河北省唐山市2017年最新中考数学模拟试卷(2)及答案解析

合集下载

河北省唐山市迁安市2017年中考数学一模试卷及参考答案

河北省唐山市迁安市2017年中考数学一模试卷及参考答案

20. 按照如下步骤计算:6﹣2÷( + ﹣ ﹣ ). (1) 计算:( + ﹣ ﹣ )÷6﹣2; (2) 根据两个算式的关系,直接写出6﹣2÷( + ﹣ ﹣ )的结果. 21. 如图,Rt△ABC中,直角边AC=7cm,BC=3cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2cm/s的速度 移动,过点E作BC的垂线交直线CD于点F.
(1) 求证:∠A=∠BCD; (2) 点E运动多长时间,CF=AB?并说明理由. 22. 在一个多边形中,一个内角相邻的外角与其他各内角的和为600°. (1) 如果这个多边形是五边形,请求出这个外角的度数; (2) 是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由. 23. 小伟和小欣玩一种抽卡片游戏:将背面完全相同、正面分别写有1,2,3,4的四张卡片背面向上洗匀后,小伟和
(2) 如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩
形铁片切割成两个全等的直角梯形铁片;
①当BE=DF= 时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由; ②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围. 26. 如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x= 1,直线BC与抛物线的对称轴交于点D.
(1)
求抛物线的函数表达式;
(2) 求直线BC的函数表达式; (3) 点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ= AB时,求tan∠CED的值; ②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答. 参考答案 1. 2. 3. 4. 5. 6. 7.

2017年河北省中考数学模拟试题与答案2

2017年河北省中考数学模拟试题与答案2

2021年X X省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两局部;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分值为120分,考试时间为120分钟.卷Ⅰ〔选择题,共42分〕本卷须知:1.答卷I前,考生务必将自己的XX、XX号、科目填涂在答题卡上.考试完毕,监考人员将试卷和答题卡一并收回.2.每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题〔本大题共16个小题,1~6小题,每题2分;7~16小题,每题3分,共42分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.4的算术平方根是【】。

A.2B.-2C.±2D.22.某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示〔保存三个有效数字〕应为〔〕-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克A.6.75×103.26的值A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间4.以下运算正确的选项是〔〕A. a5+a5=a10B.a3·a3=a9C.〔3a3〕3=9a9123=a9D.a÷a5.如图,在△ABC中,∠ACB=90 0 ,∠A=20 0 ,假设将△ABC沿CD折叠,使B点落在AC边上的E处,那么∠ADE的度数是〔〕0B.400C.500D.550A.306.使代数式x2x1有意义的x的取值X围是【】11x C.x0且x22A.x0B.D.一切实数2x40 7.一组数据2,3,6,8,x的众数是x,其中x又是不等式组的整数解,那么这x70 组数据的中位数可能是【】A.3B.4C.6D.3或68.(3ay)(3ay)是以下哪一个多项式因式分解的结果〔〕A.229ayB.229ayC.229ayD.229ay9.菱形的边长和一条对角线的长均为2cm,那么菱形的面积为〔〕A. 24cmB.23cmC.223cmD.3cm210.左图是一几何体,某同学画出它的三视图如下〔不考虑尺寸〕,你认为正确的选项是〔〕正面①正视图②俯视图③左视图A.①②B.①③C.②③D.③11.不等式组2x40x1≥0的解集在数轴上表示正确的选项是〔〕10121012A.B.10121012C.D.12.以下列图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.13.某单位购置甲、乙两种纯洁水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,那么所列方程组中正确的选项是〔〕A.8x6y250y75%xB.8x6y250x75%yC.6x8y250y75%xD.6x8y250x75%y14.将一X矩形纸片A B C D如图所示折叠,使顶点C落在C点.AB2,DEC,那么折痕DE的长为〔〕30A.2B.23C.4D.1第14题图第15题图15.2021年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进展竞猜,统计结果如图.假设把认为巴西队将夺冠的这组学生人数作为一组的频数,那么这一组的频率为〔〕A.0.1B.0.15C.0.25D.0.316.一个装有进出水管的水池,单位时间内进、出水量都是一定的.水池的容积为800 升,又知单开进水管20分钟可把空水池注满;假设同时翻开进、出水管,20分钟可把满水池的水放完,现水池内有水200升,先翻开进水管3分钟,再翻开出水管,两管同时开放,直至把水池中的水放完,那么能确定反映这一过程中水池的水量Q〔升〕随时间t〔分钟〕变化的函数图象是〔〕Q〔升〕Q〔升〕320320200200O38O311t〔分钟〕t〔分钟〕A.B.Q〔升〕Q〔升〕320200200O311O311t〔分钟〕t〔分钟〕C.D.总分核分人2021年XX省初中毕业生升学文化课模拟考试数学试卷卷II〔非选择题,共78分〕本卷须知:1.答卷II前,将密封线左侧的工程填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.三题号二212223242526得分得分评卷人二、填空题〔本大题共4个小题,每题3分,共12分.把答案写在题中横线上〕2.17.圆锥的底面半径为3cm,母线长4cm,那么它的侧面积为cm18.如图,AB是⊙O的弦,OC⊥AB,垂足为C.假设AB=23,OC=1,那么OB的长为▲.yADOBOCxACB〔第18题〕〔第19题〕19.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,假设点A的坐标是〔-1,4〕,那么点C的坐标是.20.在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.假设满足∠DEC=90°的点E有且只有一个,那么BC=cm.三、解答题〔本大题共6个小题,共66分.解容许写出文字说明、证明过程或演算步骤〕得分评卷人21.〔本小题总分值9分〕|a-1|+b2=0,求方程ax+bx=1的解.得分评卷人22.〔本小题总分值10分〕某校九年级男生进展引体向上训练,体育教师随机选择了局部男生,根据训练..前.成绩编组:0~4个的编为第一组,5~8个的编为第二组,9~12个的编为第三组,在训练后制作了如下两幅统计图,请答复以下问题:每个小组引体向上平均成绩比照统计图每组人数占所选男生人数的百分比统计图平均成绩/个121086 5 68910训练前训练后第二组60%10%430%第三组22第一组第一组第二组第三组①②〔第22题〕〔1〕以下说法正确的选项是〔填写所有正确的序号〕.①训练后,第一组引体向上平均成绩的增长率最大;②训练前,所选男生引体向上成绩的中位数一定在第二组;③训练前,所选男生引体向上成绩的众数一定在第二组.〔2〕估计该校九年级全体男生训练后的平均成绩是多少?得分评卷人23.〔本小题总分值10分〕如下列图,A、B两地之间有一条河,原来从A地到B地需要经过桥D C,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线A B从A地到达B地.BC=16km,∠A=53°,∠B=30°.桥D C和AB平行,那么现在从A地到达B地可比原来少走多少路程?〔结果准确到0.1km.参考数据:31.73,sin53°≈0.,80cos53°≈0.6〕0A53°DGHCEF30°B得分评卷人24.〔本小题总分值11分〕如果一条抛物线y=ax 2 +bx+c〔a≠0〕与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形〞.〔1〕“抛物线三角形〞一定是____________三角形;〔2〕假设抛物线抛物线m: 2ya(x2)b(ab0)的“抛物线三角形〞是直角三角形,请求出a,b满足的关系式;2〔3〕如图,△OAB是抛物线n:y=-x+b′x〔b′>0〕的“抛物线三角形〞,是否存在以原点O为对称中心的矩形ABCD?假设存在,求出过O、C、D三点的抛物线的表达式;假设不存在,说明理由.yAOBx得分评卷人25.〔本小题总分值12分〕两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进展如下操作:(1)如图11(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.CFAD图11(1) BE (2)如图11(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.CFAD图11(2) BE(3)如图11(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sinα的值.C(F)AD(F)B(E)α图11(3)E得分评卷人26.〔本小题总分值14分〕某市今年在中心城区启动二环路高架桥快速通道建立工程,研究说明,某种情况下,高架桥上的车流速度V〔单位:千米/时〕是车流密度x〔单位:辆/千米〕的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如下列图.〔1〕求当28<x≤188时,V关于x的函数表达式;〔2〕假设车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P〔单位:辆/时〕到达最大,并求出这一最大值.〔注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度〕v千米/时80x辆/千米281882021年X X省初中毕业生升学文化课模拟考试数学试题参考答案一、选择题题号12345678答案AACDDCDC题号910111213141516答案CABDACDB二、填空题17.12π18.219.〔3,0〕20.8三、解答题21.解:解:由|a-1|+b2=0,得a=1,b=-2.由方程1x-2x=1得2x2+x-1=02+x-1=0解之,得x1=-1,x2= 12.经检验,x1=-1,x2=12是原方程的解.22.解:〔1〕①②.〔2〕5×30%+8×60%+10×10%=7.3〔个〕.答:估计该校九年级全体男生训练后的平均成绩是7.3个.23.解:23.作DG⊥AB于G、CH⊥AB于H在Rt△BCH中,Sin∠B= ∴CH=8;C HCB,BC=16km,∠B=30°cos∠B= B HCB∴BH=83易得DG=CH=8在△ADG中,Sin∠A= D GAD、DG=8∴AD=10、AG=6∴〔AD+DC+CB〕-〔AG+GH+HB〕=20-83≈6.2 24.解:〔1〕等腰〔2〕ab1.〔3〕存在.所求抛物线的表达式为 2y=x+23x.25.解:(1)过C点作CG⊥AB于G,CF在Rt△AGC中,∵sin60°=CG,∴AC CG32ADG解图11(1) BE∵AB=2,∴S梯形CDBF=S△ABC= 1223232(2)菱形∵CD∥BF,FC∥BD,∴四边形CDBF是平行四边形∵DF∥AC,∠ACD=90°,∴CB⊥DF∴四边形CDBF是菱形(判断四边形CDBF是平行四边形,并证明正确,记2分)(3)过D点作DH⊥AE于H,那么S△ADE= 12ADEB121 332······又S△ADE= 1233321AEDH,DH(或)············2AE77DH321∴在Rt△DHE’中,sinα=)或(DE142726.解:〔1〕设函数解析式为V=kx+b,那么,解得:,故V关于x的函数表达式为:V=﹣x+94;〔2〕由题意得,V=﹣x+94≥50,解得:x≤8,又P=Vx=〔﹣x+94〕x=﹣x2+94x,当0<x≤88时,函数为增函数,即当x=88时,P取得最大,故Pmax=﹣×882+94×88=4400.答:当车流密度到达88辆/千米时,车流量P到达最大,最大值为4400辆/时。

河北省唐山市丰南区中考数学一模试卷(含解析)

河北省唐山市丰南区中考数学一模试卷(含解析)

2017年河北省唐山市丰南区中考数学一模试卷一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>02.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.23.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣24.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣48.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.89.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2co s55°海里 D.2tan55°海里10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或213.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.914.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:216.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是.18.已知a2+b2=5,ab=﹣1,则a+b= .19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m是绝对值最小的实数)21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段条;(2)若直线l上有五个点A、B、C、D、E,则共有线段条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手次.(5)从A 火车站到B 火车站,中途有5站,若各车厢收费标准一样,则票价共有 种.(6)某n 边形共有54条对角线,求n .23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 ,该班学生的总人数为 ;(2)训练后篮球定时定点投篮人均进球数为 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?24.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C两点,∠ABO=30°,OB=3OC .(1)试说明直线AC 与直线AB 垂直; (2)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(3)在(2)的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2017年河北省唐山市丰南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【考点】29:实数与数轴.【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.2.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.2【考点】A3:一元二次方程的解.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:1+m+3=0,解得:m=﹣4,故选A3.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣2【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,且分式的分母不等于零.【解答】解:依题意得:x+2>0,解得x>﹣2.故选:B.4.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°【考点】JA:平行线的性质.【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.8.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【考点】S4:平行线分线段成比例;LA:菱形的判定与性质;N2:作图—基本作图.【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF ∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.9.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2cos55°海里 D.2tan55°海里【考点】TB:解直角三角形的应用﹣方向角问题.【分析】首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里.【解答】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.【考点】U3:由三视图判断几何体;I6:几何体的展开图.【分析】由三视图的特征,可得这个几何体应该是圆柱;【解答】解:根据题意,这个几何体是圆柱;其展开图为:故选A.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;D1:点的坐标.【分析】根据第二象限内点的坐标特点列出关于x的不等式组,解之可得.【解答】解:∵点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,∴,解得:﹣3<x<4,故选:C12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或2【考点】2C:实数的运算.【分析】已知等式利用已知的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简x★2=10得:x2﹣2x+2=10,整理得:x2﹣2x﹣8=0,即(x﹣4)(x+2)=0,解得:x=4或x=﹣2,故选C13.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.9【考点】H3:二次函数的性质.【分析】据题意可知此函数的对称轴为x=1,把x=1代入对称轴公式x=,得=1,解方程可求k.【解答】解:∵当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,∴函数的对称轴为x=1,根据对称轴公式x=,即=1,解得k=10.故选C.14.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【考点】M2:垂径定理;KQ:勾股定理;KS:勾股定理的逆定理;MN:弧长的计算.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选:B.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出 DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.16.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.【考点】4I:整式的混合运算.【分析】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可..【解答】解:设S=1+5+52+53+ (52014)则5S=5+52+53+ (52015)5S﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1,所以,S=.故选:C.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是 2 .【考点】24:立方根.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.18.已知a2+b2=5,ab=﹣1,则a+b= .【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=a2+2ab+b2,再把ab=﹣1,a2+b2=5整体代入即可.【解答】解:∵(a+b)2=a2+2ab+b2,∴a+b=,故答案为19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.【考点】H6:二次函数图象与几何变换.【分析】根据图形的变换,可得规律:第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,可得答案.【解答】解:第一次变换平移点的坐标是(3,2),第二次变换平移点的坐标是(5,﹣2),第三次变换平移点的坐标是(7,2,)第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,点P 2016坐标为,故答案为:.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m 是绝对值最小的实数)【考点】6D :分式的化简求值;2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,得到最简结果,求出m 的值代入计算即可求出值.【解答】解:(1)原式=1﹣2+4+﹣1=4﹣;(2)原式=﹣==﹣,由题意得到m=0,则原式=﹣.21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【考点】L9:菱形的判定;KC:直角三角形全等的判定;L5:平行四边形的性质;Q2:平移的性质.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段 6 条;(2)若直线l上有五个点A、B、C、D、E,则共有线段10 条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手45 次.(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有21 种.(6)某n边形共有54条对角线,求n.【考点】AD:一元二次方程的应用;L2:多边形的对角线.【分析】理解:直接利用线段的定义分别列举得出即可.应用:根据“理解”的(3)题得到的结论进行解答.【解答】解:理解:(1)直线l上有A、B、C、D四点,线段总条数是:3+2+1=6,故答案是:6;(2)若直线l上有五个点A、B、C、D、E,线段总条数是:4+3+2+1=10,故答案是:10;(3)若直线上有n个点时,线段总条数(n﹣1)+…+3+2+1=.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手的次数是: =45(次).故答案是:45;(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有: =21(种).故答案是:21;(6)依题意得: =54,解得:n 1=12,n 2=﹣9(舍去).所以n=12.23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 10% ,该班学生的总人数为 40 ;(2)训练后篮球定时定点投篮人均进球数为5 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?【考点】X4:概率公式;VA :统计表;VB :扇形统计图;W2:加权平均数.【分析】(1)根据选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,进而得出训练篮球的人数和全班人数;(2)利用进球总数除以总人数即可得出平均数;(3)根据进球数为4的人数为8,运用公式进行计算,即可得到抽到4的概率.【解答】解:(1)选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%; 训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=24÷60%=40;故答案为:10%,40;(2)人均进球数==5;故答案为:5;(3)P(抽到4)==.24.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C 两点,∠ABO=30°,OB=3OC.(1)试说明直线AC与直线AB垂直;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据三角函数求出OB,即可求得OC,再由三角函数求得∠ACO,即可解决问题;(2)如图1中,过D作DE⊥x轴于E.由△ADE≌△ACO,推出DE=OC=1,AE=OA=,求出点D坐标;(3)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解答】解:(1)结论:AC⊥AB.理由如下:∵A(,0),∴OA=,∵∠ABO=30°,tan∠ABO==,∴BO=3,∵OB=3OC,∴OC=1,∴tan∠ACO==,∠ACO=60°,∴∠BAC=90°,∴AC⊥AB;(2)如图1中,过D作DE⊥x轴于E,∴∠DEA=∠AOC=90°,∵tan∠ACO==,∵∠DCB=60°∵DB=DC,∴△DBC是等边三角形,∵BA⊥DC,∴DA=AC,∵∠DAE=∠OAC,在△ADE和△ACO中,,∴△ADE≌△ACO,∴DE=OC=1,AE=OA=∴OE=2,∴D的坐标为(﹣2,1);(3)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC===,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 90 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【考点】KB:全等三角形的判定;KH:等腰三角形的性质.【分析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.26.如图,在平面直角坐标系xOy 中,抛物线y=x 2+与y 轴相交于点A ,点B 与点O 关于点A 对称(1)填空:点B 的坐标是 (0,) ; (2)过点B 的直线y=kx+b (其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由;(3)在(2)的条件下,若点C 关于直线BP 的对称点C′恰好落在该抛物线的对称轴上,求此时点P 的坐标.【考点】HF :二次函数综合题.【分析】(1)由抛物线解析式可求得A 点坐标,再利用对称可求得B 点坐标;(2)可先用k 表示出C 点坐标,过B 作BD ⊥l 于点D ,条件可知P 点在x 轴上方,设P 点纵坐标为y ,可表示出PD 、PB 的长,在Rt △PBD 中,利用勾股定理可求得y ,则可求出PB 的长,此时可得出P 点坐标,代入抛物线解析式可判断P 点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC 的长,代入抛物线解析式可求得P 点坐标.【解答】解:(1)∵抛物线y=x 2+与y 轴相交于点A ,∴A (0,),∵点B 与点O 关于点A 对称,∴BA=OA=,∴OB=,即B 点坐标为(0,),故答案为:(0,);(2)∵B 点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PC=+,∴P点坐标为(﹣, +),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).。

