理论力学第十一章解析

合集下载

理论力学-第11章 动量定理及其应用

理论力学-第11章  动量定理及其应用
采用质心运动定理。
设物块相对四棱柱体的加速度为ar,
由于凸起部分的作用,四棱柱体不动,
ae a4 0 ar a
故,四棱柱体的加速度a 极易由牛顿定律求出。 根据质心运动定理,并注意到
miaix macx
得到四棱柱体对于地面凸起部分的水平作用力
macx m1acos m2a F
第8章 动量定理及其应用
(A) A盘质心运动得快 (B) B盘质心运动得快 (C) 两盘质心运动相同 (D) 无法判断
四种答案中哪一个是正确的?
质心运动定理
质心运动定理的守恒形式
质心运动定理
质心运动定理的守恒形式
m aC Fie
i
根据上述方程,如果作用于质点系上的外力主矢恒等于零,则

FRe Fie 0
i
动量定理及其守恒形式
质点系的动量定理
d dt
(mi
vi )
Fi
Fii Fie
对于由n个质点所组成的质点系可列出n个这样的方程,将方 程两侧的项分别相加,得到
d (
dt i
mi vi )
i
Fii
i
Fie
注意到质点系内质点间的相互作用力总是成对出,因此质点 系的内力的矢量和等于零,于是上式变为
myC
i
Fiye
i
mzC
i
Fize
xC , yC ,zC -为质心加速度在直角坐标轴上的投影。
质心运动定理
质心运动定理
A F′ B F
两个相同的均质圆盘,放在光滑水平面上,在圆盘的不同 位置上,各作用一水平力F和F′,使圆盘由静止开始运动,设F = F′,试问哪个圆盘的质心运动得快?
体相对地面的位移。

理论力学:_第23讲-第11章(2)

理论力学:_第23讲-第11章(2)

由质心运动定理的投影形式
(m1 + m2 ) &x&C = Fx
(m1 + m2 ) &y&C = Fy − m1g − m2 g
27
由质心运动定理的投影形式
(m1 + m2 ) &x&C = Fx (m1 + m2 ) &y&C = Fy − m1g − m2 g
求质心的加速度
xC
=
m1x1 m1
m1g m2g
Mo
Fy
Fx
yC
=
m1 y1 + m2 y2 m1 + m2
=
m1 ⋅ 0 + m2 (−e cosω t) m1 + m2
= − m2e cosω t
m1 + m2
29
质心坐标
xC
=
m2e m1 + m2
sinω t
yC
=

m2e m1 + m2
cosω
t
分别对 t 求导两次,得
&x&C
+ m2 x2 + m2
= m1 ⋅ 0 + m2e sinω t
m1 + m2
= m2e sinω t
m1 + m2
m1g Mo
Fy
m2g Fx
28
求质心的加速度
xC
=
m1x1 + m2 x2 m1 + m2
= m1 ⋅ 0 + m2e sinω t
m1 + m2
= m2e sinω t
m1 + m2

《理论力学》课件 第十一章

《理论力学》课件 第十一章

第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。

质点的动量是矢量,它的方向与质点速度的方向一致。

kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。

)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。

李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。

求质点系的动量问题转化为求刚体质心问题。

cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。

用力与作用时间的乘积来衡量力在这段时间内积累的作用。

冲量是矢量,方向与常力的方向一致。

冲量的单位是N.S 。

§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。

)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。

理论力学(机械工业出版社)第十一章动量矩定理习题解答

理论力学(机械工业出版社)第十一章动量矩定理习题解答

习 题11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。

其中a 、b 和w 均为常量。

试求质点对坐标原点O 的动量矩。

t a xv x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-=)cos 2cos 22sin sin (t a t b t b t a m ωωωωωω⨯+⨯= )cos 2cos 22sin (sin t t t t mab ωωωωω⨯+⨯= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω⨯+⨯= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2=11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。

如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。

(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。

图11-25(1)θθ222sin 2)sin (2ml l m J z =⨯= θω22sin 2l m L z = (2)θθ2202sin 32d )sin (2ml x x lm J l z ==⎰杆 θ22sin 38ml J z = θω22sin 38l m L z =11-3 试求图11-26所示各均质物体对其转轴的动量矩。

