【精选】七年级数学上册一元一次方程同步单元检测(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.
(1)求 a,b;A、B 两点之间的距离.
(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.
(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,
∴a+5=0,b﹣7=0,
∴a=﹣5,b=7;
∴A、B两点之间的距离=|﹣5|+7=12;
(2)解:设向左运动记为负数,向右运动记为正数,
依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.
答:点P所对应的数为﹣1015
(3)解:设点P对应的有理数的值为x,
①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,
依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;
②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,
依题意得:7﹣x=3(x+5),
解得:x=﹣2;
③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,
依题意得:x﹣7=3(x+5),
解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.
综上所述,点P所对应的有理数分别是﹣11和﹣2.
所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.
【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将化成分数.
设.
由,可知,
即.(请你体会将方程两边都乘以10起到的作用)
可解得,即.填空:将写成分数形式为________ .
(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.
【答案】(1)
(2)解:设 =m,方程两边都乘以100,可得100× =100x
由=0.7373…,可知100× =73.7373…=73+0.73
即73+x=100x
可解得x= ,
即 =
【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,
∴x= .
故答案是:;
(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.
3.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为________.
(2)将长方形EFGH沿数轴所在直线水平移动.
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.
②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为
何值时,D、E两点在数轴上表示的数时互为相反数?
【答案】(1)6
(2)①3或9
②如图所示:
据题意得出D所表示的数为,点E表示数为:,
当D、E两点在数轴上表示的数时互为相反数时:
则
解得:,
当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.
【解析】【解答】解:(1)根据题意可得:
A表示数为的长,
故答案为:6.
( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;
故答案为:3或9.
【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.
4.已知关于的方程的解也是关于的方程的解.(1)求、的值;
(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.
【答案】(1)解:(m−14)=−2,
m−14=−6m=8,
∵关于m的方程的解也是关于x的方程的解.
∴x=8,
将x=8,代入方程得:
解得:n=4,
故m=8,n=4;
(2)解:由(1)知:AB=8, =4,
①当点P在线段AB上时,如图所示:
∵AB=8, =4,
∴AP= ,BP= ,
∵点Q为PB的中点,
∴PQ=BQ= BP= ,
∴AQ=AP+PQ= + = ;
②当点P在线段AB的延长线上时,如图所示:
∵AB=8, =4,
∴PB= ,
∵点Q为PB的中点,
∴PQ=BQ= ,
∴AQ=AB+BQ=8+ =
故AQ= 或 .
【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;
5.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).
(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;
当时,在甲超市购物所付的费用是:,
在乙超市购物所付的费用是:,
所以到乙超市购物优惠
(2)解:根据题意由得:,
解得:,
答:当时,两家超市所花实际钱数相同
【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.
(2)由甲超市费用=乙超市费用建立方程,求出x值即可.
6.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.
(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;
(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?
【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得
49+3x=100.
解得,x=17.
64+2y=100.
解得,y=18.
因为y>x,
所以,进入该公园次数较多的是B类年票.
答:进入该公园次数较多的是B类年票
(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得
49+3z=64+2z.
解得z=15.
答:进入该公园15次,购买A类、B类年票花钱一样多
【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.
7.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
由已知得15x+35(100-x)=2700
解得x=40
答:购进甲商品40件,乙商品60件。
(2)解:设:购进甲商品x件,购进乙商品(100-x)件。
利润W=5x+10(100-x)
根据题意可得5x+10(100-x)≤760和x≤50;
解得48≤x≤50,
∴进货方案有三种
①甲48件,乙52件,
②甲49件,乙51件
③甲50件,乙50件
(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)
第二天:打折,
打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)
打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)
答:购买甲商品10件,乙商品8件或者9件。
【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可
8.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措:
人数10人及以下(含10人)超过10人不超过20人的部分超过20人的部分
收费标准原价(不优惠)3500元/人3000元/人
(2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为人,若总人数还是不超过20人,则总费用为________元;若总人数超过了20人,则总费用为________元;(结果均用含的代数式表示)
(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?【答案】(1)50500
(2);
(3)解:,显然 .
①若,则;
(不合题意,舍去)
②若,则;
答:共有25人参加了本次旅游
【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,
①若总人数x还是不超过20人,则总费用为:
4000×10+3500(x-10)=3500x+5000(元);
②若总人数x超过了20人,则总费用为:
4000×10+3500(20-10)+3000(x-20)=3000x+15000(元)
故答案为:(3500x+5000);(3000x+15000)
【分析】(1)根据优惠措施,旅游13人的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;
(2)分两种情况解答:
①不超过20人时,总费用=10×400+3500×(x-10);
②超过20人时总费用=10×4000+3500×10+3000×(x-20);
(3)先判断出x>10,然后分两种情况解答:①当时,②当时,
9.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.