2017年河北省唐山市中考数学模拟试卷2(含解析)

2017年河北省唐山市中考数学模拟试卷2(含解析)

2017年河北省唐山市中考数学模拟试卷(2)一、选择题(42分)1. |﹣2014|等于()A.﹣2014 B.2014 C.±2014 D.2.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗5.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,106.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C. D.8.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣9.已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.510.如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70°,∠C=50°,那么sin∠AEB的值为()A.B.C.D.11.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.8012.如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()A.9 B.10 C.12 D.1513.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120° D.180°15.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()A. B. C.D.16.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3二、填空题(12分)17.命题“相等的角是对顶角”是命题(填“真”或“假”).18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.19.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为.20.若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为cm2(结果保留π)三、解答题21.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O 经过点E.求证:AC是⊙O的切线.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.23.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?24.自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.25.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.26.如图,已知一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c 的图象与一次函数y=x+1的图象交于点B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求二次函数的解析式;(2)在在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在动点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动时间t的值;若不存在,请说明理由;(3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,求a的值;若不存在,说明理由.27.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.2017年河北省唐山市中考数学模拟试卷(2)参考答案与试题解析一、选择题1.|﹣2014|等于()A.﹣2014 B.2014 C.±2014 D.【考点】绝对值.【分析】数的绝对值是它本身,可得一个负数的绝对值.【解答】解=2014,故选:B.【点评】本题考查了绝对值,负数的绝对值是它的相反数.2.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【考点】实数与数轴.【分析】先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断.【解答】解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.【点评】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗【考点】概率公式.【分析】先根据白色棋子的概率是,得到一个方程,再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,再得到一个方程,求解即可.【解答】解:由题意得,解得.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;关键是得到两个关于概率的方程.5.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,10【考点】中位数;加权平均数.【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.故选D.【点评】本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C. D.【考点】一次函数与二元一次方程(组).【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵x﹣2y=2,∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求,故选:C.【点评】此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.8.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.5【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】先根据非负数的性质列出关于x、y的方程组,求出x、y的值即可.【解答】解:∵(x﹣y+3)2+=0,∴,解得,∴x+y=﹣1+2=1.故选C.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.10.如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70°,∠C=50°,那么sin∠AEB的值为()A.B.C.D.【考点】特殊角的三角函数值;三角形内角和定理;圆心角、弧、弦的关系.【分析】根据三角形的内角和是180°求得∠AEB的度数,再根据特殊角的锐角三角函数值求解.【解答】解:∵∠A=70°,∠C=50°,∴∠B=∠C=50°,∠AEB=60°,∴sin∠AEB=.故选D.【点评】考查了圆周角定理、三角形的内角和是180°,还要熟记特殊角的锐角三角函数值.11.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80【考点】勾股定理;正方形的性质.【分析】由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE =100﹣×6×8 =76.故选:C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.12.如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()A.9 B.10 C.12 D.15【考点】反比例函数综合题.【分析】连接OA、OC,S△ADC =S△AOC,S△ABD=S△ABO,根据反比例函数中k的几何意义即可求得S△BCO,根据S△ADC=S△AOC=S△ABO﹣S△BCO求解.【解答】解:连接OA、OC.∵AB⊥x轴,∴AB∥OD,∴S△ADC=S△AOC,S△ABD=S△ABO=×6×4=12,又∵双曲线的解析式是,∴S△BCO=×6=3,∴S△ADC=S△AOC=S△ABO﹣S△BCO=12﹣3=9.故选A.【点评】本题考查了三角形的面积公式以及反比例函数中比例系数k的几何意义,正确理解S△=S△AOC,S△ABD=S△ABO,是关键.ADC13.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小【考点】概率的意义.【分析】根据概率的意义对各选项分析判断后利用排除法求解.【解答】解:A、科比罚球投篮2次,不一定全部命中,故本选项错误;B、科比罚球投篮2次,不一定全部命中,故本选项正确;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,故本选项正确;D、科比罚球投篮1次,不命中的可能性较小,故本选项正确.故选A.【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120° D.180°【考点】圆锥的计算.【专题】压轴题.【分析】要求其圆心角,就要根据弧长公式计算,首先明确侧面展开图是个扇形,即圆的周长就是弧长.【解答】解:∵左视图是等边三角形,∴底面直径=圆锥的母线.故设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故选D.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.15.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B 点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()A. B. C.D.【考点】动点问题的函数图象.【分析】当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,但底边在增大,所以S△AMN 的面积关系式为一个一次函数;当N在BC上时,表示出S△AMN的关系式,根据开口方向判断出相应的图象即可.【解答】解:当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9﹣3x)=﹣x2+x,开口方向向下.故选:B【点评】此题考查动点问题的函数图象问题,根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.16.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.【点评】此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a 与b的关系,以及当x=1时a+b+c=P是解决问题的关键.二、填空题(12分)17.命题“相等的角是对顶角”是假命题(填“真”或“假”).【考点】命题与定理.【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【解答】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假.【点评】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2种租车方案.【考点】二元一次方程的应用.【分析】设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.【解答】解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据题意得,8x+4y=20,整理得,2x+y=5,∵x、y都是正整数,∴x=1时,y=3,x=2时,y=1,x=3时,y=﹣1(不符合题意,舍去),所以,共有2种租车方案.故答案为:2.【点评】本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数.19.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为.【考点】相似三角形的判定与性质;坐标与图形性质.【分析】先过点B作BD⊥x轴于D,由A(0,2),B(5,3),即可得OA=2,BD=3,OD=5,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(5,3),∴OA=2,BD=3,OD=5,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=5×=2,∴CD=OD﹣OC=3,∴AC==2,BC==3,∴AC+BC=5,故答案为:5.【点评】此题考查了相似三角形的判定与性质、勾股定理以及点与坐标的性质.此题难度适中,解此题的关键是掌握辅助线的作法,掌握入射光线与反射光线的关系.20.若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为15πcm2(结果保留π)【考点】圆锥的计算.【专题】计算题.【分析】先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.【解答】解:圆锥的侧面展开图的面积=×2π×3×5=15π(cm2).故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.三、解答题21.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O 经过点E.求证:AC是⊙O的切线.【考点】切线的判定.【专题】证明题.【分析】连接OE,由BE是∠CBA的角平分线得∠ABE=∠CBE,由OE=OB得∠ABE=∠OEB,则∠OEB=∠CBE,所以OE∥BC,则∠OEC=∠C=90°,即OE⊥AC,根据切线的判定得到AC是⊙O的切线.【解答】证明:连接OE,如图,∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC∴∠OEC=∠C=90°,∴OE⊥AC,∴AC是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.【考点】矩形的判定;等腰三角形的性质;平行四边形的性质.【分析】利用三线合一定理可以证得∠ADB=90°,再根据矩形的定义即可证得.【解答】证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.24.自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据A类的人数是3,所占的百分比是15%,据此即可求得总人数;(2)根据百分比的意义求得C、D两类的人数,进而求得C类女生及D类男生的人数;(3)利用列举法表示出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)调查的总人数是:(1+2)÷15%=20(人);(2)C类学生的人数是:20×25%=5(人),则C类女生人数是:5﹣3=2(人);D类的人数是:20×(1﹣50%﹣25%﹣15%)=4(人),则D类男生的人数是:4﹣1=3(人);如图所示:(3)如图所示:则恰好是一位男同学和一位女同学的概率是:.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.【考点】四边形综合题.【专题】压轴题.【分析】(1)证明△ABP∽△PCE,利用比例线段关系求出y与x的函数关系式;(2)根据(1)中求出的y与x的关系式,利用二次函数性质,求出其最大值,列不等式确定m的取值范围;(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度.解答中提供了三种解法,可认真体会.【解答】解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP,又∵∠B=∠C=90°,∴△ABP∽△PCE,∴,即,∴y=x2+x.(2)∵y=x2+x=(x﹣)2+,∴当x=时,y取得最大值,最大值为.∵点P在线段BC上运动时,点E总在线段CD上,∴≤1,解得m≤.∴m的取值范围为:0<m≤.(3)由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE,又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB.∵∠BAG=90°,∴AG∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC.解法一:如解答图所示,分别延长CE、AG,交于点H,则易知ABCH为矩形,HE=CH﹣CE=2﹣y,GH=AH﹣AG=4﹣(4﹣x)=x,在Rt△GHE中,由勾股定理得:GH2+HE2=GE2,即:x2+(2﹣y)2=y2,化简得:x2﹣4y+4=0 ①由(1)可知,y=x2+x,这里m=4,∴y=x2+2x,代入①式整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.解法二:如解答图所示,连接GC.∵AG∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GN=2,PN=PC﹣CN=4﹣2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.解法三:过点A作AK⊥PG于点K,∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG﹣PK=4﹣2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.【点评】本题是代数几何综合题,考查了全等三角形、相似三角形、勾股定理、梯形、矩形、折叠、函数关系式、二次函数最值等知识点,所涉及考点众多,有一定的难度.注意第(2)问中求m取值范围时二次函数性质的应用,以及第(3)问中构造直角三角形的方法.26.如图,已知一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c 的图象与一次函数y=x+1的图象交于点B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求二次函数的解析式;(2)在在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在动点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动时间t的值;若不存在,请说明理由;(3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,求a的值;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据一次函数的解析式可找出点B的坐标,再根据点A、D的坐标利用待定系数法即可求出二次函数的解析式;(2)假设存在,则点P的坐标为(t,0).联立直线与抛物线解析式成方程组,解方程组求出点C的坐标,根据点B、P的坐标利用两点间的距离公式即可求出PB、PC、BC的长度,再利用勾股定理即可得出关于t的一元二次方程,解方程即可得出结论;(3)假设存在,则AP=2t,AQ=at.由一次函数解析式即可找出点A的坐标,结合点B、D的坐标即可得出AB、AD的长度,分△PAQ∽BAD和△PAQ∽△DAB两种情况考虑,根据相似三角形的性质即可得出关于a的一元一次方程,解方程即可求出a值,此题得解.【解答】解:(1)当x=0时,y=1,∴B(0,1).将点B(0,1)、D(1,0)代入y=x2+bx+c中,,解得:,∴二次函数的解析式为y=x2﹣x+1.(2)假设存在,则点P的坐标为(t,0).联立直线AB与抛物线的解析式成方程组,,解得:,,∴点C的坐标为(4,3).∵B(0,1),P(t,0),∴BC=2,CP==,BP==,∵在Rt△PBC中,∠BPC=90°,∴BC2=CP2+BP2,即20=t2﹣8t+25+t2+1,解得:t1=1,t2=3.。

河北省唐山市路南区2017年中考数学一模试卷(含解析)

河北省唐山市路南区2017年中考数学一模试卷(含解析)

2017年河北省唐山市路南区中考数学一模试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在-3,0,- 2, 1四个数中,最小的数是()A. - 3B. 0C. - 2D. 12•下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图形的是()3. 截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A. 0.725 X 107B. 7.25 X 1。