各物体质量均为m 。

图11-26(a) ω231ml L O =(b) 22291)6(121ml l m ml J O =+= ω291ml L O -=(c) 2222452312121ml l m l m J O =⨯⨯+⨯⨯=ω2245ml L O = (d) 2222321mR mR mR J O =+= ω223mR L O =11-4 如图11-27所示,均质三角形薄板的质量为m ,高为h ,试求对底边的转动惯量J x 。

理论力学第十一章 达朗贝尔原理(动静法)

理论力学第十一章 达朗贝尔原理(动静法)

讨论:1)脱离角α与滚筒的角速度和滚筒半径有关,而与钢球质量无关。
2)
筒壁。此时转筒
的转速称为临界转速,对球磨机而言,要求n小于nL,否则球磨机就不能工作。
§11-2 刚体惯性力系的简化
刚体平移时惯性力系的简化
当刚体平移时,任一瞬时体内各点的加速度相等。若记某瞬 时刚体质心加速度为aC,则该瞬时体内任一质量为m的质点 的加速度ai=aC,虚加在该点上的惯性力Fgi=-miai=-miaC 。 刚体内每一点都加上相应的惯性力,由静力学知,该空间平 行力系可简化为过质心的合力,即
式中,Fgτ=-maτ,称为切向惯性力 Fgn=-man称为法向惯性力(也称离心力)
负号表示它们分别与切向加速度和法向加速度的方向相反。
§11-1 惯性力与质点的达朗贝尔原理
质点系的动静法
对由n个质点组成的非自由质点系,设其中任一质点的质量 为mi,某瞬时加速度为ai,作用其上的主动力F,约束反力 Fni,假想在该质点上加上惯性力Fgi=-mai,由质点达朗贝 尔原理,则
=- maC
该力偶的力偶矩等于惯性力系对刚体惯性力系的简化
结论 当刚体有质量对称面,且绕垂直于质量对称面的定轴 转动时,惯性力系可以简化为对称面内的一个力和一个力偶。 该力等于刚体的质量与质心加速度的乘积,方向与质心加速 度方向相反,且力的作用线通过转轴;
该力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘 积,其转向与角加速度转向相反。惯性力系向点O简化的结 果如图b)所示。
Fg=-m a
质点的达朗伯原理:质点在运动的每一瞬时,作用 于质点上的主动力、约束反力与假想地在质点上 的惯性力,在形式上构成一平衡力系。
§11-1 惯性力与质点的达朗贝尔原理

《理论力学》课件 第11章

《理论力学》课件 第11章
ds Rd
因此,力F的元功又可表示为 δW F cosds F cos Rd
由静力学可知, F cosR 即为力 F 对轴 Oz 的力矩 Mz (F) ,于是有
δW Mz (F )d
(11-16)
即作用于定轴转动刚体上力的元功,等于该力对转轴的矩(简称 转矩)和微转角的乘积。
图11-5
当刚体在力 F 的作用下,绕轴转过 角时,力 F 所做的功为
v2 v1
d
1 2
mv2
M2 F dr
M1

1 2
mv22
1 2
mv12
W12
(11-22)
这就是质点动能定理的积分形式,即质点在某运动过程中动能的改 变,等于作用于质点上的力在同一过程中所做的功。
质点动能定理建立了质点动能和力的功之间的关系,它把质点的速度、作 用力和质点的路程联系在一起,对于需要求解这三个物理量的动力学问题, 应用动能定理是方便的。此外,通过动能定理对时间求导,式中将出现加 速度,因此动能定理也常用来求解质点的加速度。
则这种约束力所做功的总和为零。
图11-8
4.无重刚杆
如图 11-9 所示,无重刚杆 AB 连接两个物体,由于刚杆重量不计,因此其约束 力 FN 与 FN 应是一对大小相等、方向相反,作用线相同的平衡力。设 A,B 两点的 微小位移分别是 drA 和 drB ,则 FN 与 FN 元功之和为
δW FN drA FN drB FN | drA | cosA FN | drB | cosB FN (| drA | cosA | drB | cosB )
当力偶矩 M 常量时,上式可写为
(11-19)
W M
五、约束力的功与理想约束

理论力学第十一章 质点系动量定理讲解

理论力学第十一章 质点系动量定理讲解

结论与讨论
牛顿第二定律与 动量守恒
牛顿第二定律 动量定理 动量守恒定理
工程力学中的动量定理和动量守恒定理比 物理学中的相应的定理更加具有一般性,应 用的领域更加广泛,主要研究以地球为惯性 参考系的宏观动力学问题,特别是非自由质 点系的动力学问题。这些问题的一般运动中 的动量往往是不守恒的。
结论与讨论

