【精选】七年级数学上册一元一次方程同步单元检测(Word版 含答案)

合集下载

七年级数学上册 一元一次方程单元综合测试(Word版 含答案)

七年级数学上册 一元一次方程单元综合测试(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程. 【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.2.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。

(1)解方程:(2)已知,求的值;(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).【答案】(1)解:方程可化为:或,当时,则有,所以;当时,则有,所以,故方程的解为:或(2)解:方程可化为:或,当时,解得:,当时,解得:,∴或(3)100【解析】【解答】(3)∵或,且都是整数,∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.3.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.如:1※2=1×22+2×1×2+1=9(1)(﹣2)※3=________;(2)若※3=16,求a的值;(3)若2※x=m,( x)※3=n(其中x为有理数),试比较m,n的大小.【答案】(1)-32(2)因为※3= ×32+2× ×3+ =8a+8,所以8a+8=16,解得a=1;(3)根据题意,得m=2x2+2×2x+2=2x2+4x+2,n= x×32+2× x×3+ x=4x,则m﹣n=2x2+2>0,所以m>n.【解析】【解答】解:(1)原式=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32,故答案为:﹣32.【分析】(1)根据新运算展开,再求出即可;(2)先根据新运算展开,再解一元一次方程即可;(3)先根据新运算展开,再求出m、n,即可得出答案.4.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B的中点C对应的数是________;(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?【答案】(1)35(2)解:设点D对应的数是x,则由题意,得100﹣x=3[x﹣(﹣30)]解得,x=2.5所以点D对应的数是2.5.(3)解:设t秒后相遇,由题意,4t+6t=130,解得,t=13,BE=100﹣6t=78,100﹣78=22答:E点对应的数是22.【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100,所以AB=100﹣(﹣30)=130因为点C是AB的中点,∴AC=BC==65A、B的中点C对应的数是100﹣65=35.故答案为:35.【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。

现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。

湘教版七年级数学上第3章一元一次方程检测题含答案Word版

湘教版七年级数学上第3章一元一次方程检测题含答案Word版

第3章检测题一、选择题(每题3分,共30分) 1.以下方程是一元一次方程的是( D )A .x =x 2-1 =2 C .x -1=y +1 D .2-x 4=x -152.把方程x 2-x -16=1去分母,正确的选项是( D )A .3x -(x -1)=1B .3x -x -1=1C .3x -x -1=6D .3x -x +1=6 3.以劣等式变形正确的选项是( D ) A .由x 3=0,得x =3 B .由x2=2,得x =2C .由-3x =-2,得x =32D .由a 4=b4,得a =b4.假设代数式18+a3比a -1的值大1,则a 的值为( A )A .9B .-9C .10D .-10 5.假设关于x 的方程3x +2m =-1与方程x +2=2x +1的解相同,则m 的值为( B ) A .2 B .-2 C .1 D .-16.一艘轮船在静水中的速度为20 km/h ,水流速度为4 km/h ,从甲码头顺流航行到乙码头,再返回到甲码头,共用5小时(不计停留时刻),求甲、乙两码头间的距离.设两码头间的距离为x km ,那么以下方程正确的选项是( D )A .(20+4)x +(20-4)x =5B .20x +4x =5+x 4=5 +x 20-4=5 7.(2021·宜城模拟)某商场销售的一款空调机每台的标价是1 635元,在一次促销活动中,按标价的八折销售,仍可盈利9%,那么这款空调每台的进价为( C ) A .1 000元 B .1 100元 C .1 200元 D .1 300元8.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队维持不败,得22分,那么甲队胜( B )A .5场B .6场C .7场D .8场9.小华在做作业时,不警惕将方程中的一个常数弄脏了看不清楚,被弄脏的方程是y -13=13y -■,如何办呢?小华想了想,便翻看了书后的答案,取得此方程的解是y =-6,于是小华专门快补好了那个常数,并完成了作业,那个常数是( C )B .323 D .-14310.(2021·永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举行了“阳明山杜鹃节旅行文化节”,吸引了众多游客前去参观赏花.在文化节揭幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1 000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2 000人,那么据此可知揭幕式当天该景区游客人数饱和时刻约为( C )A .10:00B .12:00C .13:00D .16:00 二、填空题(每题3分,共24分)11.若是方程-3x 2a -1+6=0是关于x 的一元一次方程,那么a =__1__.12.(2021·常州)已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是__45__.13.当x =3时,代数式3x 2-5ax +10的值为7,则a =__2__. 14.若23ab 3x +1与-ab 6x -3是同类项,则x =__43__.15.已知长方形的长和宽如下图,那么当长方形的周长为12时,a 的值是__1__. 16.某人将假设干人民币存入银行,年利率为%,一年到期后,银行支付给该储户利息180元,那么该储户存入银行的本金为__8_000__元.17.一队学生去校外进行军事野营训练,他们以5 km/h 的速度行走,走了18 min 的时候,学校要将一个紧急通知传给队长.通信员从学校动身,骑自行车以14 km/h 的速度按原路追上去,那么通信员用__16__h 能够追上学生队伍.18.(2021·黑龙江)某超市“五一放价”优光顾客,假设一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一名顾客第一次购物付款180元,第二次购物付款280元,假设这两次购物归并成一次性购物可节省__18__元. 三、解答题(共66分) 19.(16分)解方程:(1)6(3x +1)=2(x +1); (2)x -13+3x -12=-1;解:x =-14 解:x =-111(3)107x -17-20x 3=1; (4)25%(x -1)=75%x +6. 解:x =1417 解:x =25220.(6分)当x 取何值时,代数式x -12与x -23互为相反数?解:依题意,得x -12+x -23=0,解得x =75,故当x =75时,代数式x -12与x -23互为相反数21.(6分)一列方程如下排列:x 4+x -12=1的解是x =2,x 6+x -22=1的解是x =3,x8+x -32=1的解是x =4,…,依照观看取得的规律,请写出其中解是x =6的方程. 解:解是x =6的方程是x 12+x -52=122.(2021·海南)小明想从“天猫”某网店购买计算器,经查询,某品牌A 号计算器的单价比B 型号计算器的单价多10元,5台A 型号的计算器与7台B 型号的计算器的价钱相同,问A 、B 两种型号计算器的单价别离是多少?解:设B 型计算器的单价为x 元,那么依题意,得5(x +10)=7x ,解得x =25,则x +10=35.故A 、B 两种型号的计算器的单价别离是35元、25元23.(9分)体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全数销售完后共获利润260元.(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等? 解:(1)设购进篮球x 个,那么购进排球有(20-x )个,由题意,得(95-80)x +(60-50)(20-x )=260,解得x =12,因此20-x =8.故购进篮球12个,购进排球8个;(2)6×10÷15=4(个),故销售6个排球的利润与销售4个篮球的利润相等24.(10分)在社会实践活动中,某校甲、乙、丙三位同窗一同调查了顶峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车辆数),三位同窗汇报顶峰时段的车流量情形如下:甲同窗说:“二环路的车流量为10 000辆;”乙同窗说:“四环路比三环路的车流量多2 000辆;”丙同窗说:“三环路的车流量的3倍与四环路的车流量的差是二环路的车流量的2倍.”请你依照他们所提供的信息,求出顶峰时段的三环路、四环路的车流量各是多少?解:设顶峰时段北京的三环路的车流量为x辆,依照题意,得3x-(x+2 000)=2×10 000,解得x=11 000,∴x+2 000=13 000.故顶峰时段北京的三环路、四环路的车流量别离是11 000辆、13 000辆25.(11分)为了增强公民的节水意识,合理利用水资源,某市采纳价格调控手腕达到节水的目的,该市自来水收费价钱见价目表.,那么应收水费:2×10+3×(15-10)=35元.(1)假设该户居民2月份用水24 m3,则应收水费__66__元;(2)假设该户居民3,4月份共用水26 m3(其中3月份用水量不超过10 m3),共交水费60元,那么该户居民3,4月份各用水多少立方米?解:该户居民设3月份用水x m3,当4月份用水超过20 m3时,2x+2×10+3×10+4(26-x-20)=60,解得x=7,即3月份用水7 m3,4月份用水19 m3,不合题意,舍去;当4月份用水在10 m3到20 m3之间时,2x+2×10+3(26-x-10)=60,解得x=8,故该户居民3月份用水8 m3,4月份用水18 m3。

【精选】七年级数学上册一元一次方程检测题(WORD版含答案)

【精选】七年级数学上册一元一次方程检测题(WORD版含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.2.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。

已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【答案】(1)解:设原计划租用x辆45座客年根据题意,得45x+15=60(x-1)解得x=5则45x+15=45×5+15=240.答:这批游客共240人,原计划租5辆45座客车。

