与平抛运动知识的综合。常用 思维方法有:①应用临界条件处理临界问题的方法;②正交分解法; ③矢量三角形法;④等效思想;⑤分解思想等。试题难度一般或中等。
v2 L
,则F=
3mg,因mP>mQ,则FP>FQ,选项C正确;向心加速度a=F-mmg=2g,
竖直面内圆周运动的临界问题分析
ʏ赵世渭 吕志华当物体从一种特性变化为另一种特性时,发生质的飞跃的转折状态,叫临界状态㊂出现临界状态时,即可理解为 恰好出现 ,也可理解为 恰好不出现 ㊂竖直面内圆周运动的临界问题主要包括绳(环)约束模型㊁杆(管)约束模型和拱桥模型等,下面举例说明㊂一㊁绳(环)约束模型绳(环)约束模型的特点是绳(环)对物体只能产生指向圆心的弹力作用㊂图11.临界条件:在最高点绳(环)对物体恰好没有弹力作用㊂此时重力提供向心力,即m g =m v 2m i nr,解得v m i n =g r (可理解为恰好通过或恰好不通过最高点的速度)㊂2.能够通过最高点的条件:物体在最高点的速度v ȡg r ,绳(环)产生弹力作用㊂3.不能通过最高点的条件:物体在最高点的速度v <g r (实际上物体还没运动到最高点就已经脱离圆周做斜抛运动)㊂ 图2例1 如图2所示,长度均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A ㊁B 两点,A ㊁B 两点间的距离也为L ,重力加速度大小为g ㊂现使小球在竖直面内以A B 连线为轴做圆周运动,当小球在最高点的速率为v 时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v 时,两根绳的拉力大小均为( )㊂A .3m g B .23m gC .3m gD .433m g当两根绳的拉力恰好均为零时,重力提供向心力;当小球在最高点的速率为2v 时,重力和两根绳拉力的合力提供向心力㊂根据等边三角形的几何关系可得,小球做圆周运动的半径r =32L ㊂当小球在最高点的速率为v 时,根据牛顿第二定律得m g =m v2r㊂当小球在最高点的速率为2v 时,设两根绳的拉力大小均为F ,根据牛顿第二定律得m g +2F c o s30ʎ=m(2v )2r㊂联立以上各式解得F =3m g ㊂答案:A解决本题的关键是清楚小球运动到最高点时的临界状态,抓住小球做圆周运动所需向心力的来源,结合牛顿第二定律列式求解㊂二㊁杆(管)约束模型物体在轻杆作用下的运动,或在管道中运动时,随着速度的变化,轻杆或管道对物体的作用力可以是支持力,也可以是压力,还可能为零㊂图31.临界条件:物体在最高点的速度v =0㊂2.物体运动到最高点:当m g =mv2r,即v =g r 时,轻杆或管道对物体的作用力F =0;当v >g r 时,轻杆或管道对物体产生向下的拉力;当v <g r 时,轻杆或管道对物体产生向上的弹力㊂例2 如图4所示,一轻杆一端A 固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,重力33物理部分㊃知识结构与拓展高一使用 2021年3月图4加速度为g ㊂下列说法中正确的是( )㊂A .小球过最高点时,轻杆受到的弹力可以等于零B .小球过最高点的最小速度是g RC .小球过最高点时,轻杆对小球的作用力一定随速度的增大而增大D .小球过最高点时,轻杆对小球的作用力一定随速度的增大而减小小球过最高点时,当m g =mv2R,即v =g R 时,轻杆对小球的作用力F =0,根据牛顿第三定律可知,轻杆受到的弹力为零,选项A 正确㊂因为轻杆能够支撑小球,所以小球过最高点的速度最小可以为零,选项B 错误㊂当小球在最高点的速度v <g R 时,轻杆对小球产生向上的弹力,根据牛顿第二定律得m g -F =m v 2R ,变形得F =m g -m v2R,因此当v 增大时,F 减小,选项C 错误㊂当小球在最高点的速度v >g R 时,轻杆对小球产生向下的拉力,根据牛顿第二定律得m g +F =m v2R,变形得F =mv2R-m g ,因此当v 增大时,F 增大,选项D 错误㊂答案:A轻绳模型与轻杆模型的临界条件不同,对于轻绳模型来说物体能通过最高点的临界速度是v 临=gR ,对轻杆模型来说物体过最高点的临界速度是v 临=0㊂三㊁拱桥模型图5当汽车通过拱形桥顶部的速度v =g R 时,根据m g -N =mv2R可知,汽车对弧顶的压力N =0,汽车将脱离桥面做平抛运动,因此汽车过拱形桥时需限速,即v ɤg R ㊂例3如图6所示,半径为R 的光滑半 图6圆球固定在水平面上,顶部有一可视为质点的物体,现给它一个水平初速度v 0=g R ,则该物体将( )㊂A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后离开球面做斜下抛运动C .立即离开球面做平抛运动,且水平射程为2R D .