直线和圆的方程知识及典型例题
直线与圆(典型例题和练习题)
直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。
直线和圆的方程 高中数学-例题课后习题详解-选必一复习参考题 2
复习参考题2一.选择题.1.直线3210x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】A【解析】【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果.【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A.2.设直线l 的方程为x -y sin θ+2=0,则直线l 的倾斜角α的范围是()A.[0,π] B.,42ππ⎡⎤⎢⎥⎣⎦ C.3,44ππ⎡⎤⎢⎥⎣⎦ D.,42ππ⎡⎫⎪⎢⎣⎭3,24ππ⎛⎤⋃ ⎥⎝⎦【答案】C【解析】【分析】分sin 0θ=和sin 0θ≠两种情况讨论,当sin 0θ=时,2πα=;当sin 0θ≠时,结合sin θ的范围,可得斜率的取值范围,进而得到倾斜角α的范围.【详解】直线l 的方程为sin 20x y θ-+=,当sin 0θ=时直线方程为2x =-,倾斜角2πα=当sin 0θ≠时,直线方程化为12sin sin y x θθ=+,斜率in 1s k θ=,因为[)(]sin 1,00,1θ∈- ,所以(][),11,k ∈-∞-+∞ ,即(][)tan ,11,α Î-¥-+¥,又因为[)0,απ∈,所以3,,4224ππππα⎡⎫⎛⎤∈⎪ ⎢⎥⎣⎭⎝⎦综上可得3,44ππα⎡⎤∈⎢⎥⎣⎦故选:C3.与直线3450x y -+=关于x 轴对称的直线的方程为()A.3450x y +-=B.3450x y ++=C.3450x y -+= D.3450x y --=【答案】B【解析】【分析】把方程中y 换成y -,整理即得.【详解】直线3450x y -+=关于x 轴对称的直线的方程为34()50x y --+=,即3450x y ++=.故选:B .4.已知下列各组中的两个方程表示的直线平行,求a 的值:(1)23x y a +=,4630x y +-=;(2)210x ay +-=,(31)10a x ay ---=;(3)(1)2x a y a ++=-,2416ax y +=-.【答案】(1)32a ≠;(2)0a =或16a =;(3)1a =【解析】【分析】(1)根据平行得出23463a =≠可求;(2)可得0a =满足,0a ≠时,311121a a a ---=≠-;(3)可得0a =不满足,0a ≠时,1122416a a a +-=≠-.【详解】(1)若方程23x y a +=,4630x y +-=表示的直线平行,则23463a =≠,解得32a ≠;(2)当0a =时,方程210x ay +-=化为1x =,方程(31)10a x ay ---=化为1x =-,此时两直线平行,符合题意;当0a ≠时,要使直线平行,则满足311121a a a ---=≠-,解得16a =,这是0a =或16a =;(3)当0a =时,方程(1)2x a y a ++=-化为20x y +-=,方程2416ax y +=-化为4y =-,此时两直线不平行,不符合题意;当0a ≠时,要使直线平行,则满足1122416a a a +-=≠-,解得1a =,综上,1a =.5.已知下列各组中的两个方程表示的直线垂直.求a 的值(1)41ax y +=,(1)1a x y -+=-;(2)22x ay +=,21ax y +=;(3)(32)(14)80a x a y ++-+=,(52)(4)70a x a y -++-=.【答案】(1)2a =±;(2)0a =;(3)0a =或1a =.【解析】【分析】当直线以一般方程形式给出时,两直线垂直,可利用公式12120A A B B +=,求实数a 的取值.【详解】(1)因为两直线垂直,所以()41110a a -+⨯=,即24410a a --=,解得:2a =±;(2)由条件可知,220a a +=,得0a =;(3)由条件可知,()()()()32521440a a a a +-+-+=,即20a a -=,解得:0a =或1a =.6.求平行于直线20x y --=,且与它的距离为【答案】20,60x y x y -+=--=【解析】【分析】设该直线为0x y c -+=,利用平行线间的距离公式可得结果.【详解】因为所求直线平行于直线20x y --=,所以可设该直线为0x y c -+=,又因为所求直线与直线20x y --=的距离为,=可得24c +=,解得2,6c c ==-,所以平行于直线20x y --=,且与它的距离为20,60x y x y -+=--=.【点睛】本题主要考查直线平行的性质以及平行线间的距离公式,意在考查对所学知识的掌握与应用,属于基础题./7.已知平行四边形的两条边所在直线的方程分别是,,且它的对角线的交点是M (3,3),求这个平行四边形其它两边所在直线的方程.【答案】其他两边所在直线的方程是3x-y-16=0,x+y-11=0.【解析】【详解】试题分析:依题意,由方程组x+y−1=0,3x−y+4=0,可解得平行四边形ABCD 的顶点A 的坐标,再结合对角线的交点是M (3,3),可求得C 点坐标,利用点斜式即可求得其他两边所在直线的方程.试题解析:联立方程组x+y−1=0,3x−y+4=0,解得x=−34,y=74,所以平行四边形ABCD 的顶点A (−34,74),设C (x 0,y 0),由题意,点M (3,3)是线段AC 的中点,∴x 0−34=6,y 0+74=6,解得x 0=274,y 0=174,∴C (274,174),由已知,直线AD 的斜率k AD =3.∵直线BC ∥AD ,∴直线BC 的方程为3x-y-16=0,由已知,直线AB 的斜率k AB =-1,∵直线CD ∥AB ,∴直线CD 的方程为x+y-11="0,"因此,其他两边所在直线的方程是3x-y-16=0,x+y-11=0.考点:1.直线的一般式方程与直线的平行关系;2.直线的一般式方程.8.求下列各圆的方程:(1)圆心为()5,3M -且过点()8,1A --;(2)过()2,4A -,()1,3B ,()2,6C 三点;(3)圆心在直线350x y +-=上,且经过原点和点()3,1-.【答案】(1)()()225325x y ++-=(2)()2255x y +-=(3)2252539x y ⎛⎫-+= ⎪⎝⎭【解析】【分析】(1)根据圆心为()5,3M -且过点()8,1A --,求得半径即可;(2)设圆的方程为:()()222x a y b r -+-=,将()2,4A -,()1,3B ,()2,6C ,代入求解;(3)先求得以原点和点()3,1-为端点的线段的垂直平分线,再与350x y +-=联立,求得圆心即可.