小学数学进位制与位值原理课件(五年级)奥数

合集下载

小学奥数讲义5年级-12-位值原理-难版

小学奥数讲义5年级-12-位值原理-难版

同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。

也就是说,每一个数字除了本身的值以外,还有一个“位置值”。

例如“5”,写在个位上,就表示5个一;写在十位上,就表示5个十;写在百位上,就表示5个百;等等。

这种把数字和数位结合起来表示数的原则,称为写数的位值原则。

我们通常使用的是十进制计数法,其特点是“满十进一”。

就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。

写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。

用阿拉伯数字和位值原则,可以表示出一切整数。

例如,926表示9个百,2个十,6个一,即926=9×100+2×10+6。

根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:其中a 可以是1~9中的数码,但不能是0,b 和c 是0~9中的数码。

利用位值原理可以解决很多数论问题。

【例1】某三位数abc 和它的反序数cba 的差被99除,商等于______与______的差;【解析】本题属于基础型题型。

我们不妨设a >b >c 。

典型例题知识梳理(abc -cba )÷99=[(100a+10b+c)-(100c+10b+a)]÷99=(99a-99c)÷99=a-c ; 【小试牛刀】ab 与ba 的差被9除,商等于______与______的差;【解析】(ab -ba )÷9=[(10a+b)-(10b+a)]÷9=(9a-9b)÷9=a-b ;【例2】(美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少? 【解析】设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【小试牛刀】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数. 【解析】设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-. 根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+. 推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例3】(第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少? 【解析】设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【小试牛刀】(迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【例4】用1,9,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?【解析】卡片“9”倒过来看是“6”。

数学:第15讲《位值原理与进位制进阶》讲义

数学:第15讲《位值原理与进位制进阶》讲义

天很多同类被抓走了,痛苦 的捂住了眼睛 . 他想知道 今天有多少同类被图中的怪 物抓走了,你该如何告诉 他? 【答案】 (1)137 ; (2) 【分析】 (1)观察发现怪物共有 8 个手 指,可知怪物使用 8 进制: 2 1 1 8 2 8 137 (2)观察可知此怪物用六进 制,137 3 62 4 6 5 ,因 此 (137)10 (345)6 ,则表示方法 应为: 倒取余数法:
(4)a,b,c 分别是 0~9 中不同的数 码,用 a,b,c 共可组成六个三位数, 如果其中五个三位数之和是 2234,那么另一个三位数是 _____. 【分析】 (1)123+132+213+231+312+321 =1332 (2) abc acb bac bac cab cba 222 (a b c) ,一定是 222 的 倍数. (3)设这三个数字分别是 a 、b 、c , 有 222 a b c 2886, a b c 13; 百位最小为 1,和为 13,应该让个 位越大越好,个位为 9,因此最小 值为 139;
abcd cdab 1010a 101b 1010c 101d
,是 101 的倍数.在所给的 5 个数 中只有 9696 是 101 的倍数,故正 确的答案为 9696. 练一练 (1)一个四位数,将其 4 个数位上 的数字求和,再加上原来的四位 数,得到一个新的四位数;再将得 到的新四位数 4 个数位上的数字 求和,再加上这个新的四位数,又 得到一个新四位数;如此操作四 次,最后得到的数是 2012,问最初 的四位数是多少? (2)以五位数为例说明: 其原序数 和反序数之差一定是 99 的倍数.

小学奥数位值原理

小学奥数位值原理

小学奥数位值原理在小学奥数的学习中,位值原理是一个非常重要的概念。

它不仅在数学中有着广泛的应用,而且在日常生活中也有着重要的意义。

位值原理是指一个数字在一个数中所处的位置所赋予的不同的数值,这些数值随着位置的不同而不同。

在十进制数系统中,位值原理是以10为基数的,每个位置的数值是10的幂。

比如一个三位数abc,它可以表示为100a+10b+c,其中a、b、c分别表示这个数的百位、十位和个位上的数字。

首先,我们来看一下位值原理在数学中的应用。

在数字运算中,我们经常会遇到加法、减法、乘法和除法。

而位值原理在这些运算中都有着重要的作用。

比如在加法中,当我们进行十位数相加时,我们需要考虑进位的问题,这就是位值原理的体现。

在减法中,我们也需要考虑借位的问题,同样也是位值原理的应用。

在乘法和除法中,我们也需要根据位值原理来进行相应的计算。

因此,位值原理是数学运算中不可或缺的一部分。

其次,位值原理在日常生活中也有着重要的应用。

比如我们经常会用到的时间表示,小时和分钟就是按照位值原理来表示的。

又比如我们在购物时,货币的计算也是按照位值原理来进行的。

在计算机中,位值原理更是起着至关重要的作用,它决定了计算机能够进行各种复杂的运算和逻辑判断。

总之,位值原理是数学中一个非常基础而重要的概念,它不仅在数学中有着广泛的应用,而且在日常生活和科学技术中也有着重要的意义。

因此,我们在学习小学奥数的时候,要深入理解位值原理的概念,并且灵活运用到实际的问题中。

只有这样,我们才能更好地理解和应用数学知识,提高自己的数学水平。

希望通过本文的介绍,能够帮助大家更好地理解和掌握位值原理这一重要概念。

五年级奥数位值原理

五年级奥数位值原理

位值原理知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。

五年级数学奥数讲义-位值原理与数的进制(学生版)

