误差的所有详细概念
误差知识与算法知识点总结
误差知识与算法知识点总结1. 误差的概念误差是指测量结果与真实值之间的差异。
在实际应用中,无法完全获得真实值,因此测量结果总会有一定的偏差,这种偏差就是误差。
误差可以分为系统误差和随机误差两种类型。
2. 系统误差系统误差是指测量结果偏离真实值的固有偏差,常常是由于仪器、环境或测量方法等因素引起的。
系统误差的存在会导致测量结果产生偏差,降低测量结果的准确性。
3. 随机误差随机误差是由于实验环境、人为操作等随机因素引起的误差,是无法完全避免的。
随机误差会导致测量结果的离散度增大,降低测量结果的精确性。
4. 误差分析误差分析是对测量结果中的误差进行定量分析的过程,其目的是评估测量结果的准确性和精确性。
误差分析通常包括误差的来源和类型、误差的大小和分布、误差的传递和积累等内容。
5. 误差传递误差传递是指当多个测量结果相互影响时,每个测量结果中的误差会随着计算和运算的进行而传递和积累。
误差传递的过程需要考虑各种因素对误差的影响,以准确评估测量结果的误差范围。
6. 误差控制误差控制是指在测量过程中采取一系列措施来减小误差的产生和传递,以提高测量结果的准确性和精确性。
误差控制的方法包括校准仪器、规范操作、提高测量精度等。
7. 误差分布误差分布是指测量结果中误差的分布情况,可以通过统计学方法进行分析和描述。
误差分布通常服从正态分布或其他概率分布,可以通过统计参数进行描述。
8. 误差评估误差评估是对测量结果中的误差进行评定和验证的过程,以确定测量结果的可靠性和可信度。
误差评估通常包括测量不确定度的计算和报告,以及误差边界的确定和验证。
二、算法知识点总结1. 算法的概念算法是指解决问题或实现功能的一系列有序步骤的描述,是计算机程序的核心。
算法描述了如何通过一定的计算过程来实现特定的功能或者处理特定的数据。
2. 算法的特性算法具有确定性、有限性、输入和输出、易实现等特性。
确定性指算法的每一步都有唯一的后续步骤,有限性指算法必须在有限的步骤内结束,输入和输出指算法需要接受输入数据并产生输出结果,易实现指算法可以通过简单的描述和规范步骤来实现。
误差的名词解释
误差的名词解释误差是我们生活中一个常见但往往被忽视的概念。
它在科学研究、经济管理、技术开发等领域中扮演着重要的角色。
然而,误差并不仅仅指我们常说的错误,它更涉及到了不确定性与精度的问题。
本文将解释误差的定义、分类以及其在各领域中的应用。
一、误差的定义误差最基本的定义是指实际值与预期值之间的差异。
实际值是指我们通过实验、观察或测量所得到的结果,预期值则是基于理论或之前的观测所得到的期望结果。
误差可以使我们更好地了解事物真实状态与我们的感知之间的差距。
二、误差的分类根据误差来源的不同,误差可以分为系统误差和随机误差。
1. 系统误差:也被称为固定误差,是由测量或观察过程中固有的偏差引起的。
它可能是由于仪器的不精确性、实验条件的变化或者观察者的主观判断等原因导致的。
系统误差在每次测量或观察中都存在,并且在一定程度上会使结果产生常态偏移。
2. 随机误差:也被称为偶然误差,是由于测量或观察的随机性而引起的。
它是由于许多无法完全控制的因素而产生的,例如环境的变化、测量者的不稳定性等。
随机误差的特点是在重复测量或观察中出现不一致的结果。
三、误差在科学研究中的应用在科学研究中,误差是不可避免的,但我们可以通过对误差的控制和分析来提高实验的可靠性和结果的准确性。
以下是一些常见的误差应用案例:1. 在物理实验中,我们经常会测量一个物体的长度、质量或温度等参数。
通过计算测量值与真实值之间的差异,我们可以评估仪器的精确度,并进行修正或选择更准确的仪器。
2. 在天文学研究中,观测误差是不可忽视的。
我们并不总能够在理想的条件下进行观测,天气、大气湍流等都可能导致观测结果的偏差。
通过对不同观测点的重复观测,我们可以在一定程度上抵消随机误差,得到更精确的结果。
3. 在生物医学实验中,如果我们想评估某种新药物对于疾病的治疗效果,我们需要通过对实验组和对照组的观察来判断。
由于实验组和对照组之间可能存在各种差异,导致评估结果与实际效果存在误差。
误差基本知识及中误差计算公式
测量中误差测量误差按其对测量结果影响的性质,可分为:一.系统误差(system error)1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二.偶然误差(accident error)1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。
但具有一定的统计规律。
2.特点:(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。