9 72.5 X 105 D. 7.25 X 1064. 下列运算中,正确的是()A. = ± 2B. - …=-3C. (- 1)0=1D.- | - 3|=32 25. 化简〜+_「的结果是()m-n n-TDA. n —mB. m- n C . m+n D.—m- n6. 当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A. 对学校的同学发放问卷进行调查B. 对在路边行走的学生随机发放问卷进行调查C. 对在路边行走的行人随机发放问卷进行调查D. 对在图书馆里看书的人发放问卷进行调查7. 下列计算正确的是()2、3 3 6 2 2 2A. (3xy )=9x y B . B、(x+y)=x +y6 2 3 2 i 2 ■ 2C. x + x =xD. 2x y - yx ==x y8. 如图为某几何体的三视图,则组成该几何体的小正方体的个数是()主视图左视图9. 已知关于x 的方程x 2+mx-仁0的根的判别式的值为 5,贝U m 的值为(A. ± 3B. 3C. 1D. ± 116, 9,两个阴影部分的面积分别为a ,b (a v b ),则b - a 的值为()A. 5B. 6C. 7D. 811.如图,在厶ABC 中,AB=6, AC=10,点D, E , F 分别是 AB, BC, AC 的中点,则四边形 ADEF的周长为( )A. 5B. 6C. 7D. 810 .如图,两个正六边形的面积分别为C. 210°D. 270A. 8B. 10C.12 D. 1614 .如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为n ;小亮说此圆锥的弧长为片n,则下列结论正确的是A.内心B .重心C .外心D .无法确定二、填空题(本小题共 3小题,共10分,17-18小题各3分,19小题有2个空,每空2分) 17 .计算:()-1= ________ .18 .阅读下面材料:在 数 学 课 上, 老 师 提 出 如 下 问 题:A.只有小明对B.只有小亮对C.两人都对 D •两人都不对15.如图,直线I : y= - _x+3与直线x=a (a 为常数)5的交点在第四象限,则关于 a 的取值AA--16.已知△ ABC 在正方形网格中的位置如图所示,点 A B C 、P 均在格点上,则点 P 叫做△ ABC W( )求作:袒形ABCD.匚C小敏的作法如下:① 作线段乂的垂直平分线交AC 于点6 ② 连接30并延长,在延长线上截取0D 二B6 ③ 连接场,DC. 则四边形ABCD m 为所求.两条结论的依据是 _________ •19. ________________________________________________________________________ 在下列函数①y=2x+1 ;②y=x 2+2x ;③丫=二;④y= - 3x 中,与众不同的一个是 _________________ (填 序号),你的理由是 ________ .三、解答题(本题共有 7个小题,共68分)20. 在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我 会直接说出你运算的最后结果.”________________ — ________________________________________________________________________________________________________________________________________________________________________~ H ■ f操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方; 第二步:把第一步得到的数乘以25 j第三步:把第二步得到的数除以■你想的这个数*(1)若小明同学心里想的是数 9,请帮他计算出最后结果:[(9+1) 2-( 9 - 1) 2] X 25- 9(2) 老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到 的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是 a (a z 0),请你 帮小明完成这个验证过程.21 .女口 图①,△ ABC 中,AC=BC , / A=30°老师说:“小敏的作法正确•”依其作法,先得出?ABCD 再得出矩形ABCD 请回答:以上点 D 在 AB 边上且/(1) 求/ BCD 的度数;(2) 将图①中的△ BCD 绕点B 顺时针旋转得到厶BC D 图②所示,连接 C'C 并延长交AB 于点E .① 求/ C CB 的度数;② 求证:△ C BD'^A CAE 22•从甲、乙两名同学中选拔一人参加“中华好诗词”大赛, 进行了五次模拟,并对成绩(单位:分)进行了整理,计算出 制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①② ③ ④ ⑤ 甲成绩/分 79 86 82 a 83 乙成绩/分8879908172根据以上信息,回答下列问题:当点D 恰好落在BC 边上时,如在相同的测试条件下,对两人 二甲=83分,77 =82分,绘ADC=45 .圉②甲乙两人或结折线图23. 某生态示范村种植基地计划用90亩〜120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤•设原计划种植亩数y (亩)、平均亩产量x (万斤)(1)列出y (亩)与x (万斤)之间的函数关系式,并求自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种•改良后平均每亩产量是原计划的 1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?24. 如图1是一副创意卡通圆规,图2是其平面示意图,0A是支撑臂,0B是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm (1)当/AOB=20时,求所作圆的半径;(结果精确到0.01cm)(2)保持/ AOB=20不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度. (结果精确到0.01cm)(参考数据:sin 10 °~ 0.174 , cos10°~ 0.985, sin20 °~ 0.342 , cos20°~ 0.940 )A汇/I i丿…丄图1 圉225. 抛物线C: y=a (x+1) (x-3a) (a>0)与x轴交于A, B两点(A在B的左侧),与y 轴交于点C (0,- 3)(1 )求抛物线G的解析式及A, B点坐标;(2 )求抛物线G的顶点坐标;(3)将抛物线C1向上平移3个单位长度,再向左平移n (n>0)个单位长度,得到抛物线C2,若抛物线C的顶点在厶ABC内,求n的取值范围.(在所给坐标系中画出草图 C )5 *4 - 3 ■ 2 —1 ■J ----------- - —— --------- J ———A -3 -2 -1 01 2 3 4 5-2 一-3 一 -4 一26. 如图,一个Rt △ DEF 直角边DE 落在AB 上,过A 点作射线 AC 与斜边EF 平行,已知AB=12DE=4, DF=3点P 从A 点出发,沿射线 AC 方向以每秒2个单位的速度运动, Q 为AP 中点,(1)若点D 与点B 重合,当t=5时,连接QE PF ,此时△ AQE 为 ______________ 三角形、四边形 QEFP 为 ______ 形;(2)如图②,若在点 P 运动时,Rt △ DEF 同时沿着BA 方向以每秒1个单位的速度运动,当 D 点到A 点时,两个运动都停止.① 如图①,若 M 为EF 中点,当D M Q 三点在同一直线上时,求 t 的值;② 在运动过程中,以点Q 为圆心的圆与Rt △ DEF 两个直角边所在直线都相切时,求运动时间E D B图②备用图2017年河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在-3, 0, - 2, 1四个数中,最小的数是()A.- 3B. 0C. - 2D. 1【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0 :③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在- 3, 0,- 2, 1四个数中,最小的数是多少即可.【解答】解:根据有理数比较大小的方法,可得-3v- 2v 0v 1,最小的数是-3.故选:A.形的是()A.2•下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误.故选B.3. 截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A. 0.725 X 107B. 7.25 X 107C. 72.5 X 105D. 7.25 X 106【考点】11 :科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x l0n的形式,其中1w|a| v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将7250000用科学记数法表示为7.25 X 106,故选:D.4. 下列运算中,正确的是()A. 打=± 2 B .:二=-3 C. (- 1)0=1 D.- | - 3|=3【考点】24:立方根;22:算术平方根;6E:零指数幕.【分析】依据算术平方根的性质、立方根的性质、零指数幕的性质、绝对值的性质进行化简即可.【解答】解:A. "| =2,故A错误;B. 二不能够再化简,故B错误;C. (- 1)0=1,故C正确;D. - | - 3|= - 3,故D错误.故选:C.2 25. 化简丄—+ 的结果是()m-n n-mA. n —mB. m- n C . m+n D.—m- n【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式―- =「! ' ' =m+nin-n m-n m-n故选C6. 当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B. 对在路边行走的学生随机发放问卷进行调查C. 对在路边行走的行人随机发放问卷进行调查D. 对在图书馆里看书的人发放问卷进行调查【考点】V1 :调查收集数据的过程与方法.物力和时间较多,而抽样调查得到【分析】由普查得到的调查结果比较准确,但所费人力、的调查结果比较近似.【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;B对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;C对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故C正确;D对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.7 •下列计算正确的是( )2、3 3 6 2 2 2A. ( 3xy ) =9x y B . B、( x+y) =x +yC. x6十x2=x3D. 2x2y - yx2= x2y2 2【考点】41 :整式的混合运算.【分析】各项利用幕的乘方与积的乘方,完全平方公式,同底数幕的除法法则,以及合并同类项法则计算得到结果,即可作出判断.【解答】解:A、原式=27x3y6,不符合题意;B原式=x2+2xy+y2,不符合题意;C原式=x4,不符合题意;3 2D原式=,:xy,符合题意,故选D8 .如图为某几何体的三视图,则组成该几何体的小正方体的个数是( 主视圄左视图A. 5B. 6C. 7D. 8【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故选A.9.已知关于x的方程x2+mx-仁0的根的判别式的值为5,贝U m的值为()A. ± 3B. 3C. 1D. ± 1【考点】AA根的判别式.【分析】先根据关于x的方程x2+mx-仁0的根的判别式的值为5即可得出关于m的一元二次方程,求出m的值即可.【解答】解:•••关于x的方程x2+mx- 1=0的根的判别式的值为5,2•••△ =m- 4X 1X(—1)=5,解得m=±1 .故选D.10 •如图,两个正六边形的面积分别为16, 9,两个阴影部分的面积分别为a, b (a v b),则b—a的值为()A. 5B. 6C. 7D. 8【考点】44:整式的加减.【分析】直接利用已知图形得出b—a=b+空白面积-(a+空白面积)=大正六边形-小正六边形,进而得出答案.【解答】解:•••两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a v b),• b - a=b+空白面积-(a+空白面积)=大正六边形-小正六边形=16- 9=7 .故选:c.的周长为()CD. 1611.如图,在厶ABC中,AB=6, AC=10,点D, E, F分别是AB, BC, AC的中点,则四边形ADEF 【考点】KX三角形中位线定理.【分析】根据三角形的中位线定理,判断出四边形ADEF平行四边形,根据平行四边形的性质求出ADEF的周长即可.【解答】解:•••点D, E, F分别是AB, BC, AC的中点, ••• DE// AC, EF// AB,DE=_AC=5 EF=_AB=3,•四边形ADEF平行四边形,• AD=EF DE=AF•四边形ADEF的周长为2 ( DE+EF =16 ,故选:D.【分析】根据反比例函数的性质即可求出答案.【解答】解:若k>0时,此时k- 1 >- 1,正比例函数图象必定过一、三象限,当—1v k - 1 v 0 时, •••反比例函数y二二丄必定经过二、四象限,故C的图象有可能,x当k- 1 >0时,•反比例函数y二丄一必定经过一、三象限,故B的图象有可能,x若k v 0时,此时k- 1v- 1,正比例函数图象必定过二、四象限,•反比例函数y二二丄必定经过二、四象限,故A的图象有可能,x故选(D)13.如图,五边形ABCDE K AB// CD / 1、/ 2、/ 3 分别是/ BAE / AED / EDC的外角,则/ 1 + / 2+/ 3 等于()A. 90°B. 180°C. 210°D. 270°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出/ B+/ C=18C°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:I AB//CD•/ B+/ C=180 ,•/ 4+/ 5=180°,根据多边形的外角和定理,/ 1+/ 2+/ 3+/ 4+/ 5=360°,•/ 1 + / 2+/ 3=360°- 180° =180°.故选B.【考点】 MP 圆锥的计算;MN 弧长的计算. 【分析】 分别计算此扇【解答】解:观察扇形发现:扇形的半径为 2,圆心角为150°,•••扇形的弧长为 '■ '!180 侧面积为:亘厂 — 故选C.14•如图所示的格点纸中每个小正方形的边长均为 1,以小正方形的顶点为圆心, 2为半径做了一个扇形,用该扇形围成一个圆锥的侧面, 针对此做法,小明和小亮通过计算得出以下 结论:小明说此圆锥的侧面积为 'n ;小亮说此圆锥的弧长为 'n ,则下列结论正确的是33( )A.只有小明对B.只有小亮对C.两人都对 D .两人都不对15.如图,直【考点】FF:两条直线相交或平行问题;C4:在数轴上表示不等式的解集【分析】首先把x=a和y=-「x+3组成方程组,求解,根据题意交点坐标在第四象限表明5大于0, y小于0,即可求得a的取值范围.x=a【解答】解:解方程组. 3y=~x+3T y= - x+3与直线x=a (a为常数)的交点在第四象限,5卜>0: ,解得:a> 5;故选D.16. 已知△ ABC在正方形网格中的位置如图所示,点A B C、P均在格点上,则点P叫做△ABC W( )I——f-尸一 -r P F ▼-rd冲■ ■1■IJX ■ 1L _ . ■亠r-x-■ /» \ ■■■ 1—/ :J :L ■ ■X _____ hr ■ ■<5k w «»/ « r&乞/*匸■—» 1! N9 ■■i_ L _ _ J , _ _ L _「I9:c:4 H 9■> 11 ■ ■■■A.内心B .重心C .外心D .无法确定【考点】K5:三角形的重心.【分析】根据正方形网格图、三角形的重心的概念解答.【解答】解:由正方形网格图可以看出,点E、F、D分别是AC AB BC的中点,•••点P叫做△ ABC的重心,故选:B.* r 咅 “-r~ s Tl - = h||\A I「 丁 ;\ '、:pVLJ™t : A;■亠1;广$4■ 1L Y - ■■ _ M1二、填空题(本小题共 3小题,共10分,17-18小题各3分,19小题有2个空,每空2分) 17.计算:()「1= 3.3 ------【考点】6F :负整数指数幕.【分析】根据负整数指数幕与正整数指数幕互为倒数,可得答案.【解答】解:(.:)故答案为:3.18•阅读下面材料:在 数 学 课 上, 老 师 提 出 如 下 问 题求作:袒形ABCD.匚C小敏的作法如下:① {乍线段M 的垂直平分线交M 于点6 卫 ② 连接B0并延长,在延长上截取OD^BOy 接兀DC,则四边形舫仞即为所求.‘老师说:“小敏的作法正确.”依其作法,先得出 ?ABCD 再得出矩形 ABCD 请回答:以上两条结论的依据是 对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形 .1=- =3.~3【考点】N3:作图一复杂作图;KP:直角三角形斜边上的中线;L6:平行四边形的判定;LC: 矩形的判定.【分析】先根据作图得出BD与AC互相平分,进而得到四边形ABCD是平行四边形,再根据/ ABC=90,即可得到四边形ABCD是矩形.【解答】解:I O是AC的中点,••• BO= AC=AO=C Q2又••• DO=BO• BD与AC互相平分,•四边形ABCD是平行四边形,(对角线互相平分的四边形是平行四边形)又•••/ ABC=90 ,•四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.2319. 在下列函数①y=2x+1 ;②y=x+2x;③y=;④y=-3x中,与众不同的一个是③ (填I序号),你的理由是只有③的自变量取值范围不是全体实数_______ .【考点】E4:函数自变量的取值范围.【分析】根据分式的分母不为0,二次根式的被开方数大于等于0进行计算即可.【解答】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x丰0;④y= - 3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.三、解答题(本题共有7个小题,共68分)20. 在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方; 第二步:把第一步得到的数乘以25,第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数 9,请帮他计算出最后结果:[(9+1)2-( 9 - 1) 2] X 25- 9(2) 老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到 的最后结果都相等•”小明同学想验证这个结论,于是,设心里想的数是 a (a z 0),请你帮小明完成这个验证过程.【考点】41 :整式的混合运算;1G:有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果; (2)根据题意列出关系式,整理验证即可.【解答】 解:(1)原式=X 25- 9=36X 25- 9=100;(2)根据题意得:[(a+1) 2-( a - 1) 2] X 25 — a= (a+1+a - 1) (a+1 - a+1) X 25 — a=4aX 25十a=100.(2)将图①中的△ BCD 绕点B 顺时针旋转得到厶BC D'. 图②所示,连接 C'C 并延长交AB 于点E .① 求/ C CB 的度数; ② 求证:△ C BD'^A CAE【考点】R2:旋转的性质;KB:全等三角形的判定;KH 等腰三角形的性质;KO 含30度21 .如(1)求/ BCD 的度数; 当点D 恰好落在BC 边上时,如ADC=45 . D△ ABC 中, 在 AB 边上且/角的直角三角形.【分析】(1)根据三角形外角性质,即可得到/ BCD= ADC-Z CBA=15 ;(2)①由旋转可得CB=C'B=AC Z C'BD'= Z CBD Z A=30,再根据等腰三角形的性质,即可得到Z CC'B=Z C'CB=75 ;②先根据AC=C'B,Z C'BD'= Z A 得出Z CEB=Z C'CB-Z CBA=45,进而得到Z ACE=Z CEB-Z A=15°,据此可得Z BC'D'= Z BCD Z ACE 运用ASA即可判定厶C'BD' CAE【解答】解:(1)v AC=BC Z A=30°,•••Z CBA=Z CAB=30 ,vZ ADC=45 ,•Z BCD Z ADC-Z CBA=15 =Z BC'D';(2)①由旋转可得CB=C'B=AC Z C'BD'= Z CBD=Z A=30°,•Z CC'B=Z C'CB=75 ;②证明:v AC=C'B,Z C'BD'= Z A,•Z CEB=Z C'CB-Z CBA=45 ,•Z ACE=Z CEB-Z A=15,•Z BC'D'= Z BCD=Z ACE在厶C'BD'和厶CAE中,N B L D7•ACW B ,“ BD J -ZA•△ C'BD'也厶CAE( ASA .图①22. 从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出甲=83分=82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①②③④⑤甲成绩/分798682a83乙成绩/分8879908172根据以上信息,回答下列问题:(1)a= 85(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6, S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.的成绩都大于82分的概率.W2加权平均数;W7方差.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人【分析】(1)理由平均数的定义列方程得79+86+82+a+83=5X 83,然后解方程即可;(2)利用表中数据和a的值画出甲成绩变化情况的折线;(3 )通过平均数和方差的意义进行判断;(4)画树状图展示所有25可等可能的结果数,再找出抽到的两个人的成绩都大于82分的结果数,然后根据概率公式求解.【解答】解:(1)根据题意得79+86+82+a+83=5X 83,解得a=85; 故答案为85;(2)如图,T 二甲〉工”且S 甲2< S 乙2, •••甲的平均成绩比乙的平均成绩高,且甲的成就比较稳定, 选拔甲参加比赛更合适;(4)画树状图为:共有25可等可能的结果数,其中抽到的两个人的成绩都大于 所以抽到的两个人的成绩都大于82分的概率=._ .2523.某生态示范村种植基地计划用 90亩〜120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到 36万斤•设原计划种植亩数 y (亩)、平均亩产量x (万斤) (1) 列出y (亩)与x (万斤)之间的函数关系式,并求自变量x 的取值范围;(2) 为了满足市场需求,现决定改良葡萄品种•改良后平均每亩产量是原计划的1.5倍, 总产量比原计划增加了 9万斤,种植亩数减少了 20亩,原计划和改良后的平均每亩产量各 是多少万斤?88 79 $0 81 化8588 7P90 81 S3 SS 79 90 81 门82分的结果数甲乙两人成结折线圉79【考点】GA反比例函数的应用;B7:分式方程的应用.【分析】(1)直接利用总产量与种植亩数和平均亩产量的关系进而得出y与x之间的关系式; (2)利用种植亩数减少了20亩,得出等式进而求出答案.【解答】解:(1)由题意可得:y=,•/ 90 w y w 120,•••当 y=90 时,x=「;••• y 与x 成反比,310(2 )根据题意可得:二-丄二=20, x L解得:x=0.3 , 经检验得:x=0.3是原方程的根,1.5x=0.45 ,答:改良前亩产0.3万斤,改良后亩产 0.45万斤.24. 如图1是一副创意卡通圆规,图 2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用 时,以点A 为支撑点,铅笔芯端点 B 可绕点A 旋转作出圆.已知 OA=OB=10cm(1) 当/AOB=20时,求所作圆的半径; (结果精确到0.01cm )(2) 保持/ AOB=20不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下, 作出的圆与(1) 中所作圆的大小相等,求铅笔芯折断部分的长度. (结果精确到0.01cm )(参考数据:sin 10 °~ 0.174,cos10°~ 0.985,sin20 °~ 0.342,cos20°~ 0.940 )图1 图2【考点】T8:解直角三角形的应用.【分析】(1)根据题意作辅助线 Od AB 于点C,根据0A=0B=10cm /OCB=90,/ AOB=18, 当y=120时, 36 = 3 120=10可以求得/ BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,贝U AE=AB然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作Od AB于点C,如图2所示,由题意可得,OA=OB=10cm/ OCB=90,/ AOB=20 ,•••/ BOC=10••• AB=2BC=2OB?sin1°〜 2 X 10X 0.174 〜3.5cm ,即所作圆的半径约为 3.5cm ;(2 )作ADL OB于点D,作AE=AB如图3所示,•••保持/ AOB=20不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与( 1)中所作圆的大小相等,•折断的部分为BE•••/ AOB=20 , OA=OB Z ODA=90 ,•••/ OAB=80,/ OAD=70 ,•••/ BAD=10 ,• BE=2BD=2AB?sin10 ~ 2 X 3.5 X 0.174 ~ 1.2cm,即铅笔芯折断部分的长度是 1.2cm .图]25. 抛物线C: y=a (x+1) (x-3a) (a>0)与x轴交于A, B两点(A在B的左侧),与y轴交于点C (0,- 3)(1 )求抛物线G的解析式及A, B点坐标;(2 )求抛物线C的顶点坐标;(3)将抛物线C i向上平移3个单位长度,再向左平移n (n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在厶ABC内,求n的取值范围.(在所给坐标系中画出草图C)*5斗■3一2—1■1 ---------- ——-J --- J- ----4 -3 -2 -101 2 3 4 5-2一-3一■4一【考点】HA抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)由(1)中的函数解析式即可求出抛物线C的顶点坐标;(3)首先根据平移确定平移后的函数的解析式,然后确定抛物线C2的顶点坐标;结合图形确定n的取值范围即可.【解答】解:(1)v抛物线C:y=a (x+1) (x-3a) y轴交于点C (0, - 3),•••- 3=a (0+1) (0 - 3a),解得a=1 (舍去负值).•抛物线G的解析式为:y= (x+1) (x- 3).• A (- 1, 0), B (3, 0);(2)T y= ( x+1) (x- 3) = (x - 1) 2- 4,•该抛物线的解析式为y= (x - 1) 2- 4,则该抛物线的顶点坐标为(1,- 4).(3 )将(1)中求得的抛物线向上平移3个单位长度,再向左平移n (n>0)个单位长度得到新抛物线y= (x- 1+n) 2- 1, •平移后抛物线的顶点坐标是(1 - n,- 1),2•- v 1 - n v 2,3解得-1v n v , 3•/ n > 0,26. 如图,一个Rt △ DEF 直角边DE 落在AB 上,过A 点作射线 AC 与斜边EF 平行,已知AB=12DE=4, DF=3点P 从A 点出发,沿射线 AC 方向以每秒2个单位的速度运动, Q 为AP 中点, QEFP 为菱形;(2)如图②,若在点 P 运动时,Rt △ DEF 同时沿着BA 方向以每秒1个单位的速度运动,当 D 点到A 点时,两个运动都停止. ① 如图①,若 M 为EF 中点,当D M Q 三点在同一直线上时,求 t 的值;② 在运动过程中,以点Q 为圆心的圆与Rt △ DEF 两个直角边所在直线都相切时,求运动时间 t .【考点】MR 圆的综合题.【分析】(1)过点Q 作QH L AB 于H,如图①,易得 PQ=EF=5由AC// EF 可得四边形 EFPQ 是平行四边形,易证△ AH3A EDF,从而可得 AH=ED=4进而可得 AH=HE=4根据垂直平分 (1)若点D 与点B 重合,当t=5时,连接QE 等腰三角形、四边形 5 v vPF ,此时△ AQE 为设运动时间为t 秒(线的性质可得AQ=EQ即可得到PQ=EQ即可得到平行四边形EFPQ是菱形;(2)①当D、M Q三点在同一直线上时,如图②,则有AQ=t, EM= EF= , AD=12- t , DE=4.由2 2EF// AC可得△ DEM h^ DAQ然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△ DEF两个直角边所在直线都相切,则点Q在/ADF的角平分线上(如图③)或在/ FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH DH(用t表示),再结合AB=12, DB=t建立关于t的方程,然后解这个方程就可解决问题.【解答】解:(1)四边形EFPQ是菱形.理由:过点Q作QHLAB于H,如图①,■/1=5 ,••• AP=2X 5=10.•••点Q是AP的中点,• AQ=PQ=5•••/ EDF=90 , DE=4, DF=3,• EF= ' |匸• :=5,• PQ=EF=5•/ AC/ EF,•四边形EFPQ是平行四边形,且/ A=Z FEB.又•••/ QHA M FDE=90 ,•△AHg A EDF,•燮=塑=迤•而-丽市.•/ AQ=EF=5• AH=ED=4•/ AE=12- 4=8,• HE=8- 4=4,• AH=EH• AQ=EQ• PQ=EQ•△ AQE是等腰三角形,平行四边形EFPQ是菱形;故答案为:等腰,菱形.(2)①当D M Q 三点在同一直线上时,如图②,此时 AQ=t , EM= EF= , AD=12- t , DE=4. 2 2•/ EF // AC,•••△ DEMh^ DAQ.範页,14"=:〉, 解得t=〔;②存在以点Q 为圆心的圆与Rt △ DEF 两个直角边所在直线都相切, 此时点Q 在/ADF 的角平分线上或在/ FDB 的角平分线上.I .当点Q 在/ ADF 的角平分线上时,过点Q 作QH L AB 于H,如图③,则有/ HQD N HDQ=45 , • QH=DH •/△ AHg A EDF (已证),•塑=AH =AQ.QH_AH_t•;=.:=「•QH= , AH=,• DH=QH=. 5•/ AB=AH+HD+BD=12DB=t ,• t=5 ;n.当点Q 在/ FDB 的角平分线上时,过点Q 作QHL AB 于H,如图④,31 41同理可得 DH=QH= , AH= 一 .•/ AB=AD+DB=A -DH+DB=12 DB=t ,4t + 一 +t=12 b' +t=12 ,5 5• t=10 .综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△ DEF两个直角边所在直线都相切.C图篁C图③图£(1) a= ______(2) 请完成图中表示甲成绩变化情况的折线.(3) 经计算S甲1 2 3 4=6, S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4) 如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.。