立即离开球面做平抛运动,且水平射程为2R假设物体在最高点受重力和球面的支持力N 作用做圆周运动,根据牛顿第二定律得m g -N =mv 2R,解得N =0,即物体只受重力作用,因此物体将立即离开球面做平抛运动㊂根据平抛运动规律可得,物体做平抛运动的时间t =2Rg,水平位移x =v 0t =2R ,因此物体做平抛运动的轨迹曲率半径大于半圆球的半径,物体不可能中途落在球面上㊂答案:C解决本题的关键是利用牛顿第二定律分析出物体在最高点时受到的球面对它的支持力为零,进而判断出物体仅受重力作用,且初速度方向水平,物体离开球面做平抛运动,然后利用平抛运动规律求物体的水平射程㊂拓展:倾斜面内圆周运动的临界问题㊂在斜面上做圆周运动的物体,可能由静摩擦力提供向心力,也可能由轻绳或轻杆的作用力提供向心力㊂ 图7例4 如图7所示,一块足够大的光滑平板放置在水平面上,绕水平固定轴MN 可以调节其与水平面间的夹角㊂平板上一根长度l =0.8m 的轻质细绳的一43 物理部分㊃知识结构与拓展 高一使用 2021年3月端系住一质量m=0.2k g的小球,另一端固定在平板上的O点㊂当平板的倾角固定为α时,将小球拉至最高点,然后给小球一沿着平板并与细绳垂直的初速度v0=2m/s㊂(取g=10m/s2)(1)若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(2)若细绳所能承受的最大拉力F= 8N,则当平板的倾角α最大时,小球经过最高点的速度最多多大小球在运动过程中,受重力㊁细绳拉力和斜面支持力作用㊂小球运动到最高点时,由细绳的拉力和小球的重力沿斜面分力的合力提供向心力㊂(1)小球恰好能过最高点的临界条件是细绳的拉力F=0,设此时平板的倾角为α0,根据牛顿第二定律得m g s i nα0=m v20l,解得α0=30ʎ,即小球能保持在板面内做圆周运动,平板的倾角α的值应满足0<αɤ30ʎ㊂(2)设小球经过最高点时的最大速度为v m a x,由(1)得平板的最大倾角α0=30ʎ,根据牛顿第二定律得F+m g s i nα0=m v2m a x l,解得v m a x=6m/s㊂与分析竖直面内圆周运动问题类似,分析斜面上的圆周运动问题也是先分析物体在最高点的受力情况,再根据牛顿第二定律列式求解㊂注意:在进行受力分析时,一般需要先将立体图转化为平面图,这是解斜面上圆周运动临界问题的难点㊂图81.如图8所示,一根轻绳系着装有水的小桶,在竖直面内绕O点做圆周运动,小桶的质量M=1k g,水的质量m=0.5k g,绳长L=0.6m,取g=10m/s2㊂求:(1)要使水桶运动到最高点时水不流出,最小速率多大(2)如果水桶运动到最高点时的速率v=3m/s,那么水桶对轻绳的拉力多大?(3)如果水桶运动到最低点时的速率v=3m/s2,那么水对桶底的压力多大?图92.如图9所示,将内壁光滑的导管弯成半径为R的圆周轨道竖直放置,其质量为2m,质量为m的小球在管内滚动㊂当小球运动到最高点时,导管刚好要离开地面,此时小球的速度多大?图103.如图10所示,质量为m的小物体(可视为质点)随水平传送带运动,A为终端皮带轮㊂已知皮带轮半径为r,传送带与皮带轮间不会打滑,当小物体可被水平抛出时()㊂A.传送带的最小速度为g rB.传送带的最小速度为g rC.皮带轮每秒的转数最少是12πg rD .皮带轮每秒的转数最少是12πg r图114.如图11所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止㊂小物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30ʎ,取g=10m/s2㊂求ω的最大值㊂参考答案:1.(1)v m i n=6m/s;(2)T=7.5N;(3)N'=12.5N㊂2.v=3g R㊂3.A C4.ωm a x=1r a d/s㊂作者单位:山东省青州第一中学(责任编辑张巧)53物理部分㊃知识结构与拓展高一使用2021年3月。
竖直平面内圆周运动的“轻绳、轻杆”模型
限时训练
1.(2014·安徽无为开城中学月考) 如图所示,一个小球在竖直环内至少能 做(n+1)次完整的圆周运动,当它第(n-1)次经过环的最低点时的速度大小为 7 m /s,第 n次经过环的最低点时速度大小为 5 m /s,则小球第(n+1)次经过环
B 法不正确的是( )
A.乘客受到的向心力大小约为 200 N B .乘客受到来自车厢的力大小约为 200 N C .乘客受到来自车厢的力大小约为 539 N D .弯道半径设计特别大可以使乘客在转弯时更舒适
作业布置
• 完成优化设计课时规范练12
2、模型条件
(1)物体在竖直平面内做变速圆周运动。 (2)“轻绳模型”在轨道最高点无支撑,“轻杆模型” 在轨道最高点有支撑。
引导探究一:
3.模型特点
该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两模型
常见 类型
过最高 点的临 界条件
均是没有支撑的小球
D 的最低点时速度 v的大小一定满足( )
A.等于 3 m /s B .小于 1 m /s C .等于 1 m /s D .大于 1 m /s
3. 一根长为 L 的轻杆下端固定一个质量为 m 的小球,上端连在光滑水平轴
