高中函数的基本性质

合集下载

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

高中数学函数知识点归纳

高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳函数在高中数学中占据了非常重要的地位。

无论是在初中学习时,还是不同领域的工作和生活中,函数都有着重要的应用。

因此,在高中数学中,系统地学习函数知识点是很有必要的。

下面就对高中数学的函数知识点进行一个简单的归纳。

一、函数基本概念函数是将一个数集和另一个数集之间的对应关系,称作函数。

通常用f(x)表示,其中x称作自变量,f(x)称作函数值或因变量。

其中,自变量的取值有一定的范围,称作函数的定义域;函数的值域则是所有可能的函数值的集合。

二、函数的性质1.函数的单调性:单调递增和单调递减。

2.函数的奇偶性:奇函数和偶函数。

3.函数的周期性:周期函数。

4.函数的反函数。

5.函数的对称性:对称轴和中心对称。

三、函数的图像1.函数图像的表示方法:解析法和图像法。

2.函数的基本图像:常数函数、一次函数、二次函数、反比例函数、指数函数和对数函数。

3.函数的平移和伸缩。

四、函数的应用1.函数模型。

2.函数的变化率。

3.函数的最值。

4.函数的极限。

5.导数。

以上就是高中数学中函数知识点的主要内容。

虽然这个知识点占据了高中数学的很大一部分,但是要想真正掌握函数知识,还需要大量的练习。

因此,在学习函数知识时,我们需要掌握以下几个技巧。

一、常常理解概念,注重基础学习函数知识时,首先需要掌握函数的基本概念,例如定义域、值域、单调性、图像等等。

这些基本概念很重要,是后续学习和应用的关键。

因此,我们需要常常理解这些概念,注重基础。

二、多观察函数图像,探讨函数性质函数的图像是我们理解函数性质的重要途径。

因此,在学习函数知识时,需要多观察函数图像,探讨函数的性质,例如函数的单调性、奇偶性、周期性、对称性等等。

通过对函数图像的观察和分析,我们可以更好地理解函数性质。

三、勤于练习,熟练掌握应用函数知识不仅仅是理论性的知识,还有很多实际应用。

因此,在学习函数知识时,我们需要勤于练习,熟练掌握函数的应用,例如函数模型、函数的变化率、函数的最值、函数的极限和导数等等。

高中数学—函数的基本性质—完整版课件

高中数学—函数的基本性质—完整版课件

• 当 > 时, − < ,则
• − = −

− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =


• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.

−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性

+

(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.

任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,

高考数学函数的定义和性质

高考数学函数的定义和性质

高考数学函数的定义和性质函数是高中数学中的重要概念之一。

它在高考数学中占有重要的地位,理解和掌握函数的定义和性质对于解题至关重要。

本文将从函数的定义、基本性质以及一些常见函数的性质等方面来进行阐述。

1. 函数的定义函数是一种特殊的关系,可以将一个集合中的每个元素与另一个集合中的唯一一个元素相关联。

用数学语言描述就是,对于集合A和B,如果存在一种规律,使得对于A中的每个元素a,都能找到B中唯一一个元素b与之对应,那么我们就可以说集合A和B之间存在一个函数f。

2. 函数的基本性质函数有一些基本的性质,包括定义域、值域、单调性、奇偶性以及周期性等。

2.1 定义域和值域定义域是指函数能够取值的所有实数的集合,常用符号表示为D;值域是指函数所有可能取得的值的集合,常用符号表示为R。

2.2 单调性单调性指函数在定义域上的增减性质。

如果在定义域内任取两个实数a和b,并且a小于b,那么函数f(x)在a处的函数值f(a)和在b处的函数值f(b)之间的大小关系可以判断函数的单调性。

2.3 奇偶性函数的奇偶性是指函数关于原点(0,0)的对称性。

如果对于定义域上的任何实数x,有f(-x) = -f(x)成立,则称函数是奇函数;如果对于定义域上的任何实数x,有f(-x) = f(x)成立,则称函数是偶函数。

2.4 周期性周期性指函数在一定区间上具有重复性质。

如果存在一个正数T,使得对于定义域上的任何实数x,有f(x+T) = f(x)成立,则称函数具有周期性。

3. 常见函数的性质在高考数学中,有许多常见的函数,其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。

