第二章一元一次不等式与一元一次不等式组单元检测及答案

合集下载

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(有答案解析)2

一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.如果a b >,则下列各式中不成立的是( )A .33a b +>+B .55a b ->-C .33a b ->-D .2323a b +>+3.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ). A .两胜一负B .一胜两平C .五平一负D .一胜一平一负4.如果m n >,则下列各式不成立的是( ) A .22m n +>+B .22m n ->-C .22m n > D .22m n -<-5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定6.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>7.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .10 8.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥9.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB.1a +C .1-aD .1a-10.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( ) A .1种B .2种C .3种D .4种11.如果不等式组5x x m<⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤812.P Q R S ,,,四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为( )A .R<Q P SB .Q<R S PC .Q<R P SD .Q<P R S二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.15.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x ⋅⋅⋅ 0 1 2 3⋅⋅⋅ 1y⋅⋅⋅ 232112⋅⋅⋅ x ⋅⋅⋅ 0 1 2 3 ⋅⋅⋅ 2y⋅⋅⋅-3-113⋅⋅⋅x 16.把方程组2123x y mx y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.17.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______. 18.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.19.如图,已知一次函数y=kx+b 的图象与正比例函数y=mx 的图象相交于点P (﹣3,2),则关于x 的不等式mx ﹣b≥kx 的解集为_____.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.三、解答题21.居家学习期间,小明坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,小明花了5分钟,其中做了20个波比跳,共消耗热量132大卡;完成第二组运动,小明花了7分钟30秒,其中也做了20个波比跳,共消耗热量156大卡.每个动作之间的衔接时间忽略不计. (1)小明在第一组运动中,做了 个深蹲;小明在第二组运动中,做了 个深蹲.(2)每个波比跳和每个深蹲各消耗热量多少大卡?(3)若小明想只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,小明至少要做多少个波比跳?22.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标; (3)当311y -<<时,求x 的取值范围.23.在同一平面直角坐标系内画出一次函数14y x =-+和225y x =-的图象,根据图象回答下列问题: (1)求出方程组425y x y x =-+⎧⎨=-⎩的解;(2)当x 取何值时,12y y >?当x 取何值时,10y >且20y <?24.请你用学习“一次函数”时积累的经验和方法研究函数y =|x|的图像和性质,并解决问题:(1)完成下列步骤,画出函数y =|x|的图像; ①列表、填空: x … ﹣2 ﹣1 0 1 2 … y…12…③连线(2)观察函数图像,写出该函数图像的一条性质 .(3)结合图像,写出不等式13x+43>|x|的解集为.25.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a元/千克的标价出售该种水果.(1)为避免亏本,求a的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a的最小值.26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k的取值范围,再结合选项解答.【详解】解:根据图象,得2k<6,3k>5,解得k<3,k>53,所以53<k <3. 只有2符合. 故选:D . 【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C 【分析】根据不等式的基本性质分别进行判断,即可得出结论. 【详解】解:A 、当a b >时,由不等式基本性质1得33a b +>+,故此选项不符合题意; B 、当a b >时,由不等式基本性质1得55a b ->-,故此选项不符合题意; C 、当a b >时,由不等式基本性质3得33a b -<-,故此选项符合题意; D 、当a b >时,由不等式基本性质2得33a b >,再由不等式基本性质1得2323a b +>+,故此选项不符合题意. 故选:C . 【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.3.B解析:B 【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值. 【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛, 设该球队胜场数为x ,平局数为y , ∵该球队小组赛共积5分, ∴y =5-3x , 又∵0≤y ≤3, ∴0≤5-3x ≤3, ∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场, 故选:B . 【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.4.B解析:B【分析】根据不等式的性质解答. 【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n>,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意. 故选:B . 【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.B解析:B 【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集. 【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方, ∴不等式21k x k x b >+的解集为: x<−1 故选:B. 【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵a<b∴a+2<b+2成立,则A 选项不符合题意; 当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意;-2a-1-2b-1>成立,则D选项不符合题意.故答案为B.【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.7.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】x->,依题意,得:3126x>.解得:9∵x为整数,∴x的最小值为10.故选:D.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.8.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D.【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a的不等式.9.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误; 由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D . 【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.10.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.11.C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.12.C解析:C 【分析】观察图中的三个跷跷板,哪个重则往哪边下沉,可得出一元一次不等式组,解之即可得出结论. 【详解】解:依题意,哪个重则往哪边下沉可得:(1)(2)(3)S P P R P R S Q >⎧⎪>⎨⎪+>+⎩,由(1)(2)得:R P<S , 由(3)得:Q R , 故:Q R P S <<<, 故选:C . 【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217? 311?2x x x -<⎧⎪⎨+-≥⎪⎩①② 解不等式①得,x <4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4.故答案为:1≤x <4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1).则当x <2时,kx+b >mx+n ,故答案为:x <2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程 解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+, 即43m x y ++=,0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.17.【分析】根据题意可得2m ﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m -5)⊕3=3∴2m ﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.18.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.19.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.20.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 三、解答题21.(1)40;70;(2)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(3)25个【分析】(1)根据做深蹲的数量=(每组运动的时间﹣做波比跳需要的时间)÷5,即可求出结论; (2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,根据“完成第一组运动,共消耗热量132大卡;完成第二组运动,共消耗热量156大卡”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(3)设小明要做m 个波比跳,则要做(120﹣m )个深蹲,根据至少要消耗200大卡热量,即可得出关于m 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)(60×5﹣5×20)÷5=40(个),(60×7+30﹣5×20)÷5=70(个).故答案为:40;70.(2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,依题意,得:20401322070156x y x y +=⎧⎨+=⎩, 解得:50.8x y =⎧⎨=⎩. 答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡.(3)设小明要做m 个波比跳,则要做601055m ⨯-=(120﹣m )个深蹲, 依题意,得:5m +0.8(120﹣m )≥200, 解得:m≥241621. 又∵m 为正整数,∴m 可取的最小值为25.答:小明至少要做25个波比跳.【点睛】本题考查了二元一次方程组,不等式及其整数解,熟练构造方程组和不等式是解题的关键.22.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .23.(1)31x y =⎧⎨=⎩;(2)当3x <时,12y y >,当 2.5x <时,10y >且20y < 【分析】(1)根据题意画出一次函数y 1=-x+4和y 2=2x-5的图象,根据两图象的交点即可得出方程组425y x y x =-+⎧⎨=-⎩的解; (2)根据函数图象可直接得出结论.【详解】解:(1)如图所示:一次函数14y x =-+和225y x =-的图象相交于点(3,1)∴方程组425y x y x =-+⎧⎨=-⎩的解为31x y =⎧⎨=⎩; (2)由图可知,当3x <时,12y y >当 2.5x <时,10y >且20y <;【点睛】本题考查的是一次函数与一元一次方程组,一次函数与一元一次不等式,能根据题意画出函数图象,利用数形结合求解是解答此题的关键.24.(1)2,1,图像见解析;(2)图像关于y 轴对称(答案不唯一,只要合理即可);(3)-1<x <2.【分析】(1)根据绝对值的意义计算,填表即可;(2)从函数图像的分布,对称性,增减性等角度回答即可;(3)画出函数图像,确定函数交点的横坐标,结合图像就可以确定满足题意的不等式的解集.【详解】(1)①∵|-2|=2,|1|=1,∴应该填2,1,故答案为:2,1;②描点,③连线如图所示:(2)图像关于y 轴对称;当x >0时,y 随x 的增大而增大;(3)在同一个坐标系中,画出直线y=13x+43的图像,如图所示, 图像交点的横坐标分别是-1, 2,∴不等式13x+43>|x|的解集为-1<x <2.【点睛】本题考查了函数图像的画法,交点坐标的意义,函数的对称性,增减性,熟练掌握图像的画法,交点的意义,会用数形结合的思想确定不等式的解集是解题的关键.25.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a > 2.若a b >,则下列各式中一定成立的是( )A .22a b -<-B .11a b +>+C .22a b <D .33a b ->- 3.点P 坐标为(m +1,m -2),则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知实数 a 、b ,若 a b >,则下列结论错误的是( ) A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 5.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b 6.等腰三角形的周长为20cm 且三边均为整数,底边可能的取值有( )个.A .1B .2C .3D .4 7.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 8.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 11.已知a <b ,下列变形正确的是( )A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 12.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x…-2-10123…y…3210-1-2…A.x<1 B.x>1 C.x<0 D.x>0二、填空题13.关于x的不等式组3222553xxxm+⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m的取值范围是_____.14.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.15.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.16.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.关于x的方程231x k+=的解是非负数,则k的取值范围是___________.19.不等式组210322xx x->⎧⎨<+⎩的整数解为_____.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.已知关于x 、y 的二元一次方程组256217x y m x y +=+⎧⎨-=-⎩的解x 、y 都是正数,且x 的值小于y 的值.(1)求该二元一次方程组的解(用含m 的代数式表示)(2)求m 的取值范围.22.计算:(1)()()148632323-++-. (2)()()2249m n m n +--.(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩.(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩.23.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A ,B 两种钢笔作为奖品,已知A ,B 两种每支分别为10元和20元,设购入A 种x 支,B 种y 支. (1)求y 关于x 的函数表达式;(2)若购进A 种的数量不少于B 种的数量,则至少购进A 种多少支?24.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.25.解不等式:431132x x +-->,并把解集在数轴上表示出来.26.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.3.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.4.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a>b,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B、∵a>b,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C、∵a>b,∴-3a<-3b,故本选项符合题意;D、∵a>b,∴5a>5b,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6.D解析:D【分析】设底边为xcm ,根据题意得腰202x -cm 为整数,且x<10,可得出底边的取值. 【详解】设底边为xcm ,根据题意得腰202x -cm 为整数, ∵能构成三角形,∴x<20-x ,x<10,∴x 可取的值为:2、4、6、8,故选:D .【点睛】此题考查三角形的三边关系,利用不等式解决实际问题,设边长时很重要,这腰长的话需要讨论 范围,故设底边较好,根据三角形三边关系就可以解答. 7.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案.【详解】解:根据题意,得:10b a b =⎧⎨+=⎩, 解得a=-1,b=1,则不等式-ax-b <0为x-1<0,解得x <1,故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.17.55【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最大值为:解析:55【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键. 18.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 19.1【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:由①得:x >由②得:x <2∴不等式组的解集为<x <2则不等式组的整数解为1故答案为1【点睛】考查了一元一次不等式组的整数 解析:1【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:210322x x x ->⎧⎨<+⎩①②, 由①得:x >12, 由②得:x <2, ∴不等式组的解集为12<x <2, 则不等式组的整数解为1,故答案为1【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)218x m y m =-⎧⎨=+⎩;(2)192m <<. 【分析】(1)运用加减消元法,即可求得x 和y ;(2)根据x 、y 都是整数,列出不等式组,即可求出m 的取值范围.【详解】解:(1):256217x y m x y +=+⎧⎨-=-⎩①②, 由②得:217x y =-,将217x y =-代入①中,∴()221756y y m -+=+,43456y y m -+=+,5540y m =+,8y m =+,将8y m =+代入217x y =-中,∴()28172161721x m m m =+-=+-=-,∴二元一次方程组的解为:218x m y m =-⎧⎨=+⎩. (2)∵二元一次方程组的解x 、y 是正数,且x 的值小于y 的值,∴21080218x m y m m m =->⎧⎪=+>⎨⎪-<+⎩,∴解得:192m <<, ∴m 的取值范围是:192m <<. 【点睛】本题考查二元一次方程组和不等式的综合,解题的关键是掌握解二元一次方程组的方法.22.(1)1;(2)225265m mn n -+-;(3)373x y =-⎧⎪⎨=-⎪⎩;(4)3x ≥. 【分析】(1)直接用平方差公式,化二次根式为最简,利用运算法则得出答案;(2)直接利用完全平方公式展开合并得出答案.(3)方程组整理后,利用加减消元法求出解即可(4))分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.【详解】(1)22222=-34=-1=.故答案为1(2)()()2249m n m n +-- ()()22224292m mn n m mn n =++--+22224849189m mn n m mn n =++-+-225265m mn n =-+-.故答案为225265m mn n -+-(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩①②将①变形:()()3142y x +=+3348y x +=+,即345y x -=……③,由②+③得:2451x x -=+26x -=3x =-.将3x =-代入231x y -=中,∴()3212317y x =-=⨯--=-, 则73y =-, ∴1243231y x x y ++⎧=⎪⎨⎪-=⎩的解为:373x y =-⎧⎪⎨=-⎪⎩故答案为373x y =-⎧⎪⎨=-⎪⎩(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩①②,解①得:53x ->-2x >,解②得:39x ≥3x ≥,由①②得:3x ≥, 故513841x x x -⎧>-⎪⎨⎪+≤-⎩的解集为:3x ≥.【点睛】本题考察二次根式混合运算,因式分解,解二元一次方程组,解不等式组;熟练掌握化二次根式为最简,平方差公式和完全平方公式;加减消元法;正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键23.(1)y =11202x -+;(2)至少购进A 种钢笔80支(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式;(2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.24.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.25.57x <;数轴见解析根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x的范围,再把所得的x的范围在数轴上表示出来即可.【详解】431132x x+-->,去分母,得()()243316x x+-->,去括号,得28936x x+-+>,移项、合并同类项,得75x->-,系数化为1,得57x<.在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.26.解集为:31x-<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x xx x<+⎧⎪⎨++≥⎪⎩①②,由①得:1x<;由②得:3x≥-,∴不等式组的解集为31x-≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.。