上,轻杆可绕水平轴在竖直平面内运动(不计空气阻力)。当小球在最低点
B 时给它一个水平初速度 v0,小球刚好能做完整的圆周运动。若小球在最低
B
A.小球通过最高点时的最小速度 vm in= g(R + r) B .小球通过最高点时的最小速度 vm in=0 C .小球在水平线 ab以下的管道中运动时,内侧管壁对小球一定有作用 力 D .小球在水平线 ab以上的管道中运动时,外侧管壁对小球一定有作用 力
微课:绳杆模型圆周运动最高点分析(罗新勇)
苏州园区二中
罗新勇
2014.4
a
1
模型一:绳模型
用长为L的细绳拴着质量为m的小球,使小球在竖 直平面内做圆周运动,小球在最高点的速度为v .
试分析:绳的张力与速度的关系怎样?
v
L mg
F
o
分析:小球受重力和拉力 v2
F mg m L
v2 F m mg
(1) mg m v2 时, 即:v gL
L
杆对球的作用力向下
a
5
v L mg
F
o
F
v L mg
o
mgF mv2 L
F
v2 m
mg
L
(2)
mg
m v2 L
时,
即:v
gL
重力恰好提供向心力,杆没有作用力;
v2 (3) mg m L
时, 即:v
gL
杆对球的作用力向上
mgF mv2 L
F mgmv2 L
L
绳子对小球的力只能向下,即:
F0
a
2
v
L mg
F
o
得:
v2 m mg 0
L
v gL
取 v0 gL 叫临界速度。
(1) v v0 时, F0
绳中拉力为零,重力提供向心力;
(2) v v0
时,
v2 F m mg0
L
重力和拉力的合力提供向心力;
(3) v v0 时,
物体离开圆轨道做曲线运动;
a
3
拓展: 若物体沿竖直轨道内侧运动,在
最高点的情况与绳模型一致。
v
a
4
模型二:杆模型:
第二章 专题强化5 竖直面内的圆周运动
竖直面内的圆周运动[学习目标] 会分析竖直面内的圆周运动,掌握轻绳、轻杆作用下圆周运动的分析方法并会求临界值.一、竖直面内圆周运动的轻绳模型如图所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.(1)在最低点有:T 1-mg =m v 12L所以T 1=mg +m v 12L(2)在最高点有:T 2+mg =m v 22L所以T 2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由T 2+mg =m v 22L 可知,当T 2=0时,v 2最小,最小速度为v 2min =gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点.例1 (多选)如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做完整的圆周运动,重力加速度为g .则下列说法正确的是( )A .小球在最高点时所受向心力一定为小球重力B .小球在最高点时绳子的拉力不可能为零C .小球在最低点时绳子的拉力一定大于小球重力D .小球在最高点的速率至少为gL 答案 CD解析 小球在最高点时,向心力可能等于重力,也可能等于重力与绳子的拉力的合力,取决于小球在该点的瞬时速度的大小,A 错误;小球在最高点时,若只有重力提供向心力,则拉力为零,B 错误;小球在最低点时向心力方向竖直向上,合力一定竖直向上,则拉力一定大于重力,C 正确;当小球刚好到达最高点时,仅有重力提供向心力,则有m v 2L =mg ,解得v=gL ,D 正确.针对训练1 一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm.(g 取10 m/s 2)(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字,5取2.24) (2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小. 答案 (1)2.24 m/s (2)4 N解析 (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小. 由牛顿第二定律有:mg =m v 02l ,得桶的最小速率为:v 0=2.24 m/s.(2)因v >v 0,故此时桶底对水有向下的压力,设为N ,由牛顿第二定律有:N +mg =m v 2l ,得:N =4 N .由牛顿第三定律知,水对桶底的压力大小:N ′=4 N. 二、竖直面内圆周运动的轻杆模型如图所示,细杆上固定的小球和光滑管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.(1)最高点的最小速度由于杆或管在最高点能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①若v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F 随v 的增大而增大.