每个函数都有其独特的性质,掌握这些性质对于解题非常有帮助。

3.1 一次函数一次函数的一般形式为f(x) = ax + b,其中a和b为常数。

一次函数的图像是一条直线,其特点是斜率恒定。

3.2 二次函数二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不为零。

高中函数基础知识

高中函数基础知识

高中函数基础知识引言函数是高中数学中非常重要的一个概念,它是描述两个变量之间关系的一种工具。

高中数学中的函数主要分为线性函数、二次函数、指数函数、对数函数和三角函数等。

在本篇文章中,我们将介绍高中函数的基础知识,包括函数的定义、性质以及常见函数的图像和变换等。

一、函数的定义函数是一个集合,它由两个非空集合的有序对组成。

通常我们用字母 f, g, h 等来表示函数,如 f(x), g(x), h(x)。

其中,x 称为自变量,f(x) 称为因变量。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

函数可以用一个或多个方程或不等式来表示。

函数的定义有以下几个要点: - 函数必须有定义域,即自变量的取值范围。

- 函数的定义域是实数集的一个子集。

- 函数的值域是实数集或实数集的子集。

二、函数的性质高中数学中的函数具有一些特殊的性质,下面介绍几个常见的性质:1. 奇偶性如果对于函数 f(x),它满足 f(-x) = f(x),则函数 f(x) 是偶函数;如果满足 f(-x) = -f(x),则函数 f(x) 是奇函数。

函数的奇偶性可以通过图像的对称性来判断。

如果对于函数 f(x) 的任意两个不同的自变量 x1 和 x2,当 x1<x2 时,有f(x1)<f(x2) 则函数 f(x) 是增函数;反之,如果当 x1<x2 时,有 f(x1)>f(x2),则函数 f(x) 是减函数。

3. 对称轴与顶点对于二次函数 f(x) = ax^2+bx+c,其中 a、b、c 是常数。

二次函数的对称轴是确定顶点的直线。

对称轴的表达式为 x = -b/2a。

顶点的坐标可以通过将 x = -b/2a代入 f(x) 中求得。

4. 零点与平移函数 f(x) = 0 的解称为函数的零点。

对于函数 f(x) = a(x-h)^2+k,其中 a、h、k是常数,如果 h>0,则表示向右平移 h 个单位;如果 h<0,则表示向左平移 h 个单位;如果 k>0,则表示向上平移 k 个单位;如果 k<0,则表示向下平移 k 个单位。

