平面向量基本定理系数的等值线法
第4讲 平面向量的线性运算及基本定理
=
16a-16b,������������
=
【答案】 C
知识梳理
典例变式
基础训练
能力提升
(2) 因为������������ = ������������ − ������������=a-b,
������������
=
1 6
������������
=
16a-16b,所以������������
=
知识梳理
典例变式
基础训练
能力提升
变式训练一
1.设 D 为△ABC 所在平面内一点,������������=3������������,则
A.������������ =-13
������������
+
4 3
������������
C.������������
=
4 3
������������
+
1 3
−
4 3
������������
C.������������
=
4 3
������������
+
1 3
������������
D.������������
=
4 3
������������
−
1 3
������������
(2)设 D、E 分别是△ABC 的边 AB、BC 上的点,AD=12AB,BE=23BC.若������������=λ1������������+λ2������������(λ1、
所以������������ = ������������ − ������������ = 23a+23b-16a-56b=12a-16b.
从平面向量中的等值线说起(吴波《数学通讯》2015 年第 9期(下半月))
图3
式将 x 解得x y 放缩将其化为关于 x +y 的 不 等 式 , ︵ 当 C 为A + B 的中点时取最大值 2. y≤2. → → 为标架建立平面仿射坐 说明 以 { O; O O A, B} →+ O → → A 标系 , 题设O 点 C 在此坐标 系 O C=x y B 表明 :
2 则上述解答中得到的方程x 中的坐标即 是 ( x, . y) 2 ︵ + B所 在 的 圆 在 此 坐 标 系 y=1 即 是 图 3 中A y -x
[ 3] 例1 四边形 P Q R S 是四边形A B- 如 图 2,
C A P B Q C D 的 内 接 四 边 形, P =λ B, Q =λ C, R= 1 2 R D S A B C D D, S =λ A. ′、 ′、 ′、 ′分 别 是 四 边 形 λ 3 4
4 0
下半月 ) 数学通讯 — 2 0 1 5 年第 9 期 ( · 专论荟萃 ·
从平面向量中的等值线说起
吴 波
) ( 重庆市长寿龙溪中学 , 0 1 2 4 9 4
1.平面向量基本定理系数等值线 平面向量基本定理 如果e e 1, 2 是同一平 面 内 有且 两个不共线向量 , 则对该平面内的任 一 向 量 a, 使 a= 只有一对实数λ e e λ λ λ 1, 2, 1 1+ 2 2. ] 文[ 称 上 式 中 的λ 1 λ 1, 2 为平面向量基本定理 系数 , 并证明了 :
( O A, B 为渐近线的某 ⅳ )若 点 P 在 以 直 线 O 条双曲线上 , 则λ 反之也成立 . λ 1 2 为定值 . ( 注: 结论 ( 中的“ 定 值” 应当加上 “ 非零” 的 ⅳ) ) 限制 . , ) 文[ 将直线 A 由结论 ( B 以及与A B 平行 1] i 的直线叫作 “ 平面 向 量 基 本 定 理 系 数 的 等 和 线 ” 同 . 、 ( 、 中的直线分别叫作“ 理, 结论 ( 等 差 线” ⅲ) ⅱ) “ ; 等商线 ” 而结论 ( 中的双曲线叫作 “ 等积线 ” . ⅳ) ] 文[ 中还讨论 了 k 的 取 值 范 围 与 等 值 线 的 位 1 置的对应关系 . 本文 拟 探 讨 在 这 些 等 值 线 背 后 隐 藏 的 实 质 , 从 另一个角度加深对平面向量基本定理的理解 . 2.等值线背后的实质
平面向量基本定理系数的等值线法(答案)
平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法.二、基本理论(一)平面向共线定理已知OC OB OA μλ+=,若1=+μλ,则C B A ,,三点共线;反之亦然 (二)等和线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ,若点P 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,)1,0(∈k ; (3)当直线AB 在O 点和等和线之间时,),1(+∞∈k ; (4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比. (三)等差线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ, C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则k =-μλ(定值);反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线 (1)当等差线恰为直线OC 时,0=k ; (2)当等差线过A 点时,1=k ; (3)当等差线在直线OC 与点A 之间时,)1,0(∈k ; (4)当等差线与BA 延长线相交时,),1(+∞∈k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数. (四)等积线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内肘,0>k ;(2)当双曲线的两支都不在AOB ∠内吋,0<k ;(3)特別的,若),(b a OA =,),(b a OB -=,点P 在双曲线)0,0(12222>>=-b a by a x 上时,41=k (五)等商线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在过O 点(不与OA 重合)的直线上,则k =μλ(定值),反之也成立,我们把过点O 的直线(除OA 外)称为等商线(1)当等商线过AB 中点吋,1=k ;(2)当等商线与线段AC (除端点)相交时,),1(+∞∈k ; (3)当等商线与线段BC (除端点)相交时,)1,0(∈k ; (4)当等商线为OB 时,0=k ;(5)当等商线与线段BA 延长线相交时,)1,(--∞∈k ; (6)当等商线与线段AB 延长线相交时,)0,1(-∈k ; (7)当等商线与直线AB 平行时,1-=k . (六)等平方和线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,且OB OA =,若点P 在以AOB ∠角平分线为半长轴的椭圆上,则22μλ+为定值k ,反之也成立,我们把以AOB ∠角平分线为半长轴的椭圆称为等平方和线特別的,若),(b a OA =,),(b a OB -=,,点P 在椭圆)0,0(12222>>=+b a by a x 上时,21=k 三、解题步骤 1、确定等值线为1的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;五、典型例题例1.给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OB y OA x OC +=,其中R y x ∈,,则y x +的最大值是解法1:以点O 为原点,OA 为x 轴建立平面直角坐标系,则)01(,A ,)23,21(-B设θ=∠AOC ,则)sin ,(cos θθC ,所以OB y OA x OC +=)23,21()0,1()sin ,(cos -+=⇒y x θθ ⎪⎪⎩⎪⎪⎨⎧=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=⇒θθθθθsin 32sin 31cos 23sin 21cos y x y y x2)6sin(2sin 3cos ≤+=+=+∴πθθθy x 当且仅当26ππθ=+即3πθ=时等号成立所以2)(max =+y x解法2:设OC 交AB 于点D ,则 当点C 在1C 处时,2)(max =+y x当点C 在A 或B 处时,1)(min =+y x]2,1[∈+∴y x例 2.在正六边形ABCDEF 中,P 是三角形CDE 内(包括边界)的动点,设AF y AB x AP +=,则y x +的取值范围解析:设AP 与BF 相交于点Q ,则 当点P 在点D 处时,4)(max =+y x ,当点P 在CE 上(不如让点P 在AD 与CE 的交点处)时,3)(min =+y x ∴]4,3[∈+y x例3.如图,在平行四边形ABCD 中,N M ,为CD 边的三等分点,S 为AM 与BN 的交点,P 为边AB 边上一动点,Q 为SMN ∆内一点(含边界),若BN y AM x PQ +=,则yx +的取值范围是 解析:作BN PT AM PR ==,,则PT y PR x BN y AM x PQ +=+=所以当点P 在S 点处时,43)(min =+y x ,当点P 在MN 上时,1)(max =+y x , 故∈+y x ]1,43[例4.梯形ABCD 中,AB AD ⊥,1==DC AD ,3=AB ,P 为三角形BCD 内一点(包括边界),AD y AB x AP +=, 则y x +的取值范围 解析:当点P 在点C 处时,34)(max =+y x 当点P 在BD 上时,1)(min =+y x∈+∴y x ]34,1[例5.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若 AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为解析:作AC DN AB DM ==,,则MN ∥BE (BE 在DMN ∆中位线上)∴DN DM AC AB DE 2121λλλλ+=+==+∴21λλ21注:此题为2013年江苏高考题第8题,但点E 为三等分的条件其实没有必要,可舍例 6.在正方形ABCD 中,E 为BC 中点,P 为以AB 为直径的半圆弧上任意一点,设AP y AD x AE +=,则y x +2的最小值为解析:取AD 的中点M ,则AP y AD x AE +=AP y AM x +=2 因为点P 在半圆上滑动,当点E 离直线MP 最近时,y x +2最小 由图可知点P 在半圆上的最高点处时,点E 离直线MP 最近 此时点E 在MP 上,所以=+min )2(y x 1例7.在正方形ABCD 中,E 为AB 中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设AP y DE x AC +=,则y x +的最小值为 解析:作DE AF =,则AP y DE x AC +=AP y AF x += 当点C 离PF 最近时,y x +最小所以当点P 在圆上滑到点B 处时,y x +最小为218.已知1==ON OM ,ON y OM x OP +=(y x ,为实数),若PMN ∆是以M 为直角顶点的直角三角形,则y x -取值的集合为解析:作ON OA -=,则有OA ON OM ==,所以090=∠AMN ,即P M A ,,三点共线,所以ON y OM x OP +=OA y OM x -=所以1=-y x ,故答案为{}1例9.