②若v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L.③若0≤v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F随v 的增大而减小.例3 如图所示,长为0.5 m 的轻杆OA 绕O 点在竖直面内做圆周运动,A 端连着一个质量m =2 kg 的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(g 取10 m/s 2,π2=10):(1)杆做匀速圆周运动的转速为2 r/s ; (2)杆做匀速圆周运动的转速为0.5 r/s. 答案 (1)140 N 方向竖直向上 (2)10 N 方向竖直向下解析 设竖直向下为正方向,小球在最高点的受力如图所示:(1)杆的转速为2 r/s 时,ω=2πn =4π rad/s , 由牛顿第二定律得F +mg =mLω2, 故小球所受杆的作用力F =mLω2-mg =2×(0.5×42×π2-10) N ≈140 N ,即杆对小球有140 N 的拉力,由牛顿第三定律可知,小球对杆的拉力大小为140 N ,方向竖直向上.(2)杆的转速为0.5 r/s 时,ω′=2πn ′=π rad/s ,同理可得小球所受杆的作用力F ′=mLω′2-mg =2×(0.5×π2-10) N ≈-10 N.力F ′为负值表示它的方向与受力分析中所假设的正方向相反,即杆对小球有10 N 的支持力,由牛顿第三定律可知,小球对杆的压力大小为10 N ,方向竖直向下.针对训练2 (多选)如图所示,长为l 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,重力加速度为g ,关于小球在最高点的速度v ,下列说法正确的是( )A .v 的最小值为glB .v 由零逐渐增大,向心力也增大C .当v 由gl 逐渐增大时,杆对小球的弹力逐渐增大D .当v 由gl 逐渐减小时,杆对小球的弹力逐渐增大 答案 BCD解析 由于是轻杆,在最高点可对小球提供支持力,因此v 的最小值是零,故A 错误.v 由零逐渐增大,由F 向=m v 2l 可知,F 向也增大,故B 正确.当v =gl 时,F =m v 2l =mg ,此时杆恰好对小球无作用力,向心力只由其自身重力提供;当v 由gl 逐渐增大时,m v 2l =mg +F ,故F =m v 2l -mg ,杆对球的力为拉力,且逐渐增大;当v 由gl 逐渐减小时,杆对球的力为支持力,此时,mg -F ′=m v 2l ,F ′=mg -m v 2l ,支持力F ′逐渐增大,杆对球的拉力、支持力都为弹力,故C 、D 正确.例4 质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的内径,圆管内径远小于轨道半径,如图所示.已知小球以速度v 通过最高点时对圆管外壁的压力恰好为mg ,则小球以速度v2通过圆管的最高点时( )A .小球对圆管内、外壁均无压力B .小球对圆管外壁的压力等于mg2C .小球对圆管内壁的压力等于mgD .小球对圆管内壁的压力等于mg2答案 D解析 以小球为研究对象,小球通过最高点时,根据牛顿第二定律得mg +mg =m v 2r ;当小球以速度v 2通过圆管的最高点,根据牛顿第二定律得mg +N =m (v 2)2r ;联立解得:N =-12mg ,负号表示圆管对小球的作用力向上,即小球对圆管内壁的压力等于mg2,故D 正确.1.如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R ,人体重为mg ,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )A .0 B.gR C.2gR D.3gR答案 C解析 由题意知F +mg =2mg =m v 2R,故速度大小v =2gR ,C 正确.2.(多选)(2021·河北省高二学业考试)如图所示,轻杆一端固定在水平转轴O 上,另一端固定一个小球,轻杆随转轴在竖直平面内做圆周运动,当小球运动至最高点时,轻杆对小球的作用力( )A .方向一定竖直向上B .方向可能竖直向下C .大小可能为0D .大小不可能为0答案 BC解析 设杆长为R ,小球运动至最高点处,当重力刚好提供小球做圆周运动的向心力时,杆对小球无作用力,此时有mg =m v 2R ,解得v =gR ,当v >gR 时,杆对小球提供竖直向下的拉力,当v <gR 时,杆对小球提供竖直向上的支持力,故B 、C 正确,A 、D 错误. 3.杂技演员在表演“水流星”时的示意图如图所示,长为1.6 m 的轻绳的一端,系着一个总质量为0.5 kg 的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,若“水流星”通过最高点时的速度为4 m/s ,g 取10 m/s 2,则下列说法正确的是( )A .“水流星”通过最高点时,有水从容器中流出B .“水流星”通过最高点时,绳的张力及容器的底部受到的压力均为零C .