中国数学奥林匹克(cmo)试题(含答案word)

合集下载

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题1987第二届年中国数学奥林匹克1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整除。

2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。

已知i.A、B、C三点上放置的数分别为a、b、c。

ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。

试求3.放置最大数的点积放置最小数的点之间的最短距离。

4.所有结点上数的总和S。

3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。

结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。

4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。

5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们两两相切。

如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。

6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

1.设a1, a2, ... , a n是给定的不全为零的实数,r1, r2, ... , r n为实数,如果不等式r1(x1-a1)+r2(x2-a2)+...+r n(x n-a n)≦√(x12+ x22+ ... + x n2) + √(a12+ a22+ ... + a n2)对任何实数x1, x2, ... , x n成立,求r1, r2, ... , r n的值。

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答


证明:当6|n + 2时,令z
=
ei
π 3
=
1 2
+
3 2
i,
z6
=

1,
|z|
=
1.


zn+1
− zn
−1
=
e−i
π 3

ei
π 3
−1
=
(
1 2

3 2
i)

(−
1 2

3 2
i)

1
=
0.
∴ zn+1 − zn − 1 = 0有模为1的复根.
若zn+1 − zn − 1 = 0有模为1的复根eiθ = cos θ + i cos θ.
成立.请证明上述命题及其逆命题. 证明:原命题的证明:由0 xi 1, xi − x2i 0, xi x2i (i = 1, 2, . . . , n). (1)若ai 0(i = 1, 2, . . . , n),则显然有a1x1 + a2x2 + · · · + anxn a1x21 + a2x22 + · · · + anx2n; (2)否 则 至 少 存 在 一 个ai < 0,由 对 称 性 不 妨 设a1 < 0. 又 因 为a1, a2, . . . , an中 任 两 数 之 和 非 负,所 以ai + a1 0, ai −a1 > 0(i = 2, 3, . . . , n).
试求:(1)放置最大数的点和放置最小数的点之间的最短距离.
(2)所有结点上数的总和S.
解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数