初中数学17年河北省唐山市滦县中考模拟数学一模考试卷含答案解析

初中数学17年河北省唐山市滦县中考模拟数学一模考试卷含答案解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣的相反数是()A.﹣ B. C.﹣3 D.3试题2:实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d试题3:甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C.D.试题4:评卷人得分下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C.D.试题5:如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°试题6:在(﹣1)2017,(﹣3)0,,()﹣2,这四个数中,最大的数是()A.(﹣1)2017 B.(﹣3)0 C. D.()﹣2试题7:小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个 D.众数是5个如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=()A.35° B.45° C.55° D.70°试题9:如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE试题10:定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为0试题11:如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为()A.6π B.18 C.18π D.20一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡试题13:一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O试题14:如图,在x轴上方,∠BOA=90°且其两边分别与反比例函数y=﹣、y=的图象交于B、A两点,则∠OAB的正切值为()A. B. C. D.试题15:如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A. B.2﹣2 C.2﹣2 D.4试题16:如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.1个 B.2个 C.3个 D.4个试题17:64的立方根为.试题18:如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.试题19:如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;则A2A3= ;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的纵坐标为.试题20:先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.试题21:在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?试题22:P n表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n与n的关系式是:P n=•(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4= ;五边形时,P5=(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.试题23:如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?试题24:两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.试题25:在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?试题26:如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.试题1答案:B【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是.故选:B.试题2答案:A【考点】实数大小比较.【分析】首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.试题3答案:D【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.试题4答案:C【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.试题5答案:C【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故选C.试题6答案:D【考点】实数大小比较;算术平方根;零指数幂;负整数指数幂.【分析】任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数.【解答】解:∵(﹣1)2017=﹣1,(﹣3)0=1,=3,()﹣2=4,∴四个数中,最大的数是()﹣2,故选:D.试题7答案:C【考点】扇形统计图;中位数;众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.试题8答案:A【考点】圆周角定理.【分析】根据等腰三角形的性质和三角形内角和定理求出∠BOC的度数,根据圆周角定理计算即可.【解答】解:∵OB=OC,∠OBC=55°,∴∠OCB=55°,∴∠BOC=180°﹣55°﹣55°=70°,由圆周角定理得,∠A=∠BOC=35°,故选:A.试题9答案:D【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.试题10答案:B【考点】根的判别式;实数的运算.【分析】先利用新定义得到22•a+a<0,解得a<0,再计算判别式,利用a的范围可判断△>0,从而可判断方程根的情况.【解答】解:∵2☆a的值小于0,∴22•a+a<0,解得a<0,∴△=b2﹣4×2×a>0,∴方程有两个不相等的两个实数根.故选B.B【考点】正多边形和圆;扇形面积的计算.【分析】由正六边形的性质得出的长=12,由扇形的面积=弧长×半径,即可得出结果.【解答】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=18.故选:B.试题12答案:C【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,确定y的范围,进行比较即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,1175≤y A≤1425;1100≤y B≤1300;1075≤y C≤1225;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.C【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到O点y随x增大一直减小,从O到B先减小后增发,故A不符合题意;B、从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;www-2-1-cnjy-comC、从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C点距离最大,故C符合题意;D、从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.试题14答案:B【考点】反比例函数图象上点的坐标特征;解直角三角形.【分析】作辅助线;首先证明△BOM∽△OAN,得到=,设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,运用三角函数的定义证明知tan∠OAB=.【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=,故选B.试题15答案:B【考点】点与圆的位置关系;矩形的性质;圆周角定理.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故选:B.试题16答案:B【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.试题17答案:4 .【考点】立方根.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.试题18答案:3 m.【考点】中心投影.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m,答:路灯的高为3m.试题19答案:.【考点】规律型:点的坐标;含30度角的直角三角形.【分析】根据含30°的直角三角形的性质结合图形即可得到规律“OA n=OA=2”,依此规律即可解决问题.【解答】解:∵∠AOB=30°,点A坐标为(2,0),∴OA=2,∴OA1=OA=,OA2=OA1═,OA3=OA2═,OA4=OA3═,…,∴OA n=OA=2.∵∠AOB=30°,∴A2A3=OA2=,∴A2017A2018=OA2017=.故答案为:;.试题20答案:【考点】分式的化简求值;一元一次不等式组的整数解.【分析】先算括号里面的,再算除法,求出x的取值范围,选出合适的x的值代入求值即可.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.试题21答案:【考点】列表法与树状图法;勾股数.【分析】(1)根据概率公式求解可得;(2)利用树状图展示12种等可能的结果数,根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,B)(C,D)D (D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2==,∵P1=,P2=,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.试题22答案:【考点】作图—应用与设计作图;二元一次方程的应用;多边形的对角线.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a、b的二元一次方程组,解方程组即可得出结论.【解答】解:(1)画出图形如下.由画形,可得:当n=4时,P4=1;当n=5时,P5=5.故答案为:1;5.(2)将(1)中的数值代入公式,得:,解得:.试题23答案:【考点】切线的判定与性质;勾股定理;解直角三角形.【分析】(1)过点O作OM⊥AB,垂足是M,证明OM等于圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,则四边形OMBN是矩形,在直角△OBM利用三角函数求得OM和BM的长,则BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,则BF即可求解.【解答】解:(1)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D.∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠MAO,∴OM=OD.∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵AB=AC,AO⊥BC,∴O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴OM=OB•sin60°=,BM=OB•cos60°=1.∵BE⊥AB,∴四边形OMBN是矩形.∴ON=BM=1,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=+.试题24答案:【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.【分析】(1)证AD=BE,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.【解答】(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为:相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG试题25答案:【考点】解直角三角形的应用﹣方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.试题26答案:【考点】二次函数综合题.【分析】(1)令y=0得到关于x的方程,解方程可求得点A和点B的横坐标,将x=2代入抛物线的解析式求得对应的y 值可求得点C的纵坐标,设直线AC的解析式为y=kx+b,将点A和点C的坐标代入求得k和b的值即可;(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),然后得到PE与x 的函数关系式,利用二次函数的性质可求得PE的最大值,最后依据S△ACE=×PE×(x C﹣x A)求解即可;(3)设点F的坐标为(a,0),点G的坐标为(x,y),依据中点坐标公式求得点G的坐标,然后将点G的坐标代入抛物线的解析式求得对应的a的值即可.【解答】解(1)当y=0时,解得x1=﹣1或x2=3,∴A(﹣1,0)B(3,0).将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,∴C(2,﹣3).设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=﹣1,b=﹣1.∴直线AC的函数解析式是y=﹣x﹣1.(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3)∵P点在E点的上方,∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣)2+.∴当x=时,PE的最大值为.∴S△ACE=×PE×(x C﹣x A)=××3=.(3)当AC为平行四边形的对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,.∴y=﹣3,x=1﹣a.∵点G在抛物线上,∴﹣3=(1﹣a)2﹣2(1﹣a)﹣3,整理得:a2﹣1=0,解得a=﹣1或a=﹣1(舍去).∴点F的坐标为(1,0).当AC为平行四边形的边,CF为对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,=.∴y=﹣3,x=a+3∵点G在抛物线上,∴﹣3=(a+3)2﹣2(a+3)﹣3,整理得:a2+4a+3=0,将a=﹣3或a=﹣1(舍去)∴点F的坐标为(﹣3,0).当AC为平行四边形的边,CG为对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,=.∴y=3,x=a﹣3∵点G在抛物线上,∴3=(a﹣3)2﹣2(a﹣3)﹣3,整理得:a2﹣8a+9=0,解得a=4+或a=4.∴点F的坐标为(4+,0)或(4﹣).综上所述,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣).。