“水流星”通过最高点时处于完全失重状态,不受力的作用D .“水流星”通过最高点时,绳子的拉力大小为5 N 答案 B解析 设水的质量为m ,当水对容器底压力为零时,有mg =m v 2r ,解得v =gr =4 m/s ,“水流星”通过最高点的速度为4 m/s ,知水对容器底压力为零,不会从容器中流出;设水和容器的总质量为M ,有T +Mg =M v 2r ,解得T =0,知此时绳子的拉力为零,故A 、D 错误,B 正确;“水流星”通过最高点时,仅受重力,处于完全失重状态,C 错误.4.如图所示,半径为R ,内径很小的光滑半圆管道竖直放置,小球直径略小于管道内径,质量为m 的小球从管道最低点以某一速度v 1进入管内,在圆管道最低点时,对管道的压力为7mg ,小球通过最高点P 时,对管外壁的压力为mg ,此时小球速度为v 2,则v 1∶v 2为(g 为重力加速度)( )A .7∶2 B.3∶ 2 C.3∶1 D.7∶ 2答案 C解析 在圆管道最低点时,有7mg -mg =m v 12R ,小球通过最高点P 时,有mg +mg =m v 22R ,解得v 1∶v 2=3∶1,选项C 正确.5.(多选)如图所示,一个内壁光滑的弯管道处于竖直平面内,其中管道半径为R .现有一个半径略小于弯管横截面半径(远小于 R )的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,重力加速度为g ,则下列说法中正确的是( )A .若v 0=gR ,则小球对管内壁无压力B .若v 0>gR ,则小球对管内上壁有压力C .若0 <v 0<gR ,则小球对管内下壁有压力D .不论v 0多大,小球对管内下壁都有压力 答案 ABC解析 在最高点,只有重力提供向心力时,由mg =m v 02R ,解得v 0=gR ,因此小球对管内壁无压力,选项A 正确.若v 0>gR ,则有mg +N =m v 02R ,表明小球对管内上壁有压力,选项B 正确.若0<v 0<gR ,则有mg -N =m v 02R ,表明小球对管内下壁有压力,选项C 正确.综上分析,选项D 错误.6.如图所示,一个可以视为质点的小球质量为m ,以某一初速度冲上光滑半圆形轨道,轨道半径为R =0.9 m ,直径BC 与水平面垂直,小球到达最高点C 时对轨道的压力是重力的3倍,重力加速度g =10 m/s 2,忽略空气阻力,求:(1)小球通过C 点的速度大小;(2)小球离开C 点后在空中的运动时间; (3)小球落地点距B 点的距离. 答案 (1)6 m/s (2)0.6 s (3)3.6 m解析 (1)小球通过最高点C ,重力和轨道对小球的压力提供向心力,有F +mg =m v C 2R ,F =F ′=3mg ,解得小球通过C 点的速度v C =6 m/s.(2)小球离开C 点后在空中做平抛运动,在竖直方向上做自由落体运动有2R =12gt 2,解得小球离开C 点后在空中的运行时间t =0.6 s.(3)小球在水平方向上做匀速直线运动有x =v C t ,得小球落地点距B 点的距离x =3.6 m.7.某飞行员的质量为m ,驾驶飞机在竖直面内以速度v 做匀速圆周运动,圆的半径为R ,在圆周的最高点和最低点比较,飞行员对座椅的压力在最低点比最高点大(设飞行员始终垂直于座椅的表面,重力加速度为g )( ) A .mg B .2mg C .mg +m v 2RD .2m v 2R答案 B解析 在最高点有:F 1+mg =m v 2R ,解得:F 1=m v 2R -mg ;在最低点有:F 2-mg =m v 2R ,解得:F 2=mg +m v 2R,所以F 2-F 1=2mg ,B 正确.8.(多选)如图甲所示,小球用不可伸长的轻绳连接后绕固定点O 在竖直面内做圆周运动,小球经过最高点时的速度大小为v ,此时绳子的拉力大小为T ,拉力T 与速度的平方v 2的关系如图乙所示,图中的数据a 、b 及重力加速度g 都为已知量,下列说法正确的是( )A .数据a 与小球的质量无关B .数据b 与小球的质量无关C .比值ba 只与小球的质量有关,与圆周轨道半径无关D .利用数据a 、b 和g 能够求出小球的质量和圆周轨道半径答案 AD解析 当v 2=a 时,绳子的拉力为零,小球的重力提供向心力,则mg =m v 2r,解得v 2=gr ,故a =gr ,与小球的质量无关,故A 正确;当v 2=2a 时,对小球受力分析,则mg +b =m v 2r,解得b =mg ,与小球的质量有关,故B 错误;根据A 、B 可知b a =mr ,与小球的质量和圆周轨道半径都有关,故C 错误;由A 、B 的分析可知,b =mg ,a =gr ,故m =b g ,r =ag ,故D 正确.9.(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图像如图乙所示.