历届全国中学生数学竞赛试题

历届全国中学生数学竞赛试题

中国数学奥林匹克(CMO)历届试题及解答1986-20052,其余x k 均等于0.则 2(a i + a j ) 4(a i 2(180 2(180第一届中国数学奥林匹克(1986年)天津 南开大学1.已知 a 1, a 2, . . . , a n 为实数, 如果它们中任意两数之和非负,那么对于满足x 1 + x 2 + · · · + x n = 1的任意非负实数 x 1, x 2, . . . , x n , 有不等式a 1x 1 + a 2x 2 + · · · + a n x n成立.请证明上述命题及其逆命题. a 1x 21 + a 2x 22 + · · · + a n x 2n证明:原命题的证明:由0 x i1, x i − x 2i0, x ix 2i (i = 1, 2, . . . , n ).(1)若a i0(i = 1, 2, . . . , n ),则显然有a 1x 1 + a 2x 2 + · · · + a n x na 1x 21 + a 2x 22 + · · · + a n x 2n ;(2)否则至少存在一个a i < 0,由对称性不妨设a 1 < 0. 又因为a 1, a 2, . . . , a n 中任两数之和非负,所 以a i + a 10, a i−a 1 > 0(i = 2, 3, . . . , n ).a 1x 1 + a 2x 2 + · · · + a n x n − a 1x 21 − a 2x 22 − · · · − a n x 2n-37∴= a 1(x 1 − x 21) + a 2(x 2 − x 22) + · · · + a n (x n − x 2n )a 1(x 1 − x 21) + (−a 1)(x 2 − x 22) + · · · + (−a 1)(x n − x 2n ) = (−a 1)(x 21 − x 22 − · · · − x 2n − x 1 + x 2 + · · · + x n ) = (−a 1)(x 21 − x 1 + (1 − x 1) − x 22 − · · · − x 2n ) = (−a 1)((1 − x 1)2 − x 22 − · · · − x 2n ) = (−a 1)((x 2 + · · · + x n )2 − x 22 − · · · − x 2n )-370最后一步是由于x 2, x 3, . . . , x n > 0, (x 2 + · · · + x n )2 = x 22 + · · · + x 2n +2 i<j nx i x jx 22 + · · · + x 2n . 逆命题的证明:对于任意的1 i<jn ,令x i = x j =1 11+ a j ).∴ a i + a j0,即任两数之和非负.证毕.2.在三角形ABC 中,BC 边上的高AD = 12,∠A 的平分线AE = 13,设BC 边上的中线AF = m ,问m 在什 么范围内取值时,∠A 分别为锐角,直角,钝角?解:设O 为 ABC 的外心,不妨设AB > AC ,∠B 为锐角.则OF 垂 直 平 分 线 段BC ,由 外 心 的 性 质,∠C 为 锐 角 时,∠OAB = ∠OBA =1 ◦− 2∠C ) = 90◦ − ∠C .又因为AD ⊥ BC ,∴ ∠CAD = 90◦ − ∠C ,∴ ∠OAB = ∠DAC . 类似地,当∠C 为直角或钝角时也有∠OAB = ∠DAC .由AE 平分∠BAC ,∠BAE = ∠CAE .∴ ∠OAE = ∠DAE .(由于F, D 在E 两侧). ∠A 为锐角时,O, A 在BC 同侧,∠F AE < ∠OAE = ∠DAE ; ∠A 为直角时,O, F 重合,∠F AE = ∠OAE = ∠DAE ; 1 ◦− ∠AOB ) =由正弦定理 sin ∠∠DAE = DE × AD .其中DE =AE 2 − AD 2 = 5,√ √且∠A 为锐角等价于∠A 为直角等价于× ∠A 为钝角等价于 ×< 1;119时,∠A 为锐角;119时,∠A 为直角; 119时,∠A 为钝角.4,即4.∴x k.∴ |z k | = |√ z k ∈Az k ∈Az k ∈A√而4 2 < 6, ∴ |z k |6.√ . 4.√sin F AE FEAF F E = F D − DE = AF 2 − AD 2 − DE = m 2 − 122 − 5 > 0. ∴ m > 13,√√√m 2−122−55m 2−122−55 m 2−122−55×12 m 12 m12 m= 1; > 1.解得当13 < m < 2028 当m = 当m >20282028 3.设z 1, z 2, . . . , z n 为复数,满足|z 1| + |z 2| + · · · + |z n | = 1.求证:上述n 个复数中,必存在若干个复数,它们的和的模不小于 16. 证明:设z k = x k + y k i(x k , y k ∈ R , k = 1, 2 . . . , n ) 将所有的z k 分为两组X,Y.若|x k ||y k |,则将z k 放入X 中;若|y k ||x k |,则将z k 放入Y 中. 其中必有一组中所有复数模长之和不小于 12.不妨设为X. 再将X 中的复数分为两组A,B.若x k0,则将z k 放入A 中;若x k 0,则将z k 放入B 中. 其中必有一组中的所有复数摸长之和不小于 41.不妨设为A. 则 |z k |z k ∈A而对于z k ∈ 1A ,x 2kz k ∈Ay k 2,x 2k + y k 2x 2k + y k 2 1 √2x k . 1 4 21z k ∈A即A 中复数之和的模不小于 16.证毕.x k + iz k ∈Ay k |z k ∈Ax k1 4 2另证:设z k = x k + y k i(x k , y k ∈ R , k = 1, 2 . . . , n ) 则|z k | =x 2k + y k 2|x k | + |y k |.∴ n|x k | + |y k |1.k =1∴ |x k 0x k | + |x k <0x k | + |y k 0y k | + |y k <0y k | 1. 其中必有一项不小于 14,不妨设为第一项,则 |x k 0x k |1 ∴ |x k 0z k | = |x k 0x k + ix k 0y k ||x k 0x k |1 4> 16.证毕.4.已知:四边形P 1P 2P 3P 4的四个顶点位于三角形ABC 的边上. 求证:四个三角形 P 1P 2P 3, P 1P 2P 4,P 1P 3P 4,P 2P 3P 4 中,至少有一个的面积不大于 ABC 的面积的四分之一.证明:有两种情况:(1)四个顶点在两条边上;(2)四个顶点在三条边上.(1)不妨设P 1, P 4在AB 上,P 2, P 3在AC 上,P 1, P 2分别在AP 4, AP 3上. 将B 移至P 4,C 移至P 3,三角形ABC 的BC ,设 AP 1 = 4S4SP 4P 2P 3中有一个不大于 4S面积减小,归为情形(2).(2)不妨设P 1在AB 上,P 2在AC 上,P 3, P 4在BC 上,P 3在P 4C 上. (2.1)若P 1P 2AB AP 2AC= λ,P 1P 2 = λBC .P 1P 2到BC 的距离为(1−λ)h ,h 为三角形ABC 中BC 边上的高的长度. ∴ SP 1P 2P 3= λ(1 − λ)SABC1 ABC .(2.2)若P 1P 2不 平 行 于BC ,不 妨 设P 1到BC 的 距 离 大 于P 2到BC 的 距 离. 过P 2作 平 行 于BC 的 直 线交AB 于E ,交P 1P 4于D .则S P 1P 2P 3, S P 4P 2P 3中有一个不大于S DP 2P 3,也就不大于SEP 2P 3.由(2.1)知SEP 2P 31 ABC .则SP 1P 2P 3, S1ABC .证毕.5.能否把1,1,2,2,. . . ,1986,1986这些数排成一行, 使得两个1之间夹着1个数,两个2之间夹着2个数,. . . , 两 个1986之间夹着1986个数.请证明你的结论.解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972.当n 为奇数时,两个n 的编号奇偶性相同;当n 为偶数时,两个n 的编号奇偶性不同. 而1到1986之间有993个 偶数,所以一共有2k + 993个编号为偶数的数.(k ∈ N ∗) 但是1到3972之间有1986个偶数,k = 496.5.矛 盾.所以不能按要求排成这样一行.√6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的 三个顶点是同色的.证明:(1)若平面上存在距离为2的两个点A, B 异色,设O 为它们的中点,不妨设A, O 同色. 考虑以AO 为一 √边的正三角形AOC, AOD ,若C, D 中有一个与A, O 同色,则该三角形满足题意. 否则BCD 为边长 3的 同色正三角形.(2)否则平面上任两个距离为2的点均同色,考虑任意两个距离为1的点,以他们连线为底,2为腰长作等腰 三角形,则任一腰的两顶点同色. 所以三个顶点同色,即任两个距离为1的点同色.所以平面上任意一个边 长为1的正三角形三个顶点同色.证毕.证明:当6|n + 2时,令z = e i 3 = − e + 2 i , z − (− 12 −2 i)2 i)3 3− z − 1 = 0有模为1的复根.6 ,k2 .n 2 .第二届中国数学奥林匹克(1987年)北京 北京大学1.设n 为自然数,求证方程z n +1 − z n − 1 = 0有模为1的复根的充分必要条件是 n + 2可被6整除.∴ z n +1 − z n − 1 = e −i π i π π√1 3 62− 1 = ( 12 − = 1, |z| = 1.√ 3√ 3 − 1 = 0.∴ z n +1n若z n +1 − z n − 1 = 0有模为1的复根e i θ = cos θ + i cos θ.则z n +1 − z n − 1 = (cos(n + 1)θ − cos nθ − 1) + i(sin(n + 1)θ − sin nθ) = 0. ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n 2+1θ sin θ2 + 1) = 0. sin(n + 1)θ − sin nθ = 2 cos 2n 2+1θ sin θ2 = 0.∴ cos 2n 2+1θ = 0, sin 2n 2+1θ = ±1, sin θ2 = ± 12, 设 θ2 = ϕ. (1)sin ϕ = 12,sin(2n + 1)ϕ = −1. ϕ = 2kπ + π6 或2kπ +5π∈ Z.(2n + 1)ϕ = (2l + 32)π(l ∈ Z). ∴ (2n + 1)(2k + 16) = 2l + 23, 2n 6+1 = 2t + 32, n = 6t + 4(t ∈ Z). 