已知椭圆E :12510022=+y x 的上顶点为A ,直线4-=y 交椭圆于C B ,(B 在C 的左侧),点P 在椭圆E 上,若BC n BA m BP +=,求n m +的最大值 解析:可知点P 为椭圆的与AC 平行的切线的切点处时,n m +最大 计算可得=+max )(n m 1813105+ 例10.已知O 为ABC ∆的外心,若)00(,A ,)02(,B ,1=AC ,32π=∠BAC ,且AC AB AO μλ+=,则=+μλ解析:过点O 作OD ∥BC 交AB 于点D ,则ABAD=+μλ O 为ABC ∆的外心⇒点O 在BC 的垂直平分线上⇒点O 的横坐标为1 )23,21(-C ,532523-=-=BCk ,7)221()23(22=--+=BC由正弦定理得3212327sin 2=⨯=⇒∠=OA BACBCOA ,所以点O 的纵坐标为332137=-,直线OD :)1(53332--=-x y ,令0=y 得点D 的坐标为)0,313( 613==+∴AB AD μλ例11.已知O 为ABC ∆的外心,若31cos =∠BAC ,AC AB AO μλ+=,则=+max )(μλ 解析:设AO 交BC 于点D ,则ODAO AOAD AO +==+μλ 当OD 最小即BC AD ⊥时,μλ+最大,此时=+μλ43所以=+max )(μλ43例12.平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为0120 ,OA 与OC 的夹角为030,且1==OB OA ,32=OC ,若OB n OA m OC +=,则n m +的值为解析:设OC 交AB 于点D ,则n m +ODOC=OAD ∆中,331300=⇒==∠=∠OD OA OAD AOD , 所以OD OC =63332== 例13.如图,C B A ,,是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OB n OA m OC +=,则n m +的取值范围为解析:∈-=+ODOCn m )0,1(-例14.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为)0,5(,)1,2(1=e , )1,2(2-=e 分别是两条渐近线的方向向量,任取双曲线Γ上的点P ,若),(21R b a e b e a OP ∈+=,则b a ,满足的一个等式是解析:等积线:双曲线的方程为1422=-y x ,设)tan ,sec 2(θθP ,则由),(21R b a e b e a OP ∈+=⎩⎨⎧=-=+⇒⎩⎨⎧=-=+⇒-+=⇒θθθθθθtan sec tan sec 222)1,2()1,2()tan ,sec 2(b a b a b a b a b a 1tan sec )()(2222=-=--+⇒θθb a b a 41=⇒ab例15.已知1=OA ,3=OB ,0=⋅OB OA ,点C 在AOB ∠内,且030=∠AOC , 设OB n OA m OC +=,则nm的值为 答案:等商线:分别以OB OA ,为y x ,轴建立平面直角坐标系,则)3,0(),01(B A ,, OB n OA m OC +=)3,()3,0()0,1(n m n m =+=,又030=∠AOC ,所以330tan 30=⇒=nmm n例16.如图,倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,单位圆与坐标轴交于点)01(,-A ,点)10(-,B ,PA 与y 轴交于点N ,PB 与x 轴交于点M ,设),(R y x PN y PM x PO ∈+=,求y x +的最小值解析:设OP 交MN 于点Q ,MN 的中点为D ,则21211111=+-≥-=-==+OQ OQ PO PO PQ PO y x例17.如图,在扇形OAB 中,060=∠AOB ,C 为弧AB 上且不与A 、B 重合的一个动点,OB y OA x OC +=,若)0(>+=λλy x u 存在最大值,则λ的取值范围为解析:因为0>λ,在射线OB 上取点D ,使得OB OD λ1=,则OB y OA x OC +=OD y OA x λ+=,过点C 作CE ∥AD 交OB 于点E ,过点A 作OB AM ⊥于点M ,过点A 作弧AB 的切线交OB 于点N ,则易知当E 离D 最远时u 有最大值,而E 只能在线段MN 上,所以∈u )2,21(例18.在平面直角坐标系中,O 为坐标原点,两定点B A ,满足2=⋅==OB OA OB OA ,则点集{}R OB OA OP P ∈≤++=μλμλμλ,,1,所表示的区域面积为解析:由题意可知60=∠AOB ,设OB OD OA OC -=-=,,R OB OA OP ∈≤++=μλμλμλ,,1,,则可知点P 的轨迹为平行四边形ABCD 及其内部的部分,其面积为3460sin 44210=⨯⨯⨯例19.已知b a ,是两个互相垂直的单位向量,且1=⋅=⋅b c a c ,则对任意的正实数t ,b ta t c 1++的最小值为解析:分别以b a ,为y x ,轴方向上的单位向量,则)1,0(),0,1(==b a ,由1=⋅=⋅b c a c 知)1,1(=c ,)11,1()1,0(1)0,1()1,1(1tt t t b t a t c ++=++=++∴2212)12()2()11()1(12222≥+=+≥+++=++tt t t t t b t a t c。
高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》
衡阳市高中教师数学交流 QQ 群:731847633