【小问1详解】解:因为圆心为()5,3M -且过点()8,1A --,所以圆的半径为5r ==,所以圆的方程为:()()225325x y ++-=;【小问2详解】设圆的方程为:()()222x a y b r -+-=,因为过()2,4A -,()1,3B ,()2,6C 三点,所以()()()()()()222222222241326a b r a b r a b r ⎧++-=⎪⎪-+-=⎨⎪-+-=⎪⎩,解得2055a b r =⎧⎪=⎨⎪=⎩,所以圆的方程为:()2255x y +-=;【小问3详解】以原点和点()3,1-为端点的线段的垂直平分线为:350x y --=,又圆心在直线350x y +-=上,由350350x y x y --=⎧⎨+-=⎩,解得530x y ⎧=⎪⎨⎪=⎩,所以圆心为5,03⎛⎫ ⎪⎝⎭,半径为53r =,所以圆的方程为:2252539x y ⎛⎫-+= ⎪⎝⎭.9.m 为何值时,方程222422210x y x my m m +-++-+=表示圆?并求半径最大时圆的方程.【答案】当()1,3m ∈-时,方程表示圆,当半径最大时,圆的方程为()()22214x y -++=.【解析】【分析】根据方程表示圆可得出关于实数m 的不等式,可解出实数m 的取值范围,求出圆的半径的表达式,利用二次函数的基本性质可求得圆的半径的最大值,求得此时m 的值,即可得出圆的方程.【详解】若方程222422210x y x my m m +-++-+=表示圆,则()()222244422148120m m m m m -+--+=-++>,整理得2230m m --<,解得13m -<<.设圆222422210x y x my m m +-++-+=的半径为r ,则22r ==,所以,当1m =时,圆222422210x y x my m m +-++-+=的半径取最大值,此时,圆的方程为224210x y x y +-++=,即()()22214x y -++=.10.判断圆2264120x y x y +-++=与圆22142140x y x y +--+=是否相切.【答案】是,两圆内切【解析】【分析】求出两圆圆心及半径,判断圆心距与半径和与差的关系来确定两圆的位置关系.【详解】2264120x y x y +-++=,即22(3)(2)1x y -++=,圆心为(3,2)-,半径为1;22142140x y x y +--+=,即22(7)(1)36x y -+-=,圆心为(7,1),半径为6;圆心距为5d ===,半径之和为7,之差为5,故两圆内切.11.若函数()y f x =在x a =及x b =之间的一段图象可以近似地看作线段,且a c b ≤≤,求证:[]()()()()c a f c f a f b f a b a-≈+--【答案】证明见详解.【解析】【分析】作图利用三角形相似,得比例CE AE BF AF=即可证明.【详解】证明:设()()()()()(),,,,,,A a f a B b f b C c f c 作AF BF ⊥如图所示:在AFB △中,有CE AE BF AF=,则()()()()f c f a c a f b f a b a --≈--所以[]()()()()c a f c f a f b f a b a-≈+--12.求点()2,1P --到直线:(13)(1)240l x y λλλ+++--=(λ为任意实数)的距离的最大值.13【解析】【分析】将直线方程变形为()()2340x y x y λ+-++-=,得直线系恒过点()1,1A ,由此得到P 到直线l 的最远距离为PA ,再利用两点间的距离公式计算可得.【详解】解:∵直线:(13)(1)240l x y λλλ+++--=,∴可将直线方程变形为()()2340x y x y λ+-++-=,∴20340x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,由此可得直线系恒过点()1,1A 则P 到直线l 的最近距离为A ,此时直线过P .P 到直线l 的最远距离为PA ,此时直线垂直于PA .∴max d PA ===.13.过点P (3,0)作一条直线,使它夹在两直线l 1:2x -y -2=0和l 2:x +y +3=0间的线段AB 恰好被点P 平分,求此直线的方程.【答案】8240x y --=【解析】【分析】根据题意,设出直线l 1上的一点P 1,求出P 1关于点P 的对称点P 2;由P 2在直线l 2上,求出点P 1,即得所求的直线方程.【详解】方法一:若直线AB 无斜率,则其方程为x =3,它与两直线的交点分别为(3,4),(3,-6),这两点的中点为(3,-1)不是点P ,不合题意.所以直线AB 必有斜率,设为k (k ≠2且k ≠-1),则直线AB 的方程为y =k (x -3).由3,220,y kx x y =-⎧⎨--=⎩解得y 1=42k k -,由3,30,y kx x y =-⎧⎨++=⎩解得y 2=61k k -+.据题意122y y +=0,即42k k -+61k k -+=0,解得k =0或8.当k =0时,它与两直线的交点分别为(1,0),(-3,0),这两点的中点并不是点P ,不符合题意,舍去.当k =8时,它与两直线的交点分别为(113,163),(73,-163),这两点的中点是点P ,符合题意.∴直线AB 的方程为y =8(x -3),即8x -y -24=0.方法二:()()()20000,3,3,06-3l M x x M P N x x --∴+在直线上任取一点点关于的对称点,在直线1l 上,把()006-3N x x +点,代入1l 方程220x y --=,解得073x =716,33M ⎛⎫∴- ⎪⎝⎭,16038733l k --∴==-,即直线1l 方程为:824y x =-.14.已知直线:280l x y --=和(2,0)A -,()2,4B 两点,若直线l 上存在点P 使得PA PB +最小,求点P 的坐标.【答案】(2,3)-【解析】【分析】先判断两点是在直线同侧还是异侧,再求A 关于直线的对称点得解【详解】因为(208)(288)0----->,所以,A B 在直线同侧,设点(2,0)A -关于直线280x y --=对称的点坐标为(,)A a b ',则280222a b b a -⎧--=⎪⎪⎨⎪=-⎪+⎩,即(2,8)A '-,可知PA PB A B +≥',即三点,,A P B '共线时,||||PA PB +最小,连接A B '交直线于点P ,点P 即为所求,A B ' 直线方程2x =,联立求得P 点坐标(2,3)-.15.求圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长.【答案】【解析】【分析】首先利用两圆相减,求公共弦所在直线方程,再利用弦长公式求解公共弦长.【详解】()()2222101005550x y x y x y +--=⇔-+-=,即圆心是()5,5,半径r =()()2222624003150x y x y x y +-+-=⇔-++=,圆心()3,1-,半径r =,=<+,两圆相交,两圆相减得3100x y +-=,此直线是两圆相交公共弦所在直线方程,()()2222101005550x y x y x y +--==-+-=,即圆心是()5,5,半径r =,圆心到直线3100x y +-=的距离d==所以公共弦长l ===.16.已知圆224x y +=与圆224440x y x y ++-+=关于直线l 对称,求直线l 的方程.【答案】20x y -+=【解析】【分析】求得两圆的圆心,可得过两圆心直线的斜率和中点坐标,根据对称性可得直线l 斜率,从而求得直线l 的方程.