或(2n + 1)(2k + 65) = 2l + 32, 5(2n 6+1) = 2t + 32, 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z). 设t = 5s + 3,则n = 6s + 4,总有6|n + 2.(2)sin ϕ = − 12,sin(2n + 1)ϕ = 1.显然以−ϕ代ϕ即有(1).所以6|n + 2.证毕.2.把边长为1的正三角形ABC 的各边都n 等分,过各分点平行于其它两边的直线, 将这三角形分成若干个 小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知: (1)A, B, C 三点上放置的数分别为a, b, c.(2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等. 试求:(1)放置最大数的点和放置最小数的点之间的最短距离.(2)所有结点上数的总和S .解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数 按顺序成等差数列. 若两端的数相等,则所有的数都相等.否则两端的数为最大的和最小的. 若a, b, c 相等,显然所有数都相等,最短距离显然为0.若a, b, c 两两不等,最大的数与最小的数必出现在A, B, C 上,最短距离为1.若a, b, c 有两个相等但不与第三个相等,不妨设a = b > c ,最小的数为c ,最大的数出现在线段AB 的任意 结点上. 当n 为偶数时,与C 最近的为AB 中点,最短距离为 √ 3 当n 为奇数时,与C 最近的为AB 中点向两边偏 21n 的点,最短距离为 123+1 (2)将这个三角形绕中心旋转 32π, 43π弧度,得到的两个三角形也满足题意(2). 将这三个三角形对应结 点的数相加形成的三角形也满足(2),三个顶点上的数均为a + b + c .由(1)的分析知所有结点上的数均 为a + b + c . 共 21(n + 1)(n + 2)个结点,∴ S = 13( 12(n + 1)(n + 2))(a + b + c ) = 16(n + 1)(n + 2)(a + b + c ). 3.某次体育比赛,每两名选手都进行一场比赛, 每场比赛一定决出胜负,通过比赛确定优秀选手, 选 手A 被确定为优秀选手的条件是:对任何其它选手B, 或者A 胜B,或者存在选手C,C 胜B,A 胜C. 结果按上证明:可将换成169 +ε(ε > 0).13AB.连结A1C2, A2B1, B2C1交于A0, B0, C0. 正三角形覆盖, 面积之和为( 10)2 + 2 ×点. 即169 +ε(ε > 0)为最优. 169述规则确定的优秀选手只有一名, 求证:这名选手一定胜所有其它选手.证明:假设该优秀选手为A,且存在其他选手胜A.设B为所有胜A的人中胜的场次最多的一个,由B不是优秀选手,必存在选手C使得C胜B, 且不存在选手D使得B胜D,D胜C. 由B胜A,C也胜A,且C胜B胜过的所有人.C至少比B多胜一场,且C胜A,与B的选取矛盾.所以A胜所有人.4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内, 一定可以作三个正三角形盖住这五个点, 这三个正三角形的各边分别平行于原三角形的边, 并且它们的面积之和不超过0.64.100在面积为1的正三角形ABC中,在AB上取A1, B2,AC上取A2, C1,BC上取B1, C2, 使得AA1 = AA2 =BB1 = BB2 = CC1 = CC2 = 3(1)若AB2C1, BC2A1, CA2B1中有一个至少包含五个点中的三个,另两个点可分别用面积为2ε的13 ε2= 100169+ε.(2)菱形AA1A0A2, BB1B0B2, CC1C0C2中有两个有两个点,另一个中有一个点, 则可用两个边长为136 AB的正三角形和一个面积为ε的正三角形覆盖. 面积之和为2( 136 )2 +ε <100169+ε.(3)菱形AA1A0A2, BB1B0B2, CC1C0C2中有两个有一个点,另一个中有两个点, 不妨设为AA1A0A2,则B1B0C0C2中有一个点,不妨设这个点更靠近B, 则可用一个边长为136 AB的正三角形覆盖AA1A0A2中两个点, 用一个边长为136 AB的正三角形覆盖BB1B0B2, B1B0C0C2中的点. 用一个面积为ε的正三角形覆盖最后一个点, 面积之和为( 136 )2 + ( 138 )2 +ε = 100169+ε.证毕.注:当五个点取为A, B, C, A0, B0C0中点是不难证明不能用三个面积之和为100的正三角形覆盖这五个1005.设A1A2A3A4是一个四面体, S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球, 它们两两相外切.如果存在一点O, 以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切, 还可以作一个半径为R的球和四面体的各棱都相切,求证:这个四面体是正四面体.证明:设S i的半径为r i(i = 1, 2, 3, 4),则A i A j = r i + r j(1 i<j 4).设O到A2A3A4的投影为O1,由O到A2A3,A3A4,A4A2的距离相等, 得到O1到A2A3A4的三边距离相等.即O1为A2A3A4的内心,设O到A2A3的投影为B,即O1到A2A3的投影. 而BA3 = 21(A2A3 + A3A4−A2A4) = r3,OB = R. 若半径为r的球与四个球均外切,则A3O = r +r3,(r +r3)2 = r32 +R2, r3 = R2−r22r.若半径为r的球与四个球均内切,则A3O =r−r3,(r−r3)2 = r32+R2, r3 = r2−R22r. 类似可求得r1, r2, r4均为该值,所以该四面体各条棱长相等为正四面体.6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987, 对于所有这样的m与n,问3m + 4n的最大值是多少?请证明你的结论.解:设m个正偶数为a1 < a2 < · · · < a m,n个正偶数为b1 < b2 < · · · < b n.∴a i 2i, b j 2j − 1.1987 = a1 + a2 + · · · + a m + b1 + b2 + · · · + b n.∴1987 2 + 4 + · · · + 2m + 1 + 3 + · · · + 2n − 1 = m2 + m + n2.s − 8ns + 25n + 3s − 12n − 9 × 1987所以判别式∆ = (3 − 8n ) − 4(25n − 12n − 9 × 1987) = 26(1987 41 − n 2) > 0. 2(8n设f (n ) = 8n + 6 1987 14 − n 2, f (n ) = 8 − 6n (1987 14 − n 2)− 2 ,又n 为奇数. 2(280设s = 3m + 4n ,m = 13(s − 4n ), 13(s − 4n )( 13(s − 4n ) + 1) + n 21987.2 2 s 2 + (3 − 8n )s + 25n 2 − 12n − 9 × 19870. 0.2 2s1− 3+61987 14 − n 2).1不难知道n = 35时,f (n )有最大值280 + 6 762 14. 所以s1+ 6 762 14 − 3),由s ∈ N ∗, s221.又当s = 221, n = 35, m = 27.取2, 4, . . . , 52, 60, 1, 3, . . . , 69为和为1987的35个正奇数与27个正偶数,所 以3m + 4n 的最大值为221.iiii i i r i 2 = 1,由Cauchy不等式取等号的条件知 ∴=a i a n .2第三届中国数学奥林匹克(1988年)上海 复旦大学1.设a 1, a 2, . . . , a n 是给定的不全为零的实数, r 1, r 2, · · · , r n 为实数,如果不等式r 1(x 1 − a 1) + r 2(x 2 − a 2) + · · · + r n (x n − a n )对任何实数x 1, x 2, · · · , x n 成立,求r 1, r 2, · · · , r n 的值. x 21 + x 22 + · · · + x 2n −a 21 + a 22 + · · · + a 2n解:令x i = 0(i = 1, 2, . . . , n ),−(r 1a 1 + r 2a 2 + · · · + r n a n )n n∴ ( r i a i )2 a 2.i =1 i =1 令x i = 2a i (i = 1, 2, . . . , n ),r 1a 1 + r 2a 2 + · · · + r n a n n n∴ ( r i a i )2 a 2.i =1 i =1n n∴ ( r i a i )2 = a 2.i =1 i =1n n n n 由Cauchy 不等式, ( r 2)( a 2) ( r i a i )2, r 2 i =1 i =1 i =1 i =1− a 21 + a 22 + · · · + a 2n .a 21 + a 22 + · · · + a 2n .1.n又令x i = r i (i = 1, 2, . . . , n ),i =1 r i 2 −ni =1r i a ii =1 r i 2 −i =1a 2i .由 i =1r i a i =i =1a 2i =1r i 2i =1r i 2,i =1r i 21. ni =1不难解得r = (i =12n )a 21 + a 22 + · · · + a nr 1a 1r 2 a 2= ··· =r n2.设C 1, C 2为 同 心 圆,C 2的 半 径 是C 1的 半 径 的2倍, 四 边 形A 1A 2A 3A 4内 接 于C 1, 设A 4A 1延 长 线 交 圆C 2于B 1, A 1A 2延长线交C 2于B 2, A 2A 3延长线交圆C 2于B 3, A 3A 4延长线交圆C 2于B 4. 试证:四边形B 1B 2B 3B 4的周长 2(四边形A 1A 2A 3A 4的周长).并确定等号成立的条件. 证明:设圆心为O ,连结OB 1, OB 4, OA 4,设C 1的半径为R ,C 2的半径为2R . 在四边形B 4A 4OB 1中,由Ptolemy 定理,OA 4 × B 1B 4 + OB 1 × A 4B 4 OB 4 × A 4B 1.R × B 1B 4 + 2R × A 4B 4 2R × A 4B 1,即B 1B 42A 4B 1 − 2A 4B 4.同理B 1B 22A 1B 2 − 2A 1B 1,B 2B 3 2A 2B 3 − 2A 2B 2,B 3B 42A 3B 4 − 2A 3B 3.相加得B 1B 2 + B 2B 3 + B 3B 4 + B 4B 1 2(A 1A 2 + A 2A 3 + A 3A 4 + A 4A 1).即四边形B 1B 2B 3B 4的周长 2(四边形A 1A 2A 3A 4的周长).