数学基础模块下册立体几何PPT课件

合集下载

数学基础模块(下册)第九章 立体几何

数学基础模块(下册)第九章 立体几何

【课题】9.1 平面的基本性质【教学目标】知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】平面的表示法与画法.【教学难点】对平面的概念及平面的基本性质的理解.【教学设计】教材通过观察平静的湖面、窗户的玻璃面、黑板面等,引入平面的概念,并介绍了平面的表示法与画法.注意,平面是原始概念,原实用文档始概念是不能定义的,教材是用“光滑并且可以无限延展的图形”来描述平面.在教学中要着重指出,平面在空间是可以无限延展的.在讲“通常用平行四边形表示平面”时要向学生指出:(1) 所画的平行四边形表示它所在的整个平面,需要时可以把它延展出去;(2) 有时根据需要也可用其他平面图形,如三角形、多边形、圆、椭圆等表示平面,故加上“通常”两字;(3) 画表示水平平面的平行四边形时,通常把它的锐角画成45 °,横边画成邻边的2倍.但在实际画图时,也不一定非按上述规定画不可;在画直立的平面时,要使平行四边形的一组对边画成铅垂线;在画其他位置的平面时,只要画成平行四边形就可以了;(4) 画两个相交平面,一定要画出交线;(5) 当用字母表示平面时,通常把表示平面的希腊字母写在平行四边形的锐角内,并且不被其他平面遮住的地方;(6) 在立体几何中,被遮住部分的线段要画成虚线或不画.“确定一个平面”包含两层意思,一是存在性,即“存在一个平面”;二是唯一性,即实用文档“只存在一个平面”.故“确定一个平面”也通常说成“有且只有一个平面”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间观察平静的湖面(图9−1 (1))、窗户的玻璃面(图9−1 (2))、黑板面、课桌面、墙面等,发现它们都有一个共同的特征:平坦、光滑,给我们以平面的形象,但是它们都是有限的.(1)(2)图9−1质疑引导分析思考启发学生思考8实用文档平面实用文档实用文档实用文档教 学 过 程教师 行为学生 行为教学 意图时间图9−3解 这6个面可以分别表示为:平面AC 、平面11A C 、平面1AB 、平面1BC 、平面1CD 、平面1DA . 【试一试】请换一种方法表示这6个面.引领讲解说明思考主动求解27实用文档实用文档教学过程教师行为学生行为教学意图时间分析*创设情境兴趣导入【观察】观察教室里墙角上的一个点,它是相邻两个墙面的公共点,可以发现,除这个点外两个墙面还有其他的公共点,并且这些公共点的集合就是这两个墙面的交线.质疑思考带领学生45图9−5实用文档实用文档教学过程教师行为学生行为教学意图时间此时称这两个平面相交,并把所有公共点组成的直线l叫做两个平面的交线.平面α与平面β相交,交线为l,记作lαβ=.【说明】本章中的两个平面是指不重合的两个平面,两条直线是指不重合的两条直线.讲解说明引领分析思考理解记忆带领学生分析图9−6教学过程教师行为学生行为教学意图时间画两个平面相交的图形时,一定要画出它们的交线.图形中被遮住部分的线段,要画成虚线(如图9−7(1)),或者不画(如图9−7(2)).【试一试】请画出两个相交的平面,并标注字母.仔细分析讲解关键引导式启发学生得55图9−7实用文档实用文档教学过程教师行为学生行为教学意图时间60*动脑思考探索新知【新知识】由上述实验和大量类似的事实中,归纳出平面的性质3:不在同一条直线上的三个点,可以确定一个平面(如图9−8).【说明】“确定一个平面”指的是“存在着一个平面,并且只存在着一个平面”.讲解说明思考理带领学生分图9−8教学过程教师行为学生行为教学意图时间利用三角架可以将照相机放稳(图9−9),就是性质3的应用.图9−9根据上述性质,可以得出下面的三个结论.1.直线与这条直线外的一点可以确定一个平面(如图9−10(1)).引领分析仔细分解记忆析实用文档实用文档教学过程教师行为学生行为教学意图时间(如图9−11(1));营业员用彩带交叉捆扎礼品盒(如图9−11(2)),都是上述结论的应用.(1)(2)图9−11【想一想】如何用两根细绳来检查一把椅子的4条腿的下端是否在同一个平面内?仔细分析讲解关键词忆出结果70实用文档实用文档实用文档教 学 过 程教师 行为学生 行为教学 意图时间分析 画两个相交平面的交线,关键是找出这两个平面的两个公共点.解 点A 、1D 为平面γ与平面11ADD A 的公共点,点A 、C 为平面γ与平面ABCD 的公共点,点C 、1D 为平面γ与平面11CC D D 的公共点,分别将这三个点两两连接,得到直线11AD AC CD 、、就是为由1A C D 、、三点所确定的平面γ与长方体的表面的交线(如图9−12(2)).图9−12引领讲解 说明思考主动求解注意 观察学生78γ实用文档实用文档实用文档实用文档实用文档实用文档【教师教学后记】实用文档实用文档【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:实用文档(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.实用文档空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】实用文档2课时.(90分钟)【教学过程】实用文档实用文档教学过程教师行为学生行为教学意图时间图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?引导分析2*动脑思考探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B与直线AD就是两条异面直线.讲解思考实用文档教学过程教师行为学生行为教学意图时间(1) (2)图9−15利用铅笔和书本,演示图9−15(2)的异面直线位置关系.分析关键语句5*创设情境兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢?质疑思启实用文档观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .引导 分析考发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.讲解 说明引领思考理解带领 学生分析10图9−16实用文档实用文档教 学 过 程教师 行为 学生 行为教学 意图时间A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑引领 分析思考带领学生 分析13*动脑思考 探索新知这时的四边形AB C 1D 叫做空间四边形.带.图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?实用文档实用文档实用文档。