【详解】解:圆221:4C x y +=,圆心为1C ()0,0,半径12r =圆222:4440C x y x y ++-+=,经整理为()()22224x y ++-=,其圆心为2C ()2,2-,半径22r =;故12C C 中点为()1,1C -,而1220120C C k -==---,由对称性知121l C C k k ⋅=-,1l k ∴=:11l y x ∴-=+即直线l 的方程为20x y -+=.17.求与圆C :22(2)(6)1x y ++-=关于直线3−4+5=0对称的圆的方程.【答案】22(4)(2)1x y -++=.【解析】【分析】利用两圆圆心关于直线3450x y -+=对称求出对称圆的圆心即可得解.【详解】圆22:(2)(6)1C x y ++-=的圆心的坐标是()2,6-,半径长1r =.设所求圆C '的方程是22()()1x a y b -+-=,由圆C '与圆C 关于直线3450x y -+=对称知,直线3450x y -+=是两圆连心线的垂直平分线.所以有642326345022b a a b -⎧=-⎪⎪+⎨-+⎪⋅-⋅+=⎪⎩,解此方程组,得4,2a b ==-.所以与圆22:(2)(6)1C x y ++-=关于直线3450x y -+=对称的圆的方程是22(4)(2)1x y -++=.【点睛】关键点点睛:利用两圆圆心关于直线3450x y -+=对称求解是解题关键.18.求圆心在直线y =-2x 上,并且经过点A(2,-1),与直线x +y =1相切的圆的方程.【答案】圆的方程为:2(1)x -+22(y )+=2【解析】【详解】设圆心为S ,则k SA =1,∴SA 的方程为:y +1=x -2,即y =x -3,和y =-2x 联立解得x =1,y =-2,即圆心(1,-2)∴r故所求圆的方程为:2(1)x -+22(y )+=2\19.如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线具有什么关系?为什么?【答案】对角线互相垂直【解析】【分析】设有四边形ABCD ,由条件得知2222A CB CD AD B ++= ,则由向量的运算规律得0BD AC ⋅= .【详解】解:如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线互相垂直.证明如下:设有四边形ABCD ,由条件得知2222A CB CD AD B ++= 则()()2222AB AD AC AC AB AD+--+= ∴AD AC AB AC ⋅=⋅ ,()0AD AB AC -⋅= ∴0BD AC ⋅=.即BD AC ⊥20.求由曲线22x y x y +=+围成的图形的面积.【答案】2π+【解析】【分析】先看当0x ≥,0y ≥时整理曲线的方程,表示出图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆,进而利用三角形面积公式和圆的面积公式求得二者的面积,相加即可.【详解】解:当0x ≥,0y ≥时,22111()()222x y -+-=,表示的图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆∴1114112222S ππ⎛⎫=⨯⨯+⨯⨯=+ ⎪⎝⎭故围成的图形的面积为:2π+21.一条光线从点()2,3A -射出,经x 轴反射后,与圆22:(3)(2)1C x y -+-=相切,求反射后光线所在直线的方程【答案】3460x y --=或4310x y --=.【解析】【分析】设出反射光线斜率,得出反射光线方程,利用圆心到反射光线的距离为半径建立关系可求得斜率,得出方程.【详解】点()2,3A -关于x 轴的对称点为()2,3--,设反射光线的斜率为k ,则可得出反射光线为()32y k x +=+,即230kx y k -+-=,因为反射光线与圆相切,则圆心()3,2到反射光线的距离d r =1=,解得43k =或34,则反射直线的方程为3460x y --=或4310x y --=.22.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点.(2)直线l 被圆C 截得的弦何时最长、何时最短?并求截得的弦长最短时m 的值以及最短弦长.【答案】(1)证明见解析;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,此时34m =-,最短弦长为【解析】【分析】(1)直线l 的方程可化为(27)(4)0x y m x y +-++-=,要使直线l 恒过定点,则与参数的变化无关,从而可得27040x y x y +-=⎧⎨+-=⎩,易得定点;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长;当直线l CP ⊥时,直线被圆截得的弦长最短,即得解.【详解】(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=,联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩.所以直线恒过定点P (3,1).(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,直线l 的斜率为21121,1312CP m k k m +-=-==-+-由211(112m m +-⋅-=-+解得34m =-此时直线l 的方程是250x y --=圆心(1,2)C 到直线250x y --=的距离为d ==,||||AP BP ==,所以最短弦长是||2||AB AP ==。
(完整版)直线和圆基础习题和经典习题加答案
【知识网络】综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力.【典型例题】[例1]( 1)直线x+ y=1与圆X2+ y2—2ay=0(a>0)没有公共点,贝V a的取值范围是()A. (0, 2 —1) B . ( 2 —1, 2 + 1)C. (—2 —1 , 2 —1)D. (0, 2 +1(2)圆(x —1)2+ (y +•, 3 )2=1的切线方程中有一个是()A. x—y=0B. x + y=0C. x=0 D . y=0(3)a=b”是直线y x 2与圆(x a)2(y b)22相切”的()A .充分不必要条件B .必要不充分条件C.充分必要条件 D •既不充分又不必要条件(4)已知直线5x + 12y + a=0与圆x2+ y2—2x=0相切,则a的值为 ___________ .(5)过点(1, ,2 )的直线I将圆(x —2)2+ y2=4分成两段弧,当弧所对的圆心角最小时,直线I的斜率k= ___________ .[例2]设圆上点A (2, 3)关于直线x+ 2y=0的对称点仍在圆上,且圆与直线x —y+ 1=0相交的弦长为2 2 ,求圆的方程.[例3]已知直角坐标平面上点Q (2, 0)和圆C: x2+ y2=1,动点M到圆C的切线长与|MQ| 的比等于入(心0).求动点M的轨迹方程,并说明它表示什么曲线.[例4]已知与曲线C: x2+ y2—2x —2y +仁0相切的直线I叫x轴,y轴于A , B两点, |OA|=a,|OB|=b(a > 2,b > 2).