五年级数学奥数讲义-位值原理与数的进制(学生版)

“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。

通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。

并学会在其它进制中位值原理的应用。

从而使一些与数论相关的问题简单化。

一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

二、数的进制我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n,我们有n0=1。

n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。

【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

(小学奥数)位值原理

(小学奥数)位值原理

5-7-1.位值原理教學目標1.利用位值原理的定義進行拆分2.巧用方程解位值原理的題知識點撥位值原理當我們把物體同數相聯系的過程中,會碰到的數越來越大,如果這種聯繫過程中,只用我們的手指頭,那麼到了“十”這個數,我們就無法數下去了,即使象古代墨西哥尤裏卡坦的瑪雅人把腳趾也用上,只不過能數二十。

我們顯然知道,數是可以無窮無盡地寫下去的,因此,我們必須把數的概念從實物的世界中解放出來,抽象地研究如何表示它們,如何對它們進行運算。

這就涉及到了記數,記數時,同一個數字由於所在位置的不同,表示的數值也不同。

既是說,一個數字除了本身的值以外,還有一個“位置值”。

例如,用符號555表示五百五十五時,這三個數字具有相同的數值五,但由於位置不同,因此具有不同的位置值。

最右邊的五表示五個一,最左邊的五表示五個百,中間的五表示五個十。

但是在奧數中位值問題就遠遠沒有這麼簡單了,現在就將解位值的三大法寶給同學們。

希望同學們在做題中認真體會。

1.位值原理的定義:同一個數字,由於它在所寫的數裏的位置不同,所表示的數值也不同。

也就是說,每一個數字除了有自身的一個值外,還有一個“位置值”。

例如“2”,寫在個位上,就表示2個一,寫在百位上,就表示2個百,這種數字和數位結合起來表示數的原則,稱為寫數的位值原理。

2.位值原理的表達形式:以六位數為例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法寶:(1)最簡單的應用解數字謎的方法列豎式(2)利用十進位的展開形式,列等式解答(3)把整個數字整體的考慮設為x,列方程解答例題精講模組一、簡單的位值原理拆分【例 1】一個兩位數,加上它的個位數字的9倍,恰好等於100。

這個兩位數的各位數字的和是。

【例 2】學而思的李老師比張老師大18歲,有意思的是,如果把李老師的年齡顛倒過來正好是張老師的年齡,求李老師和張老師的年齡和最少是________?(注:老師年齡都在20歲以上)【例 3】把一個數的數字順序顛倒過來得到的數稱為這個數的逆序數,比如89的逆序數為98.如果一個兩位數等於其逆序數與1的平均數,這個兩位數是________.【例 4】幾百年前,哥倫布發現美洲新大陸,那年的年份的四個數字各不相同,它們的和等於16,如果十位數字加1,則十位數字恰等於個位數字的5倍,那麼哥倫布發現美洲新大陸是在西元___________年。

五年级奥数春季实验班第4讲 数论基础之进位制

五年级奥数春季实验班第4讲 数论基础之进位制

盘。
解:(11111)10=(10101101100111)2,
相当于在右盘上已经有了 1 克、2 克、4 克、32 克、64 克、256 克、512 克、2048 克、8192 克的重量;
从低位看起,把 1 克、2 克的砝码放在左盘,把 4 克、8 克的砝码放在右盘,把 16 克的砝码放在左盘;
第四讲 数论基础之进位制
模块 1、十进制和 k 进制的相互转化以及 k 进制下的直接运算
例 1.(1)在二进制下进行加法:(101010)2+(1010010)2=(
)2;
(2)在七进制下进行加法:(1203)7+(64251)7=(
)7;
(3)在九进制下进行加法:(178)9+(8803)9=(
)9;
例 3.在 6 进制中有三位数 abc ,化为 9 进制为 cba ,求这个三位数在十进制中为

解:( abc )6=(a×62+b×6+c)10, ( cba )9=(c×92+b×9+a)10,
所以 36a+6b+c=81c+9b+a,得 35a−3b−80c=0,其中 a、c≠0,a、b、c 都是小于 6 的自然数。 其中 35a 与 80c 都是 5 的倍数,所以 3b 也是 5 的倍数,若 b=0,则有 7a=16c,矛盾; 所以 b=5,得 7a=3+16c,得 c=2,a=5, 所以在六进制中是 552,在九进制中是 255,在十进制中是 5×62+5×6+2=212。
解:(1)(101010)2+(1010010)2=( 1111100 )2;
101010 1010010