《高中数学立体几何》课件

《高中数学立体几何》课件
立体几何在数学、工程、建筑等领域 有着广泛的应用,是理解和描述现实 世界空间关系的重要工具。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。

Ppt课件立体几何

Ppt课件立体几何

空间几何的计算问题
总结词
需要掌握常见的计算方法和技巧
详细描述
解决空间几何计算问题需要学生掌握常见的计算方法和技巧,如代数运算、三角 函数、平面几何等。学生需要了解这些方法的适用范围和运用技巧,以便在计算 过程中能够灵活运用,提高计算效率和准确性。
06
立体几何的发展趋势
立体几何与其他学科的交叉研究
归纳解题技巧
根据不同的题型,归纳出相应的 解题技巧,以便更快地找到解题
方法。
强化练习
通过大量的练习,可以更好地掌 握解题方法,提高解题效率。
05
立体几何的难点解析
空间几何的作图问题
总结词
空间想象能力要求高
详细描述
立体几何的作图问题需要学生具备较高的空间想象能力, 能够准确地将二维平面图形转化为三维空间图形。这需要 学生不断练习,提高自己的空间感知和想象能力。
曲面立体中,有些面是曲面,有 些面是平面。
曲面立体中,曲面之间可能相交 或平行,也可能呈弧形相切。
立体图形的对称性
立体图形具有对称性,即存在 一个或多个对称轴或对称中心 。
对称轴将立体图形分为两个或 多个相等的部分。
对称中心将立体图形旋转180 度后与原图重合。
03立体几何的应用Fra bibliotek立体几何的应用
空间几何体的性质
空间几何体具有对称性、 重心、表面积和体积等性 质。
点、线、面的关系
点与直线的关系
一个点在直线上,或者在 直线外。
点与平面的关系
一个点在平面上,或者在 平面外。
直线与平面的关系
直线在平面上,或者与平 面平行,或者与平面相交 。
空间几何的度量关系
01
02
03