2017年河北省数学中考模拟试题(2)含答案

2017年河北省数学中考模拟试题(2)含答案

2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2013)与点A ′(-2014,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <- B . 3m >- C .3m < D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.A .4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ )A .4B .3C .2D .1 11.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形 D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个 B.3个 C.4个 D.5个 13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥14.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( )(第14题)0 0 3 53 51414ABCDA B CD P 2 3 x yO 图1 图2A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是() A .15个 B .13个 C .11个 D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65; ②若,2=x a ,3=y a 则yx a-2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 2015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号 二 三21 22 23 24 25 26 得分总 分 核分人(第15题)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .19.如图,矩形ABCD 中,AB =8,AD =3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点? 20.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′,(1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人得分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。

河北省唐山市路北区中考数学一模试卷(含解析)

河北省唐山市路北区中考数学一模试卷(含解析)

2017年河北省唐山市路北区中考数学一模试卷一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分,共42分)1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.22.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.63.下列四个立体图形中,主视图为圆的是()A.B.C.D.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)6. +的运算结果正确的是()A. B. C. D.a+b7.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°8.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=09.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A.B.C.D.10.自来水公司为了解居民某月用水请款个,随机抽取了20户居民的月用水量x(单位:立方米),绘制出表格,则月用水量x<3的频率是()A.0.15 B.0.3 C.0.8 D.0.911.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠412.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.213.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)点,其中a>0,若∠BAC=100°,则△ABC的外心在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.16.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.二、填空题(本大题共3个小题;17-18每小题3分,19题每空2分,共10分)17.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为.18.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小明打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小明抽出的两颗求颜色相同的概率为.19.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右做平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在左侧作等边△APQ,连接PB、BA.(1)当AB∥PQ时,点P的横坐标是;(2)当BP∥QA时,点P的横坐标是.三、解答题(本大题共7个小题,共68分)20.先化简,再求值:,其中x满足方程:x2+x﹣6=0.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)22.如图,已知边长为6的等边△ABC内接于⊙O.(1)求⊙O半径;(2)求的长和弓形BC的面积.23.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x 轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由.25.某高新企业员工的工资由基础工资、绩效工资和工龄工资三部分组成,其中工龄工资的制定充分了考虑员工对企业发展的贡献,同时提高员工的积极性,控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案.Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;Ⅱ.社会工龄=参加本企业工作时年龄﹣18,企业工龄=现年年龄﹣参加本企业工作时年龄.Ⅲ.当年工作时间计入当年工龄Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.请解决以下问题(1)求出y1、y2与工龄x之间的函数关系式;(2)现年28岁的高级技工小张从18岁起一直实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?26.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为;用含t的式子表示点P的坐标为;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.2017年河北省唐山市路北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分,共42分)1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.2【考点】6E:零指数幂.【分析】根据零指数幂的运算法则求出(﹣2)0的值【解答】解:(﹣2)0=1.故选C.2.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6【考点】1C:有理数的乘法.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.3.下列四个立体图形中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】2B:估算无理数的大小;22:算术平方根.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.5.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)【考点】B3:解分式方程.【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【解答】解:由两个分母(x+4)和x可得最简公分母为x(x+4),所以方程两边应同时乘以x(x+4).故选D.6. +的运算结果正确的是()A. B. C. D.a+b【考点】6B:分式的加减法.【分析】首先通分,把、都化成以ab为分母的分式,然后根据同分母分式加减法法则,求出+的运算结果正确的是哪个即可.【解答】解: +=+=故+的运算结果正确的是.故选:C.7.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】JB:平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.8.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0【考点】AA:根的判别式.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.9.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】首先根据数轴求得不等式组的解集,再分别求A,B,C,D各不等式组的解集,即可求得答案.【解答】解:∵,∴这个不等式组的解集为:﹣1<x≤2,A、解不等式组得:x>1,故本选项错误;B、解不等式组得:﹣2<x≤1,故本选项错误;C、解不等式组得:﹣1≤x<2,故本选项错误;D、解不等式组得:﹣1<x≤2,故本选项正确.故选D.10.自来水公司为了解居民某月用水请款个,随机抽取了20户居民的月用水量x(单位:立方米),绘制出表格,则月用水量x<3的频率是()A.0.15 B.0.3 C.0.8 D.0.9【考点】V6:频数与频率.【分析】先根据表格找出月用水量x<3的总户数,然后根据频率=求解即可.【解答】解:由图可得,月用水量x<3的总户数为:1+2+3+4+3+3=16,则频率==0.8.故选C.11.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4【考点】LE:正方形的性质.【分析】根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.【解答】解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.12.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【考点】KF:角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.13.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】KG:线段垂直平分线的性质;M1:圆的认识;N2:作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)点,其中a>0,若∠BAC=100°,则△ABC的外心在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】根据钝角三角形的外心在三角形的外部即可得出结论.【解答】解:∵B(﹣9,0)、C(10,0),∴△ABC的外心在直线x=上.∵∠BAC=100°,∴△ABC的外心在三角形的外部,∴△ABC的外心在第四象限.故选D.15.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;LE:正方形的性质.【分析】由四边形ABCD,BEFG是正方形,得到BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,根据四边形DGHI是矩形,得到∠DGH=90°,于是得到∠DGC=∠FGH,推出△DGC∽△HGF,得到比例式,求得FH的长度,代入三角形的面积公式即可求出结果.【解答】解:∵四边形ABCD,BEFG是正方形,∴BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,∵四边形DGHI是矩形,∴∠DGH=90°,∴∠DGC+∠CGH=∠FGH+∠HGC=90°,∴∠DGC=∠FGH,∴△DGC∽△HGF,∴=,∴FH===,∴S△FHG=GF•FH=,故选D.16.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.二、填空题(本大题共3个小题;17-18每小题3分,19题每空2分,共10分)17.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 6.05×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于60500有5位,所以可以确定n=5﹣1=4.【解答】解:60500=6.05×104.故答案为:6.05×104.18.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小明打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小明抽出的两颗求颜色相同的概率为.【考点】X6:列表法与树状图法.【分析】画树状图展示所有共有12可等可能的结果数,再找出抽出的两颗求颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12可等可能的结果数,其中抽出的两颗求颜色相同的结果数为2,所以小明抽出的两颗求颜色相同的概率==.故答案为.19.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右做平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在左侧作等边△APQ,连接PB、BA.(1)当AB∥PQ时,点P的横坐标是;(2)当BP∥QA时,点P的横坐标是0或2.【考点】KK:等边三角形的性质;D5:坐标与图形性质.【分析】(1)首先根据题意画出符合题意的图形,当AB为梯形的底时,PQ∥AB,可得Q在CP上,由△APQ是等边三角形,CP∥x轴,即可求得答案;(2)当AB为梯形的腰时,AQ∥BP,易得四边形ABPC是平行四边形,即可求得CP的长,继而可求得点P的横坐标.【解答】解:(1)如图1:当AB为梯形的底时,PQ∥AB,∴Q在CP上,∵△APQ是等边三角形,CP∥x轴,∴AC垂直平分PQ,∵A(0,2),C(0,4),∴AC=2,∴PC=AC•tan30°=2×=,∴当AB为梯形的底时,点P的横坐标是:;(2)如图2,当AB为梯形的腰时,AQ∥BP,∴Q在y轴上,∴BP∥y轴,∵CP∥x轴,∴四边形ABPC是平行四边形,∴CP=AB=2,如图3,当C与P重合时,∵A(0,2)、B(2,2),∴tan∠APB==,∴∠APB=60°,∵△APQ是等边三角形,∴∠PAQ=60°,∴∠ACB=∠PAQ,∴AQ∥BP,∴当C与P重合时,四边形ABPQ以AB为腰的梯形,此时点P的横坐标为0;∴当AB为梯形的腰时,点P的横坐标是:0或2.故答案为:(1);(2)0或2.三、解答题(本大题共7个小题,共68分)20.先化简,再求值:,其中x满足方程:x2+x﹣6=0.【考点】6D:分式的化简求值;A3:一元二次方程的解.【分析】将原式括号中通分并利用同分母分式的减法法则计算,分子合并后利用平方差公式分解因式,然后将除式的分子利用完全平方公式分解因式,并利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后得到最简结果,然后求出x满足方程的解,将满足题意的x 的值代入化简后的式子中计算,即可得到原式的值.【解答】解:(x+1﹣)÷=÷=•=,∵x满足方程x2+x﹣6=0,∴(x﹣2)(x+3)=0,解得:x1=2,x2=﹣3,当x=2时,原式的分母为0,故舍去;当x=﹣3时,原式==.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了200 天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72 °;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据4级的天数是24天,所占的百分比是48%,据此求得调查的总天数;(2)利用总天数减去其它组的天数即可求得5级的天数,从而补全直方图;(3)用360°乘以对应的百分比即可求得对应的圆心角的度数;(4)利用365乘以对应的比例即可求得.【解答】解:(1)抽查的总天数是24÷48%=50(天),故答案是:50;(2)是5级的天数是50﹣3﹣7﹣10﹣24=6(天),;(3)扇形统计图中3级空气质量所对应的圆心角为×360=72°,故答案是:72;(4)估计该年该城市适宜户外活动的天数是×365=146(天).答:估计该年该城市适宜户外活动的天数是146天.22.如图,已知边长为6的等边△ABC 内接于⊙O .(1)求⊙O 半径;(2)求的长和弓形BC 的面积.【考点】MA :三角形的外接圆与外心;MN :弧长的计算;MO :扇形面积的计算.【分析】(1)连结OB ,OC ,作OM ⊥BC 于M ,根据圆周角定理求出∠BOC 的度数,再由锐角三角函数的定义即可得出结论;(2)直接根据弧长公式可得出弧BC 的长,再由弓形BC 的面积=S 扇形BOC ﹣S △BOC 可得出结论.【解答】解:(1)连结OB ,OC ,作OM ⊥BC 于M ,∵△ABC 是等边三角形,∴∠A=60°,∴∠BOC=120°.又∵OM ⊥BC ,∴BM=CM=3.又∵OB=OC ,∴∠OBC=∠OCB=30°.∴⊙O 半径==2;(2)∵由(1)知∠BOC=120°,OB=2,∴弧BC 的长==弓形BC 的面积=S 扇形BOC ﹣S △BOC =﹣×6×3=4π﹣3.23.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x 轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.【考点】G8:反比例函数与一次函数的交点问题;MC:切线的性质.【分析】(1)直接将A点代入反比例函数解析式求出答案;(2)直接利用切线的性质结合正方形的判定与性质得出C,B点坐标,进而利用待定系数法求出一次函数解析式;(3)利用A点坐标结合函数图象得出x的取值范围.【解答】解:(1)把点A(﹣4,m)的坐标代入y2=,则m==﹣1,得m=﹣1;(2)连接CB,CD,∵⊙C与x轴,y轴相切于点D,B,∴∠CBO=∠CDO=90°=∠BOD,BC=CD,∴四边形BODC是正方形,∴BO=OD=DC=CB,∴设C(a,a)代入y2=得:a2=4,∵a>0,∴a=2,∴C(2,2),B(0,2),把A(﹣4,﹣1)和(0,2)的坐标代入y1=kx+b中,得:,解得:,∴一次函数的表达式为:y1=x+2;(3)∵A(﹣4,﹣1),∴当y1<y2<0时,x的取值范围是:x<﹣4.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由.【考点】R2:旋转的性质;KB:全等三角形的判定;LC:矩形的判定.【分析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN.(2)证明方法与②相同.(3)四边形MBCN是矩形,则PM=PN成立.【解答】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE中,PN=ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,,∴△BPM≌△CPE,∴PM=PE,∴PM=ME,则Rt△MNE中,PN=ME,∴PM=PN.(3)解:如图4,四边形M′BCN′是矩形,根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.25.某高新企业员工的工资由基础工资、绩效工资和工龄工资三部分组成,其中工龄工资的制定充分了考虑员工对企业发展的贡献,同时提高员工的积极性,控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案.Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;Ⅱ.社会工龄=参加本企业工作时年龄﹣18,企业工龄=现年年龄﹣参加本企业工作时年龄.Ⅲ.当年工作时间计入当年工龄Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.请解决以下问题(1)求出y1、y2与工龄x之间的函数关系式;(2)现年28岁的高级技工小张从18岁起一直实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?【考点】HE:二次函数的应用.【分析】(1)结合函数图象根据待定系数法就可以得出y1、y2与工龄x之间的函数关系式,注意y2与x的函数关系式需要分段讨论;(2)根据(1)的解析式分别求出小张在原厂的工龄工资和回乡后的工龄工资,求出其差就可以了;(3)设李工程师的工龄工资为y,在本企业工作x年,根据工龄工资=社会工龄工资+企业工龄工资求出y与x之间的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)设y1与x之间的函数关系式为y1=kx,由题意,得100=10k,解得:k=10∴y1=10x(x≥0,x为整数);当0≤x≤3时,y2与x之间的函数关系式为y2=k2x,由题意,得60=3k2.∴k2=20,∴y2=20x,当3<x≤32时,设y2=a(x﹣23)2+860,由题意,得698=a(32﹣23)2+860,解得:a=﹣2,∴y2=﹣2(x﹣23)2+860,当32<x≤42时,由图象,得y2=698.∴y2=;(2)小张在原厂的社会工龄为:18﹣18=0年,企业工龄为:28﹣28=10年y1=0,y2=522,∴在小张在原厂的工龄工资为:0+522=522元,当小张回家乡到后进该企业,小张的社会工龄为:28﹣18=10年,企业工龄为:28﹣28=0年∴小张的工龄工资为;y1+y2=10×10+20×0=100∴小张的第一年工龄工资每月下降了:522﹣100=422元,答:第一年每月工龄工资下降422元;(3)依题知要李程师的总工龄为:48﹣18=30,设李工程师的工龄工资为y,在本企业工作x年,由题意,得3<x≤30∴y=y1+y2=10(30﹣x)+[﹣2(x﹣23)2+860]=﹣2(x﹣20.5)2+942.5,∵a=﹣2<0,∴抛物线开口向下,对称轴是x=20.5,∵x为整数,∴当x=20或21时,y最大,且最大值为942,∴李工程师的工龄工资最高为942元/月.26.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为(t, t);(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)由OA=6,AB=4,易得点B的坐标为(6,4);由图可得,点P的横坐标=CN=t,纵坐标=4﹣NP,NP的值可根据相似比求得;(2)由(1)的结论易得△OMP的高为t,而OM=6﹣AM=6﹣t,再根据三角形的面积公式即可求得S与t的函数关系式,再由二次函数的最值求法,求得t为何值时,S有最大值;(3)由(2)求得点M、N的坐标,从而求得直线ON的函数关系式;设点T的坐标为(0,b),可得直线MT的函数关系式,解由两个关系式组成的方程组,可得点直线ON与MT的交点R的坐标;由已知易得S△OCN=×4×3=6,S△ORT=S△OCN=2;然后分两种情况考虑:①当点T在点O、C之间时,②当点T在点OC的延长线上,从而求得符合条件的点T的坐标.【解答】解:(1)延长NP交OA于H,如图1所示:∵矩形OABC,∴BC∥OA,∠OCB=90°,∵PN⊥BC,∴NH∥OC,∴四边形CNHO是平行四边形,∴OH=CN,∵OA=6,AB=4,∴点B的坐标为(6,4);由图可得,点P的横坐标=0H=CN=t,纵坐标=4﹣NP,∵NP⊥BC,∴NP∥OC,∴NP:OC=BN:CB,即NP:4=(6﹣t):6,∴NP=4﹣t,∴点P的纵坐标=4﹣NP=t,则点P的坐标为(t, t);故答案为:(6,4);(t, t);(2)∵S△OMP=×OM×t,∴S=×(6﹣t)×t=﹣t2+2t=﹣(t﹣3)2+3(0<t<6).∴当t=3时,S有最大值.(3)存在.理由如下:由(2)得,当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),则直线ON的函数关系式为:y=x.设点T的坐标为(0,b),则直线MT的函数关系式为:y=﹣x+b,解方程组得,∴直线ON与MT的交点R的坐标为(,),∵S△OCN=×4×3=6,∴S△ORT= S△OCN=2,①当点T在点O、C之间时,分割出的三角形是△OR1T1,如图2所示,作R1D1⊥y轴,D1为垂足,则S△OR1T1=RD1•OT=••b=2.∴3b2﹣4b﹣16=0,解得:b=(负值舍去).∴b=,此时点T1的坐标为(0,).②当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则S△R2NE=•EN•R2D2=•(3﹣)•(4﹣==2.∴b2+4b﹣48=0,解得:b=±2﹣2(负值舍去).∴b=2﹣2.∴此时点T2的坐标为(0,2).综上所述,在y轴上存在点T1(0,),T2(0,2﹣2)符合条件.。