O
第一种方法:先计算各个质点 的动量,再求其矢量和。
第二种方法:先确定系统 的质心,以及质心的速度, B 然后计算系统的动量。
质点系动量定理应用于简单的刚体系统
例题1
y vA
A

O
解: 第一种方法:先计算各个质点 的动量,再求其矢量和。
p mA v A mB vB
建立Oxy坐标系。在角度为任 意值的情形下
p mi vi
i
§11-1 质点系动量定理
动量系的矢量和,称为质点系的动量,又称 为动量系的主矢量,简称为动量主矢。
p mi vi
i
根据质点系质心的位矢公式
mi ri
rC
i
m
mi vi
vC i m
p mvC
§11-1 质点系动量定理
质点系动量定理
对于质点
d pi dt
质点系动量定理应用
动量定理的
于开放质点系-定常质量流 定常流形式
考察1-2小段质量流,其 受力:
F1、F2-入口和出口 处横截面所受相邻质量流 的压力;
W-质量流的重力; FN-管壁约束力合力。
考察1-2小段质量流, v1、v2-入口和出口处质量流的速度; 1-2 :t 瞬时质量流所在位置; 1´-2´ :t + t 瞬时质量流所在位置;

理论力学课件第十一章 动量定理

理论力学课件第十一章 动量定理
dt
F (e) y
dPz
dt
F (e) z
质点系的动量某轴上的投影对时间的导数等于作用于质点系的
所有外力在同一坐标轴上投影的代数和。
§ 11-2 动量定理
v
设t=0时,v质点系的动量为P1 的动量为 P2 。则
,经过时间t后,质点系 v P1
v
dP
d(mivvi )
v Fi(e)dt
Mi
P
Pvx2
v
Py2
Pz2
cos(P, v
i) v
Px
/
P
cos(P, j) Py / P
vv
cos(P, k ) Pz / P;
§ 11-1 动量和冲量
例11-2:椭圆规如图所示,已知曲柄OC的质量为m,
规尺AB的质量为2m , 滑块A与B的质量为m , OC=CA=CB= l 。求在图示位置曲柄以匀角速度转动时
Fdt 0
2
的过m程vv中2 ,m速vv度1 分Iv别为质v点v1、动vv2量定理
vv2 积分式
某段时间间隔内,质点动量的变化等于作用于质点上力在此段
时间内的冲量
§ 11-2 动量定理
二、质点系的动量定理
设在由力nFv个i 的质作点用组下成,的获质得点速系度,为第ivv个i 质点的质量为 mi ,
椭圆规的动量。
vA
A
解:取整个刚体系统
P
为研究对象。
vC
C
P点为AB杆的速度瞬 心
O
vB
B
§ 11-1 动量和冲量
由运动学可知,速度 A v A
分别为
vC l
AB
vC PC
P
vC

理论力学第十一章 动能定理[精]

理论力学第十一章 动能定理[精]

解:
动能: T m 2 v 2 A m 220 2 2 m 3 v c 2 2 1 r 2 2 m 3c 2 2 1 m 2 v B 2
功Cr:W xB g xCs2m 3 i C rx n A 0 M 0r 0 m 3 0Rg c xAm 2 x g PB m x vA A cg 3 o Mf s x 0 s
vB
B
§11-3 质点系动能定理
i 第 个质点
分别乘以 vid
mi
dvi
dt
tdr

Fi
m iv id v i F id r
d(12mivi2)dWi 叠加
d(12mivi2)dWi
d(12mivi2)dW i
dTdWi
质点系动能的微分等于作用于质点系的力的元功之和。
O
v
P
M v
dr M F
y
W s(F xd xF yd yF zd)z
M2 M1
dW
x

FR Fi
W F R d s F 1 d s ... ..W .i .
S
S
自然坐标形式 :
WM M 1 2F drM M 1 2Fdrcos dr ds
Jo

1 3
P g
l2
Fy
Fx
(1)式两边对时间求导
Ql2 lPsinJ0 Q gl2
900

QP 2 sin 3 1P glQ gl
P2Q3g P3Q 2l
例11-9:已知:mA=m,mB=m/2,mC=m/3,鼓轮的廻转半径为, 质量为m,鼓轮小半径为r,大半径为R,C轮的半径为r,物体A 接触的摩擦系数为fs,求物体A下落时的速度。