中职教育-数学(基础模块)下册 第九章 立体几何.ppt

中职教育-数学(基础模块)下册 第九章   立体几何.ppt
这里“有且只有一个平面”,也就 是“确定一个平面”.因此,公理3也 可以简单地说成“不在同一直线上的三 个点确定一个平面”.
根据公理1和公理3,还可以得出以下三个推论: 推论1 经过一条直线和这条直线外一点,可以确定一个平面(如图 (a)所示). 推论2 经过两条相交直线,可以确定一个平面(如图(b)所示). 推论3 经过两条平行直线,可以确定一个平面(如图(c)所示).
AB ,BC ,CD ,DA 的中点.证明:四边形 EFGH 是一个平行四边形.
证明 因 E ,F 分别为边 A B,B C的中点,即 EF 为△ABC 的中位
线,所以
EF ∥AC ,且 EF 1 AC . 2
同理可得
GH ∥AC ,且 GH 1 AC . 2
因此,
EF ∥GH ,且 EF GH ,
(a)
(b)
为了简便,点 O 可以在两条异面直线中的一条上选取.例如,在 图中,点 O 选取在直线 b 上,过点 O 作 a∥a ,a 与 b 所成的角 θ 就是 异面直线 a ,b 所成的角.
例题解析
例 1 如图所示正方体,求直线 BA1 和 CC1 所成角的大小.
解 因 CC1 ∥BB1 ,所以直线 BA1 和 BB1 所成的角就是直线 BA1 和 CC1 所成的角.
9.1 9.2 9.3 9.4 9.5
• 平面的基本性质
• 直线与直线、直线与平面、平面 与平面平行的判定与性质
• 直线与直线、直线与平面、平面 与平面所成的角
• 直线与直线、直线与平面、平面 与平面垂直的判定与性质
• 柱、锥、球及其简单组合体

9.1 平面的基本性质
9.1.1 平面的概念及表示 数学中的平面是指光滑并且可以无限延展的图形. 为了直观形象,我们通常用一个平行四边形来表示平面,并用小写

中职数学基础模块下册《立体几何》课件 (一)

中职数学基础模块下册《立体几何》课件 (一)

中职数学基础模块下册《立体几何》课件(一)中职数学基础模块下册《立体几何》课件,是为中职学生编写的数学课件,旨在帮助学生更好地掌握立体几何的知识和技能。

本文将从以下几个方面展开探讨:该课件的概况、教学内容、教学方法和教学效果。

一. 课件概述中职数学基础模块下册《立体几何》课件,是国家教育部根据中职教育教学大纲编写的,全书共分为14个章节,包括平面图形、空间直线、平面的位置关系、长方体、多面体、棱台、棱锥、圆锥、球的表面积和体积等内容。

该课件通过教学活动、课堂练习和实验演示等多种形式,将理论知识与实际操作相结合,为学生提供了一个互动式学习的平台。

二. 教学内容该课件的教学内容丰富、全面,既包括了立体几何的基本概念和定理,又涉及了多面体的表面积和体积计算等实际问题。

例如,第四章“长方体”中,课件通过图示和实例,让学生了解长方体的定义和性质;并通过运用长方体的表面积和体积公式,让学生掌握计算长方体表面积和体积的方法;第六章“棱台”则通过立体模型和实例,让学生理解棱台的基本属性和计算方法。

通过这些内容,帮助学生加深对立体几何知识的理解和应用能力。

三. 教学方法中职数学基础模块下册《立体几何》课件采用了多种教学方法,如概念讲解、图像表述、数学公式应用和实际问题分析等。

其中,课件中的实验演示部分,通过动态模拟实验环节,让学生更好地理解概念和定理;而课件中的教学活动部分,则通过对课件中实例的引导和讨论,培养学生的分析和解决问题的能力。