第2章 一元一次不等式与一元一次不等式组 单元检测(学生版)

第2章 一元一次不等式与一元一次不等式组 单元检测(学生版)

第2章一元一次不等式与一元一次不等式组单元检测一、单选题1.在平面直角坐标系中,点M(1+m,2m﹣3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.−a>−b C.a+2>b+2D.2a>2b 3.将不等式组x>−2x≤3的解集在数轴上表示出来,正确的是()A.B.C.D.4.已知a<b,下列式子不成立...的是()A.a+2021<b+2021B.a-2021<b-2021C.-2021a<-2021b D.a2021<b20215.点P(-1,2)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A.6人B.5人C.6人或5人D.4人7.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<08.若数m使关于x的不等式组−1≤3≤−2有解且至多有3个整数解,且使关于y的分式方程3y2y−4= m−2y−2+12的解满足-3≤y≤4,则满足条件的所有整数m的个数是()A.6B.5C.4D.39.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t(℃)的变化范围是()A.t>21B.t<32C.21<t<32D.21≤t≤3210.下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b二、填空题11.在函数y=3x−2中,自变量x的取值范围是.12.根据图象,不等式kx>﹣x+3的解集是.13.若a<b,则a-b0;若a-b>a,则b0.14.已知x=3是方程x−a2−2=x−1的解,那么不等式(2-a5)x<13的解集是. 15.若代数式3x−15的值不小于代数式1−5x6的值,则x的取值范围是. 16.已知3x+2y=5k4x+y=2k+1且y﹣x<2,则k的取值范围是.17.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是元.三、计算题18.(1)解方程组:3x−2y=49x−5y=13;(2)解不等式2x+14≤x−13+1,并把解集在数轴上表示出来,并写出它的最大整数解.四、解答题19.解不等式组:2(x−1)≤3x+1x3<x+14,并把解集在数轴上表示出来.五、综合题21.振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元:若购进60本甲种图书和20本乙种图书共需1800元,(1)求甲、乙两种图书每本进价各多少元;(2)该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?22.为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:产品展板宣传册横幅制作一件产品所需时间(小时)11512制作一件产品所获利润(元)20310(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.23.一次函数CD:y=−kx+b与一次函数AB:y=2kx+2b,都经过点B(-1,4).(1)求两条直线的解析式;(2)求四边形ABDO的面积.24.如图,直线AB与x轴交于点B(−3,0),与y轴交于点C,点A的坐标为(1,4),过点A作AD⊥x轴,垂足为点D.点E与点B关于y轴对称,直线CE交AD于点F,连接CD.(1)求直线AB的解析式:(2)点Q为直线AB上一点,当△OBQ与△CDE的面积相等时,求点Q的坐标;(3)若点P是坐标平面内一点,请直接写出△CDF与△PAC全等时点P的坐标.25.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(中a,b均为非零常数).例如:F(1,1)= 4a+4b;已知F(3,1)=0,F(0,1)=−9.(1)求a,b的值;(2)若关于F的不等式组F(3t+1,t)≥kF(6t,1−2t)<27恰好只有1个整数解,求k的取值范围.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章 一元一次不等式与一元一次不等式组 综合测试题 一、选择题(每小题3分,共30分)1.若关于x 的不等式组的解集表示在数轴上如图1所示,则这个不等式组的解集是( )A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤22.已知实数a ,b ,若a >b ,则下列结论正确的是( )A. a -5<b -5B. 2<2C. 3a <3bD. 3a >3b 3.不等式4-3x ≥2x -6的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.关于x 的不等式-≥1的解集如图2所示,则a 的值为( )A. -1B. 0C. 1D. 25.若不等式-2>0的解集为x <-2,则关于y 的方程2=0的解为( )A. y =-1B. y =1C. y =-2D. y =2图1 0 图-3 32 1 -2 -1 06.若>0,且b<0,则a,b,-a,-b的大小关系为()A. -a<-b<b<aB. -a<b<-b<aC. -a<b<a<-bD. b<-a<-b<a7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在8.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 ,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 30B. 160C. 26D. 789.图3是测量一颗玻璃球体积的过程:①将300 3的水倒进一个容量为500 3的杯子中;②将四颗相同的玻璃球放入水中,结果水没有满;③再将一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20 3以上,30 3以下B. 30 3以上,40 3以下C. 40 3以上,50 3以下D. 50 3以上,60 3以下图Oxy-2y=ny=-4图10.如图4,直线y =-与y =4n (n ≠0)的交点的横坐标为-2,则关于x 的不等式->4n >0的整数解为( )A. -1B. -5C. -4D. -3二、填空题(每小题4分,共32分)11.写出一个解集为x ≥1的一元一次不等式___.12.如图5,已知函数y =2与函数y =-3的图象交于点P ,则不等式-3>2的解集是___.图4 O x y P -6 y =-3y =213.如果a<b ,那么3-23-2b.14.不等式13(x -m )>3-m 的解集为x >1,则m 的值为___.15.某市组织开展“吸烟有害健康”的知识竞赛,共25道题,答对一题得4分,不答或答错扣2分,得分不低于60分获奖,那么获奖至少需要答对道题.16.若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩,无解,则a 的取值范围是__.17.定义新运算:对于任意实数a ,b 都有a △b =-a -1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x 的值大于5而小于9,那么x 的取值范围是___. 18.按下列程序进行运算(如图6):规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行___次才停止;若运算进行了5次才停止,则x 的取值范围是___.三、解答题(共58分)19.(6分)解不等式213x --926x +≤1,并把解集表示在数轴上. 图是 否 输入 x 乘以3 减去2停止 大于24420.(8分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥,>,并写出不等式组的整数解. 21.(10分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每只22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少只球拍?22.(10分)已知实数a 为常数且a ≠3,解不等式组()233112022x x a x -+≥-⎧⎪⎨-+<⎪⎩,①,②并根据a 的取值情况写出其解集.23.(12分)已知某工厂计划用库存的302 m 2木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x 套,生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)求总费用y 最小时的值.24.(12分)阅读下面的材料,回答问题:已知(x -2)(6+2x )>0,求x 的取值范围.解:根据题意,得20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<. 分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x )>0.(1)由(x -2)(6+2x )>0,得出不等式组20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<,体现了 思想.(2)试利用上述方法,求不等式(x -3)(1-x )<0的解集.附加题(15分,不计入总分)25.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]=___,<3.5>=___;(2)若[x ]=2,则x 的取值范围是___;若<y >=-1,则y 的取值范围是___.(3)已知x ,y 满足方程组[][]3233 6.x y x y ⎧+=⎪⎨-=-⎪⎩,求x ,y 的取值范围.参考答案一、1. D 2. D 3. C 4. D 5. D 6. B 7. A 8. D 9. C 10. D二、11. 答案不唯一,如2≥3 12. x <4 13. > 14. 4 15. 19 16. a ≥1 17. 72<x <11218. 4 2<x ≤4 提示:通过计算知,经过4次运算后结果大于244. 若运算进行了5次才停止,则有第一次结果为3x -2,第二次结果为3(3x -2)-2=9x -8,第三次结果为3(9x -8)-2=27x -26,第四次结果为3(27x -26)-2=81x -80,第五次结果为3(81x -80)-2=243x -242.由题意,得8180244243242244.x x -≤⎧⎨->⎩,解得2<x ≤4.三、19. 不等式的解集为x ≥-2,在数轴上表示如图所示:20. 不等式组的解集是-1≤x <2,不等式组的整数解是-1,0,1.21. 解:设购买球拍x 只.根据题意,得1.5×20+22x ≤200,解得x ≤8711. 由于x 取整数,故x 的最大值为7.----0 1 2答:孔明应该买7只球拍.22. 解:解不等式①,得x ≤3;解不等式②,得x <a .因为a 是不等于3的常数,所以当a >3时,不等式组的解集为x ≤3;当a <3时,不等式组的解集为x <a .23. 解:(1)由题意,得生产B 型桌椅(500-x )套,则y =(100+2)(120+4)(500-x )=-2262 000.又()()2350012500.50.7500302x x x x +-≥⎧⎪⎨+-≤⎪⎩,,解得240≤x ≤250,所以y =-2262 000(240≤x ≤250).(2)因为-22<0,所以y 随x 的增大而减小.所以当x =250时,总费用y 最小,最小值为56 500元.24. 解:(1)转化(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x>3或x<1.所以不等式(x-3)(1-x)<0的解集是x>3或x<1.25. 解:(1)-5 4(2)2≤x <3 -2≤y <-1提示:因为 [x ]=2表示不大于x 的最大整数是2,所以[2]=2,[3]=3.所以x 可以等于2,不可以等于3,即2≤x <3;因为<y >=-1表示大于y 的最小整数是-1,所以<-2>=-1,<-1>=0.所以y 可以等于-2,不可以等于-1,即-2≤y <-1.(3)解方程组[][]32336x y x y ⎧+=⎪⎨-=-⎪⎩,,得[]13x y ⎧=-⎪⎨=⎪⎩,.因为[x]=-1表示不大于x的最大整数是-1,所以[-1]=-1,[0]=0.所以x可以等于-1,不可以等于0,即-1≤x<0;因为<y>=3表示大于y的最小整数是3,所以<2>=3,<3>=4.所以y可以等于2,不可以等于3,即2≤y<3.。