即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。
§2衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。
一.中误差方差——某量的真误差,[]——求和符号。
规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差m的方法,有:1.用真误差(true error)来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n为观测值个数。
2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。
V——最或是值与观测值之差。
一般为算术平均值与观测值之差,即有:二.相对误差1.相对中误差=2.往返测较差率K=三.极限误差(容许误差)常以两倍或三倍中误差作为偶然误差的容许值。
即:。
§3误差传播定律一.误差传播定律设、…为相互独立的直接观测量,有函数,则有:二.权(weight)的概念1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有:权其中,为任意大小的常数。
当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error)m0,故有:。
误差简介
∆y = = δ y
∂ ln f ∑ ( ∂x ∆x j ) j =1 j
m
例3:用0.5级100A量程的电流表测得电流为60A, 用0.1级50V量程电压表测得电压30V ,求功率的误差。
∆I = 0.5% ×100 = 0.5 ± ±
∆U =0.1% × 50 =0.05 ± ± ∂P ∂P ∆P= ∆U + ∆I ∂U ∂I = ±0.05) + 30(±0.5) = ±18 60(
40.92;40.82;40.78;40.76;40.82;40.78;42.78; 40.84;40.85;40.86;40.78;40.81
1 11 U = 取样平均值 = 11 ∑ U i 40.82 V i =1
测量值的标准误差 = S (U ) 极限误差 没有坏值
(U i − U ) 2 ∑ i =1 = 0.05 11 − 1
.34 12 + 357 2 2. = 14.70 14.6972
(2) 乘除法——位数取齐
4.368 × 5.92 = 3.1 8.4
The end
2、误差的表示方法:
绝对误差: 测量值与被测量的真值之差,称为绝对误差。
∆x = x − x0
在实际测量中,常定义绝对误差的负值为修正值C,即
C = −∆x = x0 − x
测量值加上修正值就可获得相对真值
相对误差:绝对误差与真值的百分比,称为相对误差,即
∆x = ×100% δ0 x0
因,以减小误差;正确处理测量和实验数据,合理计算所 得结果,以便得到更接近真值的数据;正确组织实验过程, 合理设计或选用仪器,采用适当的测量方法,在最经济的 条件下得到理想的结果。
误差理论的基本知识
偶然误差的统计特性
在相同的观测条件下,独立地观测了817个三角形的全部内 角。由于观测结果中存在着偶然误差,三角形的三个内角观 测值之和不等于三角形内角和的理论值(真值)。设三角形 内角和的真值为X,观测值为Li,则三角形内角和的真误差 (或简称误差)为 Δi =Li -X(i一1,2,…n)
对于每个三角形来说,Δi是每个三角形内角和的真误差, Li是每个三角形三个内均观测值之和,X为180°。现将817 个真误差按每0.5″为一区间,以误差值的大小及其正负号, 分别统计出在各误差区间内的个数v,及相对个数v/817。
Δi = Li - X ( i = 1,2,…,n)
|误差区间| (〃)
Δ 为负值 个数 V 频率 ω
0.00 ~ 0.50 121 0.148
0.50 ~ 1.00
95
1.50 ~ 2.00
51
0.062
2.00 ~ 2.50
39
0.048
2.50 ~ 3.00
1 2 1
1
2 2
f(Δ)
1 2
σ愈小,曲线顶点 愈高,误差分布比 较密集;反之较离 散。
2
1
O
1
2
Δ
0.683
0.683
当观测次数愈来愈多,误差出现在各个区间的相对个数的 变动幅度就愈来愈小。当n具有足够大时,误差在各个区间 出现的相对个数就趋于稳定。当观测次数足够多时,如果 把误差的区间间隔无限缩小,则图中各长方形顶边所形成 的折线将变成一条光滑曲线,称为误差分布曲线。其方程 (称概率密度)为