2017年河北省唐山市路北区中考数学二模试卷含答案解析

2017年河北省唐山市路北区中考数学二模试卷含答案解析

2017年河北省唐山市路北区中考数学二模试卷一、选择题(本大题共16小题,共42分)1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.4的平方根是()A.2 B.﹣2 C.±2 D.163.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a24.下列图形中,能确定∠1>∠2的是()A.B.C.D.5.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.50018.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A.3 B.4 C.5 D.79.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠310.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A.l1B.l2C.l3D.l411.学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.6012.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确13.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.1314.小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?()A.4 B.14 C.24 D.3415.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+216.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A. B.C.5 D.6二、填空题(本大题共3小题,共10分)17.计算:( +1)(3﹣)= .18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为m.19.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,①AE和BF的位置关系为;②线段MN的最小值为.三、解答题(本大题共7小题,共68分)20.(1)计算:(π﹣)0++(﹣1)2013﹣tan60°;(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.22.某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是度.(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?23.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.24.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.25.如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC 沿直线AB折叠得到△ABD.(1)填空:A点坐标为(,),D点坐标为(,);(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.2017年河北省唐山市路北区中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【考点】47:幂的乘方与积的乘方;35:合并同类项;49:单项式乘单项式;4F:平方差公式.【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.4.下列图形中,能确定∠1>∠2的是()A.B.C.D.【考点】K8:三角形的外角性质;J2:对顶角、邻补角;JA:平行线的性质;M5:圆周角定理.【分析】根据对顶角相等对选项A进行判断;根据三角形外角性质对选项B进行判断;根据平行线的性质和对顶角相等对选项C进行判断;根据圆周角定理对选项D进行判断.【解答】解:A、∠1=∠2,故本选项错误;B、∠1>∠2,故本选项正确;C、∠1=∠2,故本选项错误;D、∠1=∠2,故本选项错误.故选B.5.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.5001【考点】1C:有理数的乘法.【分析】将﹣1000化为﹣,然后计算出5﹣10,再根据分配律进行计算.【解答】解:原式=﹣×(﹣5)=×5=1000×5+×5=5000+1=5001.故选D.8.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A.3 B.4 C.5 D.7【考点】MP:圆锥的计算.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故选B.9.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】B2:分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C10.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A.l1B.l2C.l3D.l4【考点】MB:直线与圆的位置关系.【分析】根据直线和圆的位置关系与数量之间的联系:当d=r,则直线和圆相切;当d<r,则直线和圆相交;当d>r,则直线和圆相离,进行分析判断.【解答】解:因为所求直线到圆心O点的距离为14公分<半径20公分,所以此直线为圆O的割线,即为直线l2.故选B.11.学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:(9.60+9.60)=9.60,众数为:9.60.故选:B.12.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确【考点】M2:垂径定理;KX:三角形中位线定理;M5:圆周角定理.【分析】(1)由甲的作法可知,DP是△ABC的中位线,由于DP不垂直于BC,故≠;(2)由乙的作法,连BE,可知△BEC为等腰三角形,由等腰三角形的性质可知∠1=∠2,根据圆周角定理即可得出结论.【解答】解:(1)由甲的作法可知,DP是△ABC的中位线,∵DP不垂直于BC,∴≠;(2)由乙的作法,连BE,可知△BEC为等腰三角形∵直线PE⊥BC,∴∠1=∠2故=;∴甲错误,乙正确.故选D.13.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.13【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.【解答】解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.14.小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?()A.4 B.14 C.24 D.34【考点】C9:一元一次不等式的应用.【分析】根据设小明买了x包饼干,则剩下的钱为300﹣(50+90+120+13x)元,再分别分析得出可能剩下的钱数.【解答】解:设小明买了x包饼干,则剩下的钱为300﹣(50+90+120+13x)元,整理后为(40﹣13x)元,当x=1,40﹣13x=27,当x=2,40﹣13x=14,当x=3,40﹣13x=1;故选;B.15.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2【考点】H8:待定系数法求二次函数解析式;G6:反比例函数图象上点的坐标特征.【分析】将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.【解答】解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选:A.16.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A. B.C.5 D.6【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.【分析】先根据相似三角形的判定定理得出△BEF∽△CFD,再根据勾股定理求出DF的长,再由相似三角形的对应边成比例即可得出结论.【解答】解:在△BEF与△CFD中∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3∵∠B=∠C=90°,∴△BEF∽△CFD,∵BF=3,BC=12,∴CF=BC﹣BF=12﹣3=9,又∵DF===15,∴=,即=,∴EF=故选B.二、填空题(本大题共3小题,共10分)17.计算:( +1)(3﹣)= 2.【考点】79:二次根式的混合运算.【分析】先把后面括号内提,然后利用平方差公式计算.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为(50﹣)m.【考点】T8:解直角三角形的应用.【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【解答】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故答案是:(50﹣).19.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,①AE和BF的位置关系为AE⊥BF.;②线段MN的最小值为.【考点】LE:正方形的性质.【分析】①由△ABE≌△BCF(SAS),推出∠BAE=∠CBF,AE=BF,由∠BAE+∠BEA=90°,推出∠CBF+∠BEA=90°,推出∠APB=90°;②由点P在运动中保持∠APB=90°,推出点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小;【解答】解:①如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,AE=BF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∴AE⊥BF,②∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故答案为AE⊥BF,.三、解答题(本大题共7小题,共68分)20.(1)计算:(π﹣)0++(﹣1)2013﹣tan60°;(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.【考点】4J:整式的混合运算—化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,立方根定义,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=1+2﹣1﹣3=﹣1;(2)原式=a2+6a+9+4a﹣a2=10a+9,当a=﹣1时,原式=﹣10+9=﹣1.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.22.某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有60 件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是108 度.(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据第三组的频数除以频率得出总件数即可;(2)求出第四组的百分比,乘以360即可得到结果;(3)列表得出所有等可能的情况数,找出随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:12÷=60(件);(2)根据题意得:×360°=108°;(3)将一等奖用A,B表示,二等奖用a,b,c表示,两次抽取卡片的可能结果如下表:总共有20种可能结果,其中有12种是一个一等奖和一个二等奖的可能情况,∴随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率P=60%.故答案为:(1)60;(2)108.23.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为270 吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.【考点】FH:一次函数的应用.【分析】(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为 270吨;(2)先求出甲队每小时的清雪量,再求出m.(3)设乙队调离后y与x之间的函数关系式为:y=kx+b,把A,B两点代入求出函数关系式.【解答】解:(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为270吨;故答案为:270.(2)乙队调离前,甲、乙两队每小时的清雪总量为=90吨;∵乙队每小时清雪50吨,∴甲队每小时的清雪量为:90﹣50=40吨,∴m=270+40×3=390吨,∴此次任务的清雪总量为390吨.(3)由(2)可知点B的坐标为(6,390),设乙队调离后y与x之间的函数关系式为:y=kx+b (k≠0),∵图象经过点A(3,270),B(6,390),∴解得∴乙队调离后y与x之间的函数关系式:y=40x+150.24.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【考点】MC:切线的性质;L6:平行四边形的判定;MO:扇形面积的计算.【分析】(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD 是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.【解答】解:(1)∵CD是⊙O的切线,∴∠CDO=90°,∵∠BOD=60°,∴∠C=30°,∠AOD=120°,∵E为的中点,∴∠AOE=∠DOE=60°,∴∠BOE=120°,∵OE=OB,∴∠OEB=∠OBE=30°,∴∠C=∠OBE=∠E,∴DE∥BC,BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.25.如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC 沿直线AB折叠得到△ABD.(1)填空:A点坐标为(﹣2 ,0 ),D点坐标为(﹣2 , 3 );(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)【考点】HF:二次函数综合题.【分析】(1)A、D两坐标可由图象看出.(2)抛物线y=x2+bx+c经过C(1,0),D(﹣2,3),两点代入解析式,解得b、c.(3)当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等,故知道EM不会与x轴平行,设抛物线向上平移H 个单位能使EM∥x轴,写出平移后的解析式,根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴,将点M代入直线y=x+2,解得h.【解答】解:(1)A(﹣2,0),D(﹣2,3)(2)∵抛物线y=x2+bx+c经过C(1,0),D(﹣2,3)代入,解得:b=﹣,c=∴所求抛物线解析式为:y=x2﹣x+;(3)答:存在.∵当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等.∴EM不会与x轴平行,当点M在抛物线的右侧时,设抛物线向上平移H个单位能使EM∥x轴,则平移后的抛物线的解析式为∵y=(x﹣1)2+h,∴抛物线与y轴交点E(0, +h),∵抛物线的对称轴为:x=1,根据抛物线的对称性,可知点M的坐标为(2, +h)时,直线EM∥x轴,将(2, +h)代入y=x+2得+h=2+2解得:h=.∴抛物线向上平移个单位能使EM∥x轴.26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为 4 ;当OO′⊥AD时,t的值为 3 .【考点】LO:四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF 与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0<t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,∵O′是矩形EFHG的对角线的交点,∴FM=EG=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.。

河北省唐山市丰润区2017年中考数学一模试卷(解析版)

河北省唐山市丰润区2017年中考数学一模试卷(解析版)