(1) 求证:(a—2)(b —2)=2 ;(2) 求线段AB中点的轨迹方程;(3 )求厶AOB面积的最小值.【课内练习】51 .过坐标原点且与圆x2+ y2—4x + 2y +2 =0相切的直线的方程为()2. 圆(x — 2)2 + y 2=5关于原点(0,0)对称的圆的方程为()A . (x + 2)2+ y 2=5B . x 2 + (y — 2)2=5C . (x — 2)2+ (y — 2)2=5D . x 2 + (y + 2)2=53.对曲线凶一|y|=1围成的图形,下列叙述不正确的是()A .关于x 轴对称B .关于y 轴对称C .关于原点轴对称D .关于y=x 轴对称4. 直线11: y=kx + 1与圆x 2 + y 2+ kx — y — 4=0的两个交点关于直线 I 2: y + x=0对称,那么这两个交点中有一个是()A . (1, 2)B . (— 1, 2)C . (— 3, 2)D . (2, — 3)5. ____________________________________________________________________________ 若直线y=kx + 2与圆(x — 2)2 + (y 一 3)2=1有两个不同的交点,则k 的取值范围是 ________________6.已知直线ax + by + c = 0与圆O : x 2 + y2= 1相交于A 、B 两点,且|AB| = ■.. 3 ,则OA OB7. ___________________________________________________________ 直线11: y= — 2x + 4关于点M (2, 3)的对称直线方程是 _____________________________________ . & 求直线11: x + y — 4=0关于直线1: 4y + 3x —仁0对称的直线|2的方程.9.已知圆 C : x 2 + y 2 + 2x — 4y + 3=0(1) 若C 的切线在x 轴,y 轴上的截距的绝对值相等,求此切线方程;(2) 从圆C 外一点P (X 1,y 1)向圆引一条切线,切点为 M , O 为原点,且有|PM|=|PO|,求 使|PM|最小的P 点的坐标.10 .由动点P 引圆x 2 + y 2=10的两条切线PA , PB ,直线PA , PB 的斜率分别为k 1,k 2 . (1)若k 1+ k 2+ k 1k 2=— 1,求动点P 的轨迹方程;(2)若点P 在直线x + y=m 上,且PA 丄PB ,求实数m 的取值范围.1y= — 3x 或 y=3 x 1B . y=3x 或 y= — § x、 1 y= — 3x 或 y= — 3 x 、 1D . y=3x 或 y=3 x11 . 5直线与圆的综合应用1. 设直线过点(0, a),其斜率为1,且与圆x2+ y2=2相切,则a的值为 ()A. ±,2 B . ± C. i2 2 D . ±42. 将直线2x —y+ X= 0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x —4y=0相切,则实数入的值为A. —3 或7 B . —2 或8 C. 0 或10 D . 1 或113. 从原点向圆x2+ y2—12y+ 27=0作两条切线,则该圆夹在两条切线间的劣弧长为()A. nB. 2 nC. 4 nD. 6 n1 14. 若三点A (2, 2), B (a,0), C ( 0, b) (a, b均不为0)共线,^U ——的值等于______________ .a b5. 设直线ax—y + 3=0与圆(x —1)2+ (y—2)2=4有两个不同的交点A , B,且弦AB的长为2 3,则a等于_____________ .6. 光线经过点A (1, 7),经直线| : x+ y +仁0反射,反射线经过点B (1, 1).(1 )求入射线所在的方程;(2)求反射点的坐标.7. 在厶ABC中,BC边上的高所在的直线方程为x—2y +仁0, / A的平分线所在直线方程为y=0,若B点的坐标为(1 , 2),求点A和点C的坐标.& 过圆O: x2+ y2=4与y轴正半轴的交点A作这个圆的切线I, M为I上任意一点,过M 作圆O的另一条切线,切点为Q,当点M在直线I上移动时,求△ MAQ垂心H的轨迹方程.B组1. 已知两定点A (—2, 0), B (1 , 0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A. n B . 4 n C . 8 n D . 9 n2•和x轴相切,且与圆x2+ y2=i外切的圆的圆心的轨迹方程是()A. x2=2y + 1 B . x2= —2y + 1 C. x2=2y —1 D. x2=2|y| + 13.设直线的方程是Ax By 0,从1, 2, 3, 4, 5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是A . 20B . 1918D . 1624.设直线2x 3y 1 0和圆x2x 3 0相交于点A 、B ,则弦AB 的垂直平分线方程是 _____5. 已知圆M : A .对任意实数B .对任意实数C .对任意实数D .对任意实数 其中真命题的代号是 6. 已知点A , B 的坐标为(一3 , 0), (3 , 0), C 为线段AB 上的任意一点,P , Q 是分别 以AC , BC 为直径的两圆01 , O 2的外公切线的切点,求 PQ 中点的轨迹方程. 7.已知△ ABC 的顶点A (— 1, — 4),且/ B 和/ C 的平分线分别为I BT : y +仁0,I CK :X + y +仁0,求BC 边所在直线的方程.&设a,b,c,都是整数,过圆x 2 + y 2= (3a + 1)2外一点P (b 3 — b,c 3— c)向圆引两条切线,试证 明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点)(x + cos e 2) (y — sin 02=1, k 和e 直线l 和圆M 都相切; k 和e 直线l 和圆M有公共点; e ,必存在实数k ,使得直线I 和圆M 相切; k ,必存在实数 e,使得直线I 和圆M 相切. 写出所有真命题的代号)直线I : y=kx ,下面四个命题 11. 5直线与圆的综合应用【典型例题】 例1(1) A .提示:用点到直线的距离公式.(2) C .提示:依据圆心和半径判断. (3) A .提示:将直线与圆相切转化成关于ab 的等量关系.(4) — 18或&提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况. (5)石-.提示:过圆心(2 , 0)与点(1, ,2 )的直线m 的斜率是—2 ,要使劣弧所 对圆心角最小,只需直线 I 与直线m 垂直.例2、设圆的方程为(x — a)2 + (y — b)2=r 2,点A (2 , 3)关于直线x + 2y=0的对称点仍在圆 上,说明圆心在直线 x + 2y=0上,a + 2b=0 ,又(2— a)2 + (3 — b)2=r 2,而圆与直线x — y + 1=0 相交的弦长为2 .2 ,,故r 2— ()2=2,依据上述方程解得:b 1= — 3 a 1=6 或r 12=52b 2=— 7 a 2=14 r 22=244•••所求圆的方程为(x — 6)2 + (y + 3)2=52,或(x — 14)2+ (y + 7)2=224. 例 3、设切点为 N ,则 |MN|2=|MO|2 — |ON|2=|MO|2 — 1 ,设 M ( x,y),则y 2 1 J (x 2)2y 2,整理得(於一1) (x 2+ y 2) — 4 入 X (1 + 4 心=05 当入=1时,表示直线x=5;当入工时,方程化为(x 二 )2 21坨,它表示圆心在(罕,。