初中数学八年级第二章一元一次不等式与一元一次不等式组检测题

初中数学八年级第二章一元一次不等式与一元一次不等式组检测题

第二章 一元一次不等式与一元一次不等式组检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(•四川南充中考)若m >n ,下列不等式不一定成立的是( )A.m +2>n +2B.2m >2nC.22m n>D.22m n >2.同时满足不等式和的整数是( ) A.1,2,3B.0,1,2,3C.1,2,3,4D.0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 ( ) A.3组 B.4组 C.5组 D.6组A. B. C. D.5.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.B.C.D.6.(•山东泰安中考)不等式组的整数解的个数为( ) A.1B.2C.3D.47.关于x 的不等式组有四个整数解,则a 的取值范围是( )A.B. C.D. 8.(·浙江温州中考)不等式组12,12x x +>⎧⎨-≤⎩的解集是( )A. 1<xB. x ≥3C. 1≤x <3D. 1<x ≤32124xx -<-3316-≥-x x 9>x 9≥x 9<x 9≤x ⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(3225411-≤<-a 25411-<≤-a 25411-≤≤-a 25411-<<-a9.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4), 当-4<y <0时,x 的取值范围是( ) A.x <-1B.-1<x <0C.0<x <2D.-1<x <210.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车 载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种 运输车至少应安排( ) A.4辆B.5辆C.6辆D.7辆二、填空题(每小题3分,共24分)11.若代数式的值不小于-3,则的取值范围是_________. 12.若不等式的正数解是1,2,3,则的取值范围是________. 13.若,则的取值范围是________. 14.若,用“<”或“>”号填空:2______. 15.若不等式组的解集为,则的值等于_______.16.函数,,使的最小整数是________. 17.若关于的不等式和的解集相同,则的值为________. 18.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了_______支. 三、解答题(共46分)19.(6分)解下列不等式(组):(1); (2)20.(6分)已知关于的方程组的解为非负数,求整数的值.2151--+t t 03≤-k x 0)3)(2(>-+x x b a <b a +⎩⎨⎧>-<-3212b x a x 11<<-x )3)(3(+-b a 2151+-=x y 1212+=x y 21y y <5)1(+<-a x a 42<x 1312523-+≥-x x ⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x ⎩⎨⎧=+=+3135y x my x21.(6分)若关于的方程的解大于关于的方程的解,求的取值范围. 22.(6分)有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球”.试问这个班共有多少位学生?23.(6分)(·湖南株洲中考)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?24.(8分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种: 方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2 400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为x kg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量.25.(8分)随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.第二章一元一次不等式与一元一次不等式组检测题参考答案52)4(3+=+a x 3)43(4)14(-=+x a x a1.D 解析:∵ m >n ,根据不等式的基本性质1,不等式两边同时加上2,不等号方向不变,故A 项正确;∵ m >n ,且2>0,根据不等式的基本性质2,不等式两边同乘(或除以)同一个正数,不等号方向不变,∴ 2m >2n ,22m n >,故B ,C 项都正确;∵ 当m =1,n =-3时,m >n ,但22m n <,故D 项不一定成立.2.B 解析:由题意,得121426133xx x x .⎧-<-⎪⎨⎪-≥-⎩,解得243x -≤<,所以整数x 的取值为0,1, 2,3.3.B 解析:设三个连续正奇数中间的一个数为x , 则 , 解得 ,所以. 所以只能分别取1,3,5,7. 故这样的奇数组有4组.4.A 解析:去括号,得2-2x <4.移项,得-2x <4-2. 合并同类项,得-2x <2. 系数化为1,得x >-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选项B ,C ,D 错误,选项A 正确.5.B 解析:由题意可得,解得,所以x 的取值范围是.6.C 解析:要求不等式组的整数解的个数,首先求出不等式组的解集,然后从解集中确定整数解.解不等式①,得x >-32.解不等式②,得x ≤1. 所以不等式组的解集是-1.5<x ≤1, 所以不等式组的整数解有-1,0,1三个. 故选C.7.B 解析:不等式组的解集为.27)2()2(≤+++-x x x 9≤x 72≤-x 2-x ⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32a x 428-<<因为不等式组有四个整数解,所以,解得. 8.D 解析:根据不等式的解法,先分别求出不等式组中两个不等式的解集,然后取这两个不等式解集的公共部分.解不等式,得x >1;解不等式②,得x ≤3. 所以不等式组的解集是1<x ≤3.9.C 解析:函数与x 轴、y 轴交于点(2,0),(0,-4); 故当时,函数值y 的取值范围是-4<y <0.因而当-4<y <0时,x 的取值范围是0<x <2.故选C. 10.C 解析:设甲种运输车应安排x 辆, 则,解得.故甲种运输车至少需要6辆.故选C. 11.373t ≤解析:由题意,得11 3 52t t +--≥-,解得373t .≤ 12. 解析:不等式的解集为. 因为不等式的正整数解是1,2,3, 所以 ,所以. 13.或 解析:由题意,得 或,前一个不等式组的解集为,后一个不等式组的解集为. 所以x 的取值范围是或.14.< 解析:因为,所以a +a <a +b ,所以2a <a +b .15.-2 解析:不等式组的解集为 .由题意,得,解得 ,所以.⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32134212≤-<a 25411-<≤-a 129<≤k 03≤-k x 3kx ≤03≤-k x 433<≤k129<≤k 3>x 2-<x ⎩⎨⎧>->+0302x x ⎩⎨⎧<-<+0302x x 3>x 2-<x 3>x 2-<x b a <⎩⎨⎧>-<-3212b x a x 2123+<<+a x b ⎪⎩⎪⎨⎧=+-=+121123a b ⎩⎨⎧-==21b a 2)32()31()3)(3(-=+-⨯-=+-b a16.0 解析:根据题意,得-5x +12<12x +1,解得x >-111.所以使y 1<y 2的最小整数是0. 17.7 解析:2x <4的解集是x <2. 因为的解集相同, 所以所以51a x a +<-,所以51a a +-=2,解得7a .= 检验:当7a =时,10a -≠,所以7a =符合要求.18.8 解析:设签字笔购买了x 支,则圆珠笔购买了15 x -()支, 根据题意,得215(15)27215(15)>26.x .-x ,x .-x +<⎧⎨+⎩解不等式组得79x .<<∵x 是整数,∴8x .=19.解:(1)去分母,得. 去括号,得. 移项、合并同类项,得 . 两边都除以-1,得.(2)解不等式 ①,得 . 解不等式 ②,得1x .>所以,原不等式组的解集是2x .>20.解:解方程组 5331 x y m x y +=⎧⎨+=⎩,,得31325312m x ,m y .-⎧=⎪⎪⎨-⎪=⎪⎩由题意,得3130 25310 2mm -⎧≥⎪⎪⎨-⎪≥⎪⎩,,解得. 因为m 为整数,所以m 只能为7,8,9,10.21.解:因为关于x 的方程方程的解为, 关于x 的方程的解为. 由题意,得.解得 .15)12(5)23(3-+≥-x x 1551069-+≥-x x 4-≥-x 4≤x ⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x 2>x 331531≤≤m 52)4(3+=+a x 372-=a x 3)43(4)14(-=+x a x a a x 316-=a a 316372->-187>a ① ②22.解:设该班共有x 位学生,则. ∴.∴. 又∵,,,都是正整数, 则x 是2,4,7的公倍数.∴. 故这个班共有28位学生. 23.解:设孔明购买球拍x 个,根据题意,得1.52022200x ⨯+≤, 解得8711x ≤. 由于取正整数,故的最大值为7. 答:孔明应该买7个球拍.24.解:(1)设利润为y 元.方案一:, 方案二:. 当时,; 当时,; 当时,. 即当时,选择方案一; 当时,任选一个方案均可; 当时,选择方案二.(2)由(1)可知当时,利润为2400元. 一月份利润<2400,则, 由4x =,得x =500,故一月份不符. 三月份利润5600>2400,则.由,得 x =1000,故三月份不符. 二月份符合实际.故第一季度的实际销售总量=500+600+1000=2100(kg ). 25.解:设下个月的产量为x 件,6)742(<++-xx x x 6283<x 56<x x 2x 4x 7x28=x x x 240082400)2432(1-=--=x x y x x y 4)2428(2=-=x x 424008>-600>x x x 424008=-600=x x x 424008<-600<x 600>x 600=x 600<x 600=x 600<x 600>x 560024008=-x 600=x根据题意,得解得 .即下个月的产量不少于16000件,不多于18000件.新-课-标-第-一-网⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 1800016000≤≤x。