理论力学11梁的位移计算

理论力学11梁的位移计算
2 2
dvM dxEI ( z x)
θ ( x) = = ∫
⎛ M ( x) ⎞ v( x) = ∫ dxEI ⎜∫ z
dx + C
dx ⎟dx + Cx + D C,D 为积分常数,由梁的位移约束条件确定。 ⎝ EI z⎠ 挠曲线近似微分方程通解的积分常数确定以后,就得 到了挠曲线方程和转角方程,这种求梁变形的方法称为积 分法。
本章小结
挠曲线、挠度、转角、挠曲线方程、转角方程
v = f ( x)
θ = θ ( x)
挠曲线微分方程
dv θ ≈ tgθ = dx
dv ±
2
2
dx dv 2 ⎤⎡ 1+ ( ) ⎥⎢ dx ⎦⎣
将b处约束去掉基本静定系静定基相当系统加上q及约束力变形协调条件marblqlvbeirb39梁的位移计算本章小结挠曲线挠度转角挠曲线方程转角方程dx挠曲线微分方程dxdv40梁的位移计算积分法求梁的位移边界条件和连续条件dvmdxdx叠加法求梁的位移梁的刚度条件4041梁的位移计算提高梁的刚度的主要措施增大截面惯性矩
23
梁的位移计算
24
梁的位移计算
25
梁的位移计算
思考:
应用叠加法求梁的位移,必须满足的条件是什么? 答:小变形,材料符合胡克定律。
26
梁的位移计算
4 3
已知图1B点的挠度和转角分别为 ql / 8 EI , ql / 6 EI , 图2C截面的转角为多少?
q
A
l
B
ql / 8 EI
3
q
A B
3
16


求简支梁最大挠度,F已知,EI为常数。

1、建立挠曲线微分方程

理论力学第十一章,动量定理

理论力学第十一章,动量定理

的投影守恒。
y
α
px px0
vr m2g v

vm1
vr
A
FA m1g
x
vm1
α
B
FB
(b)
(a)
α
vm1
m2g x
p mi v i
p x mi vix
A
FA m1g
B
FB
例 题1
v

考虑到初始瞬时系统处于平衡,即有pox=0,于是有 px = m2vcos m1vm1 = 0 另一方面,对于炮弹应用速度合成定理,可得 v = ve + vr 考虑到 ve = vm1,并将上式投影到轴 x 和 y 上,就得到 vcos = vrcos vm1
质点系冲量定理投影形式
e e p2 y p1 y ( Fiy ) dt I iy t2 t1 e p2 z p1 z ( Fize ) dt I iz t2 t1
dp Fie dt

dpx e Fix dt
3,质点系动量守恒定律
Fi e 0 , 1)
y
α
vr vm1
m2g x
A
FA m1g
B
FB
(a)
例 题1
解: 取火炮和炮弹(包括炸药)这个系统作为研究对象。
设火炮的反座速度是 vm1,炮弹的发射速度是 v,对水平面的仰 角是 (图b)。 炸药(其质量略去不计)的爆炸力是内力,作用在系统上的外力 在水平轴 x 的投影都是零,即有Fx = 0;可见,系统的动量在轴 x 上
(m1 m2 ) C Fy m1 g m2 g y
质心 C 的坐标为

理论力学第十一章动量矩定理

理论力学第十一章动量矩定理

JO
d 2
dt 2
mga
即:
d 2
dt 2
mga
JO
0
解: 令 2 mga
JO
——固有频率

2 0
通解为 O sin(
mgat )
JO
周期为 T 2 2 JO
mga
例11-3 用于测量圆盘转动惯量的三线摆中,
三根长度相等(l)的弹性线,等间距悬挂被测量的圆盘。
已知圆盘半径为 R、重量为W。
dt
dt dt
v dr dt
r d(mv) d(r mv)
dt
dt
dLO dt
MO F
矢量式
质点对固定点的动量矩对时间的导数等于作 用于质点上的力对该点的矩。
★ 质点系的动量矩定理
0
d
dt
i
ri mivi
i
MO (Fii )
i
MO (Fie )
MO (Fie )
i
F2
z
F1
LO rC mvC LC
dLO d
dt dt
rC mvC LC
ri Fie (rC + ri) Fie
rC Fie ri Fie


drC dt
mvC
rC
d dt
mvC
dLC dt
rC
Fie
dLC dt
由于
① ① drC dt
② vC ,
drC dt
mvC
★ 相对质心的动量矩
LC MC mivi ri mivi
vi vC vir
LC = rimivC rimivir
其中
ri mivC ( miri)vC 0 (rC