等号成立时OA i B i B i +1共圆,∠A i +1A i O = ∠B i +1B i O = ∠B i B i +1O = ∠A i−1A i O , ∴ A i +1A i = A i−1A i ,(i = 1, 2, 3, 4, A 5 = A 1, A 0 = A 4, B 5 = B 1). ∴ A 1A 2A 3A 4为菱形,又为圆内切四边形,所以A 1A 2A 3A 4为正方形.3.在有限的实数列a 1, a 2, · · · , a n 中, 如果一段数a k , a k +1, · · · , a k +l−1的算术平均值大于1988, 那么我们 把这段数叫做一条“龙”,并把a k 叫做这条龙的“龙头” (如果某一项a n > 1988,那么单独这一项也叫龙). 假设以上的数列中至少存在一条龙, 证明:这数列中全体可以作为龙头的项的算术平均数也必定大a 2 + a 22 + a 23于1988.证明:引理:设a k , a k +1, . . . , a k +m−1均可作为龙头,a k +m 不能作为龙头,或k + m − 1 = n , 则a k , a k +1, . . . , a k +m−1的算术平均值大于1988.引理的证明:对m 用数学归纳法,m = 1时,设以a k 为龙头的一条龙为a k , a k +1, . . . , a k +l−1. 若l = 1,a k > 1988,显然成立.否则l > 1,由a k , a k +1, . . . , a k +l−1算术平均值大于1988,a k +1不是龙头, a k +1, . . . , a k +l−1算术平均值不 大于1988,a k > 1988,结论成立. 设小于m 时结论均成立(m 2),设以a k 为龙头的一条龙为a k , a k +1, . . . , a k +l−1.1lm 时,a k , a k +1, . . . , a k +l−1算术平均值大于1988, 由归纳假设a k +l , . . . , a k +m−1算术平均值大于1988,结论成立.l > m 时,由a k +m 不是龙头,a k +m , a k +m +1, . . . , a k +l−1算术平均值不大于1988, a k , a k +1, . . . , a k +l−1算术 平均值大于1988,结论显然也成立. 综上所述,由数学归纳法,引理成立.设所有的龙头为a i 1, a i 1+1, . . . , a i 1+j 1−1, a i 2, a i 2+1, . . . , a i 2+j 2−1, . . . , a i k , a i k +1, . . . , a i k +j k −1, 其中j 1, j 2, . . . , j k1 且i m +1 > i m + j m (m = 1, 2, . . . , k − 1, k1).由引理:a i m , a i m +1, . . . , a i m +j m −1的算术平均值大于1988(m = 1, 2, . . . , k ). 所以所有龙头的算术平均值 也大于1988.证毕.4.(1)设三个正实数a, b, c 满足(a 2 + b 2 + c 2)2 > 2(a 4 + b 4 + c 4).求证:a, b, c 一定是某个三角形的三条边长. (2)设n 个正实数a 1, a 2, · · · , a n 满足(a 21 + a 22 + · · · + a 2n )2 > (n − 1)(a 41 + a 42 + · · · + a 4n )其中n3. 求证:这些数中任何三个一定是某个三角形的三条边长.证明:(1)若不然,不妨设ca +b ,则2(a 4 + b 4 + c 4) − (a 2 + b 2 + c 2)2 = a 4 + b 4 + c 4 − 2a 2b 2 − 2b 2c 2 − 2c 2a 2= −(a + b + c )(a + b − c )(b + c − a )(c + a − b )矛盾.∴ a, b, c 为某个三角形三边长.(2)n = 3即为(1)中的情况,n > 3时,若存在某三个不是某个三角形三条边长,不妨设为a 1, a 2, a 3.则由均 值不等式(n − 1)(a 41 + a 42 + · · · + a 4n ) < (a 21 + a 22 + · · · + a 2n )2=a 21 + a 22 + a 232 + 1 2+ · · · + a 2n 2(n − 1)a 21 + a 22 + a 2322+a 21 + a 22 + a 2322+ · · · + a 4n1, n 奇数2, n = 2k ·m (m 为奇数)所有小于2k +1的正奇数不全整除n可得 12(a 2 + b 2 + c 2)2 > a 4 + b 4 + c 4,(a 2 + b 2 + c 2)2 > 2(a 4 + b 4 + c 4).但由(1),a 1, a 2, a 3为某个三角形三边长,矛盾.所以这些数中任何三个一定是某个三角形的三条边长. 5.给出三个四面体A i B i C i D i (i = 1, 2, 3), 过点B i , C i , D i 作平面αi , βi , γi (i = 1, 2, 3), 分别与棱A i B i , A i C i , A i D i 垂直(i = 1, 2, 3), 如果九个平面αi , βi , γi (i = 1, 2, 3),相交于一点E , 而三点A 1, A 2, A 3在同一直 线l 上, 求三个四面体的外接球面的交集(形状怎样?位置如何?)解: A i B i ⊥ αi 于B i ,而E 在αi 上,∴ A i B i ⊥ B i E, B i 在以A i E 为直径的球上.同理C i , D i 也在以A i E 为直 径的球上,A i B i C i D i 的外接球即为在以A i E 为直径的球.若E 在l 上,显然这三个球的中心也都在l 上,它们必在E 处两两相切,交集为E .否则E 不在l 上,三个球的球心在同一条直线上( EA 1A 2中位线所在直线),且这三个球都过点E ,交集为 一个圆,直径为EE ,其中E 为E 到l 的垂足.6.如n 是不小于3的自然数,以f (n )表示不是n 的因子的最小自然数, 例如f (12) = 5.如果f (n ) 3,又可作f (f (n )). 类似地,如果,f (f (n ))3,又可作f (f (f (n ))),等等. 如果f (f (· · · f (n ) · · · )) = 2, 共有k 个f ,就把k 叫做n 的“长度”. 如果 l n 表示n 的长度,试对任意自然数n (n 解:设n = 2k · m (m 为奇数). 若k = 0,n 为奇数,f (n ) = 2, l n = 1.若k > 0,考虑所有小于2k +1的正奇数,若它们均为n 的因子,由2k +13),求 l n .并证明你的结论.n 且小于2k +1的偶数t = 2p · q (pk, q 为奇数),由q|n, 2p |n, gcd(q, 2p ) = 1,知t|n ,∴ f (n ) = 2k +1,f (f (n )) = 3, f (f (f (n ))) = 2, l n = 3. 否则取最小的t|n ,t 必为奇数,否则t 必有一个奇因子不整除n . ∴ f (n ) = t, f (f (n )) = 2, l n = 2. 综上所述,l n =3, n = 2k · m (m 为奇数)所有小于2k +1的正奇数均整除n段的长度都等于 m , m 是自然数. 用A j 表示将集合A 逆时针方向在圆周上转动 jmπ 弧度所得的集合 2π L (A )L (B ).设b 1, b 2, . . . , b n 为组成B 的弧段,由已知它们两两不交且每段的长度均为 m ,因此有 i i i L (A ∩ (∪2j =1b −j )) m ,所以∪j =1b iL (A ∩ (∪2j =1b −j )) = L (A ).第四届中国数学奥林匹克(1989年)合肥 中国科技大学1.在半径为1的圆周上,任意给定两个点集A, B , 它们都由有限段互不相交的弧组成, 其中B 的每π(j = 1, 2, ...).求证:存在自然数k ,使得L (A j ∩ B )1这里L (X )表示组成点集X 的互不相交的弧的长度之和.证明:我们把圆周上的点集E 沿顺时针方向在圆周上转动 jm π 弧度所得的集合记为E −j ,于是L (A j ∩ B ) = L (A ∩ B −j ).π2mj =1L (A j ∩ B ) ==2mj =1 2mj =1L (A ∩ B −j )L (A ∩ (∪ni =1b −j ))=2mnL (A ∩ b −j )j =1 i =1=n 2mL (A ∩ b −j )i =1 j =1 n=i =1mi因为L (b i ) = π 2m −j恰好是整个圆周,从而有mi ∴2mj =1L (A j ∩ B ) = nL (A ),至少存在一个k, 1k 2m ,使得L (A j ∩ B )n 2mL (A ) =1L (A )L (B ).2.设x 1, x 2, · · · , x n 都是正数(n2).且 x 1 + x 2 + · · · + x n = 1.求证:ni =1√x i1 − x i√ 1n − 1ni =1√x i .证明:不妨设x 1 x 2 ··· x n ,则√1 1 − x 1√1 1 − x 2···√1 1 − x n由Chebyshev 不等式ni =1√x i 1 − x i1nni =1x ini =1√ 11 − x i= 1nni =1√ 11 − x iB n ,又f 1(z ) = z m ,∴ f n (z ) = z m ∴ f n (z ) = z ⇔ z m = z ,又|z| = 1, ∴ z m 由1989 = 3 × 13 × 17,若k|1989,且k < 1989,k 必 整 除3 × 13 × 17, 32 × 13, 32 × 17中 至 少 一 个.由Cauchy 不等式ni =1√1 − x ini =1√1 1 − x in 2又n√ 1 − x inn(1 − x i ) =n (n − 1)i =1i =1ni =1√ x i1 − x i1 n ni =1√ 11 − x ini =1n √1 − x in n (n − 1)=n n − 1而√1 n − 1ni =1 √ x i√1 n − 1n ni =1x i =n n − 1ni =1√ x i1 − x i√1n − 1ni =1√x i .3.设S 为 复 平 面 上 的 单 位 圆 周 (即 模 为1的 复 数 的 集 合),f 为 从S 到S 的 映 射,对 于 任 意 z ∈ S ,定 义f (1)(z ) = f (z ), f (2)(z ) = f (f (z )), · · · , f (k )(z ) = f (f (k−1)(z )). 如果 c ∈ S ,使得f (1)(c ) = c, f (2)(c ) = c, · · · , f (n−1)(c ) = c, f (n )(c ) = c . 则称 c 为f 的n−周期点.