(2)解:租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元).租60座客车:240÷60=4(辆),租念为300×4=1200(元).答:租用4辆60座客车更合算。

【解析】【分析】(1)设原计划租用x辆45座客车,根据等量关系,列出方程,求出x 的值,进而求出游客的人数,即可;(2)分别求出租45座的车和60座的车的费用,进行比较,即可.3.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。

(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。

七年级数学上册一元一次方程单元综合测试(Word版 含答案)

七年级数学上册一元一次方程单元综合测试(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5 2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣3 3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1C.D.04.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8B.0C.2D.85.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣26.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=3128.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.209.(3分)若2x+1=4,则4x+1等于()A.6B.7C.8D.910.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程与的解相同,那么m的值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=.15.(3分)已知关于x的方程=4的解是x=4,则a=.16.(3分)当x=时,3x+4与4x+6的值相等.17.(3分)如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x 的方程(a+b)x2+3cd•x﹣p2=0的解为x=.20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=.(2)若该用户九月份的平均电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?七年级数学上册《一元一次方程》单元测试卷参考答案与试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣3【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1C.D.0【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8B.0C.2D.8【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6B.7C.8D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20故选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程与的解相同,那么m的值是±2.【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距xkm,根据题意得:+3=,解得:x=504,则A港与B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=1.【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程=4的解是x=4,则a=0.【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x=﹣2时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=4.【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x 的方程(a+b)x2+3cd•x﹣p2=0的解为x=.【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27.【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)因为王老师纳税420元,所以由(1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:王老师的这笔稿费为3800元.【点评】解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.【点评】本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.。

【数学】人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)

【数学】人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)

人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)一、选择题1.下列四个式子中,是一元一次方程的是( ) A .1+2+3+4=10 B .2x -3 C.x -13=x2+1 D .x +3=y 2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.53. 下列方程属于一元一次方程的是( )A. 1x -1=0 B. 6x +1=3y C. 3m =2 D. 2y 2-4y +1=0 4.关于x 的方程2(x -2)-3(4x -1)=9,下面解答正确的是( ) A . 2x -4-12x +3=9,-10x =9+4-3=10,x =1 B . 2x -4-12x +3=9,-10x =10,x =-1 C . 2x -4-12x -3=9,-10x =2,x =−D . 2x -2-12x +1=9,-10x =10,x =15.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( ) A .-2=+6 B . +2=-6 C .-D .-6.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =yaC.若a =b ,则ac =bcD.若b a =dc ,则b =d7. 已知||3x -y =0,||x =1,则y 的值等于( ) A. 3或-3 B. 1或-1 C. -3 D. 38.关于x 的方程5x 3m =2的解是x =m ,则m 的值是( ) A . 1 B . 1 C . 2 D . 29.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A . 1600元B . 1800元C . 2000元D . 2100元11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( ) A.2314 B.3638 C.42 D.4412. 某同学在解关于x 的方程3a -x =13时,误将“-x ”看成“x ”,从而得到方程的解为x =-2,则原方程正确的解为( ) A.x =-2 B.x =-12 C.x =12 D.x =2二、填空题 13.若-x n+1与2x 2n-1是同类项,则n = .14.. 三个连续偶数的和是60,那么这三个数分别是 - .15.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,则原来的两位数是 .16.对于两个非零的有理数a ,b ,规定a ☆b =12b -13a ,若x ☆3=1,则x 的值为________.17.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.20.一列方程如下排列:-=1的解是x=2;-=1的解是x=3;-=1的解是x=4;…根据观察得到的规律,解是x=7的方程是 三、解答题21.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)7x -13-5x +12=2-3x +24; (4)2x 0.3-1.6-3x 0.6=31x +83.22. (1)如果方程2x +a =x -1的解是x =4,求2a +3的值;(2)已知等式(a -2)x 2+(a +1)x -5=0是关于x 的一元一次方程,求这个方程的解.23.在校运动会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?26.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50 m,求这项工程共需筑路多少米?27.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元? (2)请问购买商品的总价格是多少时,两种方案的优惠情况相同? (3)你认为哪种方案更合算?(直接写出答案) 参考答案一、1. C 2. A . 3. C 4. B 5 C. 6. C 7. D 8. B 9. A 10. A 11. C 12. D 二、13.2 14. 18,20,22 . 15.48 16. 32 17.100018.2y -100=1 700 19.30 20.-=1三、21.解:(1)x =-20. (2)x =72.(3)去分母,得4(7x -1)-6(5x +1)=2×12-3(3x +2),去括号,得28x -4-30x -6=24-9x -6,移项,得28x -30x +9x =24+6+4-6, 合并同类项,得7x =28,系数化为1,得x =4.(4)原方程可化为20x 3-16-30x 6=31x +83.去分母,得40x -(16-30x )=2(31x +8).去括号,得40x-16+30x=62x+16.移项,得40x+30x-62x=16+16.合并同类项,得8x=32. 系数化为1,得x=4.22.解:(1)把x=4代入方程,得8+a=4-1.解得a=-5.所以2a+3=2×(-5)+3=-7.(2)由题意,得a-2=0且a+1≠0.解得a=2,即方程为3x-5=0.解得x=人教版七(上)数学第三章一元一次方程单元测试一、选择题:(每小题3分共30分)1.下列关于的方程一定是一元一次方程的是()A. B. C. D.2.下列的值是方程的解的是()A. B. C. D.3.下列关于等式与方程的说法,正确的是()A.含有运算符号的式子是等式 B.含有“=”的式子是方程C.方程一定是等式 D.等式一定是方程4.把方程移项,得()A. B. C. D.5.如果7a-5与3-5a互为相反数,则a的值为()A.0B.1C.-lD.26.方程的解是()A.4B.-4C.D.7.解方程时,去分母正确的是()A. B. C. D.8.方程的解是()A. B. C. D.9.有一张桌子配4张椅子,现有90立方米,1立方米可做木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用立方米的木料做桌子,则依题意可列方程为A. B. C. D.km h的速度从A地匀速驶往B地,到达B 10.A、B两地相距900km,一列快车以200/地后立刻原路返回A地,一列慢车以75/km h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是()A.283h B.445h C.285h D.4h二、填空题:(每小题3分共18分)11.将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.12.成人票、学生票共1000张票,若设学生票有x张,则成人票有______张,若成人票8元,学生票5元,这1000张票共花费6950元,根据此题意,可列方程______.13.已知,两镇相距,甲、乙二人同时从,两镇出发,相向而行.甲骑电动车每小时行,乙骑自行车每小时行,甲、乙二人经过__________小时相遇.14.某种商品按进价提高50%后标价,又打八折销售,售价为每件360元,若设进价是x元,则可列方程____________________.15.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x米,那么长为_______米。