高中数学上册函数的概念及性质

高中数学上册函数的概念及性质

高中数学上册函数的概念及性质
函数是高中数学的一个重要概念,它是一种映射关系,它把一组输入值映射到一组输出值。

函数可以用来描述一些物理现象、社会现象等等,是数学建模的重要工具。

一般来说,函数指的是满足一定性质的关系。

如果输入值是x,输出值是f(x),则称f(x)为x的函数值。

函数的性质包括:
1、定义域:函数f(x)的定义域是指x的取值范围,即函
数f(x)可以接受的输入值的范围。

2、值域:函数f(x)的值域是指函数f(x)的输出值的范围,即f(x)的所有可能的值的范围。

3、单调性:函数f(x)的单调性是指当x的取值发生变化时,f(x)的取值只有一种变化趋势,即f(x)的取值只会变大或
只会变小。

4、对称性:函数f(x)的对称性是指当x取值发生变化时,f(x)的取值也发生相应的变化,但f(x)的曲线不发生变化。

5、凹凸性:函数f(x)的凹凸性是指在函数f(x)的曲线上,当x取某个值时,f(x)的曲线在此点处有凸点或凹点。

6、奇偶性:函数f(x)的奇偶性是指当x取一定的值时,f(x)的值必须满足f(-x)=-f(x)的性质。

函数的性质是高中数学上册研究的必备知识,函数的性质是函数的重要特性,是数学建模过程中不可缺少的知识。

通过理解函数的性质,可以更加准确、深入地研究函数的性质,更好地描述实际问题,从而实现数学建模。

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

高一数学的函数知识点归纳

高一数学的函数知识点归纳

高一数学的函数知识点归纳在高一的数学学习中,函数是一个非常重要的知识点。

函数的概念在数学中具有广泛的应用,并且在之后的学习中也会经常用到。

因此,熟练掌握函数的相关知识对于学习数学是非常重要的。

一、函数的定义和表示方式函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素上。

函数可以用多种不同的方式来表示,包括文字描述、图像、表格和公式等。

函数的定义通常形式为“y=f(x)”,其中x是自变量,y是因变量,f(x)表示函数的定义域和值域之间的关系。

二、函数的基本性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是函数输出的所有可能值的集合。

2. 单调性:函数的单调性指函数在自变量增大的过程中是否单调递增或单调递减。

如果函数在整个定义域上都是单调递增,则称为严格递增函数;如果函数在整个定义域上都是单调递减,则称为严格递减函数。

3. 奇偶性:函数的奇偶性指函数图像是否对称于y轴。

如果对于任意x∈定义域,f(-x)=-f(x),则函数为奇函数;如果对于任意x∈定义域,f(-x)=f(x),则函数为偶函数。

4. 周期性:函数的周期性指函数图像是否在某个区间内重复出现。

如果存在一个正数T,对于任意正整数n,有f(x+Tn)=f(x),则函数具有周期T。

三、常见的函数类型1. 线性函数:线性函数是函数图像为一条直线的函数,表示为f(x)=kx+b,其中k和b为常数。

线性函数的图像是直线,且斜率为k,截距为b。

2. 幂函数:幂函数是形如f(x)=x^a的函数,其中a为常数。

幂函数的图像形状与a的正负和大小有关,当a为正数时,图像从左上方逼近x轴,当a为负数时,图像从右上方逼近x轴。

3. 指数函数:指数函数是形如f(x)=a^x的函数,其中a为正常数且不等于1。

指数函数的图像具有一定的特点,包括过点(0,1)、严格递增或递减等。

4. 对数函数:对数函数是指数函数的反函数,表示为f(x)=loga(x),其中a为正常数且不等于1。

高中数学第二章函数-函数及其性质(竞赛精讲)

高中数学第二章函数-函数及其性质(竞赛精讲)

第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。

(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。

若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。

(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。

(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。

2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。

判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。

3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。

若在所有的周期中存在一个最小的正数,就称其为最小正周期。

(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。

(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。

(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。

(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

函数基本性质及分类

函数基本性质及分类

函数基本性质及分类函数是数学中一个重要的概念,是一种从一个集合到另一个集合的映射关系。

每一个函数都有一组输入值和对应的输出值,通常写成函数名加上括号内的自变量,例如f(x)。

函数的基本性质和分类是我们在学习和应用函数时必须掌握的知识点,下面就来一起探讨一下。

一、函数的基本性质1. 定义域和值域:一个函数的定义域是指所有自变量可能取值的集合,值域是指函数所有可能的输出值的集合。

例如,函数f(x)=x^2的定义域是实数集,值域是非负实数集。

2. 单调性:一个函数在定义域内的单调性表示函数的增减趋势。

如果一个函数在它的定义域上是单调递增的,则对于任意两个自变量,它们对应的函数值的大小关系是前者小于后者。

如果一个函数在定义域内是单调递减的,则其中任意两个自变量所对应的函数值的大小关系是前者大于后者。

3. 奇偶性:一个函数的奇偶性表示函数是否具有对称性。

如果一个函数f(x)满足f(-x)=-f(x)对于所有x成立,则函数称为奇函数;如果f(-x)=f(x)对于所有x成立,则函数称为偶函数。

例如,函数f(x)=x^3是奇函数,而函数g(x)=x^2是偶函数。

4. 周期性:一个函数如果满足f(x+T)=f(x)对于所有x成立,则称函数具有周期性,其中T是函数的周期。

例如,正弦函数sin(x)和余弦函数cos(x)的周期都是2π。

二、函数的分类1. 一次函数:一个函数f(x)如果可以表示为f(x)=ax+b的形式,则称它为一次函数。

其中a和b是常数,a称为斜率,表示函数曲线在每个点的增长速率,b称为截距,表示函数曲线与y轴之间的距离。

一次函数在平面直角坐标系中的图像是一条直线,其斜率为正表示函数递增,为负则表示函数递减,为零则表示函数为常数函数。

2. 二次函数:一个函数f(x)=ax^2+bx+c称为二次函数。

在平面直角坐标系中,二次函数的图像是一个开口向上或向下的抛物线。

其中,a决定了抛物线的开口方向和斜率,当a>0时开口向上,a<0时开口向下;b决定了抛物线的位置,c决定了抛物线与y轴的交点。

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质高一数学人教版必修一第一单元知识点:函数的基本性质函数表示每个输入值对应唯一输出值的一种对应关系。