除此之外,课件中的课堂练习和测试部分,既可让学生自我检验学习效果,又可为教师提供有针对性的教学反馈。

四. 教学效果由于该课件贴近课程内容实际,注重理论知识与实践操作的结合,使得学生更好地掌握相关知识和技能。

同时,该课件的互动式学习方式,也有效激发学生的学习兴趣和学习动力,提高了学习效率和教育效果。

综上,中职数学基础模块下册《立体几何》课件是一份系统、科学、实用的教学工具,南加州大学该课件不仅有助于学生巩固立体几何相关知识,还能够锻炼学生的数学思考能力和实际问题解决能力。

立体几何全章PPT优秀课件(多面体棱柱等67个) 39

立体几何全章PPT优秀课件(多面体棱柱等67个) 39
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
1、画轴;
zノ
yノ
oノ
xノ
练习:
画一个底面边长为3cm,高为4cm的正三 棱柱的直观图。

《基本立体图形》立体几何初步PPT(第1课时棱柱、棱锥、棱台的结构特征)

《基本立体图形》立体几何初步PPT(第1课时棱柱、棱锥、棱台的结构特征)

P P T素材:www.1ppt.c om /suc a i/
P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
科学课件:/kejian/kexu e/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:www.1ppt.c om /ke j ia n/dili/
P P T课件:www.1ppt.c om /ke j ia n/
语文课件:/kejian/y uwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/y ingy u/ 美术课件:/kejian/meishu/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
历史课件:www.1ppt.c om /ke j ia n/lishi/
定义
由若干个___平___面__多__边__形______围
多面体
成的几何体叫做多面体.围成多
面体的各个___多___边__形____叫做多 面体的面;两个面的___公__共__边____ 叫做多面体的棱;___棱__与__棱_____

立体几何课件PPT模板

立体几何课件PPT模板
小标题
输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换
小标题
输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换
小标题
输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换输入替换内容点击替换
点击输入您的标题
03
文字是简单的视觉图案再现 口语的声音,
立体几何
4
添加标题
CLICK TO ADD TITLE HERE
3
2
1
添加标题
CLICK TO ADD TITLE HERE
添加标题
CLICK TO ADD TITLE HERE
添加标题
CLICK TO ADD TITLE HERE
目 录
CONTENTS
点击输入您的标题
添加标题
请在此添加您的文字内容,请在此添加您的文字内容。请在此添加您的文字内容,请在此添加您的文字内容。
请替换文字内容
点击添加相关标题文字,点击添加相关标题文字,点击添加相关标题文字
请替换文字内容
点击添加相关标题文字,点击添加相关标题文字,点击添加相关相关标题文字,点击添加相关标题文字,点击添加相关标题文字
请替换文字内容
添加标题
请在此添加您的文字内容,请在此添加您的文字内容。请在此添加您的文字内容,请在此添加您的文字内容。
添加标题
请在此添加您的文字内容,请在此添加您的文字内容。请在此添加您的文字内容,请在此添加您的文字内容。
添加标题
请在此添加您的文字内容,请在此添加您的文字内容。请在此添加您的文字内容,请在此添加您的文字内容。
于是挡住客人的重任,就落在了吴妈的身上。第0143章 李时珍的消息 这个叶青羽从集市上随意雇来的中年大妈,秉承着身为婢女的重大责任感,表现出了一种令叶青羽都瞠目结舌的强悍。 当她守在门口的时候,刚开始还很耐心地向来宾解释,但是在后来,当他发现这群人死乞白赖、不管是好赖话听不进去的时候,顿时就有点儿不耐烦了,将手中的扫帚一横,一顿乱打,怒道:“都走走走走,我家大人忙着呢,没空理会你们,快走,我一会儿还要做饭,耽误了我家大人的晚饭,你们有几个脑袋……” 在这位大妈质朴的观念里,她只认准一条—— 既然大人不愿意理会这些人,那这些人就不是什么惹不起的存在。 所以她要为叶青羽分忧解难,要表现的强势一些。 吴妈很满意自己现在的工作,不但轻松,而且待遇丰厚。 这位婢女幻想着,如果自己表现的足够好的话,叶青羽可以将这份短期聘用变成为终身雇佣,这样自己一家人都不用再发愁吃穿了。 这是很简单的小人物的思想。 似乎不太对,但其实也很对。 如果她知道被她轰的抱头鼠窜的人中,随便拎出来一个,都可以将让她和她全家都瞬间死好几十次,估计立刻就吓软了。 “唉,悍妇,悍妇啊……” 一个被轰走的小官员无可奈何。 这样一个他随手都可以捏死的贫寒妇人,因为身后的大门是白马塔,竟然让他吃瘪,命运就是这么搞笑,如之奈何? 就这样喧闹了几日的时间,尘埃才慢慢落定。 白马塔大门前的人,总算是少了一些。 不过白马悍妇吴妈的名声,却又传了出去。 身为当事人的吴妈,并不知道,自己在幽燕关中已经小有名气了。 第四日的时候,温晚派人传回来消息,有了老军医李时珍的线索,只是那个叫做叶从云的小兵,还没有消息,毕竟幽燕关的士兵数量太多,温晚只是一个游击将军,动用的资源和渠道有限,只能慢慢找,一切都急不得。 叶从云是哨兵甲的弟弟。 当日叶青羽在乎地下冰窟逃命的时候,被【青鸾丹王】陈墨云拦住,哨兵甲为叶青羽战死,临终之前,说自己有一个弟弟,叫做叶从云,恳请叶青羽日后若是回到幽燕关,希望能够将他的死讯,告之弟弟…… 叶青羽从未忘记过这样的托付。 他从未有一天,敢忘记哨兵们对于自己的恩德。 也正是那几天,哨兵们用自己的行动和血肉之躯,让叶青羽明白了军人这两个字的含义。 那几日发生的事情,对于叶青羽的人生观和价值观,是一次山呼海啸般的冲击和洗礼。 来到幽燕关之后,叶青羽第一时间,就想要去寻找哨兵甲的弟弟,可惜偌大的幽燕关,如无头苍蝇一般寻找,终究不是办法,叶青羽只能暂缓之,希望可以借助其他力量,找到这个叶从云。 不论如何,一定不能让叶从云出事。