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

七年级数学上册一元一次方程单元测试卷

七年级数学上册一元一次方程单元测试卷

七年级数学上册一元一次方程单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3x =是关于x 的方程2203x a -=的解,则a 的值是( ) A .1 B .1- C .0 D .22.已知x =y ,下列变形错误的是( )A .x +a =y+aB .x -a =y -aC .2x =2yD .x y a a = 3.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-5.下列变形中:①由方程125x --=2去分母,得x ﹣12=10;①由方程6x ﹣4=x +4移项、合并得5x =0;①由方程25362x x -+-=两边同乘以6,得12﹣x +5=3x +3;①由方程2992x =两边同除以29,得x =1;其中错误变形的有( )个.A .0B .1C .2D .36.关于x 的方程k 2x 2+(2k -1)x +1=0有实数根,则下列结论正确的是( )A .当k =12时,方程的两根互为相反数B .当k =0时,方程的根是x =-1C .若方程有实数根,则k ≠0且k ≤14D .若方程有实数根,则k ≤147.在风凰山教育共同体数学学科节中,为展现数学的魅力,M 老师组织了一个数学沉浸式互动游戏:随机请A ,B ,C ,D ,E 五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A ,B ,C ,D ,E 五位同学报出来的数恰好分别是1,2,3,4,5,则D 同学心里想的那个数是( )A .3-B .4-C .5D .98.下列各式运用等式的性质变形,正确的是( )A .由a b =,得44a b =- B .由33x y -=-,得x y =- C .由14x =,得14x = D .若()()2211m a m b +=+,则a b = 9.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =﹣1时,y =4,则a 、b 的值分别为( ) A .a =1,b =2 B .a =1,b =﹣2 C .a =﹣1,b =2 D .a =﹣1,b =﹣210.已知关于x 的方程ax =5﹣3x 的解是x =2,则a 的值为( )A .1B .12-C .112D .﹣2二、填空题11.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.12.若关于x 的方程360x +=与关于y 的方程5218y m +=的解互为相反数,则m =____.13.某车间有75名工人生产A 、B 两种零件,一名工人每天可生产A 种零件15个或B 种 零件20个,已知1个B 种零件需要配3个A 种零件,该车间应如何分配工人,才能保证每天生产的两种零件恰好配套?设应安排x 名工人生产A 种零件,根据题意,列出的方程是___________________.14.如果关于x 的方程23x x =-和4232x m x -=+的解相同,那么m =________.三、解答题15.解关于x 的方程:(3)4-=b x16.利用函数图象求下列方程的解,并笔算检验.(1)5x ﹣1=2x+5(2)﹣12x+4=32x+2.17.学校要购入两种记录本,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本,总花费为460元.(1)求购买B 种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱? 18.计算: (1)111()6||235-⨯÷- (2)201831(1)(10)2[2(3)]2-+-÷⨯--- 19.(1)张阿姨到商场以940元购买了一件羽绒服和一条裙子,已知羽绒服打8折,裙子打6折,结果比标价购买时共节省了360元.那么该羽绒服及裙子的标价分别是多少元?(2)某校为防疫需要,实行错时错峰测温并开通专用通道上学,该校七、八年级人数如下表所示:①八年级学生进校时同时开通了A ,B 两通道,经过6分钟,八年级全部学生进校,已知A 通道每分钟通过的人数是B 通道每分钟通过人数的2倍.求A ,B 通道每分钟通过的人数各是多少人?①考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A 通道旁边增开C 通道,在B 通道旁边增开D 通道,已知C 通道每分钟通过的人数比A 通道每分钟通过的人数多20%,D 通道每分钟通过的人数比B 通道每分钟通过的人数少20%.求七年级全部学生进校所需时间是多少分钟?20.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )参考答案:1.A【分析】把x =3代入方程即可得到一个关于a 的方程,解方程求得a 的值.【详解】解:把x =3代入方程得2-2a =0,解得:a =1.故选A .【点睛】本题考查了方程的解的定义、解一元一次方程,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.2.D【分析】根据等式的性质逐项分析判断即可【详解】解:A.x y =,∴ x +a =y+a ,故该选项正确,不符合题意;B.x y = ,∴x -a =y -a ,故该选项正确,不符合题意;C.x y =,∴ 2x =2y ,故该选项正确,不符合题意;D. x y =,当0a ≠时,x y a a=,故该选项不正确,符合题意; 故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.3.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.4.D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a+是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax x x --=- 得x 7032a=+(a 32≠-), ①关于x 的方程38132ax x x --=-的解是负整数, ①7032a+是负整数, ①231a +=- 或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,①满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键. 5.D【分析】根据等式的基本性质对每一个选项的变形进行核查,即可得到正确解答.【详解】解:①、由方程 125x -= 2去分母,得x ﹣12=10,正确; ①、由方程6x ﹣4=x +4移项、合并得5x =8,错误;①、由方程53262x x -+-=两边同乘以6,得12﹣x +5=3x +9,错误; ①、由方程2992x =两边同除以 29,得x =814,错误; 故选D .【点睛】本题考查等式的应用,熟练掌握等式的基本性质是解题关键.6.D【分析】由于二次项前面的系数为字母系数且方程有实数根,所以应分两种情况去求k 的取值范围,再结合选项作出正确的判断即可.【详解】当k =0时,则此方程为-x +1=0,解得x =1,故选项B 错误;当k ≠0时,则方程为一元二次方程,因为方程有实数根,①2224(21)4410b ac k k k ∆=-=--=-+≥ ①14k ≤且k ≠0综上可得k 的取值范围是14k ≤. 故选项A 错误,选项C 错误.故选:D .【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,需分类讨论. 7.D【分析】设报D 的人心里想的数是x ,则再分别表示报A ,C ,E ,B 的人心里想的数,最后通过平均数列出方程,解方程即可.【详解】解:设D 同学心里想的那个数是x ,报A 的人心里想的数是10-x ,报C 的人心里想的数是x -6,报E 的人心里想的数是14-x ,报B 的人心里想的数是x -12,所以有x -12+x =2×3,解得:x =9.故选:D .【点睛】本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.8.D【分析】根据等式的性质逐项判定即可.【详解】解:A .由a b =,得44a b =--,原式错误,故此选项不符合题意; B .由33x y -=-,得x y =,原式错误,故此选项不符合题意;C .由14x =,得4x =,原式错误,故此选项不符合题意; D .若()()2211m a m b +=+,则a b =,正确,故此选项符合题意;故选:D .【点睛】本题考查等式的性质,熟练掌握等式的性质是解题的关键.9.B【分析】把两组对应值分别代入y =ax 2+bx +1得到关于a 、b 的方程组,然后解方程组即可得到a 和b 的值.【详解】解:根据题意得1014a b a b ++=⎧⎨-+=⎩, 解得a =1,b =﹣2.故选:B .【点睛】本题考查了待定系数法求二次函数的解析式,根据已知条件列出二元一次方程组是解题的关键.10.B【分析】把x =2代入方程ax =5-3x 得出2a =5-6,再求出方程的解即可.【详解】解:把x =2代入方程ax =5-3x 得:2a =5-6,解得:a =12-, 故选:B .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.11.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.12.4【分析】先解出x 的值,再根据相反数的定义得到y 的值,最后代入方程求出m 的值.【详解】解:解方程360x +=,解得2x =-,①这两个方程的解互为相反数,①2y =是方程5218y m +=的解,将2y =代入原方程,得到10218m +=,解得4m =.故答案是:4.【点睛】本题考查一元一次方程的解和相反数的定义,掌握方程的解和解一元一次方程是解答本题的关键.13.15x=3⨯20(75-x)【分析】设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人,根据1个B 种零件需要配3个A 种零件即可列出方程.【详解】解:设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人, 由1个B 种零件需要配3个A 种零件,即A 种零件的个数是B 种零件的三倍. 可列出方程15x=3⨯20(75-x),故答案:15x=3⨯20(75-x).【点睛】本题考查了一元一次方程的应用问题, 根据题意列方程即可.14.12##0.5 【分析】先解方程23x x =-,求出x =3,再将x =3代入方程4232x m x -=+求解即可.【详解】解:解方程23x x =-,得x =3,①关于x 的方程23x x =-和4232x m x -=+的解相同,①将x =3代入方程4232x m x -=+,得12-2m =11,解得m =12, 故答案为:12.【点睛】此题考查解一元一次方程,正确掌握解一元一次方程的步骤及同解方程的定义是解题的关键.15.34b x b+= 【分析】方程两边都除以b ,再移项即可得出答案.【详解】解:去括号,得bx -3b =4,移项,得bx =3b +4,由题意知b ≠0,①方程两边同除以b 得,34b x b +=, 方程的解为34b x b+=. 【点睛】本题考查了解一元一次方程,把b 看作已知数是解题的关键.16.(1)x =2,见解析;(2)x =1,见解析.【分析】(1)将方程变形为3x ﹣6=0,作出函数y=3x ﹣6的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可;(2)将方程变形为﹣2x+2=0,作出函数y=﹣2x+2的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可.【详解】解:(1)由5x﹣1=2x+5得到3x﹣6=0.如图:直线y=3x﹣6与x轴交点的横坐标是2,则方程5x﹣1=2x+5的解为x=2,检验:把x=2代入方程5x﹣1=2x+5,左边=10﹣1=9,右边=4+5=9,左边=右边,故方程5x﹣1=2x+5的解为x=2;(2)由﹣12x+4=32x+2得到﹣2x+2=0.如图,直线y=﹣2x+2与x轴交点的横坐标是1,则方程﹣12x+4=32x+2的解为x=1,检验:把x=1代入方程﹣12x+4=32x+2,左边=﹣12+4=312,右边=32+2=312, 左边=右边, 故方程﹣12x+4=32x+2的解为x =1. 【点睛】本题考查画一次函数的图象、一次函数与一元一次方程的关系、等式的性质,熟知任何一元一次方程都可以化为ax+b=0(a 、b 为常数,a≠0)的形式,掌握该方程的解就是直线y=ax+b 与x 轴交点的横坐标是解答的关键.17.(1)购买B 种记录本的数量为50本;(2)学校此次可以节省82元.【分析】(1)设B 种记录本的数量为x ,根据“购买A 种记录本的数量比B 种记录本的2倍还多20本”得出A 的数量,再根据总花费建立等式方程,求解即可得;(2)根据题(1)可知A 、B 两种记录本的数量,按促销活动计算出总花费,再与460元比较即可得出答案.【详解】(1)设B 种记录本的数量为x ,则A 种记录本的数量为(220)x +本由题意可列方程为:3(220)2460x x ++=解得:50x =(本)答:购买B 种记录本的数量为50本;(2)由题(1)的结论可得:购买A 种记录本的数量为25020120⨯+=(本)因此,按促销活动购买这些记录本需花费为:120380%50290%378⨯⨯+⨯⨯=(元) 则学校此次可节省的钱为:46037882-=(元)答:学校此次可以节省82元.【点睛】本题考查了一元一次方程的实际应用,理解题意正确建立方程是解题关键. 18.(1)5(2)﹣68【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1) 解:111()6||235-⨯÷- 11()6523=-⨯⨯11()3023=-⨯ 11303023=⨯-⨯ 15105=-=(2)201831(1)(10)2[2(3)]2-+-÷⨯--- ()1(10)22227=+-⨯⨯-+1402968=--=-【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.19.(1)该羽绒服的标价为800元,裙子的标价为500元;(2)①B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①七年级全部学生进校所需时间是4分钟.【分析】(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元,根据张阿姨购买了一件羽绒服和一条裙子共花费940元,即可得出关于a 的一元一次方程,解之即可得出结论;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由“八年级学生进校时同时开通了A 、B 两通道,经过6分钟”,列出方程可求解;①设七年级全部学生进校所需时间是y 分钟,由七年级的人数为620人,列出方程可求解.【详解】解:(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元, 依题意得:0.8a +0.6(940+360-a )=940,解得:a =800,①940+360-800=500.答:该羽绒服的标价为800元,裙子的标价为500元;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由题意可得:6×(2x +x )=450,解得:x =25,①2x =50,答:B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①设七年级全部学生进校所需时间是y 分钟,由题意可得:(1.2×50+25+50+0.8×25)×y =620,解得:y =4,答:七年级全部学生进校所需时间是4分钟.【点睛】本题考查了一元一次方程的应用,找到正确的数量关系,列出方程是解题的关键.20.水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.。