小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。

1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质引言:函数是高中数学中的重要知识点之一,它不仅在高考中占有一定比重,而且在大学数学、物理等学科中也应用广泛。

因此,学好函数是中学数学的重要任务之一。

本文将介绍函数的基本性质,包括定义域、值域、单调性、奇偶性、周期性等,同时提供20道以上的练习题,供读者参考。

一、函数的定义函数是一种特殊的映射关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数通常用符号f(x)表示,其中x是自变量,f(x)是因变量。

函数可以表示为f:A\rightarrow B,其中A是定义域,B是值域。

二、函数的基本性质1.定义域:函数的定义域是指所有可以输入函数的自变量的值的集合。

函数的定义域可以是实数集、有理数集、整数集等。

在定义函数时,需要指定函数的定义域。

2.值域:函数的值域是指所有函数可能的输出值的集合。

它是由定义域和函数的性质决定的。

3.单调性:函数的单调性指函数在定义域上的单调变化性质,包括单调递增和单调递减。

如果函数的自变量增大,函数值也增大,则称函数在这个区间内是单调递增的;如果函数的自变量增大,函数值减小,则称函数在这个区间内是单调递减的。

4.奇偶性:函数的奇偶性指函数的性质,可以分为偶函数和奇函数。

如果函数在定义域内满足f(-x)=f(x),则称函数为偶函数;如果函数在定义域内满足f(-x)=-f(x),则称函数为奇函数。

5.周期性:函数的周期性指函数在定义域上存在一个最小正周期T,即f(x+T)=f(x),其中T是正实数。

三、练习题1.设函数f(x)=ax+b,其中a,b是实数,且f(2)=3,f(3)=4,求a,b。

2.求函数f(x)=2x^2-3x+1的定义域和值域。

3.若函数f(x)在区间[a,b]上是单调递增的,且f(a)=f(b)=0,证明f(x)=0在区间[a,b]上有且只有一个实根。

4.设函数f(x)=\sin(x+\alpha),其中0<\alpha<\dfrac{\pi}{2},证明f(x)是奇函数。

高中数学:函数的基本性质

高中数学:函数的基本性质

⾼中数学:函数的基本性质⼀、知识点1、函数(1)了解构成函数的要素,会求⼀些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的⽅法(如图象法、列表法、解析法)表⽰函数.(3)了解简单的分段函数,并能简单应⽤.(4)理解函数的单调性、最⼤(⼩)值及其⼏何意义;结合具体函数,了解函数奇偶性的含义.(5)会运⽤函数图象理解和研究函数的性质.2、指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.(4)知道指数函数是⼀类重要的函数模型.3、对数函数(1)理解对数的概念及其运算性质,知道⽤换底公式能将⼀般对数转化成⾃然对数或常⽤对数;了解对数在简化运算中的作⽤.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点。

(3)知道对数函数是⼀类重要的函数模型.(4)了解指数函数与对数函数互为反函数.4、幂函数(1)了解幂函数的概念(2)结合函数的图象,了解它们的变化情况.5、函数与⽅程(1)结合⼆次函数的图象,了解函数的零点与⽅程根的联系,判断⼀元⼆次⽅程根的存在性及根的个数.(2)根据具体函数的图象,能够⽤⼆分法求相应⽅程的近似解.6、函数模型及其应⽤(1)指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)函数模型(如指数函数、对数函数、幂函数、分段函数等)在社会⽣活中普遍使⽤的函数模型)的⼴泛应⽤.⼆、点拨:1、关于映射和函数的基本概念在应⽤时应注意把重点放在它们的⼏个要素上,从定义⼊⼿,其规律⽅法是:(1)映射的定义是有⽅向性的,即从集合A到B与从集合B到A的映射是两个不同的映射,映射是⼀种特殊对应关系,只有⼀对⼀、多对⼀的对应才是映射。