设m 是大于1的自然数, f 定义为f (z ) = z m , 试计算f 的1989-周期点的个数.解:记A n = {z ∈ S|z 是f 的n − 周期点},B n = {z ∈ S|f n (z ) = z}为f n 的 不 动 点 集 合,显 然A n ⊆nn n−1= 1, |B n | = m n − 1.我们证明B n , A n 有如下性质: (1)若k|n ,则B k ⊆ B n ;事实上,令n = kq ,若c ∈ B k , f k (c ) = c ,则f n (c ) = f kq (c ) = f k (f k (· · · f k (c ) · · · )) = c . ∴ c ∈ B n , B k ⊆ B n .q 个(2)B k ∩ B n = B gcd(k,n ), gcd(k, n )为k 与n 的最大公约数. 由(1),B gcd(k,n ) ⊆ B k , B gcd(k,n ) ⊆ B n , ∴ B gcd(k,n ) ⊆ B k ∩ B n .反之,设c ∈ B k ∩ B n ,f k (c ) = c, f n (c ) = c ,不妨设k < n . 则f n−k (c ) = f n−k (f k (c )) = f n (c ) = c ,由辗转相 除法知f gcd(k,n )(c ) = c, ∴ c ∈ B gcd(k,n ), B k ∩ B n ⊆ B gcd(k,n ). ∴ B k ∩ B n = B gcd(k,n ). (3)c ∈ B n \ A n ⇔ ∃k < n, k ∈ N ∗,使k|n 且c ∈ B k .充分性是显然的(由(1)),设c ∈ B n \ A n , f n (c ) = c .且存在l < n ,使得f l (c ) = c ,设k = gcd(l, n ),则f k (c ) = c, c ∈ B k ,且kl < n, k|n .证毕.2∴ B k ⊆ B 663 ∪ B 153 ∪ B 117, ∴ A 1989 = B 1989 \ (k|1989k<1989B k ) = B 1989 \ (B 663 ∪ B 153 ∪ B 117).R .∴由容斥原理f 的1989-周期点个数为|A 1989| = |B 1989| − |B 663| − |B 153| − |B 117| + |B 663 ∩ B 153| + |B 663 ∩ B 117| + |B 117 ∩ B 153|−|B 663 ∩ B 153 ∩ B 117|= |B 1989| − |B 663| − |B 153| − |B 117| + |B 51| + |B 39| + |B 9| − |B 3|= (m 1989 − 1) − (m 663 − 1) − (m 153 − 1) − (m 117 − 1) + (m 51 − 1) + (m 39 − 1)+(m 9 − 1) − (m 3 − 1)= m 1989 − m 663 − m 153 − m 117 + m 51 + m 39 + m 9 − m 34.设点D, E, F 分别在 ABC 的三边BC, CA, AB 上, 且 AEF,BF D,CDE 的内切圆有相等的半径r , 又以r 0和R 分别表示 DEF 和 ABC 的内切圆半径. 求证:r + r 0 = R .证明:设 ABC 周长为l ,面积为S ,内切圆为 I , 在各边的切点为P, Q, R , DEF 周长为l ,面积为S . AEF,BF D,CDE 的面积分别为S 1, S 2, S 3,内切圆分别为 I 1, I 2, I 3,在各边的切点为P i , Q i , R i (i = 1, 2, 3). 由面积公式2S = Rl, 2S = r 0l ,2S 1 = r (AE + EF + F A ), 2S 2 = r (BD + DF + F B ), 2S 3 = r (CD + DE + EC ). 又S = S + S 1 + S 2 + S 3, ∴ Rl = r 0l + r (l + l ),即(R − r )l = (r + r 0)l . 又AQ 1 AQ = AR 1AR= BQ 2BQ= BP 2 BP = CP 3CP= CR 3CR = r Rl − Q 1Q 2 − P 2P 3 − R 1R 3l=r R又Q 1Q 2 + P 2P 3 + R 1R 3 = Q 1F + F Q 2 + P 2D + DP 3 + R 3E + ER 1 = P 1F + R 2F + DR 2 + DQ 3 + EQ 3 + EP 1 = l . l l=1 −r(R − r )R = (r + r 0)(R − r ), R = r + r 0.证毕.5.空间中有1989个点,其中任何三点不共线, 把它们分成点数各不相同的30组, 在任何三个不同的组中 各取一点为顶点作三角形, 求三角形个数的最大值.解:由分组情况有限,三角形个数必存在最大值,设分为30组,各组点数为x 1 < x 2 < · · · < x 30, 三角形个 数为f (x 1, x 2, . . . , x 30) =1 i<j<k 30x i x j x k .f (x ) 4u f (y ) 4v . (f (x )) t .∴ f (x t ) = (f (x )) t .设f (e ) = c, c > 1,则f (x ) = f (e ) ln x = c ln x .另外,当f (x ) = c ln x (c > 1)时,f (x u y v ) = c u ln x +v ln y , f (x ) 4u f (y ) 4v = c 4u ln x + 4v ln y . 4v ln y ) 4v ln y . f (x ) 4u f (y ) 4v . 所以所求函数为f (x ) = c ln x (c > 1).若存在i ∈ {1, 2, . . . , 29}, x i +1 − x i3, 则将(x 1, x 2, . . . , x 30)调整为(x 1, . . . , x i + 1, x i +1 − 1, . . . , x 30).f (x 1, . . . , x i + 1, x i +1 − 1, . . . , x 30) − f (x 1, x 2, . . . , x 30) =[(x i + 1 + x i +1 − 1)−[(x i + x i +1)x j x k + (x i + 1)(x i +1 − 1)1 j<k 30 j,k =i,i +1x j x k + x i x i +1x j ]j =i,i +1x j ]1 j<k 30 j,k =i,i +1j =i,i +1= (x i +1 − x i − 1)j =i,i +1x j > 0f 值增大,类似的,若存在i, j ∈ {1, 2, . . . , 29}, i < j, x i +1−x i2, x j +1−x j2, 将x i 调整为x i +1,x j +1调整为x j +1 − 1,f 值增大.所以当f 取最大值时,x 1, x 2, . . . , x 30中相邻两个的差最多有一个是2,其余均为1. 如果所有的均为1,1989 = x 1 + (x 1 + 1) + · · · + (x 1 + 29) = 30x 1 + 435,x 1不是整数,矛盾. 设x t +1 − x t = 2, 1t29,则1989 = x 1 + x 2 + · · · + x 30 = 30x 1 + (1 + 2 + · · · + t − 1) + (t + 1 + · · · + 30) = 30x 1 + 465 − t . 30x 1 − t = 1524, x 1 = 51, t = 6.此时各组的点的个数分别为51,52,. . . ,56,58,59,. . . ,81.6.设f : (1, +∞) → (1, +∞)满足以下条件: 对于任意实数x, y > 1,及u, v > 0,有试确定所有这样的函数f . f (x u y v ) 1 1解:令x = y, u = v = 2t (t > 0),则f (x t ) 1以x t 代x , 1t 代t ,则f (x ) (f (x t ))t .11 11 1 1 1 1 1由Cauchy 不等式,(u ln x + v ln y )( 4u 1ln x +11.∴1u ln x +v ln y1 4u ln x+1∴ f (x u y v )1 11SB .又 SD x t−1 ·· · ·· x 1 ·x 1是t 个大于1的第五届中国数学奥林匹克(1990年)郑州 《中学生数理化》编辑部1.在凸四边形ABCD 中,AB 与CD 不平行,O 1过A ,B 且与边CD 相切于P ,O 2过C ,D 且与边AB 相切于Q ,O 1与 O 2相交于E ,F .求证:EF 平分线段P Q 的充分必要条件是BC AD .证明:分两部分证明结论.(1)EF 平分P Q 的充要条件为P C · P D = QA · QB . 设EF 与P Q 交于K ,直线P Q 于 O 1, O 2分别交于J, I .P C · P D = P I · P Q, QA · QB = P Q · QJ , KQ · KI = KE · KF = KP · KJ . ∴ KQ · (KP + IP ) = KP · (KQ + QJ ), KQ · IP = KP · QJ . ∴ KP = KQ ⇔ IP = QJ ⇔ P C · P D = QA · QB . (2)BCAD 充要条件为P C · P D = QA · QB .设AB 与DC 交于S .BC AD ⇔SDSC=SA 而SP 2 = SA · SB, SQ 2 = SC · SD .∴ P C · P D = QA · QB ⇔ (SC − SP )(SP − SD ) = (SB − SQ )(SQ − SA )⇔ (SC + SD )SP − SP 2 − SC · SD = (SB + SA )SQ − SQ 2 − SA · SB ⇔ (SC + SD )SP = (SB + SA )SQ⇔ (SC + SD )2 · SA · SB = (SA + SB )2 · SC · SD ⇔SCSD+SD SC +2=SA SB+SB SA+2SC < 1,SA SB< 1, ∴ P C · P D = QA · QB ⇔ SD SC=SASB⇔ BC AD .所以EF 平分线段P Q 的充分必要条件是BC AD .2.设x 是一个自然数,若一串自然数x 0 = 1 < x 1 < x 2 < · · · < x l = x 满足x i−1|x i (i = 1, 2, . . . , l ), 则 称{x 0, x 1, . . . , x l }为x 的一条因子链. l 称为该因子链的长度. L (x )与R (x )分别表示 x 的最长因子链的长 度和最长因子链的条数.对于x = 5k × 31m × 1990n ,k, m, n 都是自然数,试求L (x )与R (x ).