最新人教版数学七年级上册 一元一次方程同步单元检测(Word版 含答案)

最新人教版数学七年级上册 一元一次方程同步单元检测(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

人教版2024年七年级上册第5章《一元一次方程》单元测试 含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试  含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试满分100分时间90分钟一、选择题(共30分)1.下列各式中,属于方程的是()A .4(1)3+-=B .23x +C .210x -<D .215x -=2.下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个3.下列四个方程中,解是1x =的是()A .213x -=B .13x +=C .11x -=D .12x +=4.下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c=D .如果22a bc c=,则a b =5.将方程4387x x +=+移项后,正确的是()A .4873x x -=+B .4837x x -=-C .8437x x -=-D .8473x x -=-6.解方程2(21)x x -+=,以下去括号正确的是()A .41x x +=-B .42x x-+=-C .41x x--=D .42x x--=7.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是()A .0.10.20.734x x --=B .127101034x x---=C .127134x x ---=D .12710134x x---=8.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为()A .320425x x +=-B .320425x x +=+C .202534x x +-=D .202534x x -+=9.对于非零的两个有理数a ,b ,规定1a b b a⊗=-,若()1211x ⊗+=,则x 的值为()A .32B .13C .12D .12-10.如图,表中给出的是某月的月历,任意选取“凹”型框中的5个数(如阴影部分所示).请你运用所学的数学知识来研究,这5个数的和不可能是()A .36B .51C .78D .126二、填空题(共24分)11.已知关于x 的方程2240m x m -+-=是一元一次方程,则m 的值为.12.若3240x y --=,则用含x 的代数式表示y 为.13.如果256x +=,那么26x =,其依据是.14.若代数式35m -与32m -的值互为相反数,则m 的值是.15.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x 套,列方程式是.16.如图,已知A ,B 两点在数轴上,点A 表示的数为10-,点B 表示的数为30,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过秒,点M 、点N 分别到原点O 的距离相等.三、解答题(共46分)17.(8分)解方程:(1)35(14)x x =--;(2)231132x x -+=-.18.(6分)已知:关于x 的方程111236x -=与()31x m m +=-有相同的解,求以y 为未知数的方程3332my m y--=的解.19.(6分)张阿姨到商场以940元购买了一件羽绒服和一条裙子.已知羽绒服打八折,裙子打六折,结果比按标价购买时共节省了360元,求张阿姨购买的羽绒服及裙子的标价.20.(8分)甲、乙两人共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元.(1)在规定时间内,甲、乙两人能否完成这项工程?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人.调走谁更合适?21.(8分)某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.x>):现某客户要购买裤子30件,T恤x件(30(1)按方案一,购买裤子和T恤共需付款______(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?x=时,你能给出一种更为省钱的购买方案吗?(3)若两种优惠方案可同时使用,当4022.(10分)如图在数轴上点A表示数a,点B表示数b,AB表示点A与点B之间的距离,且a,b满足:()2-++=.2460a b(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且3=,求点C表示的数;AC BC(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度也向右运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间?参考答案一、选择题题号12345678910答案DAD DCDDACC二、填空题11.312.342x y -=13.5-;等式的基本性质114.215.()3010256x x +=+16.2或10三、解答题17.(1)解:()3514x x =--去括号得:3514x x =-+,移项得:3451x x -=-,合并同类项得:4x -=,系数化为1得:4x =-.(2)231132x x -+=-去分母得:()()223316x x -=+-,去括号得:46336x x -=+-,移项得:63364x x --=--,合并同类项得:97x -=-,系数化为1得:79x =.18.解:111236x -=,移项合并得:1122x =,解得:1x =,关于x 的方程111236x -=与()31x m m +=-有相同的解,∴将1x =代入方程()31x m m +=-,可得()311m m +=-,解得:2m =-,将2m =-代入3332my m y--=,可得322332y y +--=,去分母得:()()232323y y +=--,去括号得:6469y y +=--,移项合并得:1312y =-,系数化1得:1213y =-19.解:按标价购买羽绒服及裙子总价为9403601300+=(元)设张阿姨购买的羽绒服的标价为x 元/件,则裙子的标价为(1300)x -元/条.由题意,得()0.80.61300940x x +-=,解得800x =.当800x =时,1300500x -=.答:张阿姨购买的羽绒服的标价为800元/件,裙子的标价为500元/条.20.(1)解:设甲、乙两人合作完成此项工程需x 天.则13020x x +=,解得12x =.因为1215<,所以在规定时间内,甲、乙两人能完成这项工程;(2)解:设两人合作a 天完成工程的75%.则330204a a +=解得9a =.若调走甲,则乙还需115420÷=(天);若调走乙,侧甲还需117.5430÷=(天).因为9514+=(天)15<天,97.516.5+=(天)15>天,所以调走甲更合适.21.(1)解:根据题意得()100305030501500x x ⨯+-=+,故按方案一,购买裤子和T 恤共需付款()501500x +;(2)按方案一,购买裤子和T 恤共需付款()100305080%402400x x ⨯+⨯=+,根据题意得,501500402400x x +=+,解得90x =,答:购买90件T 恤时,两种优惠方案付款一样;(3)能,用方案一购买裤子30件,送T 恤30件,再用方案二购买10件T 恤,共需付款()3010050403080%3400⨯+⨯-⨯=(元),∴共需付款3400元.22.(1)解:∵()22460a b -++=,∴240a -=,60b +=,∴2a =,6b =-,∴A 、B 两点之间的距离628=--=;(2)设数轴上点C 表示的数为c ∴2AC c =-,6BC c =--∵3AC BC =,∴236c c -=--,解得4c =-或10c =-,即数轴上点C 表示的数为4-或10-,(3)乙球到挡板的时间623t =÷=秒,当03t ≤≤时,乙球没有到挡板,此时甲球到原点的距离为2t +,乙球到原点的距离为62t -,由甲、乙两小球到原点的距离相等可得622t t -=+,解得43t =;当3t >时,乙球到挡板并返回,此时甲球到原点的距离为2t +,乙球到原点的距离为26t -,由甲、乙两小球到原点的距离相等可得262t t -=+,解得8t =,符合题意;综上所述,当43t =或8秒时,甲、乙两小球到原点的距离相等.。

(完整word版)人教版初一数学上册一元一次方程单元测试卷含答案,推荐文档

(完整word版)人教版初一数学上册一元一次方程单元测试卷含答案,推荐文档

3一元一次方程单元测试分,满分30分)3. 下列等式的变形错误的是(C.如果x y ,那么-丫z z4. 下列两个方程的解相同的是 A. 方程5x + 3 = 6和方程2x = 4 B .方程3x = x + 1和方程2x = 4x — 1C.方程x +丄=0和方程 乞丄=0 D .方程6x — 3(5x — 2) = 5和方程6x — 15x 2 2=35. 若 I 与一1-互为倒数,那么x 的值等于() 6 3A. -B.— -C . 7 8 * * 11D . — X7735356. 方程〔x - 5 1,去分母得()23A. 3x 2x 10 1B. 3x 2x 10 1 、选择题(本大题共10个小题, 每小题只有一个符合条件的选项,每小题 1.下列方程是一儿次方程方程的是A. x y 5B.x 2 C.D. 2.下列方1的是A. x 1 0B.C.D. A.如果x y ,那么x 2B.如果x y ,那么2x 2y D.如果xy ,那么2 x 2 yC. 3x 2x 10 6D. 3x 2x 10 62(3)2 26D.方程U _L 1化成3x 6.0.20.59. 若代数式x —— 的值是2,则x 的值是(3A. 0.75B. 1.75C. 1.510. 朵朵幼儿园的阿姨给小朋友分苹果,如果每人 个又多2个,请问共有多少个小朋友?(A. 4 个 B . 5 个 C . 10 个 二、填空题(本大题共10个小题,每小题3分,满分30 分)111.方程2x -的解为 。