《立体几何》PPT课件

《立体几何》PPT课件

精选课件ppt
3
知识点
考纲下载
考情上线
1.理解空间直线、平面位
1.点、线、面的位
置 关系的定义.
置关系是立体几何
2.了解可以作为推理依据
点、线、
推理、证明、计算
的公理和定理.
面的位置
的基础,多融合平
3.能运用公理、定理和已
关系
行、垂直进行考查.
获得的结论证明一些空
2.对于异面直线的定
间图形的位置关系的简
精选课件ppt
5
知识点
考纲下载
考情上线
以立体几何的定 线、面 义、公理和定理 垂直的 为出发点,认识 判定与 和理解空间中线 性质 面垂直的判定定
理与有关性质.
1.在客观题中,多考查与垂 直有关的命题真假的判断.
2.在解答题中考查线线、线 面、面面垂直的证明.
精选课件ppt
6
知识点
考纲下载
考情上线
精选课件ppt
11
(1)圆柱可以由 矩形绕其任一边旋转得到.
(2)圆锥可以由直角三角形绕其 直角边 旋转得到.
(3)圆台可以由直角梯形绕 直角腰或等腰梯形绕 旋转体
上下底中点连线 旋转得到,也可由
平行于棱椎底面 的平面截圆锥得到.
(4)球可以由半圆或圆绕 直径旋转得到.
精选课件ppt
12
二、三视图与直观图
义是考查的重点.
单命题.
精选课件ppt
4
知识点 考纲下载
考情上线
1.在客观题中,多以符号语言
线、面 以立体几何的定义、与
公理和定理为出发 平行的
点,认识和理解空
判定与 间中线面平行的判
逻辑推理的形式考查命题的真 假判断,往往结合垂直关系.