进制与位值原理

进制与位值原理

进位制部分重点在于各种进位制与十进制之间转换及计算的规律,并熟悉进制的应用.在有些数论问题中,用代数式来表示数往往能使问题迎刃而解,或收到意想不到的效果,起到简化解题过程的作用.⑴掌握进位制的基本方法和常见技巧; ⑵了解整数的代数表现形式并能熟练应用.同学们在进行整数四则计算时,用的都是十进制,即“满十进一”,十进制是最常用的进位制,这与人们屈指计数的习惯相符,使用起来也很方便.随着人类对数的认识不断深入,产生了各种不同的进位制,我们来一起看一些例子.两只袜子为一双,两只水桶为一对,这里使用的是二进制;十二支铅笔为一打,十二个月算一年,这里使用的是十二进制;六十秒是一分,六十分是一时,这里使用的是六十进制;二十四时为一天,这里使用的是二十四进制;100平方分米等于1平方米,100平方厘米等于1平方分米,这里使用的是一百进制;1000米等于1千米,1000克等于1千克,这里使用的是一千进制;…….进制问题与我们的生活息息相关,我们有必要掌握一些进制方面的知识,它会给我们的生活带来很多便利哦!什么叫二进制所谓二进制,就是只用0与1两个数字,在计数与计算时必须是“满二进一”.大家知道:数是计算物体的个数而引进的,0代表什么也没有,有一个,记为“1”;再多一个,记为“10”(在十进制下记为2);比“10”再多一个,记为“11”.依次类推,我们很容易接受二进的方法,例如白与黑、虚与实、负与正、点与划、小与大、暗与亮(在计算机中主要用电压的高与低)等等手段加以表示.当然,二进制也有不足,正如大家看到的那样,同一个数在二进制中要比在十进制中位数多得多.十进制与二进制的互相转化今天,当我们写上一个数目1999时,实际上意味着我们使用了“十进制”数,1999110009100=⨯+⨯ 91091+⨯+⨯,也就是说:1999中含有一个1000,九个100,九个10与九个1.为了叙述的方便,我们约定:用2( )表示括号内写的数是二进制数,如21010();用10( )表示括号中写的数是十进制数,如1066();十进制的标志可省略,66就代表十进制下的数.二进制数10表示十进制数2;二进制数100,表示十进制数4;二进制数1000,表示十进制数8;二进制数10000表示十进制数16;…;可以看出规律:二进制数1000000应该表示十进制数64,.那经典精讲第十一讲进位制与位值原理⑴ 关于进位制的两个需要注意的地方:二进制数有0,1两个数符,由低位向高位是“逢二进一”;八进制数有0,1,2,……,7八个数符,由低位向高位是“逢八进一”;十六进制数有0,1,2,……,13,14,15十六个数符,由低位向高位是“逢十六进一”.根据科学技术的需要,还可以扩充其他进位制数的概念和运算.为了区别各种进位制数,n 进制中的数用()n a 表示.如果10n ≥,那么从10到1n -的这些数符可用专门记号(一般情况下用大写英文字母)来表示.比如,用A 表示10,B 表示11,C 表示12,D 表示13,E 表示14,F 表示15等等. ⑵ 十进制数与n 进制数的互换:n 进制数110()r r n a a a a -写成十进制数是121210r r r r a n a n a n a n a --+++++.十进制数化成n 进制数,只要把十进制数用n 除,记下余数;再用n 除它的商,又记下余数;直到商为0;将余数自下而上依次排列,就得到一个n 进制的数.这叫做“除n 取余法”. 如把1234化成三进制数:3123434111313703452315035031201余余余余余余余 所以,(10)(3)12341200201=.⑶ 一般地,一个自然数N 可表示为1210r r r a a a a a --的形式,其中r a ,1r a -,…,1a ,0a 是0,1,2,3,…,9中的一个,且0r a ≠,即:1110101010r r r r N a a a a --=⨯+⨯++⨯+.这就是十进制数,记作(10)N ,简记为N .十进制数有两个特征:一是有十个不同的数符:0,1,2,3,4,5,6,7,8,9;二是“逢十进一”的法则:有个、十、百、千等自右向左的数位和十分位、百分位、千分位等自左向右的数位.⑷ 对于进位制需要注意其本质:n 进制就是逢n 进一.[分析]掌握十进制转化为n 进制的基本方法:短除法.以()()10237=和()()108888=为例.我们用2去除37,记下每次得到的余数,一直除到商为0为止.然后将余数由下至上写出来,就是37的二进制数.()()10237100101=.例1237218...129 (02)4...122...021 0...188888111...0813...781...50 (1)同样的方法,我们用8去除888,一直除到商为0为止,把余数由下至上写出来,得到:()()1088881570=.()()()()()()()()10210310510837100101;24222222;1561111;8881570====.[巩固](基础学案1)将1030()、1072()改写成二进制数. [分析] 可以按照短除法来做,也可以按照如下的方法.1023016141686168420111110=+=++=++++⨯=()()102726486403201680402011001000=+=+⨯+⨯++⨯+⨯+⨯=()()[巩固](提高学案1)将10301()、1072(4)改写成七进制数. [分析]短除法.()()107301610=;()()107721243=4[提高](尖子学案1)十六进制从古至今一直影响着我们的日常生活.我国古代1斤等于十六两,所以会有“半斤八两”这样一个成语.现在,我们通常用,,,,,A B C D E F 来表示十六进制中的10,11,12,13,14,15.那么,聪明的同学们,你们能把十进制中的234化成十六进制数吗? [分析]仍然用短除法.()()1016234EA =[分析]n 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果.()()()()5432102104321031010100112021202021241120211323032313142=⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯= 当然计算时,数位是0的可以省略.[分析](1)可转化成十进制来计算:222101010102(11000111(10101(11(199)(21)(3)(192)(11000000-÷=-÷==)))); 如果对进制的知识较熟悉,可直接在二进制下对22(10101(11÷))进行除法计算,只是每次借位都是2,可得222222(11000111(10101(11(11000111(111(11000000-÷=-=))))));例3例2(2)十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n .原式88888(63121)[(1247)(26531)][(16034)(1744)]=-+-+8888(63121)(30000)(20000)(13121)=--=;(3)本题涉及到3个不同的进位制,应统一到一个进制下.统一到十进制比较适宜:32471010103021)(605)(34241)(675)(500)+=⨯+⨯++⨯+=(.[铺垫](基础学案2)尝试用竖式来计算二进制的加减法()()()()()()222222100111111010101+=-=[分析]十进制的加减法运算,需要“满十进一”,“借十当一”.那么在二进制里面也一样,“满二进一”,“借二当一”.1001110101111011000010101+-[铺垫](提高学案2)尝试用竖式来计算二进制的乘除法 [分析] ⑴ 列竖式: ⑵ 列竖式:1111011111011011011101101×10110110110110011100111001110101011100110011得:2221011011011111101111⨯=()()() 得:22210101011100111001÷=()()()[拓展](尖子学案2)完成下列进制的转化()()216110010011011;= ()()16295A E =[分析]不同进制之间的互化有一个通法,就是先化成十进制,再从十进制再转化.二进制和十六进制的互化有一个更简单的方法.二进制是计算机工作的基本语言.