212. __________________________________________________ 请你写出一个解是 1的一元一次方程为: __________________________________ 。

13. _____________________________________________________ 若 3x m3y 2n 与 2x 2m2y n 1 为同类项,贝U n m ___________________________________ 。

最新七年级数学上册一元一次方程同步单元检测(Word版 含答案)

最新七年级数学上册一元一次方程同步单元检测(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。

2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

人教版初中数学七年级上册第三章《一元一次方程》单元检测题(含答案)

人教版初中数学七年级上册第三章《一元一次方程》单元检测题(含答案)
把方程 x=1 两边同乘 2,即可变形为 x=2,故其依据是等式的性质 2; 故选:B. 【点睛】 本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字 母,等式仍成立;2、等式的两边同时乘以或除以同一个不为 0 数或字母,等式仍成立. 12. 或 【解析】 【分析】 由已知可以知道|x-3|=1,则得到 x+3=±1,因而原方程就可以转化成两个一元一次方程,x+3=1 和 x+3=-1 解这两个方程就可以求出原方程的解. 【详解】 移项得:|x-3|=5-4 ∴|x-3|=1 ∴x-3=±1 即 x-3=1 或 x-3=-1
【分析】
先去括号,然后移项,合并同类项,最后系数化为 1,可求出 x 的值.
【详解】
解:去括号得:
,
移项,合并同类项得:
,
系数化为 1 得: , 故选 A. 【点睛】 本题主要考查解方程,解决本题的关键是要熟练掌握解方程的步骤和方法. 10.A 【解析】 【分析】 求出各项中方程的解,即可作出判断. 【详解】 ① 解得 x=-3,不合题意; ② x+2=± 5,
9.方程
的解是( ).
A.
B. - C.
D. -
10.下列方程的解是 的有( )


③ A. 1 个
B. 2 个
④ C. 3
D. 4 个
11.把方程 x=1 变形为 x=2,其依据是
A. 等式的性质 1 B. 等式的性质 2
C. 分数的基本性质 二、填空题
D. 乘法分配律
12.关于方程
的解为___________________________.
17.已知
,代数式
的值比

【名校习题】人教版七年级上册数学单元知识检测题:第三章一元一次方程(含答案).doc

【名校习题】人教版七年级上册数学单元知识检测题:第三章一元一次方程(含答案).doc

人教版七年级上册第三章一元一次方程单元测试卷(1)一、选择题1.下列方程是一元一次方程的是( )A.x2+x=2B.5x+2=5x+3C.x-9=3D.=2答案 C2.方程x-2=2-x的解是( )A.x=1B.x=-1C.x=2D.x=0答案 C3.如果5(x-2)与x-3互为相反数,那么x的值是( )A.7B.C.D.答案 B4.下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=bD.若x=y,则=答案 D5.如图所示,两个天平都平衡,则3个“球体”的重量等于个正方体的重量.( )A.3B.4C.5D.6答案 C6.下列变形正确的是( )A.由7x=4x-3移项,得7x-4x=3B.由-=1+-去分母,得2(2x-1)=1+3(x-3)C.由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D.由2(x+1)=x+7去括号、移项、合并同类项,得x=5答案 D7.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )A.880元B.800元C.720元D.1080元答案 A8.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1.②移项,得4x+x-2x=1+4.③合并同类项,得3x=5.④系数化为1,得x=.经检验知,x=不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ) A.① B.② C.③ D.④答案 B9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元答案 C10.陈老师打算购买气球装扮学校“六一儿童节”活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置的需要,购买时应以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19元B.18元C.16元D.15元答案 C11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是A.(1+50%)x×80%=x–28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x–28 D.(1+50%x)×80%=x+28答案B12.七年级一班的马虎同学在解关于x的方程3a–x=13时,误将–x看成+x,得方程的解x=–2,则原方程正确的解为 A .–2B .2C .–D .答案B二、填空题13.一个数x 的2倍减去7,得36,列方程为 . 答案 2x-7=36 14.如果方程x 2m-1-3=0是关于x 的一元一次方程,那么方程的解为 .答案 x=315.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= . 答案16.写出一个解为x=2的一元一次方程(只写一个即可) . 答案 x-2=0(答案不唯一)17.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m 3,每立方米收费2元;若用水超过20 m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水 m 3. 答案 2818.相邻的5个自然数的和为45,则这5个自然数分别为 . 答案 7、8、9、10、1119.用一根长18米的铁丝围成一个长是宽的2倍的长方形框架,其面积为 平方米. 答案 18 20.小明解方程-=-3,在去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为 . 答案 x=-13三、解答题21.解方程. (1)3x+1=9-x;1212(2)-=1-.答案(1)x=2.(2)x=.22.某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折出售将赚20元,问这种商品的标价是多少元?答案设该商品的标价为x元.根据题意得75%x+25=90%x-20,解得x=300.答:这种商品的标价为300元.23.小亮和他哥哥在离家2千米的同一所学校上学,小亮的哥哥以4千米/小时的速度步行去学校,小亮因找不到数学课本耽误了15分钟,然后骑自行车以12千米/小时的速度去追他哥哥.请问到校前小亮能追上他哥哥吗?若能,则小亮追上他哥哥时,他们距学校多远?若不能,请说明理由.答案 能追上.理由如下:设小亮走了x 个小时才追上他哥哥, 根据题意得4×+4x=12x,解得x=,即小亮走了个小时才追上他哥哥. 小亮追上他哥哥时走了12×=1.5(千米), 又因为1.5<2,所以到校前小亮能追上他哥哥. 此时他们距学校2-1.5=0.5(千米).24.贡江新区位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块组成,与贡江北岸老城区相呼应,构建成“一江两岸”的城市新格局.为建设市民河堤漫步休闲通道,贡江新区现有一段长为180米的河堤整治任务由A 、B 两个工程队先后接力完成,A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程如下: 甲:12x+8(20-x)=180;乙: + -=20. 根据甲、乙人教版七年级数学上册第三章一元一次方程单元测试(含答案)一、单选题1.下列方程是一元一次方程的是( ) A.4x+2y=3 B.y+5=0 C.x 2=2x ﹣l D.1y+y=2 2.在下列方程中①221x x +=,②139x x -=,③102x =,④123233-=,⑤2133y y -=+是一元一次方程的有( )个.A .1B .2C .3D .43.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1 B.由,得C.由,得D.由,得2x ﹣3x=14.下列选项中,移项正确的是( ) A .方程8x 6-=变形为x 68-=+ B .方程5x 4x 8=+变形为5x 4x 8-= C .方程3x 2x 5=+变形为3x 2x 5-=- D .方程32x x 7-=+变形为x 2x 73-=+ 5.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.如果关于 的方程 - 无解,那么 满足( ). A. B.C. D.任意实数8.方程去分母后正确的结果是( )A. B. C.D.9.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.510.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.511.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( ) A.()()254254x x +=- B.2556x x += C.6255x x += D.6255255x x+=+- 12.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( ) A .70,49 B .65,48C .72,48D .73,47二、填空题13.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 14.方程320x -+=的解为________.15.已知a 、b 、c 、d 为有理数,现规定一种新运算a b ad bc c d=-,如131(5)321125=⨯--⨯=--,那么当2422(1)7x =+时,则x 的值为_____.16.今有浓度分别为 3%、8%、11%的甲、乙、丙三种盐水 50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为 7%的盐水 100 千克,则丙种盐水最多可用_________千克 三、解答题17.解方程:(1)8x-2=0;(2)2x-5=4x+3 18.解方程:(1)51312423-+--=x x x ;(2)30.4110.50.3---=x x 19.已知A =2x 2+mx ﹣m ,B =3x 2﹣mx +m . (1)求A ﹣B ;(2)如果3A ﹣2B +C =0,那么C 的表达式是什么?(3)在(2)的条件下,若x =4是方程C =20x +5m 的解,求m 的值.20.如图,在数轴上点O 为原点,A 点表示数a ,B 点表示数b ,且a 、b 满足|a+2|+|b-4|=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)如果M 、N 为数轴上两个动点.点M 从点A 出发,速度为每秒1个单位长度;点N 从点B出发,速度为点A的3倍,它们同时向左运动.①当运动2秒时,点M、N对应的数分别是、.②当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)21.某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这家公司要生产多少件新产品?(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案人教版七年级上册数学第三章一元一次方程单元测试题(含答案)一、选择题1.在方程,,中一元一次方程的个数为()A. 1个B. 2个C. 3个D. 4个2.方程3x﹣7=5的解是()A. x=2B. x=3C. x=4D. x=53.如果a+1与互为相反数,那么a=( )A. B. 10 C. - D. -104.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -25.设P=2y-2,Q=2y+3,有2P-Q=1,则y的值是()A. 0.4B. 4C. -0.4D. -2.56.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?设安排x名工人加工甲部件,可列出方程为()A. 3×16x=2×10(85-x)B. 2×16x=3×10(85-x)C. 8×16x=5×10(85-x)D. 5×16x=8×10(85-x)7.下列方程中,解为x=2的方程是()A. 3x-2=3B. -x+6=2xC. 4-2(x-1)=1D.8.解方程时,去分母、去括号后,正确结果是()A. 4x+1﹣10x+1=1B. 4x+2﹣10x﹣1=1C. 4x+2﹣10x﹣1=6D. 4x+2﹣10x+1=69.下列说法正确的有()(1)若ac=bc,则a=b;(2)若,则a=﹣b;(3)若x2=y2,则﹣4ax2=﹣4by2;(4)若方程2x+5a=11﹣x与6x+3a=22的解相同,则a的值为0.A. 4B. 3C. 2D. 110.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )A. 26元B. 27元C. 28元D. 29元二、填空题11.若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.12.写出一个以为解的一元一次方程________.13.已知x=3是方程ax﹣6=a+10的解,则a=________.14.在数轴上与表示-2的点相距5个单位长度的点所表示的数是________.15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=________.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为 ________17.代数式的值是1,则k = ________.18.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为,于是,他很快知道了这个常数,他补出的这个常数是________.19.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。