为了计算上的方便或别的原因,在某些精度评定时也采用
下述精度指标:
n
θ称为平均误差,它是误差绝对值的平均值。
误差的分类知识讲解
误差的分类
精品资料
误差的分类
根据测量误差的性质和特点,可将误差分为系统误差、随机误差和粗大误差(或称疏失误差)三大类。
1.系统误差
系统误差是指在相同测试条件下,多次测量同一被测量时,测量误差的大小和符号保持不变或按一定的函数规律变化的误差,服从确定的分布规律。
系统误差主要是由于测量设备的缺陷、测量环境变化、测量时使用的方法不完善、所依据的理论不严密或采用了某些近似公式等造成的误差。
2.随机误差
在同一测试条件下,多次重复测量同一量时,误差大小、符号均以不可预定的方式变化着的误差称为随机误差。
系统误差与随机误差的划分是相对的,二者在一定条件下可以相互转化,即同一误差,既可以是系统误差,又可以成为随机误差。
3.粗大误差
粗大误差是指在一定的测量条件下,测得的值明显偏离其真值,既不具有确定分布规律,也不具有随机分布规律的误差。
粗大误差是由于测试人员对仪器不了解、或因思想不集中、粗心大意导致错误的读,使测量结果明显地偏离了真值的误差称为粗大误差。
仪表的测量误差名稱:
基本误差;允许误差;绝对误差;相对误差;引用误差;最大引用误差;标称误差;系统误差;偶然误差等.
仅供学习与交流,如有侵权请联系网站删除谢谢2。
第一章误差分析的基本概念
计算方法-1 -第一章 误差分析的基本概念§ 1误差的来源1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观 测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。
3. 举例说明例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型: I tL °(1「.t ),其中a 是由实验观察得到的常数:-二(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。
这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
为了计算近似值,可取前面有限项计算•如取前面五项计算,计算过程中与计算结果都取五位小数得e ~1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为~ =2.71828,于是截断误差为:□0' —:2.71828 -2.7083 = 0.00995 n总n !这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
误差的种类及相关概念
误差的种类及相关概念误差是指测量值与真实值之间的差异。
在科学研究、工程设计、统计分析等领域中,误差是不可避免的。
了解误差的种类和相关概念对于准确分析数据、评估实验结果以及有效解决问题至关重要。
下面将详细介绍误差的种类及相关概念。
1. 绝对误差(Absolute Error):绝对误差是指测量值与真实值之间的差异,用符号X−X_0 表示,其中X为测量值,X_0为真实值。
绝对误差可以为正或负,表示测量值相对于真实值的偏差。
但绝对误差不能直接反映测量的准确度。
2. 相对误差(Relative Error):相对误差是绝对误差与真实值之间的比率,用符号(X−X_0)/X_0 表示。
相对误差可以通过将绝对误差除以真实值得到,用于比较不同尺度的测量结果的精度。
相对误差通常以百分数的形式表示,如0.05表示5%的相对误差。
3. 百分误差(Percentage Error):百分误差是相对误差乘以100,表示为((X−X_0)/X_0)×100% 。
百分误差常用于比较实验结果与理论值之间的差异。
例如,一个实验结果的百分误差为1%,表示实验结果与理论值之间的差异为真实值的1%。
4. 绝对相对误差(Absolute Relative Error):绝对相对误差是相对误差的绝对值,用符号((X−X_0)/X_0) 表示。
绝对相对误差通常用于比较测量值与真实值之间的差异,并用于评估测量的准确度。
5. 系统误差(Systematic Error):系统误差是由于测量仪器、实验设计或操作方式等固有的问题而导致的偏差。
系统误差是一种具有一致性的误差,会使所有测量结果都出现偏差。
例如,仪器的刻度不准确、环境温度变化等都可能引起系统误差。
系统误差与测量值之间的关系可以通过校正或修正来降低。
6. 随机误差(Random Error):随机误差是由于测量过程中的偶然因素而引起的不确定性。
随机误差是不可避免的,通常表现为测量结果的波动。
误差的基本概念.