但是二进制数位太长了,不利于人类识别和使用,因此我们把二进制的每4位和在一起4216=,就变成了十六进制.那么第一个问题,()2110010011011我们把它每4位数码合在一起()()2161100,C =()()21610019,=()()2161011B =,因此()()2161100100110119C B =.第二个问题,()1695A E 我们把它每一位拆成4位二进制数,()()16291001,=()()1621010,A =()()()()16216250101,1110E ==,因此,()()162951001101001011110A E =.[分析]利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.例4但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12. 所以, n 只能是6.[巩固](基础学案3)在几进制中有12512516324⨯=?[分析]注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3. 因为出现了6,所以n 只能是7.[拓展](提高学案3)算式153********⨯=是几进制数的乘法?[分析]注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.[拓展](尖子学案3)记号()25k 表示k 进制的数,如果()52k 是()25k 的两倍,那么,()123k 在十进制表示的数是多少?[分析]可用位值原理来进行计算.()()2525,5252k k k k =+=+,依题意,()22552k k ⨯+=+,解得8k =.()()81012318828383=⨯⨯+⨯+=.[分析]设此数为()()43abc cba =,利用位值原理转化为十进制数.164931580a b c c b a a b c ++=++⇒+-=.又,,a b c 是三进制中的数字,所以,,0,1,2a b c =,那么易得1,1,2a b c ===,()411211614222=⨯+⨯+=.十进制表示是22.[巩固]在七进制中有三位数abc ,化为九进制为cba ,求这个三位数在十进制中为多少? [分析]首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.[拓展]用,,,,a b c d e 分别代表五进制中五个互不相同的数字,如果5()ade ,5()adc ,5()aab 是由小到例5大排列的连续正整数,那么5()cde 所表示的整数写成十进制的表示是多少?[分析]注意555()(1)()adc aab +=,第二位改变了,也就是说求和过程个位有进位,则0b =,而555(10)(1)(4)c =-=,则4c =.而555()(1)()ade adc +=,所以1e c +=,则3e =. 又1d a +=,所以1d =,2a =.那么,5()cde 为25(413)45153108=⨯+⨯+=. 即5()cde 所表示的整数写成十进制的表示是108.[提高]自然数10)(abc x =化为二进制后是一个7位数2)1(abcabc ,那么x 是多少? [分析]根据位值原理100106432168426436189a b c a b c a b c a b c ++=++++++=+++,于是64648888a b c a b c=--⇒=--.又,,a b c 是二进制中的数字,因此,,0,1a b c =,那么易得1,0,0a b c ===.100x =.[补充],a b 是自然数,a 进制数()47a 和b 进制数()74b 相等,a b +的最小值是多少?[分析],8a b ≥,根据位值原理,4774743a b b a +=+⇒-=.左右两边取4的模,有()()33mod 41mod 4b b ≡⇒≡,那么,b 的最小值是9,此时()793415a =⨯-÷=.那么,24a b +=.[分析]若给每个盒子分别放入:1,2,22,,92发子弹,即相当于二进制数中的:0000000001,0000000010,,1000000000,即在十个盒子对应的数位上是1,而其余位上均为0.这样我们可以任意抽出:2101011111023=()()以内的任何发子弹,但由于现在总共只有1000发子弹,所以先在前9个盒子中分别装:1,2,22,,82发子弹,相当于二进制数中的000000001,000000010,000000100,,100000000发子弹,最后一个盒子中只能放9223-()发子弹,即489发子弹.即可凑出1000以内的任何数发子弹.所以十个盒子中应分别装子弹数为:1,2,4,8,16,32,64,128,256,489.[铺垫](基础学案4)茶叶店以“两”为单位整两出售茶叶,顾客来买茶叶时,店员们先用天平称出重量,再打成小包交给顾客.由于顾客时多时少,所以店员们有时忙不过来,有时又闲的无事.于是,老板想出一个办法,闲的时候让店员们将茶叶称好后打成小包,忙的时候让店员们直接拿出小包交给顾客,省去了用天平称重量,效率大大提高.现在我们的问题是:如果顾客要买1~31中的任何整两数茶叶,那么茶叶店至少要有几包茶叶才能一次付给顾客?这些茶叶的重量分别是多少两?[分析]我们知道任何一个正整数都可以唯一的用二进制数来表示.因为531322<=,所以用42,32,22,12,02就可以表示1~31中的所有整数.因为021=,122=,224=,328=,4216=,所以茶叶店只要有5包茶叶,分别重1,2,4,8,16两,就可以满足一位顾客1~31两茶叶的需要.[拓展](提高学案4)现有六个筹码,上面分别标有数值:1,3,9,27,81,243.任意搭配这些筹码(也可以只选择一个筹码)可以得到很多不同的和,将这些和从小到大排列起来,第39个是多少? [分析]由例题我们可以知道一共有63个不同的和.在2进制中的第39个非零自然数,即将10进制中的39转化为2进制,应记为:2(100111).例6所以,在3进制中,只用1和0表示的数,第39个也是100111,将其转化为10进制,有523(100111)1313131256=⨯+⨯+⨯+=.即其中第39个数是256.[拓展](尖子学案4)我们可以通过天平和砝码来称量物体的重量.一般来说我们把砝码放在天平的左边,物体放在右边.现在我希望这台天平能称量从1克到1000克的所有整数克的物体,那么最少需要几个砝码?[分析]称量1克,需要1克的砝码;称量2克,需要2克的砝码; 称量3克,需要1克和2克的砝码; 称量4克,需要4克的砝码; ……有了这3个砝码,我们可以称量1克到7克的所有重量了,接下来还需要一个8克的砝码. 以此类推,共需要1,2,4,8,16,32,64,128,256,512克10个不同的砝码.接下来,我们可以验证,有了这10个砝码可以称量1克到1000克的全部重量.10个砝码分别对应于二进制中的()()()()()()222222110100100010000100000,,,,,,()()()()22221000000100000001000000001000000000,,,.1到1023之间的任何一个十进制的自然数都可以用一个不超过10位的二进制数.如()210231*********=.那么对于其二进制表示的每一位,如果是1就代表需要这个砝码,如果是0就代表不需要这个砝码.如()25131000000001=,代表我们可以用一个()25121000000000=克和一个()211=克砝码来称量513克. 因此最少需要1,2,4,8,16,32,64,128,256,512克10个不同的砝码.越玩越聪明: 超常挑战:1. 把下面的二进制数改写成十进制数.⑴ 2101110() ;⑵ 2111101();[分析]⑴2101011100112141801613246=⨯+⨯+⨯+⨯+⨯+⨯=()()⑵ 2101111011102141811613261=⨯+⨯+⨯+⨯+⨯+⨯=()()2. ①852567(((=== ) ) );②在八进制中,1234456322--=________;[分析]本题是进制的直接转化:852567(1067(4232(1000110111===))); ②原式1234(456322)12341000234=-+=-=.3. 计算:()()()222(1)1111101+=()()()888(2)357521+=[分析]()()()222111*********+=家庭作业。