(1)求钢笔和毛笔的单价各为多少元?
(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.
②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.
【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.
由题意得:30x+20(x+6)=1070
解得:x=19
则x+6=25.
答:钢笔的单价为19元,毛笔的单价为25元.
(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.
根据题意,得19y+25(60-y)=1322
解之得:y≈29.7(不符合题意).
所以王老师肯定搞错了.
②2或8.
【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元
则根据题意,得19z+25(60-z)=1322-a.
即:6z=178+a,
因为a、z都是整数,且178+a应被6整除,
所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.
当a=2时,6z=180,z=30,符合题意;
当a=4时,6z=182,z≈30.3,不符合题意;
当a=6时,6z=184,z≈30.7,不符合题意;
当a=8时,6z=186,z=31,符合题意.
所以签字笔的单价可能2元或8元.
【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;
(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支,求出方程的解不是整数则说明算错了;
②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.
10.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.
(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.
若 ,则 ________;若 ,则 ________;
(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.
(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后
的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.
【答案】(1)0;4
(2)解:点表示的数是,理由如下:
设点表示的数是,则点表示的数是
则由题意
解得
(3)或
【解析】【解答】(1)∵由题意得a-1=1-b,
∴当a=2, 则2-1=1-b, 解得b=0;
当a=-2,则-2-1=1-b, 解得b=4.
(3)解:设点表示的数是,则点表示的数是
则由题意表示的数是,表示的数是,
表示的数是,表示的数是,…
又表示的数是,表示的数是,
表示的数是,表示的数是=m+8-4×1 ,…
,
,即,
解得
【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;
(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;
(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.
11.已知a是最大的负整数,b、c满足(b-3)2+|c+4|=0,且a、b、c分别是点A、B、C 在数轴上对应的数.
(1)点A表示的数为________,点B表示的数为________,点C表示的数为________;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到点B为5个单位长度?
(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于13,请写出所有点M 对应的数,并写出求解过程.
【答案】(1)-1;3;-4
(2)解:设点P运动t秒时到点B为5个单位长度,分以下两种情况:
①点P在点B左边距离点B5个单位,则有:
2t+5=3-(-4)解得t=1
②点P在点B右边距离点B5个单位,则有:
2t-5=3-(-4)解得t=6
故当点P运动1秒或6秒后,点P到点B为5个单位长度
(3)解:点B与点C之间的任何一点时到A、B、C三点的距离之和都小于13,
因此点M的位置只有以下两种情况,设点M所表示的数为m,则:
①点M在点C左边时,可得:
-4-m-1-m+3-m=13 解得m=-5
②点M在点B右边时,可得:
m+4+m+1+m-3=13,解得m=
故点M对应的数为-5或.
【解析】【解答】解:(1)∵a是最大的负整数∴a=-1
∵(b-3)2≥0,|c+4|≥0,而(b-3)2+|c+4|=0
∴b=3,c=-4
故答案为:-1;3;-4.
【分析】(1)由题目中的条件可直接得出点A对应的数,根据平方与绝对值的非负性可得出B与C对应的数;(2)由点P到点B为5个单位长度,可两种情况,点P在点B左边及点P在点B右边,分别列方程即可求得;(3)分情况讨论,当点M在点C左边及当点M在点B右边,分别列方程可求得;而当点M在点C及点B之间时错误.
12.鄞州公园计划在园内的坡地上栽种树苗和花苗,树苗和花苗的比例是1:25,已知每人每天能种植树苗3棵或种植花苗50棵,现有15人参与种植劳动 .
(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?
(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如能完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务? 【答案】(1)解:设种树苗人数为x人,则种花苗人数为(15-x)人,由题意得
3x:50(15-x)=1:25
解得x=6
答:6人种树苗,9人种花苗。
(2)解:假设所有人先种树苗需要的天数是:(天)
假设所有人都种花苗需要的天数是:(天)
∵,∴三天内不能完成.
15人天的工作量5人1天的工作量,所以至少增加2人。
·····
方法二:树苗:,至少为7人;花苗: =10,至少10人10+7-15=2
(人)
答:至少派2人去支援才能保证三天内完成任务
【解析】【分析】(1)设种树苗人数为x人,则种花苗人数为(15-x)人,根据等量关系式:树苗和花苗的比例是1:25 ,列出方程,解之即可.
(2)假设所有人先种树苗,求出所需要的天数,假设所有人都种花苗,求出所需要的天
数,从而得出天数之和大于3天,故3天之内不能完成任务;由于15人天的工作量为5人1天的工作量,从而可得至少增加2人.。