衡阳市数学学会
练习 5:如图 13 所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长
线交于圆 O 外的点 D ,若 OC mOA nOB ,则 m n 的取值范围是
当 AD EF 时, f x, y AD 取得最 小值,此时 f x0 , y0 AD .易知
ABC AEF ,则 AD AH r 4 .
四、解题总结 1、确定等值线为 1 的直线; 2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和 最小值; 3、从长度比或者点的位置两个角度,计算最大值或最小值.
部的动点,设向量 AP m AB n AFm, n R ,则 m n 的取值范围是( )
A . 1,2
B . 5,6
C . 2,5
D .3,5
【分析】
如图 5,设
AP1
m AB n AF ,由等和线结论,m n
AG AB
2 AB AB
2 .此为 m n
的交点,P 为边 AB 上一动点,Q 为 SMN 内一点(含边界),若 PQ x AM y BN ,
则 x y 的取值范围是
.
【分析】
如图 8 所示,作 PS AM ,PT BN ,过 I 作直线 MN 的平行线,由等和线定理
可知,
x
y
3 4
,1
.
(三)基底一方可变
OB'
第6讲 平面向量等和线定理求系数和问题(解析版)
第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题 ①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数; 【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2OABCP P 1【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系, 则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC =,1CD =,BD ∴∴1122BC CD BD r =,r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为1θ+2)θ+,AP AB AD λμ=+,1θ∴+2)(1θλ+=,0)(0μ+,2)(λ=,2)μ,∴1θλ+=22θμ+=,2sin()2λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAPAD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【答案】A 【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C 【解析】 【分析】设AN t AM =,()01t ≤≤,当0=t 时, 可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC ttλμ=+,根据M 、B 、C 三点共线,可得1t t,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM =,()01t ≤≤,当0=t 时,0AN =,所以0AB AC λμ+=, 所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+(λ,μ∈R ), 所以B t A A A M C λμ=+,即B A A M AC ttλμ=+,因为M 、B 、C 三点共线,所以1t t,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1]. 故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围. 【详解】∵//OD AB ,OP xOA yOB =+,由向量加法的平行四边形法则,OP 为平行四边形的对角线, 该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________. 【答案】[]1,3 【解析】 【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围. 【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,2OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭. 因为OC xOA yOB =+,所以1cos 2sin x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos x y θθθ⎧=⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ+=. 因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,所以s 3co 3in x y θθ+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos1333332x y ππ===+最小. 所以3x y +的取值范围是[]1,3. 故答案为:[]1,3. 【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4 BC .2 D【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值. 