五年级奥数.位值原理(AB级).教师版

五年级奥数.位值原理(AB级).教师版

位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5. 【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.例题精讲【答案】66岁【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】设为ab,即101102b aa b+++=,整理得1981a b=+,3,7a b==,两位数为37【答案】37【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】设小明出生那年是,则1+9+a+b=95-10a-b从而11a+2b=85在a≥8时,11+2b>85;在a≤6时,11a+2b≤66+2×9=84,所以必有a =7,b=4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【考点】简单的位值原理拆【难度】3星【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】令这个三位数为0a b,则由题意可知,10067()+=+,可得2a b a b=,而调换个位和百位之后a b变为:0100102=+=,而3b a b a ba b b+=,则得到的新三位数是它的各位数字之和的÷=倍.102334b b【答案】34【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】abc cba-个位是7,明显a大于c,所以10+c-a=7,a-c=3,所以他们的差为297【答案】297【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与c b a 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2010年,希望杯,第八届,六年级,初赛,第5题,6分【解析】 千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,ab ba a b b a a b-=+--=-=,5(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】设这个两位数是ab,则100a+b=8(10a+b)-1,化为20a+1=7b,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】设第一个2位数为10a+b;第二个为10b+a;第三个为100a+b;由题意:(100a+b)-(10b+a)=( 10b+a)-(10a+b) ;化简可以推得b=6a,0≤a,b≤9,得a=1,b=6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】abcd,abc,ab,a依次表示四位数、三位数、两位数及一位数,且满足abcd—abc—ab—a= 1787,则这四位数abcd= 或 .【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答 【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259 推知b =2;则222+11c +d =259,11c +d =37 进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答 【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分【难度】3星【题型】解答【关键词】迎春杯,决赛【解析】设三个数字分别为a、b、c,那么6个不同的三位数的和为:+++++=++⨯+++⨯+++=⨯++2()1002()102()222() abc acb bac bca cab cba a b c a b c a b c a b c所以288622213++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位a b c数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【答案】139【例 11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】方法三:设两位数为x,则有(10x+1)-(100+x)=414,解得:x=57.【答案】57【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设三位数为x,则有(6000+x)+(10x+6)=9999,解得:x=363.【答案】363【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空 【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的三位数之和为222×(a +b +c )=3330,推知a +b +c =15.所以,当a 、b 、c 取1、5、9时,它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A .课堂检测【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数为x ,则10x +5-x =1111A ,化简得9x =1106A ,等号右边是9的倍数,试验可得A =1,x =1234.【答案】A =1,x =1234(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 设这个巧数为ab ,则有ab +a +b =10a +b ,a (b +1)=10a ,所以b +1=10,b =9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>. 家庭作业复习总结若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6教学反馈。