则( )A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 答案 ACD解析 当小球受到的弹力F 方向向下时,F +mg =m v 2R ,解得F =mR v 2-mg ,当弹力F 方向向上时,mg -F =m v 2R ,解得F =mg -m v 2R ,对比F -v 2图像可知,b =gR ,a =mg ,联立解得g=b R ,m =aRb ,A 正确,B 错误.v 2=c 时,小球受到的弹力方向向下,则小球对杆的弹力方向向上,C 正确.v 2=2b 时,由F =m R v 2-mg 及g =bR 可知小球受到的弹力与重力大小相等,D 正确.10.如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A.3mgB.433mg C .3mg D .23mg答案 A解析 设小球在竖直面内做圆周运动的半径为r ,小球运动到最高点时轻绳与圆周运动轨道平面的夹角为θ=30°,则r =L cos 30°.根据题述小球在最高点速率为v 时,两根绳的拉力恰好均为零,有mg =m v 2r ;小球在最高点速率为2v 时,设每根绳的拉力大小为F ,则有2F cosθ+mg =m (2v )2r,联立解得:F =3mg ,故A 正确.11.(2021·湘潭一中月考)现有一根长L =1 m 的不可伸长的轻绳,其一端固定于O 点,另一端系着质量m =0.5 kg 的小球(可视为质点),将小球提至O 点正上方的A 点处,此时绳刚好伸直且无弹力,如图所示.不计空气阻力,g 取10 m/s 2.(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度? (2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳所受拉力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳若受拉力,求其大小;若不受拉力,试求绳子再次伸直时所经历的时间.答案 (1)10 m/s (2)3 N (3)不受拉力 0.6 s解析 (1)小球做完整的圆周运动的临界条件为在最高点重力刚好提供小球所需的向心力,则 mg =m v 02L解得施加给小球的最小速度v 0=10 m/s(2)因为v 1>v 0,故绳受拉力.根据牛顿第二定律有T +mg =m v 12L代入数据得绳所受拉力T ′=T =3 N(3)因为v 2<v 0,故绳不受拉力.小球将做平抛运动,其运动轨迹如图所示, 设经过时间t 绳子再次伸直,则L 2=(y -L )2+x 2x =v 2ty =12gt 2代入数据联立解得t =0.6 s.。
高中物理【绳球模型和杆球模型】
绳球模型和杆球模型
竖直平面内的圆周运动与临界问题
基本思路和方法:
以匀速圆周运动规律为基础,建立模型,根据物体做 匀速圆周运动时合力提供向心力,通过受力分析得到提供 的向心力,利用向心力公式得到需要的向心力,联立求解。
基本思路和方法:
合外力
受力分析
F提供
向心力公式
F需要
F提供 = F需要
关于两个模型需要注意两点:
v
绳球模型(最低点)
延伸 若细绳所能承受的最大张力为Fmax,试求小球通过最低点时,允许的最大速度 vmax。
绳球模型(最高点)
例 如图,长为l的细绳拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最高点时,试求绳中张力F的大小。试求小球通过圆周最高点时所允许的最小速度vmin。
绳球模型 —— 圆环轨道、水流星
杆球模型(最低点)
例 如图,长为l的轻杆拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最低点时,试求轻杆中弹力F的大小。
v
杆球模型(最高点)
例 如图,长为l的轻杆拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最高点时,试求轻杆中拉力F的大小。
练习
例2 (多选)如图所示,质量可以不计的细杆的一端固定着一个质量为 m的小球,另一端能绕光滑的水平轴O转动.让小球在竖直平面内绕轴O做 半径为l的圆周运动,小球通过最高点时的线速度大小为v.下列说法中正确 的是( ) A. v不能小于 gl B. v= gl 时,小球与细杆之间无弹力作用 C. v大于 gl 时,小球与细杆之间的弹力随v增大而增大 D. v小于 gl 时,小球与细杆之间的弹力随v减小而增大
➢ 因为重力影响,模型中小球无法做匀速圆周运动, 但在最低点和最高点,受力符合匀速圆周运动的特点, 所以,我们只研究最低点和最高点。 ➢ 绳只能产生沿绳方向的拉力,杆可以产生任意方向 的弹力。
竖直面内的圆周运动(解析版)
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
高中物理:竖直平面内圆周运动的绳模型与杆模型
高中物理:竖直平面内圆周运动的绳模型与杆模型
(1)在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”.
(2)绳、杆模型涉及的临界问题.