河北省唐山市丰润区2017年中考数学一模试卷(解析版)一.选择题1.计算:=()A. 5B. 2C. 4D. 32.小明从正面观察如图所示的两个物体,看到的大致图形是()A. B. C. D.3.下列计算错误的是()A. 3 =2B. ﹣2+|﹣2|=0C. x2•x3=x6D. (﹣3)2=94.把多项式x2﹣6x+9分解因式,结果正确的是()A. (x﹣3)2B. (x﹣9)2C. (x+3)(x﹣3)D. (x+9)(x﹣9)5.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A. 40°B. 110°C. 70°D. 140°6.一种病毒的直径约为0.000043m,0.000043m用科学记数法表示为()A. 4.3×10﹣4mB. 4.3×10﹣5mC. 43×10﹣5mD. 0.43×10﹣4m7.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC8.若关于x的方程x2﹣2 x﹣k=0有两个相等的实数根,则k的值为()A. ﹣1B. 0C. ﹣3D. ﹣9.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A. (2,﹣3)B. (2,3)C. (3,2)D. (3,﹣2)10.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 511.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A. 60海里B. 45海里C. 20 海里D. 30 海里12.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A. 4B. 8C. 2D. 413.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A. 1B.C.D.14.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A. ﹣6B. 6C. 18D. 3015.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 4816.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y= (x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y= (x>0);②E点的坐标是(5,8);③sin∠COA= ;④AC+OB=12 .其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二.填空题17.计算:﹣2×3=________.18.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.19.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作:然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,①第七次操作共得到________个三角形;②若要得到220个小三角形,则需要操作的次数是________.三.解答题20.计算题(1)计算:(﹣)﹣2﹣| ﹣1|+(﹣+1)0+3tan30°(2)解方程:+ =4.21.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.①画出△ABC向上平移6个单位得到的△A1B1C1;②以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.22.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级 29 13 13 5九年级 24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为________,b的值为________;(2)在扇形统计图中,八年级所对应的扇形圆心角为________度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.23.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连结BF.(1)求证:①△EAF≌△EDC;②D是BC的中点;(2)若AB=AC,求证:四边形AFBD是矩形.24.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.25.如图1,△ABC中,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B,C分别在AD,AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交AF,CF于点N,H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段AN的长.26.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分一.<b >选择题</b>1.【答案】D【考点】算术平方根【解析】【解答】解:,故答案为:D【分析】9的算术平方根是3.2.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从正面看左边是一个长方形,右边是一个正方形,故B符合题意;故答案为:B.【分析】从正面看左边是一个长方形,右边是一个正方形。

2017河北数学中考模拟试卷解析(2)

2017河北数学中考模拟试卷解析(2)

2017河北数学中考模拟试卷解析(2)2017河北数学中考模拟试题解析一.选择题(共10小题)1. 的值等于( )A.4B.﹣4C.±4D.【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根.【解答】解:,故选:A.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.函数y= 中,自变量x的取值范围为( )A.x>B.x≠C.x≠ 且x≠0D.x<【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母2x﹣3≠0,解得x的范围.【解答】解:根据题意得:2x﹣3≠0,解得:x≠ .故选B.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列运算正确的是( )A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方和因式分解,掌握合并同类项法则、同底数幂的乘法法则、积的乘方法则和利用平方差公式进行因式分解是解题的关键.5.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3B.4C.5D.6【分析】根据众数的定义先求出x的值,再根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案.【解答】解:∵一组数据3,x,4,5,6的众数是3,∴x=3,把这组数据按照从小到大的顺序排列为:3,3,4,5,6,最中间的数是4,则这组数据的中位数为4;故选B.【点评】本题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )A.﹣4B.0C.1D.3【分析】根据一次函数的性质,若y随x的增大而减小,则k<0.【解答】解:∵y=kx﹣4的函数值y随x的增大而减小,∴k<0,而四个选项中,只有A符合题意,故选A.【点评】本题考查了一次函数的性质,要知道,在直线y=kx+b 中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是 ( )A.10B.8C.6D.8或10【分析】用因式分解法可以求出方程的两个根分别是2和4,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,∴x1=2,x2=4.由三角形的三边关系可得:(两边之和大于第三边),∴腰长是4,底边是2,所以周长是:4+4+2=10.故选:A.【点评】此题主要考查了因式分解法解一元二次方程以及根据三角形的三边关系求出三角形的周长,此题难度不大,但容易出错,注意三角形三边关系是解决问题的关键.8.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64°B.58°C.72°D.55°【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.【解答】解:∵BC是直径,∠D=32°,∴∠B=∠D=32°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC﹣∠BAO=90°﹣32°=58°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )A.3B.6C.3πD.6π【分析】直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr= ×2π×10,解得r=6.故选B.【点评】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B. C. D.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB 的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.二.填空题(共6小题)11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16200用科学记数法表示为:1.62×104.故答案为:1.62×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.因式分解:m2n﹣6mn+9n= .【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:m2n﹣6mn+9n=n(m2﹣6m+9)=n(m﹣3)2.故答案为:n(m﹣3)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC上A1处,折痕为CD,则∠A1DB= .【分析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.故答案为:10.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为 m(结果保留根号).【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60× =30 (m).故答案为:30 .【点评】本题考查的是解直角三角形的应用﹣方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.15.不等式组的解集是 .【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x≥3,则不等式组的解集为3≤x<4.故答案为:3≤x<4【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是.【分析】设△ABC面积为S,则△DEF面积为26﹣S,根据题意列方程即可得到结论.【解答】解:设△ABC面积为S,则△DEF面积为26﹣S,∵叠部分的面积是△ABC面积的,是△DEF面积的,∴ S= (26﹣S),解得:S=14,∴重叠部分面积= ×14=4,故答案为:4.【点评】本题考查了三角形的面积的计算,正确识别图形是解题的关键.三.解答题(共3小题)17.解方程: =5.【分析】观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x+3),得x+3+5x2=5x(x+3),解得x= .检验:把x= 代入x(x+3)= ≠0.∴原方程的解为:x= .【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .【分析】直接利用多项式乘法运算法则去括号,进而合并同类项,再将已知数据代入求出答案.【解答】解:原式=2a2+4ab+a2﹣4ab+4b2=3a2+4b2,当a=1,b= 时;原式=3×(﹣1)2+4×( )2=15.【点评】此题主要考查了整式的混合运算,正确合并同类项是解题关键.19.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.【分析】(1)首先以A为圆心,任意长为半径画弧,两弧交AB、AC于M、N两点;再分别以M、N为圆心,大于 MN长为半径画弧,两弧交于一点O,画射线BO交AC于D即可.(2)分别计算出S△DAC和S△ABC的面积,作比值即可.【解答】解:(1)如图所示:(2)解:∵在Rt△ACD中,∠CAD=30°,∴CD= AD.∴BC=CD+BD=CD+AD=3CD.∴S△DAC= ,S△ABC= .∴S△DAC:S△ABC= : =1:3.【点评】本题主要考查了作一个角的角平分线、直角三角形中30°角所对的直角边时斜边的一半的性质以及三角形面积公式的运用,属于基础性题目.四.解答题(共3小题)20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【分析】(1)直接利用扇形统计图得出体育成绩“良好”所占百分比,进而求出所对扇形圆心角的度数;(2)首先求出体育成绩“优秀”和“良好”的学生数,再利用表格中数据求出答案;(3)直接利用“优秀”和“良好”学生所占比例得出学生中课外体育锻炼时间不少于4小时的学生人数.【解答】解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.【点评】此题主要考查了扇形统计图以及利用样本估计总体,正确利用扇形统计图和表格中数据得出正确信息是解题关键.21.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设招录的男生为m名,则招录的女生为(30﹣m)名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得: .∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.22.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.五.解答题(共3小题)23.如图,直线y=mx与双曲线y= 相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.(1)求反比例函数的表达式;(2)根据图象直接写出当mx> 时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.【分析】(1)把A坐标代入一次函数解析式求出m的值,确定出一次函数解析式,把A坐标代入反比例解析式求出k的值,即可确定出反比例函数解析式;(2)由题意,找出一次函数图象位于反比例函数图象上方时x的范围即可;(3)存在,理由为:由四边形ABDC为平行四边形,得到AC=BD,且AC∥BD,由AC与x轴垂直,得到BD与x轴垂直,根据A坐标确定出AC的长,即为BD的长,联立一次函数与反比例函数解析式求出B坐标,即可确定出D坐标.【解答】解:(1)把A(1,2)代入y=mx得:m=2,则一次函数解析式是y=2x,把A(1,2)代入y= 得:k=2,则反比例解析式是y= ;(2)根据图象可得:﹣11;(3)存在,理由为:如图所示,四边形ABDC为平行四边形,∴AC=BD,AC∥BD,∵AC⊥x轴,∴BD⊥x轴,由A(1,2),得到AC=2,∴BD=2,联立得:,消去y得:2x= ,即x2=1,解得:x=1或x=﹣1,∵B(﹣1,﹣2),∴D的坐标(﹣1,﹣4).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定一次函数解析式以及反比例函数解析式,一次函数与反比例函数的交点,平行四边形的性质,以及坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.【分析】(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结OD,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴ = ,∵PA=AO,∴PA=AO=BO,∴ = ,即 = ,∴PD=4.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和切线的判定方法;运用相似三角形的判定和性质解决线段之间的关系.通过相似比得到PD的方程可解决(3)小题.25.如图,已知抛物线y=﹣ x2﹣ x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,分E点为抛物线上的普通点和顶点2种情况讨论,即可求出平行四边形的面积.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣ x2﹣ x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣ )或(5,﹣ ),此时点F(﹣1,﹣ ),∴以A,B,E,F为顶点的平行四边形的面积=6× = .②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F 为顶点的平行四边形的面积= ×6× = .(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN= = ,∴点M1坐标(﹣1,2+ ),点M2坐标(﹣1,2﹣ ).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.。

2017年河北省唐山市玉田县中考数学二模试卷(解析版)

2017年河北省唐山市玉田县中考数学二模试卷(解析版)