五年级奥数数学进位制与位值原理课件

五年级奥数数学进位制与位值原理课件
(1234)10= (1200201) 3
知识要点屋
把下列各数转化成相应的进制数:
(37)10=( 100101 )2
(242)10=(22222)3
知识要点屋
4、关于进位制 ⑴ 本质:n进制就是逢n进一 ⑵ n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 例如,十六进制中,10、11、12、13、14、15、 分别用A、B、C、D、E、F表示
计算 2、速算巧算无国界
例题【四】(★ ★ ★ ★ )
在7进制中有三位数 abc ,化为9进制为 cba,求这个三位数在十
进制中为多少?
化为十进制,(abc)7=a×72+b×7+c=49a+7b+c; (cba)9=c×92+b×9+a=81c+9b+a
得到49a+7b+c+81c+9b+a 48a=80c+2b,
24a=40c+b 因为24a是8的倍数,40c也是8的倍数, 所以b也应该是8的倍数,于是b=0或8、 因为7进制,所以b=0
例题【四】(★ ★ ★ ★ )
在7进制中有三位数 abc ,化为9进制为 cba,求这个三位数在十
进制中为多少?
24a=40c, 则3a=5a. 所以a为5的倍数,c为3的倍数, 则a=0或5,但是首位不可以是0于是a=5,c=3; 所以(abc)7=(503)7=5×49+3=248
进制问题
五年级 第十四课
本讲主线
1、进制之间的转换. 2、进制的四则计算.
3、进制与位值原理.
知识要点屋
1、常见进制:二进制、十进制、十二进制、十六进制、二十四进制、六 十进制,

五年级奥数第50讲 进位制与位值原理-

五年级奥数第50讲 进位制与位值原理-
【例4】 (★★★★) 在7进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
【例5】 (★★★★) 在6进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
1
二、位值原理
【例6】 (★★★) 将一个四位数的数字顺序颠倒过来,得到一个新 的四位数(这个数也叫原数的反序数),新数比原 数大8802 。求原来的四位数。
例3答案:① (11100)2 ② (11000000)2 ③ (500)10 例4答案:248
④ (13121)8
例5答案:22
)2
一、进位制 2.咱要了解的进位制: ⑴本质:n进制就是逢n进一 ⑵n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 3.会变身的进位制:n进制和十进制的相互转化
【例3】 (★★★) ① (101)2(1011)2 (11011)2 ( )2 ② (11000111)2 (10101)2 (11)2 ( )2 ③ (3021)4 (605)7 ( )10 ④ (63121)8 (1247)8 (16034)8 (26531)8 (1744)8 ( )2
进位制与位值原理
一、进位制 1.缤纷多彩的进位制:
六十 进制 二十 进制
二进 制 … … 十六 进制
五进 制 十二 进制
【例1】 (★★★) 把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16。
【例2】 (★★★) ⑴把85化成二进制数。 ⑵ (567)10 ( )8 ( )5 (
【例7】 (★★★) 有3个不同的数字,用它们组成6个不同的三位数, 如果这6个三位数的和是1554 ,那么这3个数字分 别是_。

2018最新五年级奥数.数论.位值原理(AB级).学生版

2018最新五年级奥数.数论.位值原理(AB级).学生版

知识框架位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答重难点(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答位值原理例题精讲【例1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是.【巩固】一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是.【例2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.欢迎关注:“奥数轻松学”【例3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【例4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.a b c彼此不同,则abc最大是________【例5】三位数abc比三位数cba小99,若,,【巩固】一个三位数abc与它的反序数cba的和等于888,这样的三位数有_________个.【例6】将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.□□□□□□□□【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【例7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w=.【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?欢迎关注:“奥数轻松学”【例8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【例9】abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd =或.【巩固】已知1370,abcd abc ab a abcd +++=求.【例10】有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【例11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.课堂检测【随练1】在下面的等式中,相同的字母表示同一数字,若abcd dcba-=□997,那么□中应填.欢迎关注:“奥数轻松学”【随练2】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【随练3】如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A.复习总结(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答家庭作业【作业1】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【作业2】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【作业3】在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【作业4】如果70⨯=,那么ab等于几?ab a b【作业5】如果把数码3加写在某自然数的右端,则该数增加了12345A,这里A表示一个看不清的数码,求这个数和A.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。

五年级上奥数第15讲 位值原理(一)

五年级上奥数第15讲 位值原理(一)

五秋第15讲 位值原理(一)一、教学目标位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示 2个一,写在百位上,就表示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

位值原理的表达形式: 以五位数为例:100001000100101abcde a b c d e =⨯+⨯+⨯+⨯+⨯二、例题精选【例1】 有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。

求原来的两位数。

【巩固1】有一个三位数,它的个位数字是3,如果把3移到百位,其余两位依次改变,所得的新数与原数相差171,求原来的三位数。

【例2】 一个两位数,各位数字的和的5倍比原数大6,求这个两位数。

【巩固2】在一个两位数前面写上3,所得的三位数比原来的两位数的5倍少32,求这个两位数。

【例3】 试用位值原理说明:一个三位数和它的反序数(比如123和321)之差,结果一定是9的倍数。

【巩固3】试用位值原理证明:任意一个三位数减去它的各个数位的数字之和后,必能被9整除。

【比如123-(1+2+3)的结果 可以被9整除】【例4】 a ,b ,c 是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c )的多少倍?(提示:六个数分别是abc 、cb a 、bac 、bca 、b ca 、a c b )【巩固4】用1、2、3可以组成的六个没有重复数字的三位数,这六个数的平均数是多少?【例5】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802。