中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典
第八章 直线与圆的方程第1节 两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标: 设()111,y x P ,()222,y x P ,则()()21221221y y x x P P -+-=. 中点()000,y x P 的坐标为121200,22++==x x y y x y【习题】1.已知()10,28A 和()22,12B ,求线段AB 的长度。
2.已知三角形的顶点分别为)6,2(A ,)3,4(-B ,()00,C ,求ABC ∆三条边长。
3.已知()4,1A ,()1,5B ,()1,1C 说明ABC ∆为∆Rt 。
【习题】1.已知)5,1(),3,1(---N M ,求线段MN 的长度,并求线段MN 的中点坐标。
2.已知ABC ∆的三个顶点为(1,0)A 、(2,1)B -、(0,3)C ,试求BC 边上的中线AD 的长度.第2 节 直线的倾斜角与斜率一、直线的倾斜角与斜率倾斜角∂:直线l 向上的方向与x 轴正方向所夹的最小正角。
范围:001800<≤α斜率k :1212tan x x y y k --=∂= 注:①当轴x l //或重合时,0=k ②当轴x l ⊥时,k 不存在③k 与两点的位置无关【习题】1.已知直线的倾斜角,求斜率。
(1)6π=∂(2) 135=∂(3) 90=∂2.已知直线的斜率,求倾斜角。
(1)3=k (2)33-=k (3)1=k 3.求经过下列两点的直线的斜率与倾斜角。
(1)()0,2-A 和()3,1B (2)()4,1M 和()2,3N *4.证明三点()1,0-A ,()1,3B ,()3,3--C 在同一条直线上。
作业布置:1.已知点()2,41P ,()y P ,52-且过1P ,2P 的直线的斜率是31,求y 的值。
2.已知三角形的三个顶点()1,0A ,()3,8B ,()1,1-C 分别求三角形三边所在的直线的斜率。
高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题
直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。
高考复习直线和圆的方程知识点归纳及相关历年高考考题目汇总
高考复习直线和圆的方程知识点归纳及相关历年高考考题目汇总2022届高三冲刺数学:精彩十五天第七章直线和圆的方程一、考试内容:1.直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.2.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.3.用二元一次不等式表示平面区域.简单的线性规划问题.4.曲线与方程的概念.由已知条件列出曲线方程.5.圆的标准方程和一般方程.圆的参数方程.二、考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.3.了解二元一次不等式表示平面区域.4.了解线性规划的意义,并会简单的应用.5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程.三、知识要点及重要思想方法:(一)直线方程.1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与某轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是0180(0).注:①当90或某2某1时,直线l垂直于某轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与某轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点(a,0),(0,b),即直线在某轴,y轴上的截距分别为a,b(a0,b0)时,直线方程是:某ayb1.23注:若yy2323某2是一直线的方程,则这条直线的方程是y某2,但若某2(某0)则不是这条线.附:直线系:对于直线的斜截式方程yk某b,当k,b均为确定的数值时,它表示一条确定的直线,如果k,b变化时,对应的直线也会变化.①当b为定植,k变化时,它们表示过定点(0,b)的直线束.②当k为定值,b变化时,它们表示一组平行直线.3.⑴两条直线平行:l1∥l2k1k2两条直线平行的条件是:①l1和l2是两条不重合的直线.②在l1和l2的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线l1,l2,它们在y轴上的纵截距是b1,b2,则l1∥l2k1k2,且b1b2或l1,l2的斜率均不存在,即A1B2B1A2是平行的必要不充分条件,且C1C2)推论:如果两条直线l1,l2的倾斜角为1,2则l1∥l212.⑵两条直线垂直:两条直线垂直的条件:①设两条直线l1和l2的斜率分别为k1和k2,则有l1l2k1k21这里的前提是l1,l2的斜率都存在.②l1l2k10,且l2的斜率不存在或k20,且l1的斜率不存在.(即A1B2A2B10是垂直的充要条件)4.直线的交角:⑴直线l1到l2的角(方向角);直线l1到l2的角,是指直线l1绕交点依逆时针方向旋转到与l2重合时所转动的角,它的范围是(0,),当90时tank2k11k1k2.⑵两条相交直线l1与l2的夹角:两条相交直线l1与l2的夹角,是指由l1与l2相交所成的四个角中最小的正角,又称为l1和l2所成的角,它的取值范围是0,2,当90,则有tank2k11k1k2.5.过两直线l1:A1某B1yC10l2:A2某B2yC20的交点的直线系方程A1某B1yC1(A2某B2yC2)0(为参数,A2某B2yC20不包括在内)6.点到直线的距离:⑴点到直线的距离公式:设点P(某0,y0),直线l:A某则有d注:1.两点P1(某1,y1)、P2(某2,y2)的距离公式:|P1P2特例:点P(某,y)到原点O的距离:|OP||A某0By0CAB22ByC0,P到l的距离为d,.(某2某1)(y2y1)22.22某y2.定比分点坐标分式。
直线与圆知识点及经典例题_含答案_
圆的方程、直线和圆的位置关系【知识要点】 一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程(x a)2 ( y b)2 r 2 这个方程叫做圆的标准方程。