(2)函数的定义有两种形式,都描述了定义域、值域和从定义域到值域的对应法则。

高一上册函数数学知识点

高一上册函数数学知识点

高一上册函数数学知识点函数是高中数学中的重要概念之一,在高一上册,我们学习了一系列的函数数学知识点。

本文将对这些知识点进行详细介绍和讲解。

一、函数的定义和表示方式函数是一个自变量与因变量之间的对应关系,通常用f(x)表示。

其中,x为自变量,f(x)为因变量。

函数可以用图像、表格、解析式等方式来表示。

二、函数的性质1. 定义域和值域:函数存在的自变量范围称为定义域,函数对应的因变量值的范围称为值域。

2. 奇偶性:若对于函数f(x),当x在定义域内变化时,有f(-x)= f(x),则函数为偶函数;若有f(-x) = -f(x),则函数为奇函数。

3. 单调性:若对于函数f(x),当x1 < x2时,有f(x1) < f(x2),则函数为增函数;若有f(x1) > f(x2),则函数为减函数。

4. 周期性:若对于函数f(x),存在一个正数T,使得对于任意x,有f(x+T) = f(x),则函数具有周期性。

三、常见函数类型1. 一次函数:f(x) = kx + b,其中k和b为常数,k称为斜率,b称为截距。

2. 二次函数:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0,图像为抛物线。

3. 指数函数:f(x) = a^x,其中a为常数,a>0且a≠1,图像为递增的曲线。

4. 对数函数:f(x) = loga(x),其中a为常数,a>0且a≠1,图像为递增的曲线。

5. 幂函数:f(x) = x^a,其中a为常数,a ≠ 0,图像与指数函数类似,但可以取负数。

四、函数的运算1. 函数的和差:对于函数f(x)和g(x),可以定义函数h(x) = f(x) ±g(x)。

相加时,对应的函数值相加;相减时,对应的函数值相减。

2. 函数的乘积:对于函数f(x)和g(x),可以定义函数h(x) = f(x) * g(x)。

对应的函数值相乘。

3. 函数的复合:对于函数f(x)和g(x),可以定义函数h(x) =f(g(x))。

高中数学函数的基本性质

高中数学函数的基本性质

考点三 函数的周期性 1.周期函数的概念 设函数y=f(x),x∈D.如存在非零常数T,使得对任何x∈D都有f(x+T)=f(x), 则函数f(x)为周期函数,T为y=f(x)的一个周期. 2.关于函数周期性的几个常用结论 (1)若T为函数f(x)的一个周期,则kT(k为非零整数)也是函数f(x)的周期,这 就是说,一个函数如果有周期,就有无数多个.
1 x x2 1
x 2 1 )=-f(x),∴f(x)是奇函数. =-log2(x+
解法二:易知f(x)的定义域为R. ∵f(-x)+f(x)=log2[(-x)+ ( x)2 1 ]+log2(x+ x 2 1 )=log21=0,∴f(-x)=-f(x),
∴f(x)为奇函数.
∵定义域关于原点不对称,∴函数f(x)是非奇非偶函数. (2)函数的定义域为{x|x≠0},关于原点对称, 当x>0时,-x<0, f(-x)=x2-2x-1=-f(x); 当x<0时,-x>0, f(-x)=-x2-2x+1=-f(x), ∴f(-x)=-f(x),即函数是奇函数.
4 x 2 0, (3)由题意知 ⇒-2≤x≤2且x≠0, | x 3 | 3
解题导引
求出f(x)的周期为8 f(80),f(11) 在[-2,2]内求f(-25),
根据f(x)为奇函数且在[0,2]上是 结论
增函数得f(x)在[-2,2]上是增函数
解析 ∵f(x+4)=-f(x),∴f(x+8)=-f(x+4), ∴f(x+8)=f(x), ∴f(x)的周期为8,∴f(-25)=f(-1), f(80)=f(0), f(11)=f(3)=f(-1+4)=-f(-1)=f(1), 又∵奇函数f(x)在区间[0,2]上是增函数, ∴f(x)在区间[-2,2]上是增函数, ∴f(-25)<f(80)<f(11),故选D.