解:对 于x = p α1 1p α2 2 · · · p αn n ,(p 1, p 2, . . . , p n 为 互 不 相 同 的 质 数,α1, α2, . . . , αn 为 正 整 数). x 的 因 子链{x 0, x 1, . . . , x l }是最长因子链的充要条件是 xx i−i 1 均为质数(i = 1, 2, . . . , l ).事实上,对于因子链{x 0, x 1, . . . , x l },若存在i, (1il ),使得 xx i−i 1 = q 1q 2,其中q 1, q 2均为大于1的正整数, 则{x 0, x 1, . . . , x i−1, q 1x i−1, x i , . . . , x l }是长度为l + 1的因子链, 所以{x 0, x 1, · · · , x l }不是最长因子 链.反 之,若 xx i−i 1 均 为 质 数(i = 1, 2, . . . , l ), 则x = x l =x lx l−1· ·· ·x 2 x 1· x 1(x 0 = 1)为l 个 质 数 的 积.所以l = α1+α2+· · ·+αn . 而对x 的任意一个因子链{x 0, x 1, . . . , x t },x = x t = x t x 2正整数之积,而x 至多写成l = α1 + α2 + · · · + αn 个大于1的正整数之积,所以t最长因子链.l .所以{x 0, x 1, · · · , x l }是(n !)2(n +k )!m !.2 ) > 22 −2n−1x 2(n ∈ N) x .2( 2k )(22 −2k−1x 2)22( 2k ) xx .x > M .2 )(x 2 )(13a ) . 2 ,(1)与(2)等价,不难验证x2 ,则L (x ) = α1 + α2 + · · · + αn .每个最长因子链对应一个排列x 1, xx 21 , . . . , xx l−l 1 , l = L (x ), 为α1个p 1,α2个p 2,. . . ,αn 个p n 的一个排列. ∴ R (x ) =(α1+α2+···+αn )!α1!α2!···αn !.当x = 5k × 31m × 1990n = 2n × 5n +k × 31m × 1990n 时, L (x ) = 3n + k + m ,R (x ) = (3n +k +m )! 3.设函数f (x )对x 0有定义,且满足条件: (1)对任何x, y0, f (x )f (y )y 2f ( x 2 ) + x 2f ( y 2 ); (2)存在常数M > 0,当0 求证:对任意x 0,f (x )x x 2.1时,|f (x )|M .证明:令x = y ,(f (x ))2 2x 2f ( x 2 ). 令x = 0,(f (0))20,∴ f (0) = 0,满足结论.假设存在x > 0,使得f (x ) > x 2,用归纳法证明f (x nnn = 0时显然成立,设n = k 时成立,f ( 2x k ) > 22k−2k−1 2∴ f (x 2k +1)(f ( 2x k ))2x 2>kx 2= 22 k +1−2(k +1)−1 2即n = k + 1时也成立,所以对任意n ∈ N,f ( 2x n ) > 22 又n → +∞时,2n − 2n − 1 → +∞, 21n → 0. n−2n−1 2∴ ∃m 1,当nm 1时,0 <x 2n< 1,∃m 2,当nm 2时,22n−2n−1 2取m = max {m 1, m 2},0 <x2m< 1, f ( 2x m ) > M ,矛盾.所以对任意x0,f (x )x 2.4.设a 是给定的正整数,A 和B 是两个实数,试确定方程组:x 2 + y 2 + z 2 = (13a )2(1)x 2(Ax 2 + By 2) + y 2(Ay 2 + Bz 2) + z 2(Az 2 + Bx 2) =14(2A + B )(13a )4(2)有整数解的充分必要条件(用A, B 的关系式表示,并予以证明).解:(2) − B 2× (1)2,得(A − B 4 + y 4 + z 4) = 12(A − B 4若A = 若A = B B= 3a, y = 4a, z = 12a 为一组解.2(x 4 + y 4 + z 4) = (13a )4(3)∴ 2|a ,设a = 2a 1,x 4 + y 4 + z 4 = 8(13a 1)4.若x, y, z 不全为偶数,则必为两个奇数一个偶数,x 4 + y 4 + z 4 ≡ 2 (mod 4),矛盾.∴ 2|x, 2|y, 2|z .设x = 2x 1, y = 2y 1, z = 2z 1,则若(x, y, z, a )为(3)的解,(x 1, y 1, z 1, a 1)也为(3)的解. 类似可 依次得到(x , y , z , a )也为(3)的解,等等.但这个过程不能一直进行下去,矛盾.所以方程组有整数解的充分必要条件为A = B2 .5.设X是一个有限集合, 法则f使得X的每一个偶子集E(偶数个元素组成的子集)都对应一个实数f(E),满足条件:(1)存在一个偶子集D,使得f(D) > 1990;(2)对于X的任意两个不相交的偶子集A, B,有f(A ∪B) = f(A) + f(B)− 1990.求证:存在X的子集P, Q,满足(1)P ∩ Q =∅,P ∪Q = X;(2)对P的任何非空偶子集S,有f(S) > 1990;(3)对Q的任何偶子集T ,有f(T ) 1990.证明:考虑X的所有偶子集经法则f得到的实数最大的一个为P ,若不止一个,取元素个数最少的一个.Q = X \ P .则P ∩ Q =∅, P ∪Q = X.令A = B =∅,则f(∅) = 1990.对于∀S ⊆ P, S =∅,f(P ) = f(S) + f(P \ S)− 1990,显然f(P \ S) < f(P ),∴f(S) > 1990.对于∀T ⊆ Q,若T =∅,f(T ) = 1990,否则T =∅,由f(P ∪T ) = f(P )+f(T )−1990 f(P ),f(T ) 1990. ∴P, Q满足条件.证毕.6.凸n边形及n − 3条在n边形内不相交的对角线组成的图形称为一个剖分图.求证:当且仅当3|n时,存在一个剖分图是可以一笔划的图(即可以从一个顶点出发,经过图中各线段恰一次,最后回到出发点).证明:因为n − 3条在形内互不相交的对角线将凸n边形分为n − 2个顶点均是n边形顶点的小区域, 每个区域的内角和不小于π,n边形的内角和为(n − 2)π,所以每个小区域都是三角形.先证必要性.用归纳法容易证明可将每个三角形区域涂成黑白两色之一,使得有公共边的三角形不同色. 假设已按照这样的要求染色,由于剖分图为可以一笔画的圈,所以由每个顶点引出的线段都是偶数条. 从而每个顶点都是奇数个三角形的顶点,因此以原多边形外边界为一边的三角形区域有着相同的颜色, 不妨设为黑色;另一方面,剖分图的每条对角线都是两种不同颜色三角形的公共边, 所以设黑三角形有m1个,白三角形有m2个.则n = 3m1− 3m2,所以3|n.再证充分性,设n = 3m,多边形为A1A2 . . . A3m.连接A1A3i, A3i A3i+2, A3i+2A1(i = 1, 2, . . . , m−1)这3m−3条对角线, 形成m − 1个三角形,可由A1出发,依次走过这些三角形,再走过凸多边形即可一笔画并回到初始点.证毕.2S ABCD ,作平行四边形AEDP ,显然P B, P C 均在AP DCB 内.∴ z k−1 = z (k−1) , (k − 1)(k − 2) = 0, k = 1或2.第六届中国数学奥林匹克(1991年)武汉 华中师范大学1.平面上有一凸四边形ABCD .(1).如果平面上存在一点P ,使得 ABP, BCP, CDP, DAP 面积都相等,问四边形ABCD 应满足什么条件?(2).满足(1)的点P ,平面上最多有几个?证明你的结论. 解:(1)(1.1)P 在ABCD 内部,若A, P, C ,B, P, D 分别三点共线, 显然ABCD 为平行四边形,P 为对角线的交点.若A, P, C 不共线,由于 P AB , P AD 等面积,AP 必经过对角线BD 的中点,同理CP 过BD 的中点,必 有P 为BD 的中点,所以 ABD,BCD 面积相等.即一条对角线平分ABCD 的面积,显然也是充分条件.(1.2)P 在ABCD 之外,不妨设P 与B, C 在AD 异侧,P 必与A, B 在CD 同侧,与C, D 在AB 同侧. 由 P AB,P AD 面积相等,P ABD ,同理P DAC .设AC, BD 相交于E ,AEDP 为平行四边形.S AED = S AP D = S ABP + S CDP + S P BC − S ABCD = 3S AP D − S ABCD . ∴ S AED = 21S ABCD .这个条件也是充分条件,若S AED =1∴ S ABP = S AP D = S CDP = S AED , S P BC = S AP D + S ABCD − S ABP − S CDP = S AED .P 满足要求.所以四边形ABCD 有一条对角线平分面积,或者在对角线分成的四个三角形中有一个为四边形面积的 一半.(2)由(1)知,P 在形内,形外都至多有一个,又由充要条件不同时取到,P 最多有一个. 2.设I = [0, 1],G = {(x, y )|x, y ∈ I}.求G 到I 的所有映射f ,使得对任何x, y, z ∈ I 有 (1)f (f (x, y ), z ) = f (x, f (y, z )); (2)f (x, 1) = x, f (1, y ) = y ;(3)f (zx, zy ) = z k f (x, y ).这里,k 是与x, y, z 无关的正数. 解:由(3),f (x, y ) = f (y · xy , y · 1) = y k f ( xy , 1)(0 < x < y ) f (x, y ) = f (x · 1, x · xy ) = y k f (1, xy )(0 < y < x )再由(2),f (x, y ) = y k−1x (0 < x < y ), f (x, y ) = x k−1y (0 < y < x ) 又x = y 时,f (x, x ) = x k f (1, 1) = x k .在(1)中,取0 < x < y < z < 1,x 充分小时,y k−1x < z, x < z k−1y .f (f (x, y ), z ) = f (y k−1x, z ) = z k−1y k−1x ,f (x, f (y, z )) = f (x, z k−1y ) = x (z k−1y )k−1.2k = 1时,f (x, y ) = min {x, y};k = 2时,f (x, y ) = xy .(x > 0, y > 0)又f (x, 0) = f (x · 1, x · 0) = x k f (0, 1) = 0, f (0, y ) = 0, f (0, 0) = z k f (0, 0), f (0, 0) = 0. ∴ k = 1时,f (x, y ) = min {x, y};k = 2时,f (x, y ) = xy .k = 1, k = 2时,无解.。