数学基础模块下册立体几何

数学基础模块下册立体几何

点、直线和平面的位置关系
点在直线上
一个点被一条直线完全包 含。
点在平面内
一个点被一个平面完全包 含。
直线在平面内
一条直线被一个平面完全 包含。
点、直线和平面的度量关系
两点之间的距离
两个点之间的最短距离。
点到直线的距离
点到直线上任意一点的最短距离。
点到平面的距离
点到平面上任意一点的最短距离。
04
空间拓展
将平面几何图形向三维空间进行拓展 ,形成空间几何图形,如长方体、球 体等。
空间几何图形的分类与性质
分类ห้องสมุดไป่ตู้
根据空间几何图形的形状、大小 和位置关系,可以分为点、线、 面、体等不同类型。
性质
空间几何图形具有不同的性质, 如对称性、平行性、垂直性等。 这些性质可以通过几何定理和性 质进行证明和应用。
培养空间思维能力
学习立体几何有助于培养学生的空间思维能力和想象力,提高他们分析问题和 解决问题的能力。这种能力不仅在数学和物理学中有重要应用,也在日常生活 中有着广泛的应用。
立体几何的历史与发展
古代起源
立体几何起源于古希腊时期,当 时的学者如欧几里德等对几何学
进行了系统化的整理和发展。
近代发展
随着数学的发展和各领域的需要 ,立体几何在近代得到了进一步 的发展和完善。例如,射影几何 的兴起和发展为几何学注入了新
光的折射和反射等都需要用到立体几何的知识。
量子力学
03
量子力学中的波函数和概率幅等概念可以用立体几何中的流形
和纤维丛等概念来描述和理解。
THANKS
感谢观看
CATALOGUE
空间几何图形的性质与证明
空间几何图形的性质

《高中数学课件-立体几何》

《高中数学课件-立体几何》
高中数学课件——立体几 何
从什么是立体几何开始,学习立体几何的基本概念和术语,图像表示方法, 三视图,以及球体、圆锥体、圆柱体的性质和应用。
立体几何中的三视图
1
俯视图
2
从上方观察物体,可以显示物体的
轮廓和底面特征。
3
主视图
从正面观察物体,显示物体的主要 形状和特征。
侧视图
从侧面观察物体,可以
球形对象,具有平坦的内表面和无限多个点在 相同距离处。
圆锥体
由一个尖顶和一个平面底部组成的体形,底部 是一个圆锥。
圆柱体
由两个互相平行的圆面和一个侧面组成的体形。
立体几何中的重要概念
相似
对于两个物体,它们的形状相似(形状相 同但大小不同),可以通过等比例缩放从 一个物体得到另一个。
1 复杂体形
指由多个基本体形组成的更复杂形状的立体物体。
2 分析和计算
通过分解复杂体形为基本体形,然后进行面积和体积计算。
立体几何中的四面体和正多面体
四面体
四个面都是三角形的立体多面体,具有四个 顶点和六条边。
正多面体
所有的面都是相同正多边形的立体多面体, 如正四面体、正六面体、正八面体等。
立体几何中的空间几何题解析 技巧
全等
对于两个物体,它们既形状相同又大小相 同,可以通过平移、旋转和镜像变换从一 个物体得到另一个。
立体几何中的投影和投影面
1 投影
2 投影面
将三维物体投影到一个或多个二维平面 上,以便观察物体在不同视角下的形状。
用于投影的平面,通常选择与物体的某 个面平行的投影面。
立体几何中的立体角和最小覆盖球
1
立体角
由线段的端点和空间中的一点组成的角。