2024年高二数学函数基本性质知识总结(2篇)

2024年高二数学函数基本性质知识总结(2篇)

2024年高二数学函数基本性质知识总结____年高二数学函数基本性质知识总结(____字)一、函数的定义和基本性质函数是一种特殊的关系,每一个自变量只对应一个因变量。

函数的定义包括定义域、值域、对应关系和表达式。

函数的基本性质包括单调性、奇偶性、周期性和界值性。

1.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

定义域可以通过解不等式或考察定义域的连续性来确定。

值域可以通过求导或考察函数的图像来确定。

1.2 对应关系函数的对应关系决定了自变量和因变量之间的对应关系。

函数可以用图像、显式表达式、隐式表达式或递推关系来表示。

对应关系可以用一一对应、多对一或一对多来描述。

1.3 单调性一个函数的单调性是指函数在定义域上的变化趋势。

函数可以是上下单调递增、上下单调递减、左右单调递增或左右单调递减。

单调性可以通过求导数或摸底函数的上下凸性来判断。

1.4 奇偶性一个函数的奇偶性是指函数在定义域上的对称性。

一个函数是奇函数,当且仅当对于任意x,f(-x)=-f(x)。

一个函数是偶函数,当且仅当对于任意x,f(-x)=f(x)。

奇偶性可以通过观察函数的对称性或通过代入-x来判断。

1.5 周期性一个函数的周期性是指函数具有重复出现的规律。

周期函数满足f(x+T)=f(x),其中T为函数的周期。

周期性可以通过观察函数的周期性或通过解函数的方程来判断。

1.6 界值性一个函数的界值性是指函数在定义域或值域上的极大值或极小值。

界值性可以通过求导数或考察函数的图像来判断。

二、高中数学中常见的函数高中数学中常见的函数包括常函数、一次函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

2.1 常函数常函数是一个常数,其函数图像是一条平行于x轴的直线。

常函数的定义域是整个实数集,值域是只有一个值的数集。

2.2 一次函数一次函数是一个一次多项式,函数表达式为f(x)=ax+b,其中a 和b为常数,a称为斜率,b称为截距。

高中数学函数的基本性质

高中数学函数的基本性质

函数的基本性质要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间D 上是减函数.要点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间 (1)单调区间的定义如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间.函数的单调性是函数在某个区间上的性质. 要点诠释:①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集;②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;③不能随意合并两个单调区间; ④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。

(2)图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性。

(3)直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 函数的概念
①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到
B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.
②()f x 是分式函数时,定义域是使分母不为零的一切实数.
③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,
()
2
x k k Z π
π≠+
∈.
⑥零(负)指数幂的底数不能为零. 二 函数的表示法
函数的表示方法:表示函数的方法,常用的有解析法、列表法、图象法三种. 映射的概念
①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合
B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.
② 给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 三 单调性与最大(小)值 1函数的单调性
①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,
都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的
最大值,记作
max ()f x M
=.
(2) 一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,
都有()f x m ≥;(2)存在0x I ∈,使得0()f x
m =.那么,我们称m 是函数()f x 的最小
值,记作:()f x min = m 四 函数的奇偶性 ② 函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.
③ 奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相
反.
偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 五 函数周期性、对称性
1周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的 正数叫做最小正周期。

nT ( n ∈Z,n ≠0 )
2 函数)(x f y =满足如下关系系,则T x f 2)(的周期为
)()(x f T x f -=+;
)(1
)()(1)(x f T x f x f T x f -=+=
+或;
ƒ(x+T)=ƒ( x -T )
3、函数f(x)满足f(x +a)=f(x +b),则函数f(x)的周期是T=|(x +a)-(x +b)|=|a -b|
六 两个函数的图象对称性 1、 与关于X 轴对称。

2、
与关于Y 轴对称。

3 函数)(x f y =与)(x f y --=图象关于原点对称
4
)(x a f y -=与)(b x y -=关于直线
2b
a x +=
对称。

七 函数零点
1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数
))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y = 的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.
3、函数零点的求法: 求函数)(x f y =的零点:
)(x f y =)(x f y -=)(x f y =)(x f y -=
○1 (代数法)求方程0)(=x f 的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点:
二次函数
)0(2
≠++=a c bx ax y . 1)△>0,方程
02
=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.
2)△=0,方程02
=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一
个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程02
=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零
点.。

相关文档
最新文档