实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值(一)绝对误差某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值(二)相对误差绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值(三)引用误差所谓引用误差指的是一种简化和使用方便的仪器仪表表示值的相对误差,它以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得的比值称为引用误差。
引用误差=示值误差/测量范围上限2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
精度可分ⅰ准确度它反映测量结果中系统误差的影响程度ⅱ精密度它反映测量结果中随机误差的影响程度ⅲ精确度它反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度来表示。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
1. 误差理论基础
E 2 8 μ m ,根据绝对误差定义,可知后者的测量准确度高。但若用第三
种方法测量 L2=80 mm 的尺寸,其测量误差为 E3 7 μ m ,此时用绝对误差 就难以评定它与前两种方法准确度的高低,必须采用相对误差来评定。
第一节 误差的基本概念
四、误差与偏差
(一)误差 1.绝对误差 测量值和真值之差称为绝对误差,通常简称为误差。 绝对误差(E)=X-T 式中 X——测量值; T——真实值。
第一节 误差的基本概念
对于多次测量的数值,求其准确度时,可按下式计算:
x1 x 2 x n i 1 算术平均值( x )= = n n
第一节 误差的基本概念
由于测量值可能大于真值,也可能测量值小 于真值,所以,绝对误差和相对误差都有正负之 分。严格来说,真值是不可能知道的。在实际工 作中,将标准物质的标准值或总体平均值当作真 值。为了表示或比较准确度的高低,有时用绝对 误差比较清楚,有时用相对误差更显得直观。
第一节 误差的基本概念
第一节 误差的基本概念
在计算测量结果的准确度时,对上述四个方 面的误差来源,必须进行全面的分析,力求不遗 漏、不重复,特照误差的特点与性质,误差可分为系统误 差、偶然误差两类。 1、系统误差 系统误差是指试验过程中,由于某些恒定因 素影响而出现的一种保持恒定或可以预知方式变 化的误差。
第一节 误差的基本概念
真值是指在测量一个量时,该量本身所 具有的真实大小。它是客观存在的,但不 可能准确知道的,是一个理想的概念。真 值一般是不可知的,只有在某些特定条件 下,真值才是可知的。
第一节 误差的基本概念
误差的定义及分类
一、测量误差:测量结果减被测量的真值(测量的期望值)之差。
1)即:测量误差=测量结果-真值;对测量仪器:示值误差=仪器示值-标准示值。
2)测量误差通常通常可用示值的绝对误差、相对误差及引用误差(折合误差)来表示。
3)按照测量误差的基本性质不同,可将误差分为三大类:系统误差、随机误差和疏失误差。
二、约定真值:是一个接近真值的值,它与真值之差可忽略不计。
实际测量中以在没有系统误差的情况下,足够多次的测量值之平均值作为约定真值。
一般由国家基准或当地最高计量标准复现而赋予该特定量的值。
三、标称范围:标称范围是指测量仪器的操纵器件调到特定位置时可得到的示值范围(定值)。
四、精度等级:在正常的使用条件下,仪表测量结果的准确程度叫仪表的准确度。
1)引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围以减小测量误差,精度等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。
量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。
2)在工业测量中,为了便于表示仪表的质量,通常用准确度等级来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优劣的重要指标之一。
3)我国工业仪表等级分为0.1,0.2,0.5,1.0,1.6,2.5,5.0七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级。
绝对误差:测量结果与被测量[约定]真值(标准表读数)之差。
1)公式:△:绝对误差,L:测量值,A:真值(标准表读数)△= L- A2)绝对误差的缺点:并不能完全表示近似值的好坏程度,例如:x=10±1,y=1000±5,哪一个精度高呢?看上去x的绝对误差限比y的绝对误差限小,似乎x的精度高,其实不然。
四、相对误差:测量的绝对误差与被测量[约定]真值(标准表读数)之比的百分数所得的数值,以百分数表示。
第一章误差分析的基本概念
第一章 误差分析的基本概念§1 误差的来源1. 误差概念 :精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时进行了舍入而引起的误差。