求原来的四位数。

【例6】 *育才小学的学生人数是一个三位数,平均每班有36人,统计员提供的学生的总人数比实际总人数少180人。

原来他在记录时粗心地把三位数的百位数字和十位数字对调了。

五年级春季第11讲——位值原理

五年级春季第11讲——位值原理

三.进位制之间的转化
1.n 进制→十进制:位值原理 (̅̅̅̅̅̅̅̅̅̅̅̅ ������������������������������������ )������ = A × ������������ + ������ × ������������ + ������ × ������������ + ������ × ������������ + ������ × ������������ + ������ × ������ 计算出结果即为与原数大小相等的十进制的数。 2.十进制→n 进制:短除法——除以 n,倒取余 注意:一定要除到商为 0 为止! 例如:(134)10 = (251) 7 7 134 7 19 7 2 0 ⋯⋯1 ⋯⋯5 ⋯⋯2
【例 7】已知一个四位数加上它的各位数字之和后等于 2008, 则所有这样的四位 数之和为多少。
【例 8】某八位数形如 2abcdefg ,它与 3 的乘积形如 abcdefg 4 ,则七位数 abcdefg 应 是多少?
4
一.位值原理
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数 值也不同。也就是说, 每一个数字除了有自身的一个值外,还有一个 “位置值” 。 例如“2” ,写在个位上,就表示 2 个一,写在百位上,就表示 2 个百,这种数字 和数位结合起来表示数的原则,称为写数的位值原理。 2.位值原理的表示形式:以六位数为例: ̅̅̅̅̅̅̅̅̅̅̅̅ ������������������������������������ = ������ × 100000 + ������ × 10000 + ������ × 1000 + ������ × 100 + ������ × 10 + ������ × 1 = A × 105 + ������ × 104 + ������ × 103 + ������ × 102 + ������ × 101 + ������ × 100 注意:为什么这里的“位置值”都跟 10������ 有关呢? 因为我们常见的数都是十进制的,满十进一。 当然,位值原理的表示方法不止一种,虽然最常见一位一段的拆分,但是根据题 意不同,也可以任意几位数一段拆分,例如: ̅̅̅̅̅̅̅̅̅̅̅̅ ������������������������������������ = ̅̅̅̅̅̅ ������������������ × 1000 + ̅̅̅̅̅̅ ������������������ × 1

五年级奥数春季实验班第4讲 数论基础之进位制

五年级奥数春季实验班第4讲 数论基础之进位制

得到的新三位数是它的各位数字之和的
倍。
解:设这个三位数是 a0b , a0b =67×(a+b),则 100a+b=67a+67b,得 33a=66b,所以 a=2b,
不妨设此数为 402,则 402÷6=67, 交换个位数字与百位数字为 204,204÷6=34. 所以新三位数是它的各位数字之和的 34 倍。
第四讲 数论基础之进位制
模块 1、十进制和 k 进制的相互转化以及 k 进制下的直接运算
例 1.(1)在二进制下进行加法:(101010)2+(1010010)2=(
)2;
(2)在七进制下进行加法:(1203)7+(64251)7=(
)7;
(3)在九进制下进行加法:(178)9+(8803)9=(
)9;
例 7.一个正整数的各位数字只含有 0 和 1,且能被 522 整除,则这样的正整数中最小的是

解:522=2×32×29,所以该数一定能被 2 整除,且只由数字 0 和 1 组成,所以个位数字一定是 0,
又该数能被 9 整除,所以数字和是 9 的倍数,即可能有 9 个 1、18 个 1、……。 最小的数可能有 9 个 1,即 1111111110. 但是 1111111110 不能被 29 整除,我们来分析 101、102、103、……,除以 29 的余数, 同时考虑 101、101+102、101+102+103、……、即累积和除以 29 的余数,列表如下:
1+2+4+8+16+32=63,第 64 个数是 1000000,100−64=36,
又 1+2+4+8+16=31,1+2+4=7,所以第 102 项用 3 进制表示是 1100100,所以第 100 项是 1100010. 用十进制表示是 36+35+3=975.

五年级奥数位值原理(AB级)

五年级奥数位值原理(AB级)

位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【巩固】一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.a b c彼此不同,则abc最大是________【例 5】三位数abc比三位数cba小99,若,,【巩固】一个三位数abc与它的反序数cba的和等于888,这样的三位数有_________个.【例 6】将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.□□□□□□□□【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______. 【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【解析】 已知1370,abcd abc ab a abcd +++=求.【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【解析】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这课堂检测个数和A .(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.家庭作业复习总结【作业4】 如果70ab a b ⨯=,那么ab 等于几?【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .学生对本次课的评价○特别满意○满意 ○一般家长意见及建议家长签字:教学反馈。