立体几何PPT课件

立体几何PPT课件

图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体 球
六棱柱
圆锥 长方体
四棱锥
练习:
1.如图,说出下图中的 一些物体的形状所对应 的立体图形.
2.图中的各立体图形的表面包含哪些平面图形? 试指出这些平面图形在立体图形中的位置.
练习:
3.如图,你能看到哪些立体图形?
观察这个纸盒,从中可以看出哪些你熟悉的图形?
.
从整体上看,它的形状是_长__方__体_ ;看不同的侧 面,得到的是__正__方_形_ 或 _长__方_形__ ;看棱得到的 是 __线__段__ ;看顶点得到的是__点____ .
说一说下面这些几何图形有什么共同特点?
有些几何图形的各部分不都在同一平面内,它们 是立体图形.
请再举出一些立体图形的例子.
棱锥:如果一个多面体的一个面是多边
形,其余各面是有一个公共顶点的三角形, 那么这个多面体叫做棱锥
棱柱:有两个面互相平行,其余各面
都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围 成的几何体叫做棱柱
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱四Βιβλιοθήκη 锥三棱柱球体柱体
圆柱 棱柱: 三棱柱
四棱柱
五棱柱
六棱柱
立体图形
锥体
圆锥
棱锥: 三棱锥 四棱锥 五棱锥
六棱锥
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的.
从实物中抽象出的各种图形统称为几何图形.
总建筑面积约258万内有可容纳9万多观众的国家体育场鸟巢国家游泳中心水立方国家体育馆等14个比赛场从城市建筑到乡村住宅从立交桥到交通标志从剪纸艺术到城市雕塑从申奥标志到动物形物体的形状大小和位置关系是几何研究的内容
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 直线与直
平行公理
如图, 在长方体ABCDA`B`C`D`中, BB`//AA` , DD`//AA` , 那么 BB`//DD` 吗?
9.2 直线与直
平行公理
取一块长方形纸板 ABCD, E , F 分别为 AB,CD 的中 点,将纸板沿 EF 折起,在空间中 直线 AD 与 BC 的位置关系如何 ?
直线与平面平行的判定
图形表 述:
符号表 述:
} a
b
a // b
a // α “ 面外、面内、平行 ” 三条件
缺一不可
得出结论: 平面外一条直线与此平面内的一条直线平行,则该直线 与此平面平行。
9.2 直线与平
例题
如图,在长方体ABCD--A`B`C`D`
,“只有”是说平
9.1 平面的基
平面的基本性质 3结论
(1) 直线与这条直线外的一点有且只有一个平面。
(2) 两条相交直线有且只有一个平面。
(3) 两条平行直线有且只有一个平面。
A l
(1)
l1 l2
(2)
l1 l2
(3)
9.1 平面的基
9.2 判定与
直线与直线平行
观察下面两 张图,你能发现 到什么?
9.1 平面的基
平面的基本性
质2 观察下图, 你能发现到什么 ?
9.1 平面的基
平面的基本性 质2
图形表
l
述:
A●
符号表 述:
l
(平面与平面相交,交线为 l)
得出结论: 如果两个平面有一个公共点,那么它们一定还有其他公 共点,并且所有公共点的集合是过这个点的一条直线(即这两个平面相 交)。
9.1 平面的基
9.1 平面的基
知识巩固
表示出长方
体ABCD-
A B C D 的6个面 平面 1 1 1 AD11