【精选】七年级上册一元一次方程同步单元检测(Word版 含答案)

【精选】七年级上册一元一次方程同步单元检测(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

(word版)七年级数学上册一元一次方程测试卷及答案,文档

(word版)七年级数学上册一元一次方程测试卷及答案,文档

一元一次方程测试卷一、填空题〔每题3分,共30分〕1.关于x的方程〔k-1〕x-3k=0是一元一次方程,那么k_______.2.方程6x+5=3x的解是________.3.假设x=3是方程2x-10=4a的解,那么a=______.4.〔1〕-3x+2x=_______.〔2〕5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a,那么该两位数为_______.6.一个长方形周长为108cm,长比宽2倍多6cm,那么长比宽大_______cm.7.某服装本钱为100元,定价比本钱高20%,那么利润为________元.8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t,设需要这种稻谷xt,那么列出的方程为______.9.当m值为______时,4m5的值为0.310.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,?现我军以7千米/小时的速度追击______小时后可追上敌军.二、选择题〔每题3分,共30分〕11.以下说法中正确的选项是〔〕.含有一个未知数的等式是一元一次方程.未知数的次数都是1次的方程是一元一次方程.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程.2y-3=1是一元一次方程12.以下四组变形中,变形正确的选项是〔〕A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由x=2得x=1D .由5x=7得x=356 313.以下各方程中,是一元一次方程的是〔〕-1-A .3x+2y=5B .y2-6y+5=0C .1x-3=1D .3x-2=4x-73 x14.以下各组方程中,解相同的方程是〔〕A.x=3与4x+12=0B.x+1=2与〔x+1〕x=2xC.7x-6=25与7x1=6D.x=9与x+9=0515.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下局部要x小时完成,以下方程正确的选项是〔〕4x x4x x 2020122012204x x4x x202012D.120122016.〔2006,江苏泰州〕假设关于x的一元一次方程2x kx3k=1的解为x=-1,那么k的32值为〔〕A.2B.1C.-13D.0 71117.一条公路甲队独修需24天,乙队需40天,假设甲、?乙两队同时分别从两端开始修,()天后可将全部修完.A.24B.40C.15D.1618.解方程x14x=1去分母正确的选项是〔〕32A.2〔x-1〕-3〔4x-1〕=1B.2x-1-12+x=1C .2〔x-1〕-3〔4-x〕=6D.2x-2-12-3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,?轮船速度为24千米/时,汽车速度为40千米/时,那么水路和公路的长分别为〔〕A .280千米,240千米B .240千米,280千米C .200千米,240千米D.160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,?于-2-是每人可少摊3元,设原来这组学生人数为x人,那么有方程为〔〕A.120x=〔x+2〕x B.120x2x1201203120120C.x2D.3xx x2三、解方程〔共28分〕21.〔1〕5-6x=-7x+1;〔5分〕〔2〕y-1〔y-1〕=2〔y-1〕;〔5分〕3223〔3〕3[4〔1x-1〕-8]=3x+1;〔5分〕〔4〕x1x.〔5分〕4324222.〔8分〕假设关于x的方程2x-3=1和x k=k-3x有相同的解,求k的值.2四、应用题〔每题8分,共32分〕-3-23.〔8分〕某校八年级近期实行小班教学,假设每间教室安排20名学生,那么缺少3?间教室;假设每间教室安排24名学生,那么空出一间教室.问这所学校共有教室多少间?24.〔8分〕如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、?每条对角线上三个数的和相等,问图中的m是多少?m191325.〔8分〕甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,解为x=3的方程是()A.y−3=0B.x+2=1C.2x−2=3D.2x=x+32.下列变形符合方程的变形规则的是()A.若2x−3=7,则2x=7−3B.若3x−2=x+1,则3x−x=1−2C.若−3x=5,则x=5+3D.若−1x=1,则x=−443.已知x=1是方程x+m=3的解,则m的值是()A.1 B.2 C.−2D.34.小丽同学在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4 B.3 C.2 D.15.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.8天B.5天C.3天D.2天6.红星中学初三②班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费送老师一张(由学生出钱),每个学生交0.6元刚好,相片上共有多少人()A.13个B.12个C.11个D.无法确定7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x张做盒身,则下列所列方程正确的是( )A.18(28−x)=12x B.18(28−x)=2×12xC.18(14−x)=12x D.2×18(28−x)=12x8.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.31二、填空题9.若x=2是方程3x−2a=5的解,则a=.10.当x= 时,代数式3−2x2与2−x3互为相反数.11.甲乙两城市相距420千米,客车与轿车分别从甲乙两城市同时出发,相向而行.已知客车每小时行70千米,轿车每小时行110千米,经过小时客车与轿车相距60千米.12.小军在解关于x的方程2−2x3=3x−m7+3去分母时,方程右边的3未乘21,由此求得方程的解为x=1423,则这个方程的正确的解应为.13.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,则该文具店中这种大笔记本的单价为元.三、计算题14.解方程:(1)5x−14=7−2x;(2)x−22−3−x5=4四、解答题15.已知x=2是方程ax−4=0的解(1)求a的值;(2)检验x=3是不是方程2ax−5=3x−4a的解.16.一六三学校六、七、八年级参加春游的师生一共有900人,租一辆45座的小客车租金为250元,租一辆60座的大客车租金为300元.如果租用的大客车比小客车多1辆,恰好坐满.(1)需要租用的大客车和小客车各多少辆?(2)应付租金多少元?17.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x−1=3和x+1=0为“美好方程”.(1)请判断方程4x−(x+5)=1与方程−2y−y=3是否互为“美好方程”;(2)若关于x方程12023x−1=0与12023x+1=3x+k是“美好方程”,求关于y的方程12023(y+2)+1=3y+k+6的解.18.小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.问:(1)小明爸爸出发多少时间后追上小明?(请用列方程的方法解)(2)追上小明时,他们距离学校还有多远?19.希腊数学家丢番图(公元3--4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你求出:(1)丢番图的寿命;(2)儿子死时丢番图的年龄.参考答案1.D2.D3.B4.C5.C6.B7.B8.B9.1210.13811.2或8312.x=−213.814.(1)解:5x−14=7−2x5x+2x=7+147x=21x=3;(2)解:x−22−3−x5=45(x−2)−2(3−x)=405x−10−6+2x=407x=40+167x=56x=8.15.(1)a=2;(2)不是16.(1)解:设租小客车x辆,大客车(x+1)辆45x+60(x+1)=900解得:x=8x+1=8+1=9辆答:租小客车8辆,大客车9辆;(2)解:250×8+300×9=4700(元)答:应付租金4700元.17.(1)方程4x−(x+5)=1与方程−2y−y=3互为“美好方程”.(2)−2024.18.(1)解:设爸爸追上小明用了x 分则由题意可得:5×80+80x=180x解得x=4答:小明爸爸出发4分钟后能追上小明;(2)解:1000-4×180=280(米)答:追上小明时,他们距离学校的距离为280米.19.(1)84岁;(2)80岁。