新疆 王 新敞 学案说 明:1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x2 y2 r 2 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a, b, r 三个量确定了且 r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件新疆确定 a, b, r ,可以根据条件,利用待定系数法来解决。
王 新敞 学案(二)圆的一般方程将圆的标准方程 (x a)2 ( y b)2 r 2 ,展开可得 x 2 y 2 2ax 2by a 2 b2 r 2 0 。
可见,任何一个圆的方程都可以写成 : x2 y2 Dx Ey F 0问题:形如 x2 y2 Dx Ey F 0 的方程的曲线是不是圆?将方程x2y2DxEyF0 左边配方得:(x D )2 2(x E )2 2D2 E2 4F 2(1)当 D 2E24F>0时,方程(1)与标准方程比较,方程x2y2DxEyF0 表示以(D , 2E 2)为圆D2 E2 4F心,以2为半径的圆。
,(3)当 D2 E 2 4F <0 时,方程 x 2 y 2 Dx Ey F 0 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当 D2 E2 4F >0 时,方程 x2 y2 Dx Ey F 0 称为圆的一般方程.圆的一般方程的特点:(1) x2 和 y2 的系数相同,不等于零;(2)没有 xy 这样的二次项。
(三)直线与圆的位置关系1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径(2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当 d>r 时,直线与圆相离;当 d=r 时,直线与圆相切;当 d<r 时,直线与圆相交。
直线与圆的典型问题
当 r1 r2 d 时,两圆外切;
当 r1 r2 d 时,两圆外离;
当 r1 r2 d 时,两圆内切;
当 r1 r2 d 时,两圆内含.
(3)
弦长 l
具有的关系
r2
d2
l 2
2
二 典型例题
1.直线 3x-4y+6=0 与圆(x-2)2+(y-3)2=4 的位置关系是
13
132
+16,解得 c=10 或 c=-68.
89.自点 P(-6,7)发出的光线 l 射到 x 轴上的点 A 处,被 x 轴反
射,其反射光线所在直线与圆 x2+y2-8x-6y+21=0 相切于点 Q.
求光线 l 所在直线方程.
解:如图所示,作圆 x2+y2-8x-6y+21=0 关于 x 轴的对称圆 x2+y2-8x+6y+21=0,由几何光学原理,知直线 l 与圆 x2+y2-8x +6y+21=0 相切.
110.(本小题满分 12 分)已知圆 x2+y2=4 上一定点 A(2,0),B(1, 1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程.
解:(1)设 AP 中点为 M(x,y), 由中点坐标公式可知,P 点坐标(2x-2,2y). 因为 P 点在圆 x2+y2=4 上,所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1. (2)设 PQ 的中点为 N(x,y). 在 Rt△PBQ 中,|PN|=|BN|, 设 O 为坐标原点,连接 ON(图略), 则 ON⊥PQ, 所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2, 所以 x2+y2+(x-1)2+(y-1)2=4. 故线段 PQ 中点的轨迹方程为 x2+y2-x-y-1=0.
直线与圆的方程典型例题
解析几何中,直 线与圆方程的应 用可以帮助我们 研究几何图形的 性质和特征
解析几何中,直 线与圆方程的应 用可以用于解决 实际生活中的问 题,如测量、绘 图和计算等
实际生活中的应用
交通路径规划:利用直线与圆的方程,可以计算出最短或最安全的行驶路 径。
建筑设计:在建筑设计时,可以利用直线与圆的方程来计算出最佳的设计 方案,以满足建筑的功能和美观要求。
范围。
直线的一般式 方程:通过已 知直线的一般 式方程,推导 出直线的斜截 式方程,并说 明其应用范围。
圆的方程的变形与拓展
圆的一般方程:x²+y²+Dx+Ey+F=0
圆的标准方程:x²+y²+Dx+Ey+F=0
圆的一般方程的变形:通过移项、合并同类项等操作,将一般方程转化为标准方程或参数方 程
圆的参数方程:通过引入参数t,将圆的方程转化为参数方程,方便进行参数化处理和求解相 关问题
直线与圆相离的 条件:圆心到直 线的距离大于圆 的半径
直线与圆交点求解的变形与拓展
变形:将直线方程代入圆方程,得到一元二次方程,解得交点坐标 拓展:利用韦达定理,求出交点坐标之间的关系,进而得到弦长、面积等几何量Leabharlann 感谢观看汇报人:XX
直线与圆的交点求解
联立方程法:通过 将直线方程与圆方 程联立,消元求解 交点坐标
几何法:利用圆心 到直线的距离等于 半径,判断交点个 数,并求解交点坐 标
参数方程法:利用 参数方程表示直线 和圆的方程,通过 消参法求解交点坐 标
代数法:通过代入 法求解交点坐标
03
直线与圆方程的应 用
几何图形中的应用
点斜式方程:知道直线上的一点 (x1, y1)和直线的斜率k,则直线 方程为y-y1=k(x-x1)
直线和圆的方程知识及典型例题
数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角α的范围是0180α<≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零例8. 与直线:23x y +(1,4)A -的'的方__________例9. 已知二直线8:1+y mx l 和2:2+my x l ,若21l l ⊥,m =_____,n =____.两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。
⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。
直线与圆的方程综合题、典型题[1]
直线与圆的方程综合题、典型题、高考题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA ==2)3(92222+--=-=a b CMCB MB ,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2= m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2= m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m 即 13m 13m >-<或. ∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2= m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
高中数学直线和圆知识点总结+习题
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。
直线和圆的方程的典型例题
问题,利用数形结合法求最值.