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( )A .B .C .D .2.如图,已知一次函数y =kx +b 的图象经过点A (﹣1,2)和点B (﹣2,0),一次函数y =mx 的图象经过点A ,则关于x 的不等式组0<kx +b <mx 的解集为( )A .﹣2<x <﹣1B .﹣1<x <0C .x <﹣1D .x >﹣1 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y < B .x y > C .x y ≤ D .x y ≥ 4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 7.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 10.已知a <b ,下列变形正确的是( ) A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.下列不等式变形中,一定正确的是( ) A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 二、填空题13.不等式21302x --的非负整数解共有__个. 14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.17.如图,数轴上所表示关于x 的不等式组的解集是__________.18.若不等式12x x -<的解都能使关于x 的一次不等式()11a x a -<+成立,则a 的取值范围是________. 19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.现对x ,y 定义一种新的运算T ,规定:(,)++=+ax by c T x y x y (其中a ,b ,c 为常数,且0abc ≠).例如:10(1,0)10⨯+⨯+==++a b c T a c . 已知(3,1)2,(2,3) 2.8,(1,1)3-===T T T .(1)求a ,b ,c 的值;(2)求关于m 的不等式组(4,54)3,(2,32)1T m m T m m -<⎧⎨->⎩的整数解. 22.解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.再求它的所有的非负整数.23.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题:(1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩26.已知一次函数y x b =+的图像经过点(1,3)A -.(1)求该函数的表达式;(2)x 取何值时,0y >?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】解出不等式,在进行判断即可;【详解】251x -+≥,24x -≥-,2x ≤,解集表示为:;故答案选C .【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.A解析:A【分析】利用函数图象,写出在x 轴上方且函数y=kx+b 的函数值小于函数y=mx 的函数值对应的自变量的范围即可.【详解】解:当x >﹣2时,y =kx +b >0;当x <﹣1时,kx +b <mx ,所以不等式组0<kx +b <mx 的解集为﹣2<x <﹣1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.8.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.9.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.二、填空题13.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.【分析】先将m看做常数解方程组求出再代入可得关于m的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题解析:72 m<【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.17.【分析】数轴的某一段上面表示解集的线的条数与不等式的个数一样那么这段就是不等式组的解集实心圆点包括该点空心圆圈不包括该点>向右<向左两个不等式的公共部分就是不等式组的解集【详解】解:由图示可看出从- 解析:12x -<≤【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是空心圆,表示x>-1;从2出发向左画出的折线且表示2的点是实心圆,表示x≤2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:12x -<≤.故答案为:12x -<≤.【点睛】本题考查在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】求出不等式的解求出不等式的解集得出关于a 的不等式求出a 即可【详解】解:解不等式可得∵不等式的解都能使不等式成立∴∴解得故答案为:【点睛】本题考查解一元一次不等式不等式的性质等知识点能根据已知 解析:113a ≤< 【分析】 求出不等式12x x -<的解,求出不等式()11a x a -<+的解集,得出关于a 的不等式,求出a 即可.【详解】 解:解不等式12x x -<可得2x >-, ∵不等式12x x -<的解都能使不等式()11a x a -<+成立, ∴10a -<,11a x a +>-, ∴121a a +≤--, 解得113a ≤<, 故答案为:113a ≤<. 【点睛】本题考查解一元一次不等式,不等式的性质等知识点,能根据已知得到关于a 的不等式是解此题的关键..19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)231a b c =⎧⎪=⎨⎪=⎩;(2)关于m 的不等式组(4,54)3(2,32)3T m m T m m -<⎧⎨->⎩的整数解有1,2,3. 【分析】(1)由题意易得323123 2.82311311a b c a b c a b c ⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,然后求解即可; (2)由题意,得243(54)135223(32)113m m m m ⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,则有大于14且小于72的整数有1,2,3,然后问题可求解.【详解】解:(1)由题意,得3231232.82311311a b ca b ca b c⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,整理,得34 23146a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得231abc=⎧⎪=⎨⎪=⎩;(2)由题意,得243(54)135223(32)113m mm m⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,解得17 42 <<m,∵大于14且小于72的整数有1,2,3,∴关于m的不等式组()()4,5432,323T m mT m m⎧-<⎪⎨->⎪⎩的整数解有1,2,3.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.22.0,1,2【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来,写出符合条件的x 的非负整数解即可.【详解】解:3(1)51?124?2x xxx-<+⎧⎪⎨-≥-⎪⎩①②,由①得,x>-2,由②得,73x≤,故此不等式组的解集为:723x-<≤,在数轴上表示为:,它的所有的非负整数解为:0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)33xy=⎧⎨=⎩;(2)B;(3)三种,方案见解析【分析】(1)求方程3x-y=6的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支; 或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.。

八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)

八年级数学北师大版下册  第二章 一元一次不等式与一元一次不等式组  同步单元训练卷(含答案)

北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

一、选择题1.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .2.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y+卖出,结果发现自己亏了钱,其原因是( ) A .x y <B .x y >C .x y ≤D .x y ≥3.若关于x 的一元次不等式组2324274(1)x mx x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( )A .2B .7C .11D .104.不等式360+≤x 的解集是( ) A .2x -≤B .2x ≤C .12x ≥D .2x ≥-5.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个7.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 8.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b9.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .10.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米11.已知a<b,下列变形正确的是()A.a﹣3>b﹣3 B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+112.不等式11 2x>-的解集是()A.12x>-B.2x>-C.2x<-D.12x<-二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.