绳模型杆模型常见类型
均是没有支撑的小球
均是有支撑的小球
过最高点的临
界条件由mg=m得v
临
=
由小球恰能做圆周运动得v
临
=0
讨论分析(1)过最高点时,v≥,F
N+mg=
m,绳、轨道对球产生弹力F N;
(2)不能过最高点时,v<,在到
达最高点前小球已经脱离了圆轨道;(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心;
(2)当0<v<时,﹣F N+mg =m,F N背向圆心,随v的增
大而减小;
(3)当v=时,F N=0;
(4)当v>时,F N+mg=m,F N指向圆心并随v的增大
而增大;。
物理建模系列(七) 竖直平面内圆周运动的两种模型
物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。
圆周运动中的绳杆模型
.
一、绳球模型
长为L的细绳拴着质量为m 的小球在竖直平面内做圆周运动。
试分析:
(1)当小球在最低点A 的速度为v1时,绳
的拉力与速度的关系如何?
(2)当小球在最高点B 的速度为v2 时,绳
的拉力与速度的关系又如何?
v2 B
o
L
A
v1
.
v2 mg
T2
o
T1
v1 mg
最低点: T1
mg
m
v12 L
最高点:T2
2
教
• 绳球模型
学
• 杆球模型
目
• 模型推广及应用
标
知识回顾:
向心加速度公式: a
r 2
v2 r
向心力公式: F
ma
mr2
m v2 r
竖直平面内的圆周运动一般是变速圆周运动,运动的速度大小和方向在 不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变 速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置 ──最高点和最低点。两类模型——轻绳类和轻杆类。
最高点:T1+mg=m
②
最低点:T2﹣mg=m
③
从最高点到最低点的过程中,根据机械能守恒定律得:
=2mgL…④
联立②③④解得:T2﹣T1=6mg,即小球在最低点和最高点时绳的拉力差均为6a,故C错误; D、若把轻绳换成轻杆,则从最高点由静止转过90°的过程中开始时杆对小球的作用力为支持 力;当转过90°后,小球的向心力必定由杆的拉力提供,所以可知,在小球从最高点由静止转 过90°的过程中,杆对小球的作用力开始时是支持力,然后是拉力。故D错误。 故选:AB。
A.2m/s C.4m/s
(完整word版)圆周运动绳杆模型
圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0<v <gr 时,杆对小球的支持力于小球的重力;③当v=gr 时,杆对小球的支持力 于零; ④当v >gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B 时的速度大小。
【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?vR 【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( ) A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度可能为0 C.小球到达最高点受杆的作用力一定为拉力 D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。
三大力场中竖直面内圆周运动模型(学生版)--2024年高三物理二轮常见模型
2024年高三物理二轮常见模型三大力场中竖直面内圆周运动模型特训目标特训内容目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T-6T)目标2重力场中的竖直面内圆周运动的杆(或管)模型(7T-12T)目标3电磁场中的竖直面内圆周运动模型(13T-18T)【特训典例】一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1如图a,在竖直平面内固定一光滑的半圆形轨道ABC,小球以一定的初速度从最低点A冲上轨道,图b是小球在半圆形轨道上从A运动到C的过程中,其速度平方与其对应高度的关系图像。
已知小球在最高点C受到轨道的作用力为2.5N,空气阻力不计,B点为AC轨道中点,重力加速度g取10m/s2,下列说法正确的是()A.图b中x=25m2/s2B.小球质量为0.2kgC.小球在A点时重力的功率为5WD.小球在B点受到轨道作用力为8.5N2如图甲所示,一长为R的轻绳,一端系在过O点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O点在竖直面内转动,小球通过最高点时,绳对小球的拉力F与其速度平方v2的关系图像如图乙所示,图线与纵轴的交点坐标为a,下列判断正确的是()A.利用该装置可以得出重力加速度,且g=RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变3如图所示,杂技演员做水流星表演时,用一绳系着装有水的小桶在竖直平面内绕O点做圆周运动,整个运动过程中水没有流出。
已知小桶内水的质量为m,O点到水面的距离为L,水面到桶底的距离为0.1L,小桶直径远小于L,重力加速度大小为g。
则小桶转到最低点时水对桶底的压力大小可以为()A.6mgB.6.25mgC.6.1mgD.6.04mg4如图甲所示为某款自行车气嘴灯,在快速骑行时灯会发光。
图乙为其内部控制开关示意图,弹簧一端固定,另一端栓接小物块,当车轮高速旋转时,小物块由于离心运动拉伸弹簧后使触点M、N接触,从而接通电路使灯发光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)vmin 2 m s
O
(2)FN 15N
2)质量为m的小球在竖直平面内的圆轨道的内 则运动,经过最高点而不脱离轨道的临界速度 为V,当小球以2V的速度经过最高点时,对轨道 的压力是多大?