(完整版)理论力学课后习题答案第11章达朗贝尔原理及其应用

(完整版)理论力学课后习题答案第11章达朗贝尔原理及其应用

第11章达朗贝尔原理及其应用11-1均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。

试对图示四种情形进行惯性力的简化。

ωα=0α≠0ωα=0ωα≠0ω(a )(b )习题11-1图(c )(d )F I OOF InF Itωα=0M I OωOωOωα≠0M I Oα≠0α=0(a )(b )(c )(d )习题11-1解图解:设圆盘的质量为m ,半径为r ,则如习题11-1解图:2(a )F I=mr ω,MI O=0(b )F I =mr ω,F I=mr α,MI O=J O α=(c )F I=0,MI O=0(d )F I=0,MI O=J O α=11-2矩形均质平板尺寸如图,质量27kg ,由两个销子A 、B 悬挂。

若突然撤去销子B ,求在撤去的瞬时平板的角加速度和销子A 的约束力。

n2t32mr α212mr α2ACB解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。

F I=m α⋅AC =3.375α0.20m习题11-2图.15m1M I A =J A α=[m (a 2+b 2)+m ⋅AC 2]α=0.5625α122α=47.04rad/s M -0.1mg =0;;M (F )=0I A∑A F AyF IF Ax AM I A C a CBαm g θ∑F y=0;F I cos θ+F Ay -mg =0;sin θ=4=0.850.20m (a ).15m∑Fx=0;F I sin θ-F Ax=0;其中:sin θ=3=0.65F Ax=3.375⨯47.04⨯0.6=95.26NF Ay=27⨯9.8-3.375⨯47.04⨯0.8=137.6N11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为 3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。

若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。

《理论力学》第10-11章习题参考解答

《理论力学》第10-11章习题参考解答

1 2
(1 3
G1 g
r 2 ) 2
(G1
G2 )
r 2
求得:
3g(G1 G2 ) r(G1 3G2 )
,
vB
r
3(G1 G2 )gr (G1 3G2 )
②分析AB杆各点的加速度,由基点法得:
aB
aA
aAn
aB A
将矢量方程在铅垂方向投影得:
0
a
n A
aBA
所以:
AB
aBA L
aAn L
《理论力学》第10章习题参考解答
FD
解:已知:
T 10(s), n 2 4 (rad / s) 60
①分析OA的受力,有:
F 3.5 FD 1.5
FD
7 3
F
②取轮子为研究对象,动力学方程为:
(1 2
mr2 )
Fs r
FS
FD f
7Ff 3
求得: 14Ff 3mr
因为角加速度为常数,所以轮子作匀减速运动,则有:
G2 g
aC
FB
L 2
FAy
L 2
(1 12
G2 g
L2 ) AB
解方程得:
FB
G2 (G1 2G2 ) G1 3G2
vB
AB aC
aB
aB A
aCn aB A
C
FB
G2
vA aA aAn FAy FAx
r 2 L
3g(G1 G2 ) (G1 3G2 )L
③分析AB杆各点的加速度,由基点法得: aC aCn aA aAn aCA
将矢量方程在铅垂方向投影得:
aC
a
n A
aC A

理论力学第十一章动量矩定理

理论力学第十一章动量矩定理
当物体作直线运动时,可以用质量作为物体运动惯性的度量; 而当物体绕某轴转动时,转动惯性的大小不仅与质量有关,而 且与半径有关。物体的质量分布距转轴的距离越远,转动惯性 就越大,亦即,越不容易改变转动运动的状态。
2.规则几何形状物体的转动惯量
J Z = ∫ r 2 dm
均质圆环:
J z = ∑ ΔmR 2 =MR 2
往三个坐标轴投影:得到质点对轴的动量矩定理: d m x (mv ) = m x ( F ) dt d m y (mv ) = m y ( F ) dt d m z (mv ) = m z ( F ) dt (1)若Σmo(F)≡0, mo(mv)=常矢量; 两种特殊情况: (2)若Σmx(F)≡0, mx(mv)=常量。 以上两种情况均称为动量矩守恒
R 别为J 1 和J 2 ,两轮的半径分别为 R1 、 2 ,传 动比 i12 = R2 / R1 。轴Ⅰ上作用主动力矩 M 1 , 轴Ⅱ上有阻力矩 M 2,转向如图。忽略摩擦。 求轴Ⅰ的角加速度。
例 图示传动轴,轴Ⅰ和轴Ⅱ的转动惯量分