一次函数1y ax b与2y mx n=+的部分自变量和对应函数值如下表:x⋅⋅⋅0123⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅x16.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.17.已知一次函数y ax b=+的图象如图,根据图中信息请写出不等式0ax b+≥的解集为___________.18.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.19.某品牌电脑,成本价3000元,售价4125元,现打折销售,要使利润率不低于10%,最低可以打_____折.20.若关于x的不等式2x﹣a≥3的解集如图所示,则常数a=_____.三、解答题21.某通讯公司推出一款针对手机用户的5G收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x(分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y关于x的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?22.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A,B两种钢笔作为奖品,已知A,B两种每支分别为10元和20元,设购入A种x支,B种y支.(1)求y关于x的函数表达式;(2)若购进A种的数量不少于B种的数量,则至少购进A种多少支?23.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?24.解不等式:111 23x x+--≤.25.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】解:根据题意得,他买西瓜每斤平均价是300200500x y+,以每斤2x y+元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y+,解之得,x >y .所以赔钱的原因是x >y . 故选:B . 【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.3.D解析:D 【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可. 【详解】不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数),整理得:3152k m +=≤, 解得:0k ≤≤3,∴0k =或1或2或3,∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=, 故选:D . 【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.A解析:A【分析】利用不等式的性质即可得到不等式的解集.【详解】解:3x+6≤0,3x≤-6,x≤-2,故选:A.【点睛】本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.5.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C.点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.8.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.10.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:150 0815 .x解得x≥24.3cm,∴导火线的长至少为25厘米.故选D.【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选B.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.B解析:B【分析】根据解一元一次不等式基本步骤系数化为1可得.【详解】解:两边都乘以2,得:x>-2,故选:B . 【点睛】本题考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4. 【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可. 【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S Sa b c h ===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6, ∴h=4或h=5, 故答案为:5或4. 【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2 解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断. 【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1). 则当x <2时,kx+b >mx+n , 故答案为:x <2. 【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x a x >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 17.【分析】观察函数图形得到当x≥-1时一次函数y=ax+b 的函数值不小于0即ax+b≥0【详解】解:根据题意得当x≥-1时ax+b≥0即不等式ax+b≥0的解集为x≥-1故答案为:x≥-1【点睛】本题解析:1x ≥-【分析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.【详解】解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x ≥ ,故甲种运输车辆至少需要6辆. 故答案:6. 19.八【分析】设打折由题意得不等关系:售价×打折-进价≥进价×利润率根据不等关系列出不等式再解即可【详解】设打x 折由题意得:4125×-3000≥3000×10解得:x≥8故答案为:八【点睛】本题主要考解析:八【分析】设打x 折,由题意得不等关系:售价×打折-进价≥进价×利润率,根据不等关系列出不等式,再解即可.【详解】设打x 折,由题意得: 4125×10x -3000≥3000×10%,解得:x≥8,故答案为:八.【点睛】本题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,设出未知数,列出不等式.20.-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集再求出所给不等式的解集与已知解集相比较即可求出a的值【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1解不等式:2x﹣a≥3解得:x≥解析:-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1,解不等式:2x﹣a≥3,解得:x≥3+2a,故3+2a=﹣1,解得:a=﹣5.故答案为:﹣5.【点睛】本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.三、解答题21.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y与x的表达式为y=kx+b,则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 22.(1)y =11202x -+;(2)至少购进A 种钢笔80支 【分析】(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式; (2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.23.(1)该厂每天能生产A 型口罩0.8万只或B 型口罩1万只;(2)当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润【分析】(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只,由2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,列出方程组,即可求解;(2)由总利润=A 型口罩的利润+B 型口罩的利润,列出一次函数关系式,由不等式组和一次函数的性质可求解.【详解】解:(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只.根据题意,得23 4.632 4.4x y x y +=⎧⎨+=⎩, 解得0.81x y =⎧⎨=⎩, 答:该厂每天能生产A 型口罩0.8万只或B 型口罩1万只.(2)设该厂应安排生产A 型口罩m 天,则生产B 型口罩(7)m -天.根据题意,得()0.870.87 5.8m m m m ≥-⎧⎨+-≥⎩, 解得3569m ≤≤, 设获得的总利润为w 万元, 根据题意得:0.50.80.31(7)0.1 2.1w m m m =⨯+⨯⨯-=+,∵0.10m =>,∴w 随m 的增大而增大.∴当m =6时,w 取最大值,最大值为0.16 2.1 2.7⨯+=(万元).答:当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润.【点睛】本题主要考查二元一次方程组的应用以及一次函数的应用,根据工作效率×工作时间=工作总量即可列出(1)问的方程;第二问根据总利润=单件利润×数量列出关系式,求解即可.属于基础类应用题.24.1x ≤【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:去分母,得()()31216x x +--≤.去括号,得33226x x +-+≤.移项,得32632x x -≤--.合并同类项,得1x ≤.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 25.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W∴随x的增大而减小,∴当9x=时,W最小,220044000220094400024200=-+=-⨯+=(元)W x∴-=--=4044,207x x y答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