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答
中国数学奥林匹克(CMO) 历届试题及解答
1986-2005
第一届中国数学奥林匹克(1986年)
天津 南开大学
1.已知 a1, a2, . . . , an为实数, 如果它们中任意两数之和非负,那么对于满足 x1 + x2 + · · · + xn = 1
的任意非负实数 x1, x2, . . . , xn, 有不等式 a1x1 + a2x2 + · · · + anxn a1x21 + a2x22 + · · · + anx2n

证明:当6|n + 2时,令z
=
ei
π 3
=
1 2
+
3 2
i,
z6
=

1,
|z|
=
1.


zn+1
− zn
−1
=
e−i
π 3

ei
π 3
−1
=
(
1 2

3 2
i)

(−
1 2

3 2
i)

1
=
0.
∴ zn+1 − zn − 1 = 0有模为1的复根.
若zn+1 − zn − 1 = 0有模为1的复根eiθ = cos θ + i cos θ.
+
2)个结点,∴
S
=
1 3
(
1 2
(n
+
1)(n
+
2))(a
同色正三角形.
(2)否则平面上任两个距离为2的点均同色,考虑任意两个距离为1的点,以他们连线为底,2为腰长作等腰

2009年中国数学奥林匹克CMO试题和详细解答word版

2009年中国数学奥林匹克CMO试题和详细解答word版

2009中国数学奥林匹克解答、给定锐角三角形PBC, PB = PC •设A, D分别是边PB,PC上的点,连接AC, BD,相交于点O.过点O分别作0E丄AB, OF丄CD,垂足分别为E, F,线段BC, AD的中点分别为M, N.(1)若A, B, C, D 四点共圆,求证:EM FN =EN FM ;(2)若EM FN =EN FM ,是否一定有A, B, C, D四点共圆?证明你的结论.解(1)设Q, R分别是OB, OC的中点,EQ, MQ, FR, MR」1 1EQ 0B 二RM, MQ OC 二RF , 2 2又OQMR是平行四边形,所以.OQM —ORM ,由题设A, B, C, D四点共圆,所以ABD "ACD ,于是EQO =2 ABD =2 ACD = FRO ,所以EQM = /EQO. OQM/ FRO. O RM ,故.E Q M 二.:M R,F所以EM = FM ,同理可得EN = FN,所以EM F N E N F.M(2) 答案是否定的.当AD // BC时,由于.B = C,所以A, B, C, D四点不共圆,但此时仍然有EM FN二EN FM,证明如下:如图2所示,设S, Q分别是OA, OB的中点,连接ES, EQ, MQ, NS,贝UNS 二丄OD, E^-OB ,2 2 所以EQ O B1 1又ES^OA MQ^OC,所以ES OAMQ - OC而AD// BC,所以OA ODOC~~OBNS ESEQ 一MQ因为NSE 二NSA • ASE 二AOD 2 AOE , .EQM - MQO . OQE 二.AOE • EOB (180 -2 EOB)= /AOE (180 -. EOB)=/AOD 2 AOE ,即所以故同理可得,所以从而NSE 二EQM ,. NSE 〜. EQM ,EN SE OAEM -QM - OC(由②).FN OAFM - OC ,EN FNEM 一FM ,EM FN =EN FM .A NDE S 'FO由①,②,③得二、求所有的素数对(p, q),使得pq 5p+5q.解:若 2 | pq,不妨设p = 2,则2q|52- 5q,故q |5q• 25 .由Fermat小定理,q|5q—5,得q | 30,即q = 2, 3, 5 .易验证素数对(2,2)不合要求,(2,3),(2, 5)合乎要求.若pq为奇数且5| pq,不妨设p = 5,则5q |555q,故q |5q」625 .当q =5时素数对(5,5)合乎要求,当q=5时,由Fermat小定理有q | 5q」_ 1,故q|626 .由于q为奇素数,而626的奇素因子只有313,所以q=313 .经检验素数对(5,313)合乎要求.若p,q都不等于2和5,则有pq|5p「5q」,故5pJ 5q_* = 0(mod p). ①由Fermat小定理,得5pJ 1 (mod p),②故由①,②得5qJ= 1 (mod p). ③设p—1=2k(2r—1),q-1=2l2s-1),其中k,l,r,s 为正整数.若k空I,则由②,③易知1 彳上(Z =(5心)廿(Z =52l(2r4)(2s4) =(52)2r' =(-1)心=-1(modp),这与p = 2矛盾!所以k l .同理有k :l,矛盾!即此时不存在合乎要求的(p,q).综上所述,所有满足题目要求的素数对(P, q)为(2,3),(3,2),(2, 5),(5,2),(5, 5),(5,313)及(313, 5).三、设m, n是给定的整数, 4 :::m :::n , AA2 A2n d是一个正2n+1边形,P =:A,A2,…,A2「I 1求顶点属于P且恰有两个内角是锐角的凸m边形的个数.解先证一个引理:顶点在P中的凸m边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m边形为RP2…P m,只考虑至少有一个锐角的情况,此时不妨设.P m P i P2 ,则2卩2吓-二 - P zR P m 尹一j 乞口-1),B亠K更有P j」P j P j i Q(3一j _ m -1) •而.RP2P3+. P m二P m R *二,故其中至多一个为锐角,这就证明了引理.由引理知,若凸m边形中恰有两个内角是锐角,贝尼们对应的顶点相邻.在凸m边形中,设顶点A i与A j为两个相邻顶点,且在这两个顶点处的内角均为锐角•设A i与A j的劣弧上包含了P的r条边(1兰r W n ),这样的(i, j)在r固定时恰有2n 1对.(1)若凸m边形的其余m-2个顶点全在劣弧A i A j上,而A A j劣弧上有r-1个P 中的点,此时这m-2个顶点的取法数为C^ .(2)若凸m边形的其余m - 2个顶点全在优弧AA j上,取A i,A j的对径点B i , B j,由于凸m边形在顶点A,A j处的内角为锐角,所以,其余的m-2个顶点全在劣弧B j B j 上,而劣弧B i B j上恰有r个P中的点,此时这m-2个顶点的取法数为C r m^ .所以,满足题设的凸m边形的个数为n ■- n n(2n 1p (bj C r m')=(2n 1) '。

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题1987第二届年中国数学奥林匹克1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整除。

2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。

已知i.A、B、C三点上放置的数分别为a、b、c。

ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。

试求3.放置最大数的点积放置最小数的点之间的最短距离。

4.所有结点上数的总和S。

3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。

结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。

4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。

5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们两两相切。

如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。

6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

1.设a1, a2, ... , a n是给定的不全为零的实数,r1, r2, ... , r n为实数,如果不等式r1(x1-a1)+r2(x2-a2)+...+r n(x n-a n)≦√(x12+ x22+ ... + x n2) + √(a12+ a22+ ... + a n2)对任何实数x1, x2, ... , x n成立,求r1, r2, ... , r n的值。

中国数学奥林匹克(cmo)试题(含答案word)

中国数学奥林匹克(cmo)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题第一天1.如图1,在圆内接ABC中,∠A为最大角,不含点A的弧BC上两点D、E分别为弧ABC、ACB的中点。

记过点A、B且与AC相切的圆为O,过点A、E且与AD1相切的圆为O,O与O交于点A、P。

证明:AP平分∠ABC。

2122.给定质数p。

设A=(a)是一个p⨯p的矩阵,满足{a|1≤i、j≤p}={1,2,,p2}。

ij ij允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A中元素全变为0,则称A是一个“好矩阵”。

求好矩阵A的个数。

3.证明:对于任意实数M>2,总存在满足下列条件的严格递增的正整数数列a,a,12(1)对每个正整数i,有a>M i;i:(2)当且仅当整数n≠0时,存在正整数m以及b,b,12n=b a+b a++b a.1122m m,b∈{-1,1}使得m第二天4.设f(x)=(x+a)(x+b)(a、b是给定的正实数),n≥2为给定的正整数。

对满足x+x++x=1的非负实数x,x,,x,求F= 12n12n∑min{f(x),f(x)}的最大值。

i j1≤i<j≤n5.设n为无平方因子的正偶数,k为整数,p为质数,满足p <2n,p|n,p|(n+k2).证明:n可以表示为ab+bc+ca,其中,a,b,c为互不相同的正整数。

6.求满足下面条件的最小正整数k:对集合S={1,2,,2012}的任意一个k元子集A,都存在S中的三个互不相同的元素a、b、c,使得a+b、b+c、c+a均在集合A中。

si n si参考答案第一天1. 如图 2,联结 EP 、 BE 、 BP 、 CD 。

分别记 ∠BAC 、 ∠ABC 、 ∠ACB 为 ∠A 、 ∠B 、 ∠C , X 、 Y 分别为 CA 延长线、 DA 延长线上的任意一点。

由已知条件易得 AD = DC , AE = EB 。

中国数学奥林匹克竞赛试题

中国数学奥林匹克竞赛试题

中国数学奥林匹克竞赛试题中国数学奥林匹克竞赛(China Mathematical Olympiad,CMO)是中国最高水平的中学生数学竞赛,也是参加国际数学奥林匹克竞赛的选拔赛之一。

以下是一些历年的CMO试题:2002年CMO试题:1)证明:$\sum_{k=1}^{n}\frac{1}{k(k+1)(k+2)}=\frac{n(n+3)}{4(n+1)(n +2)}$。

2)已知三个球$A, B, C$,半径分别为$R, R, r$。

在三个球外接正四面体$ABCD$中,球$A$与面$BCD$相切,球$B, C$相切于点$E$,球$A, C$相切于点$F$。

求$R$和$r$之比。

3)设$a_0=0, a_1=1, a_{n+1}=\sqrt{2a_n+2\sqrt{a_n^2-1}}(n\ge1)$。

证明:$\lfloor a_{2^n}\rfloor$是$2^n$次整系数多项式的唯一正实数根。

2.2009年CMO试题:1)设$P(x)$为实系数多项式,且对于任意实数$x$,都有$P(x^2+1)=P(x)^2+1$。

证明:$P(x)$是一个偶多项式。

2)已知$n$个点按逆时针顺序排列为$P_1, P_2, \cdots,P_n$。

定义$A(P_i, P_{i+1}, P_{i+2})$为由三点$P_i, P_{i+1}, P_{i+2}$所组成的三角形的面积。

求$\sum_{i=1}^{n-2}A(P_i,P_{i+1}, P_{i+2})$。

3)设$S$为所有$n$元实数组$(x_1, x_2, \cdots, x_n)$的集合,且满足对于任意$S$中的元素$(x_1, x_2, \cdots, x_n)$,都有$\sum_{i=1}^{n}x_i=0$,$\sum_{i=1}^{n}x_i^2=1$。

求$\sum_{(x_1, x_2, \cdots, x_n)\in S}x_1x_2x_3$。

各届CMO(中国数学奥林匹克)答案

各届CMO(中国数学奥林匹克)答案

√ sin ∠F AE FE AD 由正弦定理 sin AE 2 − AD2 = 5, ∠DAE = DE × AF .其中DE = √ √ F E = F D − DE = AF 2 − AD2 − DE = m2 − 122 − 5 > 0. ∴ m > 13, 且∠A为锐角等价于 ∠A为直角等价于 ∠A为钝角等价于 解得当13 < m < 当m = 当m >
zk ∈A
|yk |,则将zk 放入X中;若|yk | 0,则将zk 放入A中;若xk
1 4.
|xk |,则将zk 放入Y中. 其中必有一组中 0,则将zk 放入B中. 其中必有一组中的
所有复数模长之和不小于 1 2 .不妨设为X.
1 所有复数摸长之和不小于 4 .不妨设为A.
|zk |
而对于zk ∈ ∴ xk
中国 数 学奥 林 匹 克 (CMO) 历届试题及解答
1986-2005
第一届中国数学奥林匹克(1986年)
天津 南开大学
1.已知 a1 , a2 , . . . , an 为实数, 如果它们中任意两数之和非负,那么对于满足 x1 + x2 + · · · + xn = 1 的任意非负实数 x1 , x2 , . . . , xn , 有不等式 a1 x1 + a2 x2 + · · · + an xn 成立.请证明上述命题及其逆命题. 证明:原命题的证明:由0 (1)若ai 以ai + a1 xi 1, xi − x2 i 0, xi x2 i (i = 1, 2, . . . , n).
+