M2
M1

解 :分别取轴Ⅰ和Ⅱ为研究对象。受力如图。 两轴对各自轴心的转动微分方程分别为
体积
2π R
π R2
4 π R3 3
4π R 2
Δm
1 1 J O = ∑ ΔMR 2 = MR 2 2 2
N维球
均质直杆:
J z = ∫ x 2 ρ l dx =
0
l
ρl l 3
3
1 2 J z = Ml 3
z
1 1 2 2 J z = ∑ (Δm)l = Ml 3 3
l
x
z
dx
Δm
x

理论力学 第11章 虚位移原理

理论力学 第11章  虚位移原理
rB rA tg (PQtg )rA 0
由rA的任意性,得 PQ tg
16
2、解析法 由于系统为单自由度,
可取为广义坐标。
xB lcos , yA lsin xB lsin , yA lcos
Py A QxB 0 ,
(Pcos Qsin )l 0
P1yC P2yD FxB 0 (a) 而 yC acos , yC asin
yD 2acos bcos , yD 2asin bsin xB 2asin 2bsin , xB 2acos 2bcos
代入(a)式,得: (P1a sin P2 2a sin F 2a cos) (P2bsin F 2b cos ) 0
M

Fh
sin 2
2用虚速度法:
ve

OB

h
sin
,
va

vC

h sin 2
代入到
M FvC
0,
M

Fh
sin2
3用建立坐标,取变分的方法,有
M F xC 0
xC h cot BC

xC


h sin 2
解得
M Fh
sin 2
6
(二) 解析法。质点系中各质点的坐标可表示为广义坐标的函数
( q1,q2,……,qk),广义坐标分别有变分q1,q2 , ,qk ,各
质点的虚位移ri 在直角坐标上的投影可以表示为
xi

xi q1
q1
xi q2
q2


xi qk
qk
yi

yi q1

理论力学11 质点运动微分方程

理论力学11  质点运动微分方程

质点。
2.质点系 质点系:由有限或无限个有着一定联系 质点系 的质点组成的系统。 刚体是一个特殊的质点系,由无数个相互间保持距离 刚体 不变的质点组成,又称为不变质点系。
1
自由质点系:质点系中各质点的运动不受约束的限制。 非自由质点系:质点系中的质点的运动受到约束的限制。 质点系是力学中最普遍的抽象化模型;包括刚体,弹性体,流体。 三.动力学分类: 质点动力学
5
二. 第二定律(力与加速度关系定律) 第二定律(力与加速度关系定律) 质点受力作用时所获得的加速度的大小与作用力的大 小成正比,与质点的质量成反比, 小成正比,与质点的质量成反比,加速度的方向与力的方 向相同。 向相同。
即:
r r F a= m
r r 或 ma = F
由于上式是推导其它动力学方程的出发点,所以通常称上式 为动力学基本方程 动力学基本方程。 动力学基本方程 注意: 注意:当质点同时受几个力的作用时,式中的F 为这ቤተ መጻሕፍቲ ባይዱ力的合力。
2
授课教师:薛齐文 授课教师: 土木与安全工程学院力学教研室
3
第十一章
质点运动微分方程
§11–1 动力学基本定律 §11–2 质点运动微分方程
4
§11.1 动力学基本定律 动力学的理论基础:是牛顿三大定律,它们也被称为 动力学的理论基础 动力学的基本定律。 第一定律(惯性定律) 一. 第一定律(惯性定律) 任何质点如不受力作用, 任何质点如不受力作用,则将保持其原来静止的或匀速 直线运动的状态不变。 直线运动的状态不变。 质点保持其原有运动状态不变的属性称为惯性 称为惯性 事实上,不存在不受力的质点,若作用在质点上的力系为 平衡力系,则等效于质点不受力。 该定律表明:力是改变质点运动状态的原因。 该定律表明:力是改变质点运动状态的原因。

理论力学第十一章动量定理.

理论力学第十一章动量定理.