第二章 一元一次不等式和一元一次不等式组(解析版)

第二章 一元一次不等式和一元一次不等式组(解析版)

2020-2021学年八年级数学下册高分数拔尖提优单元密卷(北师大版)参考答案与试题解析考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)不等式x <-2的解集在数轴上表示为( )A .B .C .D .【答案】D【解析】A 选项中,数轴上表达的解集是:2x ≥-,所以不能选A ;B 选项中,数轴上表达的解集是:2x >-,所以不能选B ;C 选项中,数轴上表达的解集是:2x -≤,所以不能选C ;D 选项中,数轴上表达的解集是:2x <-,所以可以选D.故选D.2.(本题4分)已知a <3,则不等式(a ﹣3)x <a ﹣3的解集是() A .x >1 B .x <1 C .x >﹣1D .x <﹣1【答案】A【分析】因为a <3,所以a ﹣3<0.两边同时除以a ﹣3得:x >1.故选A.3.(本题4分)x 与3的和的一半是负数,用不等式表示为( )A .12x +3>0 B .12x +3<0 C .12(x +3)<0 D .12(x +3)>0 【答案】C【解析】 “x 与3的和的一半是负数”用不等式表示为:1(3)02x +<. 故选C.4.(本题4分)如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( )A .x <3B .x >3C .x <1D .x >1【答案】A【解析】 由图可知一次函数过点(2,0)和点(0,-4),将两点坐标分别代入y =kx +b ,得02,4,k b b =+⎧⎨-=⎩解得2,4,k b =⎧⎨=-⎩ 故一次函数解析式为y=2x -4,当y<2时,2x -4<2,解得x<3.故选A.5.(本题4分)如图,直线y x b =+与直线6y kx =+交于点(3,5)P ,则关于x 的不等式6x b kx +>+的解集是( ).A .35x <<B .3x <C .3x >D .3x <或5x >【答案】C【解析】 由图像可得,当x >3时,x +b >kx +6.故选C.6.(本题4分)下列变形中不正确的是( )A .由a b >得b a <B .由a b ->-得b a >C .若a>b,则ac 2>bc 2(c 为有理数)D .由12x y -<得2x y >- 【答案】C【解析】A 选项:由前面的式子可判断a 是较大的数,那么b 是较小的数,正确,不符合题意;B 选项:不等式两边同除以-1,不等号的方向改变,正确,不符合题意;C 选项:当c=0时,左右两边相等,错误,符合题意;D 选项:不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;故选C .7.(本题4分)如图,直线y =kx +b 经过点A(-1,-2)和点B(-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <0【答案】B【解析】解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点, 显然,这些点在点A 与点B 之间.故选B .8.(本题4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为( )A .6B .5C .6或5D .4【答案】A【详解】设共有学生x 人,0≤(3x +8)-5(x -1)<3,解得5<x ≤6.5,故共有学生6人,故选A. 9.(本题4分)对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤C .此不等式组有5个整数解D .此不等式组无解【答案】A【解析】 解:1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩①②,解①得x ≤72,解②得x >﹣1,所以不等式组的解集为﹣1<x ≤72,所以不等式组的整数解为1,2,3.故选A .10.(本题4分)不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-【答案】B【解析】详解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.第II卷(非选择题)二、填空题(共20分)11.(本题4分)写出一个解集为x≥1的一元一次不等式:_____________.【答案】x-1≥0(答案不唯一)【详解】解:移项,得x-1≥0,故答案为:x-1≥0(答案不唯一).12.(本题4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.【答案】x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.13.(本题4分)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.【答案】x >64.【详解】解:第一次的结果为:3x −2,没有输出,则3x −2>190,解得:x >64.故x 的取值范围是x >64.故答案为x >64.14.(本题4分)要使关于x 的方程5x -2m =3x -6m +1的解满足-3<x <4,则m 的取值范围是_______.【答案】-74<m<74. 【解析】解方程5x -2m =3x -6m +1,5x -3x=2m -6m+1,解得x=142m -, 将x 代入-3<x <4,得-3<142m -<4, 解得-74<m<74. 故答案为-74<m<74. 15.(本题4分)如果一次函数(0)y kx b k =+≠的图象与x 轴交点坐标为(2,0)-,如图所示.则下列说法:①y 随x 的增大而减小;②关于x 的方程0kx b +=的解为2x =-;③0kx b +>的解是2x >-;④0b <.其中正确的说法有_____.(只填你认为正确说法的序号)【答案】①②④【解析】解:由图可知k <0,①当k <0时,y 随x 的增大而减小,故本小题正确;②图象与x 轴交于点(-2,0),故关于x 的方程kx+b=0的解为x=-2,故本小题正确;③不等式kx+b >0的解集图像0y >的部分对应的自变量x 的取值范围,所以x <-2,故本小题错误; ④直线与y 轴负半轴相交,b <0,故本小题正确;综上所述,说法正确的是①②④.故答案为①②④.三、解答题(共90分)16.(本题8分)解不等式组:2322112.323x x x x ①②>-⎧⎪⎨-≥-⎪⎩【答案】-2≤x <2.【解析】解:解不等式①,得x <2.解不等式②,得x≥-2.∴原不等式组的解集为-2≤x <2.17.(本题8分)解不等式组()21511325131x xx x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.【答案】-1≤x <2【解析】()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得,x≥-1,解不等式②得,x<2,在数轴上表示如下:所以不等式组的解集是−1≤x<2. 不等式组的整数解为-1,0,1,2.18.(本题8分)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.【答案】(1)y=x+3;(2)x≤3.【解析】(1)∴一次函数y=kx+3的图象经过点(1,4),∴ 4=k+3,∴ k=1,∴ 这个一次函数的解析式是:y=x+3.(2)∴ k=1,∴ x+3≤6,∴ x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.19.(本题9分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【答案】A型42元,B型56元;30台.【解析】试题解析:(1)设A型号计算器售价为x元,B型号计算器售价为y元由题意可得:()() ()() 5304076 {630340120x yx y-+-=-+-=解得:42 {56 xy==答:A型号计算器售价为42元,B型号计算器售价为56元.(2)设购进A型号计算器a台,则B型号计算器(70-a)台由题意可得:30a+40(70-a)≤2500解得:a≥30答:最少需要购进A型号计算器30台.20.(本题10分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?【答案】(1)200元和100元(2)至少6件【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21.(本题10分)已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.【答案】(1)-2<a≤3.(2)5;(3)a=-1.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∴①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∴方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∴-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∴不等式的解为x<1∴2a+1<0,∴a<-12,∴-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.22.(本题11分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元试题解析:(1)设饮用水有x 件,则蔬菜有(x ﹣80)件.x+(x ﹣80)=320,解这个方程,得x=200.∴x ﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m 辆,则租用乙种货车(8﹣m )辆.得:4020(8)200{1020(8)120m m m m +-≥+-≥, 解这个不等式组,得2≤m≤4.∴m 为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.23.(本题12分)对x ,y 定义一种新运算T ,规定(,)2ax by x y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ . 已知(1,1)2T -=-,(4,2)1T =.(1)求a ,b 的值; (2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围. 【答案】(1)a ,b 的值分别为1,3;(2)123p -≤<-.【解析】(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∴不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-. 24.(本题14分)已知直线y =kx +b 经过点B (1,4),且与直线y =-x -11平行.(1)求直线AB 的解析式并求出点C 的坐标;(2)根据图象,写出关于x 的不等式0<2x ﹣4<kx +b 的解集;(3)现有一点P 在直线AB 上,过点P 做PQ ∥y 轴交直线y =2x -4于点Q ,若C 点到线段PQ 的距离为1,求点P 的坐标并直接写出线段PQ 的长.【答案】(1)y =-x +5,C (3,2); (2)2<x <3 ; (3)P (2,3)或者(4,1),线段PQ 的长为3.【解析】解:(1)∴直线y=kx+b 经过点B (1,4),函数与直线y =-x -11,∴14k k b =-⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩, ∴直线AB 的解析式为:y =﹣x +5;∴若直线y =2x ﹣4与直线AB 相交于点C ,∴524y x y x =-+⎧⎨=-⎩解得32x y =⎧⎨=⎩, ∴点C (3,2).(2)由题意知所求是如图位置,24y x =-,令y =0,x =2,C(3,2),所以图像中的部分对应的2<x <3.(3) 若C 点到线段PQ 的距离为1,所以P 点横坐标是2,或者4,代入直线解析式y =﹣x +5有P (2,3)或者(4,1),代入24y x =-,Q (2,0),(4,4),所以PQ =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章一元一次不等式与一元一次不等式组单元检测
一、选择题:
1.不等式42<-x 的解集是( )
A .2>x
B .2<x
C .2-<x
D .2->x 2.下列不等式一定成立的是( )
A.5a >4a
B.x+2<x+3
C.-a >-2a
D.
a
a 24> 3.不等式-3x+6>0的正整数解有( ) A.1个
B.2个
C.3个
D.无数多个 4.在数轴上表示不等式x ≥-2的解集,正确的是( )
A B C D
5.如右图,当0<y 时,自变量x 的围是( )
A .2-<x
B .2->x
C .2<x
D .2>x 第(5)题图 6.要使代数式
2-x 有意义,则x 的取值围是( )
A .2-≤x
B .2-≥x
C .2≥x
D .2≤x 7.“x 的2倍与3的差不大于8”列出的不等式是( )
A.2x -3≤8
B.2x -3≥8
C.2x -3<8
D.2x -3>8 二、填空题:
8.当x 时,代数式3-x 的值是正数. 9.不等式538->-x x 的最大整数解是: .
10.用不等式表示:m 的2倍与n 的差是非负数: . 11.若-3a >-3b ,则a b (填不等号). 三、解答题:
12.解不等式,并把解集在数轴上表示出来: (1)5x-6≤2(x+3) (2)04
1
5212<---x x
13.解不等式组: (1)⎩⎨⎧-<-<-2
23
5x x
(2)⎩⎨
⎧+<-+-≤+)
1(3157
)2(23x x x x
14.如图所示,根据图息 (1).求出m 、n 的值;
(2).当x 为何值时,y 1>y 2?
15.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵。