(N′=3mg)
二、细杆模型
理论研究
1.能过最高点的临界条件:
当FN mg时, v临=0
m
v
r
O
1)能否到达最高点的:
1、小球在最高点的速度由零逐减增大 的过程中,下列说法正确的是( ) A 向心力逐减增大 B 杆对球的弹力逐渐增大 C杆对球的弹力逐减减小 D杆对球的弹力先减小后增大
答案:D
O
当T 0,v gr
轻杆模型变式——圆管轨道
2、小球m在竖直放置的光滑圆形管道内做
BD 圆周运动,下列说法正确的是(
)
A 小球通过最高点时的最小速度为 gR
(2) v2=4m/s > v0 球应受到外壁向下的支持力N2 如图所示:
则 mg+ FN2 =mv22/l 得 FN2 =4.4 N
由牛顿第三定律,球对管壁的作用力分别 为:(1)对内壁1.6N向下的压力;(2)对外壁 4.4N向上的压力。
m
A mg
FN2O
小结:竖直面圆周运动最高点的临界问题
模型图
(2)当v>
gr时,mg
F拉
m
v2 r
r
O
即:F拉
m
v2 r
mg
物体能做完整的圆周运动
(3)当v gr时, 物体不能做完整的圆周运动,即还 未到达最高点就已经脱离了轨道
【演示】水流星
学以致用
例1:绳系着装有水的水桶,在竖直平面内做圆周运 动,成为“水流星”,水的质量m=0.5kg,绳长 L=0.4m,求:(g=10m/s2) ⑴求水桶经过最高点时水不流出的最小速率? ⑵水在最高点速率V=4m/s时, 桶底对水的压力?
高中物理必修二
5.7 生活中的 圆周运动
竖直面圆周运动最高点的临界问题
• 一、细绳模型 • 二、细杆模型
1)对下图四副图小球在最高点和最低点进行受力分
析
D
A
F
K
} }
B
C
(1)
(2
)
绳子模型
小球在竖直平面内做圆周 运动时,物体不能被支持
E
G
(3
(4
)
)
杆子模型
小球在竖直平面内做圆周运动 时,物体能被支持
or
细杆对物体可以施加拉力或者施加支持力。
竖直平面内的变速圆周运动
模型图
m的受力 情况
最高点A 的速度
绳
mA L
O
B
杆
mA L
O
B
重力、 绳的拉力
重力、杆的mA R
O
B
重力、外管壁 的支持力或内 管壁的支持力
vA 0
学以致用
例2:如图所示,细杆的一端与小球相连,可绕过O
一、细绳和内轨模型
理论研究
1.最高点: mg
F拉
v2 m
r
2.能过最高点的临界条件:
当F拉
0时,mg
m v临2 r
v临= gr vmin
m
v
r
O
一、细绳模型
【问题探讨】
小球以不同速度通过最高点时细绳对小球拉力的情况.
(1)当v
gr时, mg m v2 r
即:F拉 0
m
v
物体恰能做完整的圆周运动
点自由转动,细杆长0.5m,小球质量为0.5kg,现
给小球一初速度使它做竖直面圆周运动,求:小球
通过最高点时,下列两种情况下杆对球作用力的大
小。(g=10m/s2)
(1)过最高点时小球的速率为1.0m/s;
mv
(2)过最高点时小球的速率为4.0m/s.
o
(1)FN 2N (2)F拉 15N
轻杆模型
2)拉力还是支持力的临界条件:V rg
二、细杆模型
【问题探讨】
2.小球以不同速度通过最高点时细杆对小球的作用情况.
(1)当速度v gr时,细杆对小球无作用力. m v
FN=0
(2)当速度v
mg
(3)当速度v
FggNrr时时 ,,m细细vr杆杆2 对对小小球球有有拉支力持.力.
v2
FN mg m r
g=10m/s2 (1)A的速率为1.0m/s (2)A的速率为4.0m/s
解:先求出杆的弹力为0的速率v0
FN1 m
mg=mv02/l v02=gl=5 v0=2.25 m/s
A mg
(1) v1=1m/s< v0 球应受到内壁向上
O
的支持力N1,受力如图示:
mg-FN1=mv12/l 得: FN1 =1.6 N
B 小球通过最高点的最小速度为零
C 小球在水平线ab以下的管道中运动时外
侧管壁对小球一定无作用力
D 小球在水平线ab以下 的管道中运动时外侧管壁对
R
小球一定有作用力
a
b
练习:用钢管做成半径为R=0.5m的光滑圆 环(管径远小于R)竖直放置,一小球(可看作 质点,直径略小于管径)质量为m=0.2kg在环 内做圆周运动,求:小球通过最高点A时,下 列两种情况下球对管壁的作用力。 取
细绳
mA
r O
细杆
mA
r O
小球的 受力情况
B
重力、 绳的拉力
B
重力、杆的拉 力或支持力
最高点 的速度
vA gr
vA 0