(word版)七年级数学上册《一元一次方程单元测试卷》及答案

(word版)七年级数学上册《一元一次方程单元测试卷》及答案

七年级数学上册? 一元一次方程单元测试卷?一、单项选择题:〔本大题共10个小题,每题3分,共30分,每题给出的四个选项中,只有一项为哪一项符合题目要求的,将此选项的字母填在答题卡上〕1.〔3分〕以下方程中,是一元一次方程的是〔〕A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=52.〔3分〕以下方程中,以x=﹣1为解的方程是〔〕A.B.7〔x﹣1〕=0C.4x﹣7=5x+7D.x=﹣33〔.3分〕假设关于x的一元一次方程的解是x=﹣1,那么k的值是〔〕A.B.1C.D.04.〔3分〕假设关于x的方程2x+a﹣4=0的解是x=﹣2,那么a的值等于〔〕A.﹣8B.0C.2D.8 5.〔3分〕一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,那么可列方程〔〕A.x﹣1=〔26﹣x〕+2 B.x﹣1=〔13﹣x〕+2C.x+1=〔26﹣x〕﹣2 D.x+1=〔13﹣x〕﹣26.〔3分〕某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店〔〕A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.〔3分〕一件商品按本钱价提高30%后标价,再打8折〔标价的80%〕销售,售价为312元,设这件商品的本钱价为x元,根据题意,下面所列的方程正确的是〔〕A.x?30%×80%=312B.x?30%=312×80%C.312×30%×80%=x D.x〔1+30%〕×80%=3128.〔3分〕一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为〔〕A.17 B.18 C.19 D.209.〔3分〕假设2x+1=4,那么4x+1等于〔〕第1页〔共17页〕A.6B.7C.8D.910.〔3分〕甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是〔〕A.30岁B.20岁C.15岁D.10岁二、填空题:〔本大题共10小题,每题3分,共30分.把答案写在答题卡中的横线上11.〔3分〕方程x﹣2=4的解是.12.〔3分〕如果关x的方程与的解相同,那么m的值是.13.〔3分〕轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,假设静水时船速为26km/h,水速为2km/h,那么A港和B港相距km .1 4.〔分〕假设2x﹣3=0且|3y﹣2|=0,那么xy=.15.〔分〕关于x的方程=4的解是x=4,那么a=.1 6.〔分〕当x=时,3x+4与4x+6的值相等..〔分〕如果单项式4x+1与可以合并为一项,那么x与y的值1 73ab应分别为.1 8.〔分〕关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,那么a=.1 9.〔3分〕假设a,b互为相反数,c,d互为倒数,p的绝对值等于2,那么关于x的方程〔a+b〕x2+3cd?x﹣p2=0的解为x=.2 0.〔分〕三个连续奇数的和是75,这三个数分别是.三、解答题〔共9题,每题10分,总分值90分〕21.〔10分〕解方程1〕2x+5=3〔x﹣1〕2〕=﹣.22.〔10分〕用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,第2页〔共17页〕可以正好制成成套的饮料瓶?23.〔10分〕整理一批图书,如果由一个人单独做要用30h,现先安排一局部人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.〔10分〕为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为 14%,假设此种照相机的进价为 1200元,问该照相机的原售价是多少元?25.〔10分〕x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.〔10分〕初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距 160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.〔10分〕某地区居民生活用电根本价格为每千瓦时元,假设每月用电量超过a千瓦时,那么超过局部按根本电价的 70%收费.〔1〕某户八月份用电84千瓦时,共交电费元,求a= .〔2〕假设该用户九月份的平均电费为元,那么九月份共用电千瓦时,应交电费是元.28.〔10分〕国家规定个人发表文章、出幅员书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:〔1〕假设王老师获得的稿费为2400元,那么应纳税元,假设王老师获得的稿费为4000元,那么应纳税元;〔2〕假设王老师获稿费后纳税420元,求这笔稿费是多少元?29.〔10分〕〔应用题〕某商场方案拨款9万元从厂家购进50台电视机,该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.第3页〔共17页〕(1〕假设商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2〕假设商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?第4页〔共17页〕七年级数学上册?一元一次方程?单元测试卷参考答案与试题解析一、单项选择题:〔本大题共10个小题,每题3分,共30分,每题给出的四个选项中,只有一项为哪一项符合题目要求的,将此选项的字母填在答题卡上〕1.〔3分〕以下方程中,是一元一次方程的是〔〕A.x2﹣4x=3 B. C.x+2y=1 D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数〔元〕,且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;应选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.〔3分〕以下方程中,以x=﹣1为解的方程是〔〕A. B.7〔x﹣1〕=0 C.4x﹣7=5x+7 D. x=﹣3【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2 ,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;应选:A.【点评】此题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.第5页〔共17页〕3.〔3分〕假设关于x的一元一次方程的解是x=﹣1,那么k的值是〔〕A. B.1 C. D.0【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1应选:B.【点评】此题主要考查了方程解的定义,是一个根底的题目,注意细心运算即可.4.〔3分〕假设关于x的方程2x+a﹣4=0的解是x=﹣2,那么a的值等于〔〕A.﹣8 B.0 C.2 D.8【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.应选:D.【点评】此题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.〔3分〕一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,那么可列方程〔〕A.x﹣1=〔26﹣x〕+2 B.x﹣1=〔13﹣x〕+2C.x+1=〔26﹣x〕﹣2 D.x+1=〔13﹣x〕﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,那么宽是〔13﹣x〕cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=〔13﹣x〕+2,应选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量第6页〔共17页〕关系比拟隐藏,要注意仔细审题,耐心寻找.6.〔3分〕某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店〔〕A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x〔1+60%〕=80,y〔1﹣20%〕=80,解得:x=50,y=100,∴本钱为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元应选:C.【点评】此题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.〔3分〕一件商品按本钱价提高30%后标价,再打8折〔标价的80%〕销售,售价为312元,设这件商品的本钱价为x元,根据题意,下面所列的方程正确的是〔〕A.x?30%×80%=312B.x?30%=312×80%C.312×30%×80%=x D.x〔1+30%〕×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x〔1+30%〕×80%=312,应选:D.【点评】此题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.〔3分〕一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为〔〕A.17 B.18 C.19 D.20第7页〔共17页〕【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣〔25﹣x〕×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣〔25﹣x〕×1=70,解得x=19.应选:C.【点评】此题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程组,再求解.9.〔3分〕假设2x+1=4,那么4x+1等于〔〕A.6 B.7 C.8 D.9【分析】由等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,那么原式=6+1=7.应选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法那么是解此题的关键.10.〔3分〕甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是〔〕A.30岁B.20岁C.15岁D.10岁【分析】此题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,那么甲为〔x+15〕岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,那么5年前甲为〔x+15﹣5〕岁,乙为〔x﹣5〕岁,由题意得:x+15﹣5=2〔x﹣5〕解得x=20应选:B.【点评】解题关键是读懂题意,找到适宜的等量关系,列出方程.二、填空题:〔本大题共10小题,每题3分,共30分.把答案写在答题卡中的横线上11.〔3分〕方程x﹣2=4的解是x=9 .第8页〔共17页〕【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.〔3分〕如果关x的方程与的解相同,那么m的值是±2.【分析】此题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4 +2|m|得=3+ +2|m|解得:|m|=2,那么m=±2.故答案为±2.【点评】此题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.〔3分〕轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,假设静水时船速为26km/h,水速为2km/h,那么A港和B港相距504 km.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距xkm,第9页〔共17页〕根据题意得:+3= ,解得:x=504,那么A港与B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解此题的关键.14.〔3分〕假设2x﹣3=0且|3y﹣2|=0,那么xy= 1 .【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】此题的关键是正确解一元一次方程以及绝对值的定义.15.〔3分〕关于x的方程=4的解是x=4,那么a= 0 .【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】此题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.〔3分〕当x= ﹣2 时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于根底题.17.〔3分〕如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字第10页〔共17页〕母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】此题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.〔3分〕关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,那么a= 4 .【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.〔3分〕假设a,b互为相反数,c,d互为倒数,p的绝对值等于2,那么关于x的方程〔a+b〕x2+3cd?x﹣p2=0的解为x= .【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程〔a+b〕x2+3cd?x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,a+b=0,cd=1,p=±2,将其代入关于x的方程〔a+b〕x2+3cd?x﹣p2=0中,可得:3x﹣4=0,解得:x= .【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.〔3分〕三个连续奇数的和是75,这三个数分别是23,25,27 .【分析】利用“三个连续奇数的和是75〞作为等量关系列方程求解.就要先设出一第11页〔共17页〕个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,那么其他的为x+2,x+4x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题〔共9题,每题10分,总分值90分〕21.〔10分〕解方程1〕2x+5=3〔x﹣1〕〔2〕= ﹣.【分析】〔1〕方程去括号,移项合并,把x系数化为1,即可求出解;〔2〕方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:〔1〕去括号得:2x+5=3x﹣3,解得:x=8;2〕去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.〔10分〕用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,那么用〔150﹣x〕张铝片做瓶底,通过理解题意可知此题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.第12页〔共17页〕【解答】解:设用x张铝片做瓶身,那么用〔150﹣x〕张铝片做瓶底,根据题意得:2×16x=43×〔150﹣x〕,解得:x=86,那么用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,那么用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.〔10分〕整理一批图书,如果由一个人单独做要用30h,现先安排一局部人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【分析】安排整理的人员有x人,那么随后又〔x+6〕人,根据题意可得等量关系:开始x人1小时的工作量+后来〔x+6〕人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+ 〔x+6〕×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.〔10分〕为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,假设此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为,等量关系:实际售价=进价〔1+利润率〕,列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×〔1+14%〕,解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,第13页〔共17页〕首先读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解25.〔10分〕x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,|k﹣1|=2,k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】此题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.〔10分〕初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】此题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,那么:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】此题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.〔10分〕某地区居民生活用电根本价格为每千瓦时元,假设每月用电量超过a千瓦时,那么超过局部按根本电价的70%收费.〔1〕某户八月份用电 84千瓦时,共交电费元,求a= 60 .〔2〕假设该用户九月份的平均电费为元,那么九月份共用电90 千瓦时,应第14页〔共17页〕交电费是元.【分析】〔1〕根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;2〕先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:〔1〕由题意,得0.4a+〔84﹣a〕××,解得a=60;〔2〕设九月份共用电x千瓦时,那么×60+〔x﹣60〕××,解得x=90,所以×〔元〕.答:九月份共用电 90千瓦时,应交电费元.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.28.〔10分〕国家规定个人发表文章、出幅员书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:〔1〕假设王老师获得的稿费为2400元,那么应纳税224 元,假设王老师获得的稿费为4000元,那么应纳税440 元;2〕假设王老师获稿费后纳税420元,求这笔稿费是多少元?【分析】此题列出了不同的判断条件,要将此题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:〔1〕假设王老师获得的稿费为2400元,那么应纳税224元,假设王老师获得的稿费为4000元,那么应纳税440元;第15页〔共17页〕2〕因为王老师纳税420元,所以由〔1〕可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%〔x﹣800〕=420x=3800元.答:王老师的这笔稿费为3800元.【点评】解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出适宜的等量关系,列出方程,求解.29.〔10分〕〔应用题〕某商场方案拨款9万元从厂家购进50台电视机,该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.1〕假设商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;2〕假设商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】〔1〕因为要购进两种不同型号电视机,可供选择的有 3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;2〕算出各方案的利润加以比拟.【解答】解:〔1〕解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.那么,解得:.第16页〔共17页〕③设购乙种电视机y台,丙种电视机z台.那么解得:〔不合题意,舍去〕;2〕方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机 25台,乙种电视机25台;或购甲种电视机 35台,丙种电视机15台.购置甲种电视机35台,丙种电视机15台获利最多.【点评】此题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,适宜的等量关系,列出方程组仍是解决问题的关键.此题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.第17页〔共17页〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.3.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.4.已知关于的方程的解也是关于的方程的解.(1)求、的值;(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.【答案】(1)解:(m−14)=−2,m−14=−6m=8,∵关于m的方程的解也是关于x的方程的解.∴x=8,将x=8,代入方程得:解得:n=4,故m=8,n=4;(2)解:由(1)知:AB=8, =4,①当点P在线段AB上时,如图所示:∵AB=8, =4,∴AP= ,BP= ,∵点Q为PB的中点,∴PQ=BQ= BP= ,∴AQ=AP+PQ= + = ;②当点P在线段AB的延长线上时,如图所示:∵AB=8, =4,∴PB= ,∵点Q为PB的中点,∴PQ=BQ= ,∴AQ=AB+BQ=8+ =故AQ= 或 .【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;5.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;当时,在甲超市购物所付的费用是:,在乙超市购物所付的费用是:,所以到乙超市购物优惠(2)解:根据题意由得:,解得:,答:当时,两家超市所花实际钱数相同【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.(2)由甲超市费用=乙超市费用建立方程,求出x值即可.6.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.7.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。