3 6 2 i, z
= 1, |z | = 1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中国数学奥林匹克(CM O)试题第一天1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧BC 上两点D 、E 分别为弧ABC 、ACB 的中点。

记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD相切的圆为2O ,1O 与2O 交于点A 、P 。

证明:AP 平分ABC ∠。

2. 给定质数p 。

设()ij A a =是一个p p ⨯的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤=、。

允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1。

若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵"。

求好矩阵A 的个数.3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a :(1) 对每个正整数i ,有ii a M >;(2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈-使得1122m m n b a b a b a =+++.第二天4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。

对满足121n x x x +++=的非负实数12,,,n x x x ,求1min{(),()}i j i j nF f x f x ≤<≤=∑的最大值.5.设n 为无平方因子的正偶数,k 为整数,p 为质数,满足|p p <2,|()n p n k +。

证明:n 可以表示为ab bc ca ++,其中,,,a b c 为互不相同的正整数。

6.求满足下面条件的最小正整数k :对集合{1,2,,2012}S =的任意一个k 元子集A ,都存在S 中的三个互不相同的元素a 、b 、c ,使得a b +、b c +、c a +均在集合A 中.参考答案第一天1. 如图2,联结EP 、BE 、BP 、CD .分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。

由已知条件易得,AD DC AE EB ==。

结合A 、B 、D 、E 、C 五点共圆得1909022CBAE AEB ∠∠=-∠=-, 1909022BCAD ADC ∠∠=-∠=-. 由AC 、AD 分别切1O 、2O 于点A 得180,APB BAX A ABP CAP ∠=∠=-∠∠=∠,及180180()APE EAY DAE BAE CAD A ∠=∠=-∠=-∠+∠-∠180(90)(90)90222C B AA ∠∠∠=-----∠=+故360902ABPE APB APE APE ∠∠=-∠-∠=+=∠在APE 与BPE 中,分别运用正弦定理并结合AE BE =,得 sin sin sin sin PAE PE PE PBEAPE AE BE BPE∠∠===∠∠,故sin sin PAE PBE ∠=∠,又因为APE ∠、BPE ∠均为钝角,所以,PAE ∠、PBE ∠均为锐角,于是,PAE PBE ∠=∠, 故BAP BAE PAE ABE PBE ABP CAP ∠=∠-∠=∠-∠=∠=∠。

2. 由加减法的交换律和结合律可以将针对同一行或同一列的操作合并进行,并且无需考虑各操作间的次序。

假设所有操作的最终结果是对第i 行每个数减去i x ,对第j 列每个数减去j y ,其中,(1)i j x y i j p ≤≤、可以是任意整数。

由题设知ij i j a x y =+对所有的(1j )i j i p ≤≤、、成立. 由于表中各数互不相同,则12,,,p x x x 互不相同,12,,,p y y y 互不相同.不妨设12p x x x <<<,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也不改变结论。

同样,不妨设12p y y y <<<。

于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。

由上面的讨论知11121,2a a ==或212a =,不妨设122a =。

否则,将整个数表关于主对角线作对称,不改变题设也不改变结论。

下面用反证法证明:1,2,,p 全在第一行中。

假设1,2,,(2)k k p ≤<在第一行中,1k +不在第一行中。

于,211a k =+。

将连续的k 个整数称为一个“块”,只需证明:表格的第一行恰由若干个块构成,即前k 个数为一个块,之后的k 个数又是一个块,等等.如若不然,设前n 组k 个数均为块,但之后的k 个数不成为块(或之后不足k 个数),由此知对(1)1(1)21,2,,,,,,j k j k jk j n y y y -+-+=构成块.从而,表格的前nk 列共可分成pn 个1k ⨯的子表格,(1)1,(1)2,,,,(1,2,,;1,2,,)i j k i j k i jk a a a i p j n -+-+==,每个子表格中的k个数构成块。

现假设2,11,1212111nk nk a a x x a a k ++-=-=-=,故2,1nk a a k +=+.从而a b +必定在前nk 列中。

这样a b +含在某个前面所说的1k ⨯的块中,但a 、a k +都不在该块中,矛盾.于是,第一行恰由若干个块构成.特别地,有|k p 。

但1k p <<,而p 是质数,这导致矛盾。

于是,数表的第一行恰为1,2,,p ,而第k 行必定为(1)1,(1)2,,.k p k p kp -+-+因此,好矩阵A 在交换行,交换列,以及关于主对角线作对称下总可转化为唯一的形式. 所以,好矩阵的个数等于22(!).p3. 递推地构造正整数序列{}n a 如下:取整数21a M >,以及211a a =+.对2k ≥,取整数2221221211,k k kk i ki i i a Ma ak a ---==>+=+∑∑。

下面证明这一序列满足条件。

由定义知121m m m a a a a -->+++对1m >均成立,且对任意正整数k 有2221k k k a a M ->>。

于是,这一序列是严格递增的正整数序列且满足条件(1).对任意正整数n 有2121n i ni n a a-==-+∑及2121n i n i n a a-=-=-∑。

最后只需说明:0不能表示成1122m m b a b a b a +++的形式,其中,12,,,{1,1}m b b b ∈-。

当1m =时,110b a >。

当1m >时,1122121||()0m m m m m b a b a b a a a a a --+++≥-+++>。

这样便验证了所构造的序列满足所有条件。

第二天4. 解法1由min{(),()}min{()(),()()}i j i i j j f x f x x a x b x a x b =++++≤11[()()()()]()()22i j i j i j i j x a x b x b x a x x x x a b ab ≤+++++=++++,则 2222111111()[()](1)222n n ni j i j n i i i n i j n i j n i i i a b a b F x x x x C ab x x n x C ab ≤<≤≤<≤===++≤+++⋅=-+-+⋅∑∑∑∑∑22221111111(1)()[1()]()2222n n i n i n i i n n x a b C ab x a b C ab n ==--=-+++⋅≤-+++⋅∑∑ 111(1)11(1)()()2222n n n n a b ab a b nab n n---=-+++=+++ 当121n x x x n ====时,上式等号成立,故F 的最大值为11()2n a b nab n-+++。

解法2 对n 归纳证明下述理一般的命题。

命题 对满足12n x x x s +++= 的非负实数12,,,n x x x (s 是任意固定的非负实数),1min{(),()}i j i j nF f x f x ≤<≤=∑的最大值在12n sx x x n====时取到. 事实上,由F 的对称性,不妨设12n x x x ≤≤≤。

注意到,()f x 在非负实数集上是单调递增的。

则121(1)()(2)()()n F n f x n f x f x -=-+-++当2n =时,1()()2s F f x f =≤,等号在12x x =时成立。

假设结论在n 时成立,考虑1n +的情形。

对2311n x x x s x ++++=-用归纳假设有1111()(1)()()2s x F nf x n n f g x n-≤+-=其中()g x 为关于x 的二次函数,其二次项系数为2112n n -+,一次项系数为12()2n s a b a b n n-+-++。

因此,对称轴为2212()2[2(1)2(1)()](1)(21)12(1)2n sa b a bs n n n s n n a b n s n n n n n-++--≤⇔--+++≤+--++显然,上式不等号左边22(1)n s <-<右边,所以,当11s x n =+时,1()g x 取得最大值.因此,F 取得最大值时,123111n s x sx x x x n n +-======+。

由数学归纳法,命题得证.5. 由于n 是偶数,故2p ≠。

又|p n ,故|p k 。

不妨假设0.k p <<取,a k b p k ==-,则2()n k p k n k c k p p--+==- 由条件知c 是整数,a 、b 是不同的正整数。

下面只需证明:0c >,并且c a ≠、.b由均值不等式有nk p k+≥>,故2.n k pk +> 由此知0.c >若c a =,则2n k k k p+-=,即(2).n k p k =- 由于n 是偶数,故k 为偶数,这样n 被4整除,这与n 无平方因子矛盾。

若c b =,则22.n p k =-由于n 是偶数,故k 为奇数,这同样导致n 被4整除,矛盾。

综上,选取的a 、b 、c 满足条件。

命题获证。

6. 设a b c <<,令,,.x a b y a c z b c =+=+=+ 则,x y z x y z <<+>,且x y z ++为偶数。

相关文档
最新文档