平面 AC
平面
BC1 平面
A1C1 平面
DC1 平面
AB1
9.1 平面的基
平面的基本性
质1 观察下图, 你能得到什么结 论?
9.1 平面的基
平面的基本性 质1
图形表
述:
符号表 述:
Al, B l; A, B l (直线l在平面内或平面经过直线l)
9.2 直线与直
知识巩固
9.2 直线与直
例题
ห้องสมุดไป่ตู้
如图所示: 正方体的
棱所在的直线中,与
直线AD11BC异1 面C的1C 有哪些?
CD D1D
9.2 直线与直
直线与直线平行的性质
平面内平行于同一条直线的两 条直线一定平行,那么空间中的 呢?
9.2 直线与直
平行公理
设直线a//b,将直线a在 空间中作平行移动,在平移过程 中a与b仍保持平行吗 ?
可见的!
航天轨道 ▼
房屋设计图纸 ▲
衣服款式立体图形
立体几
平面的基本性质 直线与直线、直线与平面、平面与平面平行的判
立体几
9.1 平面的基本
平面的概念
光滑的桌面、平整的纸张 、平静的湖面数等学都中是的我平们面概念是现实平 熟悉的平面形象,
没有大小、厚薄和宽窄,平面在空间是无9.1 限平面的延基 伸
9.2 直线与直
直线与直线的位
置关系 平面 内两条直线的位 置关系有几种?
相交直线(有一个公共 点)
平行线(无公共点 )
9.2 直线与直
直线与直线的位
置关系 空间 中两条直线的位 置关系有几种?
相交
平行
异面
9.2 直线与直
异面直线的定义
观察: 在左图正方体 ABCD-A1B1C1D1中,线 段定A义1B:与线不段同C在C任1 何一个平 面内的所两在条直直线线有叫什做么异特 : 如图,点面A?直1C线1平. 面A1B1C1D1, BC 平面ABCD,问 A1C1,BC 是
得出结论: 如果一条直线上两点在一个平面内,那么这条直线上的
所有的点都在这个平面内。
(即直线在平面内)
9.1 平面的基
例题
如图中 Δ ABC,若 AB,BC在平面 α 内,判断AC是否在平面 α 内?
解: AB在平面α内,
A点一定在平面α
内.
又 BC在平面α内,
C点一定在平面α
内.
点A、点C都在平面
立体几
立体几
有的同学会问道:老师,我们现在学习立体几何由有什么用处,完 全是为了应付考试的吧!了解它对我们有什么帮助?在生活中我们有运 用到它了吗……
立体几
学习立体几何会让你的立体感增强。以前看不出来的三维图
形,现在都能看出来!
当你的立体感增强后,在思考问题时,能做到从多个角度立

体地看问题! 你会发现实际中的应用实在是太多了,在我们生机活械中设是计随处
平面的基本性 质3
(1)“不在一条直线上”和“三点”是基本性质3的重
点字眼,如果没有前者,
那么只能说“有一个平面”,但不唯一。如果将“三点”改成“
(2) 深刻理解“ ”的含 四点”那么过四点不一定
有且只有 确定一个平面.由此可见“不在一条直线上的三点”是确定一个
义平面的,恰到这好处里的条的件。“有”是说平面存在
笔与平整的纸有多少种位置关 系?
9.2 直线与平
直线与平面的位 置关系
①直线在平面内—
—有②无直数线个与公平共面点相( 交点—③)—直;有线a且与只平α有面一平 个行公—共—点没;有a公共α点 ;a // α
9.2 直线与平
直线与平面平行的判定
球门的横梁与地面所在平面之 间的位置关系是什么?
9.2 直线与平
平面的基本性
质3 观察下图, 你能发现到什么 ?
9.1 平面的基
平面的基本性 质3
图形表 述:
符号表述: ABC三点不共线推断出有且只有一个 平面 α,使得
A α,B α, C α
即A,B,C不共线 A,B,C确定一平面 得出结论: 过不在同一直线上的三点,有且只 有一个平面 .
9.1 平面的基
9.2 直线与直
平行公理
从上述观察及大量类似的
事实中,归纳出平行直线
的性质:
我们常利用这个性质来
9.2 直线与直
例题
在长正方体ABCD-A1B1C1D1中,已
证知明E:,F分连别接是ACAB,BC的中点,求证 ,:在EΔF/A/BAC1C中1 ,
E,
F分别是AB,
9.2 直线与直
直线与平面的位置关系
平面的 画法
(1)水平 放置的 平面:
(2)垂直 放置的 平面:
通常把表示平面的平行四边形 的锐角画成 45 °,且横边长等
9.1 平面的基
平面的画法
(3)在画图时,如果图形的一部分被 另一部分遮住,可以把遮住部分画 成虚线,也可以不画.
9.1 平面的基
平面的表示
方法 平面可以用希腊字母表示,如α、 β、γ等。也可以用代表表示平面的平行 四边形的四个顶点 或相对的两个顶点字母表示,如平面 ABCD,平面AC或平面BD。
相关文档
最新文档