由已知得15x+35(100-x)=2700解得x=40答:购进甲商品40件,乙商品60件。

(2)解:设:购进甲商品x件,购进乙商品(100-x)件。

利润W=5x+10(100-x)根据题意可得5x+10(100-x)≤760和x≤50;解得48≤x≤50,∴进货方案有三种①甲48件,乙52件,②甲49件,乙51件③甲50件,乙50件(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)第二天:打折,打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)答:购买甲商品10件,乙商品8件或者9件。

【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可8.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措:人数10人及以下(含10人)超过10人不超过20人的部分超过20人的部分收费标准原价(不优惠)3500元/人3000元/人(2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为人,若总人数还是不超过20人,则总费用为________元;若总人数超过了20人,则总费用为________元;(结果均用含的代数式表示)(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?【答案】(1)50500(2);(3)解:,显然 .①若,则;(不合题意,舍去)②若,则;答:共有25人参加了本次旅游【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,①若总人数x还是不超过20人,则总费用为:4000×10+3500(x-10)=3500x+5000(元);②若总人数x超过了20人,则总费用为:4000×10+3500(20-10)+3000(x-20)=3000x+15000(元)故答案为:(3500x+5000);(3000x+15000)【分析】(1)根据优惠措施,旅游13人的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;(2)分两种情况解答:①不超过20人时,总费用=10×400+3500×(x-10);②超过20人时总费用=10×4000+3500×10+3000×(x-20);(3)先判断出x>10,然后分两种情况解答:①当时,②当时,9.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.由题意得:30x+20(x+6)=1070解得:x=19则x+6=25.答:钢笔的单价为19元,毛笔的单价为25元.(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.根据题意,得19y+25(60-y)=1322解之得:y≈29.7(不符合题意).所以王老师肯定搞错了.②2或8.【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得19z+25(60-z)=1322-a.即:6z=178+a,因为a、z都是整数,且178+a应被6整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,6z=180,z=30,符合题意;当a=4时,6z=182,z≈30.3,不符合题意;当a=6时,6z=184,z≈30.7,不符合题意;当a=8时,6z=186,z=31,符合题意.所以签字笔的单价可能2元或8元.【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支,求出方程的解不是整数则说明算错了;②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.10.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.11.已知a是最大的负整数,b、c满足(b-3)2+|c+4|=0,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)点A表示的数为________,点B表示的数为________,点C表示的数为________;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到点B为5个单位长度?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于13,请写出所有点M 对应的数,并写出求解过程.【答案】(1)-1;3;-4(2)解:设点P运动t秒时到点B为5个单位长度,分以下两种情况:①点P在点B左边距离点B5个单位,则有:2t+5=3-(-4)解得t=1②点P在点B右边距离点B5个单位,则有:2t-5=3-(-4)解得t=6故当点P运动1秒或6秒后,点P到点B为5个单位长度(3)解:点B与点C之间的任何一点时到A、B、C三点的距离之和都小于13,因此点M的位置只有以下两种情况,设点M所表示的数为m,则:①点M在点C左边时,可得:-4-m-1-m+3-m=13 解得m=-5②点M在点B右边时,可得:m+4+m+1+m-3=13,解得m=故点M对应的数为-5或.【解析】【解答】解:(1)∵a是最大的负整数∴a=-1∵(b-3)2≥0,|c+4|≥0,而(b-3)2+|c+4|=0∴b=3,c=-4故答案为:-1;3;-4.【分析】(1)由题目中的条件可直接得出点A对应的数,根据平方与绝对值的非负性可得出B与C对应的数;(2)由点P到点B为5个单位长度,可两种情况,点P在点B左边及点P在点B右边,分别列方程即可求得;(3)分情况讨论,当点M在点C左边及当点M在点B右边,分别列方程可求得;而当点M在点C及点B之间时错误.12.鄞州公园计划在园内的坡地上栽种树苗和花苗,树苗和花苗的比例是1:25,已知每人每天能种植树苗3棵或种植花苗50棵,现有15人参与种植劳动 .(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如能完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务? 【答案】(1)解:设种树苗人数为x人,则种花苗人数为(15-x)人,由题意得3x:50(15-x)=1:25解得x=6答:6人种树苗,9人种花苗。

相关文档
最新文档