[例5]已知直线l:y=k(x-a)及圆O:x2+y2=r2(a>r>0),直线l与圆O
相交于A、B两点,求当k变动时,弦AB的中点的轨迹方程.
【解法一】设轨迹上任一点为M(x,y),A(x1,y1),B(x2,y2).
由得(1+k2)x2-2ak2x+a2k2-r2=0,
(4+2sinθ)2=60+32sinθ+24cosθ=60+40sin(θ+).(其中tan=), 当sin(θ+)=-1时, (|AP|2+|BP|2)min=20, 此时60+24cosθ+32sinθ=20,即3cosθ+4sinθ=-5. 由得
∴P点的坐标为(). 【解法二】设P点的坐标为(x,y). ∵A(-1,0)、B(1,0), ∴|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2|OP|2+2. 要使|AP|2+|BP|2取得最小值,需使|OP|2最小. 又点P为圆C:(x-3)2+(y-4)2=4上的点, ∴(|OP|)min=|OC|-r(r为半径). 由(x-3)2+(y-4)2=4知:C(3,4),r=2. ∴|OC|-r=-2=5-2=3, 即(|OP|)min=3,∴(|AP|2+|BP|2)min=2×32+2=20. 此时,OC:y=x 由得 或 (舍) ∴点P的坐标为(). 【点评】解法一是利用了圆的参数方程的形式设出了点P的坐标, 使所求的式子转化为三角函数式,利用三角函数法求最值;解法二设出 的是P点的普通坐标(x,y),使要求的式子转化为求圆上的点到坐标满足(x-)2+y2=.
直线与圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
直线与圆的方程典型例题
3
例10、求两圆x2y2xy20和x2y25的公共弦长
类型四:直线与圆的位置关系
例11、已知直线3x y 2 3
0和圆x2
y2
4,判断此直线与已知圆的位置关系.
例12、若直线y
x
m与曲线y
4
x2
有且只有一个公共点,求实数
m的取值范围.
解:∵曲线y
4
x2
表示半圆x2
y2
4( y
5
或圆心是(5 ,15),半径为5
5.
∴所求圆的方程为
(x 1)2
( y 3)2
5或( x 5)2
( y
15)2
125.
说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.
例4、 设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3 :1,在满足条件
.
设圆心O1到直线3x
4y
11
3
3
4
3
11
3.
0的距离为d,则d
32
42
2
如图, 在圆心O1同侧,与直线3x
4 y
11
0平行且距离为
1的直线l1与圆有两个交点,这两
个交点符合题意.
又r d 3 2 1.
∴与直线3x4 y110平行的圆的切线的两个切点中有一个切点也符合题意.
∴符合题意的点共有3个.
解法二: 符合题意的点是平行于直线3x4 y110,且与之距离为1的直线和圆的交点.设
0的距离为
2的点共有(
).
(A)1个
直线与方程、第四章圆的知识点及典型例题
直线与方程知识点及典型例题1. 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即k=tan α。
斜率反映直线与轴的倾斜程度。
当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
例.如右图,直线l 1的倾斜角α=30°,直线l 1⊥l 2,求直线l 1和解:k 1=tan30°=33∵l 1⊥l 2 ∴ k 1²k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( )A.120°B.150°C.60° ②过两点P 1 (x 1,y 1)、P 1(x 1,y 1) 的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例.设直线 l 1经过点A(m ,1)、B(—3,4),直线 l 2经过点C(1,m )、D(—1,m +1), 当(1) l 1/ / l 2 (2) l 1⊥l 1时分别求出m 的值※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。
3. 直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
最新直线和圆的方程典型例题详细解析
直线与圆一、选择题:1。
若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 (A )-1 (B ) 1 (C ) 3 (D) -3.2。
设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B )42 (C )8 (D )2【答案】C【解析】设和两坐标轴相切圆的方程为:222()()x m y m m -+-=,将(4,1)带入方程整理得:210170m m -+=,12=C C 22(10)4178.-⨯=二、填空题:3。
若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_______【答案】1【解析】:121212,,12k k k k m ==-∴⋅=-直线互相垂直,,即12()1,12m m⋅-=-∴= 4.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 .答案:5,166。
已知圆C 经过A (5,1),B(1,3)两点,圆心在x 轴上.则C 的方程为___________.答案: ()22210x y -+= 解析:直线AB 的斜率是k AB =311152-=--,中点坐标是(3,2).故直线AB 的中垂线方程()223y x -=-,由()223,0,y x y -=-⎧⎪⎨=⎪⎩得圆心坐标C (2,0),r=|223110+=圆的方程为()22210x y -+=。
10.过原点的直线与圆222440x y x y +--+=相交所得弦的长为2,则该直线的方程为【答案】20x y -=12.(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-⋅=,,其中实数满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180α<o o≤.2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当ο90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。
⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。
5.当直线位置不确定时,直线对应的方程中含有参数.含参数方程中有两种特殊情形,它们的对应的直线是有规律的,即旋转直线系和平行直线系.⑴在点斜式方程y-y0=k(x-x0)中,①当(x0,y0)确定,k变化时,该方程表示过定点(x0,y0)的旋转直线系,②当k确定,(x0,y0)变化时,该方程表示平行直线系.⑵已知直线l:A x+B y+C=0,则①方程A x+B y+m=0(m为参数)表示与l平行的直线系;②方程-B x+A y+n=0(n为参数)表示与l垂直的直线系。