2017年河北省唐山市玉田县中考数学二模试卷一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.9的绝对值是()A.9 B.﹣9 C.D.2.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个3.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.4.下列计算正确的是()A.20170=0 B.=±9 C.(x2)3=x5D.3﹣1=5.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1 D.a>6.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元7.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米8.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.9.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°10.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8911121315人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,411.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为()A.15 B.10 C.D.512.下列关于x的方程(k﹣1)x2+2kx+2=0根的情况说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.总有实数根13.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=114.如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P 是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A.1个 B.2个 C.3个 D.4个15.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产50件D.若工人乙一天生产m(件),则他获得薪金4m元16.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4二、填空题(共3个小题,共10分,17-18小题各3分,19题每空2分)17.要使代数式有意义,则x的取值范围是.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是.19.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为,第n个正方形的边长为.三、解答题(共68分)20.先化简,再求值:(﹣)÷,其中x=tan45°+2cos60°.21.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.23.为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).24.已知:等腰三角形OAB在直角坐标系中的位置如下图,点A的坐标为(,3),点B的坐标为(﹣6,0).(1)若△OAB关于y轴的轴对称图形是△OA'B',请直接写出A、B的对称点A'、B'的坐标;(2)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图象上,求a的值;(3)若△OAB绕点O按逆时针方向旋转30°,此时点B恰好落在反比例函数的图象上,求k的值.25.两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF 的值.26.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.2017年河北省唐山市玉田县中考数学二模试卷参考答案与试题解析一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.9的绝对值是()A.9 B.﹣9 C.D.【考点】15:绝对值.【分析】根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值.【解答】解:9的绝对值是9,故选:A.2.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A3.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.4.下列计算正确的是()A.20170=0 B.=±9 C.(x2)3=x5D.3﹣1=【考点】47:幂的乘方与积的乘方;22:算术平方根;6E:零指数幂;6F:负整数指数幂.【分析】根据零次幂,开方运算,幂的乘方底数不变指数相乘,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:A、非零的零次幂等于1,故A不符合题意;B、81的算术平方根是9,故B不符合题意;C、幂的乘方底数不变指数相乘,故C不符合题意;D、负整数指数幂与正整数指数幂互为倒数,故D符合题意;故选:D.5.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1 D.a>【考点】P5:关于x轴、y轴对称的点的坐标;CE:一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,∴,解不等式①得,a>﹣1,解不等式②得,a<,所以,不等式组的解集是﹣1<a<.故选:B.6.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【考点】9A:二元一次方程组的应用.【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C7.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】根据坡度是坡角的正切值,可得答案.【解答】解:斜坡AB的坡度是tan10°=,故B正确;故选:B.8.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.【考点】KQ:勾股定理;29:实数与数轴.【分析】直接利用勾股定理得出OC的长,进而得出答案.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.9.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°【考点】MB:直线与圆的位置关系;MC:切线的性质.【分析】根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.【解答】解:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.10.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8911121315人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】W5:众数;W4:中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.11.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为()A.15 B.10 C.D.5【考点】S9:相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为15,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=∴△ACD的面积=5,故选:D.12.下列关于x的方程(k﹣1)x2+2kx+2=0根的情况说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.总有实数根【考点】AA:根的判别式.【分析】当k﹣1=0时,可通过解一元一次方程,找出方程的解;当k﹣1≠0时,根据方程的系数结合根的判别式,即可得出△=4(k﹣1)2≥0,由此可得出该方程有实数根.综上即可得出结论.【解答】解:当k﹣1=0,即k=1时,原方程为2x+2=0,解得:x=﹣1;当k﹣1≠0,即k≠1时,△=(2k)2﹣4×2×(k﹣1)=4(k﹣1)2≥0,∴此时方程有实数根.综上所述:无论k为何值,关于x的方程(k﹣1)x2+2kx+2=0总有实数根.故选D.13.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】B6:由实际问题抽象出分式方程.【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A 地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.14.如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P 是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A.1个 B.2个 C.3个 D.4个【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】分别以A,O为圆心,AO长为半径画弧,则弧线与直线l的交点即为所求.【解答】解:如图所示,使△PAO是以OA为腰的等腰三角形,则符合条件的点P有3个:P1,P2,P3,故选:C.15.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产50件D.若工人乙一天生产m(件),则他获得薪金4m元【考点】FH:一次函数的应用.【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【解答】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=÷(40﹣20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+=20+30=50,故选项C 正确,若工人乙一天生产m(件),当m≤20时,他获得的薪金为:3m元;当m>20时,他获得的薪金为:60+(m﹣20)×4=(4m﹣20)元,故选项D错误,故选D.16.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4【考点】MC:切线的性质;K3:三角形的面积.【分析】当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△ABE面积.【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.二、填空题(共3个小题,共10分,17-18小题各3分,19题每空2分)17.要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是.【考点】X4:概率公式.【分析】分析可得:从1,2,3,4中任取一个数作为十位上的数,再从2,3,4中任取一个数作为个位上的数,共12种取法,其中4个两位数是3的倍数,故其概率为.【解答】解:P(两位数是3的倍数)=4÷12=.故本题答案为:.19.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为8,第n个正方形的边长为2n﹣1.【考点】F8:一次函数图象上点的坐标特征.【分析】根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长.【解答】解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1.故答案为8,2n﹣1.三、解答题(共68分)20.先化简,再求值:(﹣)÷,其中x=tan45°+2cos60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】先将分式和x化简,然后将x的值代入即可求出答案.【解答】解:原式=[(﹣)]•==∵x=tan45°+2cos60°=1+2×=2,∴原式==21.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】(1)根据A点的坐标建立平面直角坐标系,找出线段AC的中点即为D 点;(2)根据D点坐标即可得出结论.【解答】解:(1)如图,△ABC的外心D点的坐标为(3,2);(2)△ABC的外接圆D与x轴相交,与y轴相离,理由:∵由题意可知△ABC为直角三角形,AB=2,CB=4,∴斜边即为外接圆的直径,半径等于AC==.又∵外心坐标为(3,2),∴外心D到x轴的距离为2,到y轴的距离为3,∵2<,3>,∴△ABC的外接圆D与x轴相交,与y轴相离.22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF 是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.23.为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可知优秀的18人占30%,从而可以得到本次抽查的学生数;(2)根据抽查的学生数可以得到抽查中及格的人数,从而可以将条形统计图补充完整;(3)用良好的人数占抽查人数的比值乘以360°即可解答本题;(4)根据统计图中的数据可以求得该学校七年级学生中测试结果为“不及格”等级的学生人数;(5)说出的建议只要对学生具有鼓励性即可.【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.24.已知:等腰三角形OAB在直角坐标系中的位置如下图,点A的坐标为(,3),点B的坐标为(﹣6,0).(1)若△OAB关于y轴的轴对称图形是△OA'B',请直接写出A、B的对称点A'、B'的坐标;(2)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图象上,求a的值;(3)若△OAB绕点O按逆时针方向旋转30°,此时点B恰好落在反比例函数的图象上,求k的值.【考点】R2:旋转的性质;G7:待定系数法求反比例函数解析式.【分析】(1)若△OAB、△OA′B′关于y轴对称,那么A、A′以及B、B′都关于y 轴对称,可据此得到A′、B′的坐标.(2)由于点A向右平移过程中,点A的纵坐标没有变化,由此求得平移后的点A横坐标,然后同平移前的点A横坐标进行比较,即可得到平移的距离a的值.(3)由于旋转前后,OB的长度没有发生变化,再结合旋转的角度即可求得旋转后的点B坐标,然后将其代入反比例函数的解析式中,即可求得k的值.【解答】解:(1)由于△OAB关于y轴的轴对称图形是△OA'B',所以A、A′关于y轴对称,B、B′关于y轴对称;已知:点A的坐标为(,3),点B的坐标为(﹣6,0),故:,B'(6,0).(2)∵点A落在上,设为A(x,y),把y1=3代入,∴;∴,∴a=5.(3)B点坐标为(﹣6,0),∵α=30°,此时A与B关于x轴对称,∵点A的坐标为(,3),∴旋转后B点的坐标是,∴k=9.25.两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF 的值.【考点】LO:四边形综合题.【分析】(1)利用平行线的性质以及三角形面积关系得出答案;(2)证出AD=BF,由平移可知AD∥BF,利用平行四边形的判定得出四边形AFBD 为平行四边形即可;(3)根据题意画出图形,由等腰三角形的性质得出AF⊥BC,证出平行四边形AFBD为矩形,由直角三角形斜边上的中线性质得出AF=BC=BF,得出四边形AFBD是正方形;设CF=k,则GF=EF=CB=2k,由勾股定理求出CG,利用sin∠CGF=求出即可.【解答】解:(1)S△ABC=S四边形AFBD,理由如下:由题意可得:AD∥EC,则S△ADF=S△ABD,故S△ACF =S△ADF=S△ABD,则S△ABC =S四边形AFBD;(2)当点F平移到线段BC的中点时,四边形AFBD是平行四边形,理由如下:∵F为BC的中点,∴CF=BF,∵CF=AD,∴AD=BF,由平移可知AD∥BF,∴四边形AFBD为平行四边形;(3)如图3所示:△ABC为等腰直角三角形,即AB=AC,∠BAC=90°;理由如下:由(2)得:四边形AFBD是平行四边形,∵AB=AC,F为BC的中点,∴AF⊥BC,∴平行四边形AFBD为矩形,∵∠BAC=90°,F为BC的中点,∴AF=BC=BF,∴四边形AFBD是正方形;设CF=k,则GF=EF=CB=2k,由勾股定理得:CG==k,sin∠CGF===.26.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.【考点】FI:一次函数综合题.【分析】(1)利用尺规作出线段AB的垂直平分线,过点B作出x轴的垂线即可.(2)①分x>O或x<0两种情形利用勾股定理求出x与y的关系即可解决问题.②由题意得d1+d2=x2++|x|,列出方程即可解决问题.③求出直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2),利用这两个特殊点,求出k的值即可解决问题.【解答】解;(1)线段AB的垂直平分线l1,过点B作x轴的垂线l2,直线l1与l2的交点为P,如图所示,(2)①当x>0时,如图2中,连接AP,作PE⊥y轴于E,∵l1垂直平分AB,∴PA=PB=y,在RT△APE中,∵EP=BO=x,AE=OE﹣OA=y﹣1,PA=y,∴y2=x2+(y﹣1)2,∴y=x2+,当x<0时,点P(x,y)同样满足y=x2+,∴曲线l就是二次函数y=x2+即曲线l是抛物线.②∵d1=x2+,d2=|x|,∴d1+d2=x2++|x|,当x=0时,d1+d2有最小值,∴d1+d2≥,∵d1+d2=8,则x2++|x|=8,当x≥0时,原方程化为x2++x﹣8=0,解得x=3或(﹣5舍弃),当x<0时,原方程化为x2+﹣x﹣8=0,解得x=﹣3或(5舍弃),∵x=±3时,y=5,∴点P坐标(3,5)或(﹣3,5).③如图3中,把y=2代入y=x2+,解得x=,∴直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2).当直线y=kx+3经过点(﹣,2)时,2=﹣k+3∴k=,当直线y=kx+3经过点(,2)时,2=k+3,∴k=﹣,∴直线y=kx+3与这条“W”形状的曲线有四个交点时,k的取值范围是:﹣<k <.2017年7月28日。

初中数学 河北省17年中考模拟数学模拟考试卷 含答案

初中数学 河北省17年中考模拟数学模拟考试卷 含答案

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣的倒数的绝对值是()A.﹣2017 B. C.2017 D.试题2:下列计算中,结果是a6的是()A.a2+a4 B.a2•a3 C.a12÷a2 D.(a2)3试题3:如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.试题4:世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108评卷人得分已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.试题6:在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组试题7:如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3试题8:如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C. D.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0试题10:足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点 D.线段CD(异于端点)上一点试题11:如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm试题12:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4试题13:.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10试题14:对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4试题15:已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,) C.(,) D.(,)试题16:如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C.D.试题17:|﹣0.3|的相反数等于.试题18:把多项式a2﹣4a分解因式为.试题19:有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).试题20:.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x x﹣5 2(9﹣x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?试题21:倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?试题22:在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.试题23:甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.试题24:如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.试题25:如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y= x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.试题26:综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC 和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.试题1答案:C【考点】倒数;绝对值.【分析】根据倒数的定义可先求得其倒数,再计算其绝对值即可.【解答】解:∵﹣的倒数为﹣2017,∴﹣的倒数的绝对值为|﹣2017|=2017,故选C.试题2答案:D【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.试题3答案:C【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.试题4答案:B【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.试题5答案:C【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.试题6答案:D【考点】模拟实验.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.试题7答案:D【考点】命题与定理.【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.试题8答案:C【考点】弧长的计算;切线的性质.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C试题9答案:C【考点】由实际问题抽象出一元二次方程.【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.2·1·c·n·j·y【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选C.试题10答案:C【考点】角的大小比较.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.试题11答案:D【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.试题12答案:B【考点】二次函数图象与系数的关系.【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c﹣m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,故﹣m<2,解得:m>﹣2,故④正确.故选:B.试题13答案:C【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.试题14答案:B【考点】分段函数.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B试题15答案:D【考点】菱形的性质;坐标与图形性质;轴对称﹣最短路线问题.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故选D.试题16答案:A【考点】动点问题的函数图象.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.试题17答案:﹣0.3 .【考点】绝对值;相反数.【分析】根据绝对值定义得出|﹣0.3|=0.3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3.故答案为:﹣0.3.试题18答案:a(a﹣4).【考点】因式分解﹣提公因式法.【分析】原式提取a,即可得到结果.【解答】解:原式=a(a﹣4).故答案为:a(a﹣4).试题19答案:(1)﹣27 ;(2)【考点】单项式;规律型:数字的变化类.【分析】(1)将a=1代入已知数列,可以发现该数列的通式为:(﹣3)n.然后根据限制性条件“三个相邻数的和是63”列出方程(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63.通过解方程即可求得(﹣3)n的值;(2)利用归纳法来求已知数列的通式.【解答】解:(1)当a=1时,则﹣3=(﹣3)1,9=(﹣3)2,﹣27=(﹣3)3,81=(﹣3)4,﹣243=(﹣3)5,….则(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63,即﹣(﹣3)n+(﹣3)n﹣3(﹣3)n=63,所以﹣(﹣3)n=63,解得,(﹣3)n=﹣27,故答案是:﹣27;(2)∵第一个式子:﹣3a2=,第二个式子:9a5=,第三个式子:﹣27a10=,第四个式子:81a17=,….则第n个式子为:(n为正整数).故答案是:.试题20答案:【考点】整式的加减;绝对值.【分析】(1)根据数的符号说明即可;(2)把路程相加,求出结果,看结果的符号即可判断出答案;(3)求出每个数的绝对值,相加求出即可.【解答】(1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西.(2)解:x+(﹣x)+(x﹣5)+2(9﹣x)=13﹣x,∵x>9且x<26,∴13﹣x>0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x)km.(3)解:|x|+|﹣x|+|x﹣5|+|2(9﹣x)|=x﹣23,答:这辆出租车一共行驶了(x﹣23)km的路程.试题21答案:【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据:“A,B两种型号的健身器材共50套、共支出20000元”列方程组求解可得;(2)设购买A型号健身器材m套,根据:A型器材总费用+B型器材总费用≤18000,列不等式求解可得.【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(2)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.试题22答案:【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.试题23答案:【考点】分式方程的应用;函数的图象.【分析】(1)根据函数图象可知甲2小时行驶的路程是km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.试题24答案:【考点】圆的综合题.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴AC=CE,∴AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=∠ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.试题25答案:【考点】二次函数综合题.【分析】(1)先提取公式因式将原式变形为y=m(x2+4x﹣5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=﹣2,故此可知当x=﹣2时,y=6,于是可求得m的值;(2)由(1)的可知点A、B的坐标;(3)先由一次函数的解析式得到∠PBF的度数,然后再由PD⊥PF,FO⊥OD,证明点O、D、P、F共圆,最后依据圆周角定理可证明∠PDF=60°.【解答】解:(1)∵y=mx2+4mx﹣5m,∴y=m(x2+4x﹣5)=m(x+5)(x﹣1).令y=0得:m(x+5)(x﹣1)=0,∵m≠0,∴x=﹣5或x=1.∴A(﹣5,0)、B(1,0).∴抛物线的对称轴为x=﹣2.∵抛物线的顶点坐标为为6,∴﹣9m=6.∴m=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)由(1)可知:A(﹣5,0)、B(1,0).(3)如图所示:∵OP的解析式为y=x,∴∠AOP=30°.∴∠POF=60°∵PD⊥PF,FO⊥OD,∴∠DPF=∠FOD=90°.∴∠DPF+∠FOD=180°.∴点O、D、P、F共圆.∴∠PDF=∠POF.∴∠PDF=60°.试题26答案:【考点】几何变换综合题.【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC′D是平行四边形,进而得出四边形BCC′D是矩形;(3)首先求出CC′的长,分别利用①点C″在边C′C上,②点C″在C′C的延长线上,求出a的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解答】解:(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,故AC′∥EC,AC∥C′E,则四边形ACEC′是平行四边形,故四边形ACEC′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=AC,则∠CAE=∠C′AE=α=∠BAC,∵四边形ABCD是菱形,∴BA=BC,∴∠BCA=∠BAC,∴∠CAE=∠BCA,∴AE∥BC,同理可得:AE∥DC′,∴BC∥DC′,则∠BCC′=90°,又∵BC=DC′,∴四边形BCC′D是平行四边形,∵∠BCC′=90°,∴四边形BCC′D是矩形;(3)如图3,过点B作BF⊥AC,垂足为F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF===12,在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×=,当四边形BCC′D′恰好为正方形时,分两种情况:①点C″在边C′C上,a=C′C﹣13=﹣13=,②点C″在C′C的延长线上,a=C′C+13=+13=,综上所述:a的值为:或;(4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD沿着射线CA方向平移,平移距离为AC的长度,得到△A′C′D′,连接A′B,D′C,结论:∵BC=A′D′,BC∥A′D′,∴四边形A′BCD′是平行四边形.。

河北省中学考试数学模拟试卷

河北省中学考试数学模拟试卷

2017年河北省唐山市路北区中考数学二模试卷一、选择题(本大题共16小题,共42分)1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.4的平方根是()A.2 B.﹣2 C.±2 D.163.下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a24.下列图形中,能确定∠1>∠2的是()A.B.C.D.5.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.计算(﹣1000)×(5﹣10)之值为()A.1000 B.1001 C.4999 D.50018.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A.3 B.4 C.5 D.79.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠310.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A.l1B.l2C.l3D.l411.学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.6012.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确13.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.1314.小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?()A.4 B.14 C.24 D.3415.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+216.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A. B. C.5 D.6二、填空题(本大题共3小题,共10分)17.计算:( +1)(3﹣)= .18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为m.19.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,①AE和BF的位置关系为;②线段MN的最小值为.三、解答题(本大题共7小题,共68分)20.(1)计算:(π﹣)0++(﹣1)2013﹣tan60°;(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.]22.某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是度.(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?23.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.24.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.25.如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC 沿直线AB折叠得到△ABD.(1)填空:A点坐标为(,),D点坐标为(,);(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河北省唐山市中考数学模拟试卷(2)
一、选择题(42分)
1.|﹣2014|等于()
A.﹣2014B.2014C.±2014D.
2.下面的计算正确的是()
A.6a﹣5a=1B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b
3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()
A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<
4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗
5.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()
A.10,10B.10,12.5C.11,12.5D.11,10
6.一个几何体的三视图如图所示,则这个几何体是()
A.B.C.D.
7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()
A.B.C.D.
8.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()
A.B.C.D.﹣
9.已知(x﹣y+3)2+=0,则x+y的值为()
A.0B.﹣1C.1D.5
10.如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70°,∠C=50°,那么sin∠AEB的值为()
A.B.C.D.
11.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()
A.48B.60C.76D.80
12.如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()
A.9B.10C.12D.15
13.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()
A.科比罚球投篮2次,一定全部命中
B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大
D.科比罚球投篮1次,不命中的可能性较小
14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°
15.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间。

相关文档
最新文档