3.举例说明例1 设一根铝棒在温度t 时的实际长度为L t ,在 t=0℃时的实际长度为L 0,用t l 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型:)t (L l t α+=10,其中α是由实验观察得到的常数 =α(0.0000238±0.0000001)1/℃,称t t l L -为模型误差,0.0000001/℃是α的观测误差。
这个问题中模型误差产生的原因是:实际上t L 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
例2 已知xe 在 x=0 处展开的泰勒级数为:∑∞==n nx!n x e 为了计算近似值,可取前面有限项计算.如取前面五项计算,计算过程中与计算结果都取五位小数得e ≈1+1+1/2+1/6+1/24≈2.7083,e 取五位小数时的准确值为e ~=2.71828,于是截断误差为: 0099507083271828215...!=-≈∑∞=n n这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
误差定义
误差的表示1、绝对误差设某物理量的测量值为x,它的真值为a,则x-a=ε;由此式所表示的误差ε和测量值x具有相同的单位,它反映测量值偏离真值的大小,所以称为绝对误差。
有了绝对误差以后.通常把测量结果表示成的形式,为多次测量的平均值。
2、相对误差它是绝对误差与测量值或多次测量的平均值的比值,并且通常将其结果表演示成非分数的形式,所以也叫百分误差。
3、引用误差仪表某一刻度点读数的绝对误差Δ比上仪表量程上限Am ,并用百分数表示。
3.1、最大引用误差:仪表在整个量程范围内的最大示值的绝对误差Δm比仪表量程上限Am ,并用百分数表示。
4、标称误差标称误差=(最大的绝对误差)/量程 x 100%绝对误差计算公式: 示值 - 标准值(即测量值与真实值之差的绝对值)绝对误差 = 测量值 - 真值引用误差 = 绝对误差 / (测量范围的上限—测量范围的下限)x100%When you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face;And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heart To dig an uncrossable riverFor the one who loves you.。
误差的基本知识.
第一章 误差的基本知识§1.0 误差的来源→→→观测误差 模型误差 截断误差 舍入误差 (1) 观测误差:受测量工具本身精度的影响(2) 模型误差:因简化和抽象,数学模型本身包含的误差(3) 截断误差:近似解与精确解之间的误差,将数学模型转化为数值方法时产生 (4) 舍入误差:取有限位小数所引起的误差例1 公式:!!212n x x x e nx++++≈ 所产生的误差即截断误差 例2 R = π- 3.14159 = 0.0000026... 所产生的误差即舍入误差注:(1) 疏忽大意造成的错误不属于误差。
(2) 总假定:由实际问题建立的数学模型是合理的,参量也是足够精确的 (3) 主要讨论截断误差和舍入误差。
§1.1 绝对误差、相对误差及有效数字1. 绝对误差与绝对误差限定义3.1 设x 为精确值,x *为x 的近似值,称e = x * - x 为近似值x*的绝对误差,简称误差,简记为e 。
注:e 可正可负,很难求出。
(但往往知道|e |的范围:|e | ≤ ε)若|e | = | x * - x | ≤ ε(x *),则称ε(x *)为x *的绝对误差限,简称误差限,简记为ε。
注:(1) ε > 0(2) x 的范围:x * - ε ≤ x ≤ x * + ε,工程上常记为:x = x * ± ε。
(知道误差限就可知道精确值的范围) 例1:“四舍五入”的绝对误差限设x = ±0.a 1a 2⋯ anan +1⋯⨯10m ,—— 十进制标准表示式(a 1≠ 0)。
四舍五入:⎪⎩⎪⎨⎧≥⨯+±≤⨯±=++510)1(.04 10.0*121121n mn n m n a a a a a a a a x 若若此时,总有n m m nx x e -⨯=⨯≤-=1021105000.0||||*2. 相对误差与相对误差限绝对误差限不能完全表示近似程度的好坏,如x = 100 ± 2,y = 10 ± 1定义3.2 称xxx x e e r -==*为近似值x *的相对误差。
2.1 有关误差的一些基本概念
第二章误差与分析数据处理2.1 有关误差的一些基本概念一、误差的表征—准确度与精确度1.准确度:测定结果与被测组分的真实值之间的接近程度,这两个值之间的差值越小,则测定结果的准确度越高。
2.精密度:几次平行测定结果相互接近的程度。
(平行测定:完全相同条件下的测定)3.准确度与精密度的关系(举例说明)(★):(1)精密度是保证准确度的先决条件,精密度是前提。
(2)高的精密度不一定能保证高的准确度。
二、误差的表示—误差与偏差1.误差(error):(1)含义:表示测定结果与真实值之间的差异。
用来衡量准确度的高低。