⑶已知直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0,则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0表示过l1与l2交点的直线系(不含l2)掌握含参数方程的几何意义是某种直线系,有时可以优化解题思路.例10. 经过两直线11x-3y-9=0与12x+y-19=0的交点,且过点(3,-2)的直线方程为_______.例11. 已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:⑴BC边上的高所在直线方程;⑵AB边中垂线方程;⑶∠A平分线所在直线方程.例12. 已知定点P(6,4)与定直线l1:y=4x,过P点的直线l与l1交于第一象限Q点,与x轴正半轴交于点M,求使△OQM面积最小的直线l方程.简单的线性规划线性规划⑴当点P(x0,y0)在直线A x+B y+C=0上时,其坐标满足方程A x0+B y0+C=0;⑵当P不在直线A x+B y+C=0上时,A x0+B y0+C≠0,即A x0+B y0+C>0或A x0+B y0+C<0。
这就是二元一次不等式的几何意义:二元一次不等式A x+B y+C>0(或<0)表示直线A x+B y+C=0上方或下方区域,其具体位置的确定常用原点(0,0)代入检验。
利用此几何意义,可以解决一类二元函数的最值问题。
这就是线性规划的内容。
简单的线性规划例13. 若点(3,1)和(4-,6)在直线023=+-ayx的两侧,则实数a的取值范围是()724A a a<->或()724B a-<<()724C a a=-=或(D)以上都不对例14. ABC∆的三个顶点的坐标为(2,4)A,(1,2)B-,(1,0)C,点(,)P x y在ABC∆内部及边界上运动,则2y x-的最大值为,最小值为。
例15. 不等式组:10x yx yy-++⎧⎪⎨⎪⎩≥≤≥表示的平面区域的面积是;例个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。
问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下:根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.根据以上情况,请你合理规划办学规模使年利润最大,最大利润多少万元(利润=学费收入-年薪支出)曲线和方程曲线与方程:在直角坐标系中,当曲线C和方程F(x,y)=0满足如下关系时:①曲线C上点的坐标都是方程F(x,y)=0的解;②②以方程F(x,y)=0的解为坐标的点都在曲线C上,则称曲线C为方程F(x,y)=0表示的曲线;方程F(x,y)=0是曲线C表示的方程.注:⑴如果曲线C的方程是F(x ,y)=0,那么点P0(x0 ,y0)在曲线C上的充要条件是F(x0 ,y0)=0⑵解析几何研究的内容就是给定曲线C,如何求出它所对应的方程,并根据方程的理论研究曲线的几何性质。
其特征是以数解形, 坐标法是几何问题代数化的重要方法。
⑶求曲线方程的步骤:建、设、现(限)、代、化.曲线和方程例18. 点),(62ttM适合方程3xy=是点M在曲线3xy=上的( )(A)充分条件(B)必要条件(C)充要条件(D)什么条件也不是例19.曲线C1:xyx=+22与C2:yxy=2的交点数是()(A)1个(B) 2个(C)3个(D)4个例20. 已知定点)0,1(-A,)0,1(B,点M与A、B两点所在直线的斜率之积等于4-,则点M的轨迹方程是例22. 如图,圆1O与圆2O的半径都是1,124O O=. 过动点P分别作圆1O、圆2O的切线PM PN,(M N,分别为切点),使得2PM PN=.试建立适当的坐标系,并求动点P的轨迹方程.例30.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆,⑴求实数m取值范围;⑵求圆的半径r取值范围;⑶求圆心轨迹方程数学基础知识与典型例题(第七章直线和圆的方程)答案例 例 例 例4. 1()2-、0,3 例5. 02=--y x 例 例 例8. 2x +3y +10=0 例9. 0,8, 例10. 135290x y +-=例11. 解:⑴∵ k BC =5,∴ BC 边上的高AD 所在直线斜率k=51- ∴ AD 所在直线方程y +1=51-(x -2) 即x +5y +3=0⑵∵ AB 中点为(3,1),k AB =2,∴ AB 中垂线方程为x +2y -5=0 ⑶设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。
∵ k AC =-1,k AB =2,∴ 12112k kk k+-=-+, ∴ k 2+6k -1=0,∴ k =-3-10(舍),k =-3+10 ∴ AE 所在直线方程为(10-3)x -y -210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。
一般地涉及到角平分线这类问题时,都要对两解进行取舍。
也可用轨迹思想求AE 所在直线方程,设P(x ,y )为直线AE 上任一点,则P 到AB 、AC=,化简即可。
还可注意到,AB 与AC 关于AE 对称。
例12. 解题思路分析:直线l 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。
通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。
解:设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线∴P PM k k =Q∴ 0044466x x m-=--解之得:0051x m x =-∵ x 0>0,m >0∴ x 0-1>0∴ 20000101||4221OMQ x S OM x mx x ∆===-令x 0-1=t ,则t >0,210(1)110(2)t S t t t+==++≥40 当且仅当t =1,x 0=11时,等号成立,此时Q (11,44),直线l :x +y -10=0 评注:例 例14.42-例15.14例16. 种蔬菜20亩,棉花30亩,水稻不种,总产值最高27万元.例17.解:设初中x 个班,高中y 个班,则2030(1)28581200x y x y +⎧⎨+⎩≤≤≤⑵设年利润为s ,则y x y x y x s 22.16.15.22.1215.04006.060+=⨯-⨯-⨯+⨯= 作出(1)、(2)表示的平面区域, 如图,过点A 时,S 有最大值, 由⎩⎨⎧=+=+1200582830y x y x 解得A (18,12).易知当直线+2y=s即学校可规划初中18个班,高中12个班, 6.45122182.1max =⨯+⨯=∴s (万元).可获最大年利润为万元.评 线性规划是直线方程的简单应用,是新增添的教学内容,是新大纲重视知识应用的体现,根据考纲要求,了解线性不等式表示的平面区域,了解线性规划的意义并会简单应用,解决此类问题,关键是读懂内容,根据要求,求出线性约束条件和目标函数,直线性约束条件下作出可行域,然后求线性目标函数在可行域中的最优解,归纳如下步骤:①根据实际问题的约束条件列出不等式,②作出可行域,写出目标函数,③确定目标函数的最优位置,从而获得最优解.但在解答时,格式要规范,作图要精确,特别是最优解的求法,作时还是比较困难的.是函数方程思想的应用.例 例 例20. x 2+)1(142±≠=x y 例21. (x 94)34()3422=-+-y 例22. 解:以12O O 的中点O 为原点,12O O 所在直线为x 轴, 建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.由已知2PM PN =, 得222PM PN =.因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) 例 例 例 例例27. x 2+(y -1)2=1 例28. x +y =0或x +7y -6=0例29. 解:x 2+y 2-6x -8y =0即(x -3)2+(y -4)2=25, 设所求直线为y =kx 。