[例1] 已知:为常量,均质杆OA=AB = l, 两杆质量皆为 m1,
滑块B质量 m2。 求: 质心运动方程、轨迹及系统动量。
解:设 ,t 质心运动方程为:
xC

m1
l 2

m1
3l 2

2m1 m2
2m2l
cos t
yA

2(m1 m2 ) l cos t
C B
2m1 m2

0,

px
恒量
4.例题分析
[例1] 电动机外壳固定在水平基础上,定子和外壳的质
量为 m1,转子质量为 m2。定子和机壳质心 O1 ,转子质
心 O2,O1O2 e,角速度 为常量。求基础的水平及
铅直约束力。
解: p m2e
px m2e cos t py m2 e sin t
qV — 流体在单位时间内流过截面的体积流量
dt内流过截面动量变化为:
管壁对流体 的约束力
设 F F F
F —静约束力;F —附加动约束力
F p Fa Fb 0
F qV (vb va )
p p0 pa1b1 pab
( pbb1 pa1b ) ( pa1b paa1 ) pbb1 paa1
[思考题 P255 11-3,习题 P256 11-10]
v mBvr kmBol
mA mb mA mb
11-3 质心运动定理
1.质心
rC

m iri m
,m m i
质心位置的确定:
xC
mixi m
,yC
miyi, m

《理论力学》第十一章 动量矩定理

《理论力学》第十一章 动量矩定理

LO lOi ri mi v i
将动量矩投影到以O为原点的直角坐标轴上
HOHAI UNIVERSITY ENGINEERING MECHANICS
Lx l x mv m yv z zv y
L y l y mv m zv x xv z Lz l z mv m xv y yv x
(二)质点系的动量矩L
设质点系由n个质点组成,其中第i个质点 的质量为mi,速度为vi。 质系对任意固定点O的动量矩:
HOHAI UNIVERSITY ENGINEERING MECHANICS
LO lOi ri mi v i
质系对任意固定点O的动量矩为各质点 的动量对O点矩的矢量和。
3、刚体动量矩的计算
1)刚体平动
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1:均质细长直杆长l,质量m1,与质量为m2,半径
为r,均质圆盘固结。已知角速度为,试求对转轴的 动量矩。 解:
HOHAI UNIVERSITY ENGINEERING MECHANICS
第十一章
HOHAI UNIVERSITY ENGINEERING MECHANICS
动量矩定理
§1 动量矩(表征物体转动的物理量)
一、动量矩的定义及计算
1. 对任意固定点O的动量矩(矢量):
质点对固定点的动量矩即质点的动量对固定点的矩: z lO r mv r p mv lo M r F
平轴z的转动惯量。轴z过O点垂直纸面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
dt
两边叉乘矢径
r, 有
r
d (mv )
dt
rF
左边可写成
r
d
(mv )
d
(r
mv )
dr
mv