小学数学奥数专题 位值原理 PPT+课后作业 带答案

小学数学奥数专题 位值原理  PPT+课后作业  带答案
若a b 8 , 则ab为17 、71、26 、62 、35 、53 若a b 16 , 则ab为79 、97
综上,原来的两位数为17、71、26、62、35、53、79、97
例题3
已知在一个三位数的百位和十位之间加入5 后,得到的四位数恰好是原 三位数的9 倍,求这个三位数。
1.用位值原理将数进行逐位分 拆的话会出现三个未知数,后 续的分析比较麻烦。
由末位分析可得c+a=4或14 由首位相加有进位可得c+a=14 那么b等于0 三位数可能为509、608、707、806、905 依次验证是否是8的倍数,可得原三位数为608
例题6
用2,4,6,8 这四个数字组成两个没有重复数字的四位数,使得这两 个四位数的差是5616。请问:这两个数中较大的数可能是多少?
70a 7b 100a b 6b 30a b 5a
a 1,b 5 这个两位数是15
总结:这类问题的基本方法是用位值原理将数进行分拆,之后利用题目所给条件列出等 式进行分析。
练习1
已知在一个两位数的两个数字中间加一个2,所得的三位数是原数的11 倍,求这个两位数。
设这个两位数为ab ,则三位数为a2b ab 11 a2b
这样的四位数中,最小的是1089
总结:位值原理的问题经常和整除性质联系在一起,要熟记各种特殊数的整除特征。
练习4
已知一个四位数能被9 整除,去掉末位数字后所得的三位数又能被8 整 除,求这样的四位数中的最大数。
设四位数为abcd ,则去掉末位数字后为abc 9 | abcd , 8 | abc
要求四位数中的最大数,首先满足高位数字尽量大。 能被8整除的最大的三位数为992 992d 能被9整除,d 7 满足条件的最大四位数为9927
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)(2BA)12=2×122-B×121+A×12 =2×144+11×12+10×1 =288+132+10 =288+142 =(430)10
(1) 4×82+6×81+3×8 =4×64+6×8+3×1 =256+45+3 =256+51
=(307)10
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.
进制问题
五年级 第十四课
本讲主线
1、进制之间的转换. 2、进制的四则计算.
3、进制与位值原理.
知识要点屋
1、常见进制:二进制、十进制、十二进制、十六进制、二十四进制、六 十进制,
2、二进制:只使用数字0、1,在计数与计算时必须是“满二进 一”.
知识要点屋
十进制转n进制: 短除、取余、源自写.例如:(3)(5FC)16=5×162+15×16+12 =1280+240+12 =(1532)10
小练习
①(1001)2+(111)2=(10000)2 ②(11010)2-(101)2=(10701)2
.
例题【三】(★ ★ ★)
① (101) 2 ×(1011)2-(11011)2-(11011)2=(11100)2 ② (11000111)2-(10101)2÷(11)2=(11000000)2 ③ (3021)4 +(605)7 =(500)10 ④ (63121)8 -(1247)8 -(16034)8-(26531)8-(1744)8 = ()8
例题【五】(★ ★ ★ ★)
用a,b,c,d,e分别代表五进制中五个互不相同的数字, 如果(ade),(adc),(aab)是由小到大排列的连续正整数, 那么(cde)5 所表示的整数写成十进制的表示是多少?
(abe)5=(413)5=4×52+1×5+3=108
知识链接
1、进制转换:
⑴ 10转n:短除、取余、倒写 ⑵ n转10:写指、相乘、求和
24a=40c+b 因为24a是8的倍数,40c也是8的倍数, 所以b也应该是8的倍数,于是b=0或8、 因为7进制,所以b=0
例题【四】(★ ★ ★ ★ )
在7进制中有三位数 abc ,化为9进制为 cba,求这个三位数在十
进制中为多少?
24a=40c, 则3a=5a. 所以a为5的倍数,c为3的倍数, 则a=0或5,但是首位不可以是0于是a=5,c=3; 所以(abc)7=(503)7=5×49+3=248
2、n进制计算: ⑴ 同进制下,可以直接计算. (2)不同进制,借助十进制转换计算 3、位值原理 ⑴ 借助数位,按数位进行计算. ⑵ 根据具体位置特征进行估算.
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
③(3021)4+(605)7 =(3×43+2×4+1)10+(6×72+5)10 =(500)10
④原式 = (63121)8 -(1247)8 -(16034)8-(26531)8-(1744)8 =(63121)8-(30000)8-(20000)8 =(13121)8
知识链接
n进制四则 1、同一进制下,可以直接
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
(2009)10=(111110011001)2
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.
计算 2、速算巧算无国界
例题【四】(★ ★ ★ ★ )
在7进制中有三位数 abc ,化为9进制为 cba,求这个三位数在十
进制中为多少?
化为十进制,(abc)7=a×72+b×7+c=49a+7b+c; (cba)9=c×92+b×9+a=81c+9b+a
得到49a+7b+c+81c+9b+a 48a=80c+2b,
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
(1234)10= (1200201) 3
知识要点屋
把下列各数转化成相应的进制数:
(37)10=( 100101 )2
(242)10=(22222)3
知识要点屋
4、关于进位制 ⑴ 本质:n进制就是逢n进一 ⑵ n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 例如,十六进制中,10、11、12、13、14、15、 分别用A、B、C、D、E、F表示
①原式=(110111)2-(11011)2 =(11100)2
②原式=(11000111)2-(111)2 =(11000000)2
例题【三】(★ ★ ★)
① (101) 2 ×(1011)2-(11011)2-(11011)2=(11100)2 ② (11000111)2-(10101)2÷(11)2=(11000000)2 ③ (3021)4 +(605)7 =(500)10 ④ (63121)8 -(1247)8 -(16034)8-(26531)8-(1744)8 =(13121)8
相关文档
最新文档