(2)计算公式:①绝对误差(absolute error):E a= x(平均值)-T(真值)②相对误差(relative error):E r=(E a/T)×100%③误差与错误的关系(★):误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。
从实验的原理,实验所用的仪器及仪器的调整,到每次测量,都不可避免地存在误差,并贯穿于整个实验始终。
2.偏差(deviation):表示测量值与平均值之间的差异,用来衡量精密度的高低。
在实际测量过程中,往往无法知道真实值,而是用测量的平均值代替真实值,所以通常所说的误差其实是偏差,用误差只是习惯叫法。
三、误差的分类—系统误差和随机误差1.系统误差(systematic error):(1)含义:又称可测误差(determinate error),是由某种固定的原因造成的,具有单向性、重现性,系统误差决定分析结果的准确度。
(2)分类(通过列举实例说明误差的各种类型):①方法误差:分析方法本身所造成的误差,方法的选择或方法的校正可克服此类误差。
(如酸碱滴定法时指示剂的选择)②仪器误差:由仪器本身不准确所造成的误差。
通过仪器校准可克服此类误差。
(如天平的砝码长期使用后质量的变化)③试剂误差:由试剂不纯引起的误差。
通过空白校正和使用高纯度的水可克服试剂误差。
误差的理解
误差的理解
误差是指测量结果与真实值之间的差异。
在科学、工程、医学等领域中,误差是不可避免的,因为测量受到各种因素的影响,如仪器精度、环境条件、测量方法等。
因此,误差的理解和控制对于获得准确和可靠的测量结果至关重要。
误差可以分为系统误差和随机误差。
系统误差是指在相同条件下多次测量同一量时,其误差的绝对值和符号保持恒定的误差。
系统误差通常是由于仪器缺陷、测量方法不准确、环境因素等造成的。
为了消除系统误差,可以进行一些校准和修正,例如使用更高精度的仪器、改进测量方法、控制环境条件等。
随机误差是指在相同条件下多次测量同一量时,其误差的绝对值和符号按一定的统计规律变化的误差。
随机误差是由于不可预测的偶然因素引起的,如空气扰动、温度波动、仪器噪声等。
随机误差可以通过增加测量次数和采用统计方法来减小其影响,例如取多次测量的平均值或采用加权平均值等方法。
此外,误差还可以分为绝对误差和相对误差。
绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与真实值之间的比值。
在某些情况下,相对误差可能更具实际意义,因为它能够反映测量结果的准确性相对于真实值的程度。
误差是测量中不可避免的一部分。
为了获得准确和可靠的测量结果,我们需要理解不同类型的误差及其产生的原因,并采取适当的措施来减小它们的影响。
在处理测量数据时,应该考虑到误差的存在,并对其进行合理的估计和修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标称误差=(最大的绝对误差)/量程x 100%
绝对误差= | 示值- 标准值| (即测量值与真实值之差的绝对值)
相对误差= | 示值- 标准值|/真实值(即绝对误差所占真实值的百分比)
另外还有:
系统误差:就是由量具,工具,夹具等所引起的误差。
偶然误差:就是由操作者的操作所引起的(或外界因素所引起的)偶然发生的误差。
测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。
由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。
误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。
误差,物理实验离不开对物理量的测量,测量有直接误差
的,也有间接的。
由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。
设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε
由于人最小二乘俯仰角估计误差比较
为因素所造成的误差,包括误读、误算和视差等。
而误读常发生在游标尺、分厘卡等量具。
游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。
分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。
误算常在计算错误或输入错误数据时所发生。
视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生的误差量。
为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V形且本尺为凸V 形,因此形成两刻划等高。
标称误差
标称误差=(最大的绝对误差)/量程x 100%
指示式测量仪器的示值误差=示值-实际值;实物量具的示值误差=标称值-实际值。
例如:被检电流表的示值I为40A,用标准电流表检定,其电流实际值为Io=41A,则示值40A的误差Δ为Δ=I-Io=40-41=-1A 则该电流表的示值比其真值小1A。
如一工作玻璃量器的容量其标称值V为1000ml,经标准玻璃量器检定,其容量实际值Vo为1005ml,则量器的示值误差Δ为: Δ=V-Vo=1000-1005=-5ml 即该工作量器的标称值比其真值小5ml。