若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?
16.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购进2台电脑和1台电子白板需要2.5万元。

(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28
万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
第二章一元一次不等式与一元一次不等式组单元检测答案
一、选择题:
1.D 2.B 3.A 4.C 5.A 6.C 7.A 二、填空题:
8.>3 9.-1 10. 2m-n ≥0 11.< 三、解答题:
12. (1)x ≤4 (2)x>-1 解集在数轴上表示(略) 13.(1)x<-1
(2)0≤x<2
14. 解:(1)将(0,1)代入y 1得,n=1; 将(3,0)代入y 2得,-3+m=0,m=3; (2)将y=x+1和y=-x+3组成方程组得,


⎧+-=+=31
x y x y , 解得,⎩⎨
⎧==2
1
y y ,
故C 点坐标为(1,2), x >1时,y 1>y 2.
15.解:设这个植树下组有x 人,有(4x+20)棵树, 8(x-1)<4x+20<8x ∴⎩⎨
⎧<++<-x
x x x 820420
4)1(8
解得5<x<7, x 为整数 x=6, 4x+20=44 答:这个植树小组有6人,共有44棵树.
16.解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:
⎩⎨⎧=+=+5.225.32x y y x , 解得:⎩⎨
⎧==5
.15
.0y x 。

答:每台电脑0.5万元,每台电子白板1.5万元。

(2)设需购进电脑a 台,则购进电子白板(30-a )台,
则⎩⎨
⎧≤-+≥-+30
)30(5.15.028
)30(5.15.0a a a a ,解得:15≤a ≤17,即a=15,16,17。

故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为万元; 方案二:购进电脑16台,电子白板14台.总费用为万元; 方案三:购进电脑17台,电子白板13台.总费用为万元。

∴方案三费用最低。

(1)设电脑、电子白板的价格分别为x,y 元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。

(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。

设购进电脑x 台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。

相关文档
最新文档