dr
dt
mv
v
dt
mv
0
,
rF
dt
M O(F) ,
dt
故:
d
(r mv) r F,
dt
d
[M O (mv)] M O (F ).
dt
质点对任一固定点的动量矩对时间的导数,等于作用在质
点上的力对同一点之矩。这就是质点对固定点的动量矩定理。
d
[M
O (mv)]
M
O (F).
dt
将上式在通过固定点O的三个直角坐标轴上投影,得
d dt
M
x
(mv
)
M
x
(F
),
d dt
M
y
(mv )
M
y
( F ),
d dt
M
z
(mv )
M
z
(F
)
上式称质点对固定轴的动量矩定理,也称为质点动量矩定 理的投影形式。即质点对任一固定轴的动量矩对时间的导数, 等于作用在质点上的力对同一轴之矩。
M O(F)
B
力对点O之矩在z轴上的投影:
F
[M O (F)]z xFy yFx
o x
r
A
y 力对轴 z的之矩:
M
z
(F)
xFy
yFx
Mz (F) [M O(F)]z
代数量
质点对点的动量矩 质点对点O动量矩:
质点的动量对点O之矩
M O(mv) r mv
z M O (mv)
o
质点的动量对点O之矩在z轴上的投影:
对点的动量矩与对轴的动量矩的关系: [LO ]z Lz
即 LO Lxi Ly j Lzk
刚体动量矩计算 1.平动刚体的动量矩: 1)平动刚体对固定点O的动量矩:
LO M O (mvC ) rC mvC
( ri mivi miri vC rC MvC )
2)平动刚体对轴 z 动量矩: Lz M z (mvC )
dt dt
例题 2
O
φ
v
A
例题
动量矩定理
例题 2
d (ml2 d ) mgl sin
dt dt
化简即得单摆的运动微分方程
d2
dt 2
g l
sin
0
微幅摆动时,sin ,
并令
wn2
g l
wn2 0
O
φ
v
A
解微分方程,并代入初始条件(t 0, 0,0 0) 则运动方程
0 cos
8
3.平面运动刚体 平面运动刚体对垂直于质量对称平面的固定轴的动量矩,
等于刚体随同质心作平动时质心的动量对该 M z (mvC ) JC w
9
例题
动量矩定理
例题 1
滑轮A:m1,R1,R1=2R2,J1, 滑轮B:m2,R2,J2 ;物体C:m3 求: 系统对O轴的动量矩。
解:运动分析 A轮:定轴转动
C物:平动
B轮:平面运动
v3
v2
R2w 2
1 2
R1w1
LO LOA LOB LOC
J1w1 (J 2w2 m2v2 R2 ) m3v3R2
LO
(
J1 R2 2
J2 R2 2
m2
m3 )R22w1
逆时针
§11-2 动量矩定理
一.质点的动量矩定理
d
(mv )
物体在转动中运动的量与受力之间的关系-动量矩定理
§11-1 质点和质点系的动量矩
一.质点的动量矩
复习:力对点O之矩
MO(F) r F
M O(F)
(xi
yj
zk
)
(
Fxi
Fy
j
Fz
k
)
z
M O (F) [M O (F)]x i [M O (F)]y j [M O (F)]z k
gt l
,摆动周期
T 2
l g
注:计算动量矩与力矩时,符号规定应一致 (本题规定逆时针转向为正)
质点动量矩定理的应用: 在质点受有心力的作用时。 质点绕某心(轴)转动的问题。
物体在移动时运动与受力之间的关系 -动量定理。
A
F 例:匀质圆盘,质心 C 在转轴上。
C
vC 0, 动量:p MvC 0,
质心无运动
而:F (e) 0, 所以,动量不能反应转动的问题。
动量矩定理建立了质点和质点系相对于某固定点(固定轴) 的动量矩的改变与外力对同一点(轴)之矩两者之间的关系。
平动刚体对固定点(轴)的动量矩等于刚体质心的动量对 该点(轴)的动量矩。
7
2.定轴转动刚体 定轴转动刚体对转轴的动量矩等于刚体对该轴转动惯量
与角速度的乘积。
Lz M z (mi vi ) mi vi ri
miw ri ri w mi ri2
转动惯量: J z mi ri2
Lz J zw
又设在任一瞬时质点 A 具有速度 v ,摆线 OA
与铅垂线的夹角是 。
对通过悬点 O 而垂直于运动平面的固定轴
z 作为矩轴,应用质点的动量矩定理
dLOz dt
M Oz
由于动量矩和力矩分别是

LOz
mvl
m(lw)l
ml 2
d
dt
MOz mgl sin
从而可得
d (ml2 d ) mgl sin
[M O (mv)]z xmvy ymvx
A
mv
Q
r
y
2.质点对 轴 z 的动量矩
M
z
(mv )
xmv y
ymv
x
M z (mv) [M O (mv)]z
代数量
质点对点O动量矩在z轴上的投影,
x
等于对z轴的动量矩
M z ( m v )是代数量,从 z 轴正向看,逆时针为正,顺时针为负。
动量矩度量物体在任一瞬时绕固定点(轴)转动的强弱单。位:kg·m2/s。
二.质点系的动量矩
质点系对点O动量矩:各质点对点O动量矩的矢量和。
LO
M
O
(mivi
)
ri mivi
质点系对轴 z 动量矩:各质点对同一z轴动量矩的代数和。
Lz Mz (mivi )
Lz Mz (mivi ) [LO ]z
1
第十一章 动量矩定理 §11–1 质点与质点系的动量矩 §11–2 动量矩定理 §11–3 刚体绕定轴的转动微分方程 §11–4 刚体对轴的转动惯量 §11–5 质点系相对于质心的动量矩定理 §11–6 刚体平面运动微分方程
质点 动量定理: 质点系 动量的改变
外力(外力系主矢)
质心运动定理:质心的运动外力(外力系主矢)
若 M O (F) 0

(M z (F ) 0).

M O (mv) 常矢量

(M
z
(mv )
常量)
称为质点的动量矩守恒。
例题
动量矩定理
例题 2
试用动量矩定理导出单摆(数学摆)的运动微分方程。已知
单摆 m,l,t = 0 时 = 0,从静止开始释放。
O
φ
v
A
例题
动量矩定理
解:把单摆看成一个在圆弧上运动的质点 A,。
相关文档
最新文档