【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==, 以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .BC =(),M x y 满足()()22211x y -+-=,设11x y αα⎧=+⎪⎨=+⎪⎩(α为参数,π3π44α-≤≤),依题意AM AB AC λμ=+,即()()()1,12,00,2ααλμ=+,()()1,12,2ααλμ=,λμ⎧⎪⎪⎨⎪⎪⎩,π22sin π4sin 124αλμα⎛⎫++ ⎪⎛⎫⎝⎭+===++ ⎪⎝⎭, 所以当πππ,424αα+==时,λμ+取得最大值为2. 故选:C2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .CD .2【答案】A 【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.【答案】5 【解析】 【分析】根据||||||AC AQ AD ≤≤及||1||||1AQ AP AQ -≤≤+得到1||5AP ≤≤,根据平面向量知识得到22||4()12AP m n mn =+-,利用2()4m n mn +≤可求出结果.【详解】在边长为2的正六边形ABCDEF 中,AC CD ⊥,||224AD =⨯=, 所以||||4AQ AD ≤=,当且仅当Q 与D 重合时,等号成立,又||||1AP AQ ≤+,即||415AP ≤+=,当||5AP =时,P 是AD 的延长线与圆Q 的交点,此时,由AP mAB nAF =+可知,m n =.因为AP mAB nAF =+,且2π,3AB AF <>=, 所以22222||||2||||||AP m AB mn AB AF n AF =⋅+⋅⋅+⋅22144222()2m n mn =++⋅⋅⋅-22444m n mn =+- 24()12m n mn =+-,所以2211()||312mn m n AP =+-,结合图形可知,0,0m n >>,由2()0m n -≥,得2m n mn +≥,即2m n mn +≥,即2()4m n mn +≤,当且仅当m n =时等号成立,所以22211()()||3124m n m n AP ++-≤,所以||m n AP +≤,又||5AP ≤,时,等号成立, 所以5m n +≤,当且仅当m n =时,等号成立. 即m +n 的最大值为5. 故答案为:5.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,y R ),则x y +的最小值为( )A .12 B .23C .32D .2【答案】D 【解析】 【分析】设OA 与BC 交点为E ,则AE AB AC λμ=+其中1λμ+=,由于()RAO xAB y AC AB AC R OEλμ=+=+-,得()R R x y R OE R OE λμ+=+=--,因为2ROE R ≤< 故x y +的最小值可得.【详解】设OA 与BC 交点为E ,设OE m =,圆的半径为R ,D 为BC 中点,如图所示:则RAO AE R m=-,设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+= 所以()R AO xAB y AC AB AC R m λμ=+=+-,故()R Rx y R m R mλμ+=+=-- 因为120A ∠=︒,则60COD ∠=︒所以1cos602OD R R =︒=则2R m R ≤< ,故22R RR R m R ≥=-- 所以x y +的最小值为2 故选:D 【点睛】设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+=,得()R Rx y R m R mλμ+=+=--是解题的关键. 5.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在 以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]【答案】B解析:由等和线性质知:连接AB ,当C 点在B A 或点时,()1min =+y x ;作AB 的平行线,当与AB 相切时,当C 点在切点时,()2max =+y x6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】根据0OA OB OC ++=可知O 为ABC ∆的重心;根据点M 在OBC ∆内,判断出当M 与O 重合时,2λμ+最小;当M 与C 重合时,2λμ+的值最大,因不含边界,所以取开区间即可.【详解】因为O 是ABC ∆内一点,且0OA OB OC ++=所以O 为ABC ∆的重心M 在OBC ∆内(不含边界),且当M 与O 重合时,2λμ+最小,此时 ()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 所以11,33λμ==,即21λμ+= 当M 与C 重合时,2λμ+最大,此时AM AC =所以0,1λμ==,即22λμ+=因为M 在OBC ∆内且不含边界所以取开区间,即()21,2λμ+∈所以选B【点睛】本题考查了向量在三角形中的线性运算,特殊位置法的应用,属于难题. 7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________. 【答案】54【解析】【分析】由12AM =得出22144λμ+=,即224+161λμ=,且由0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭,然后利用辅助角公式可求出23λμ+的最大值.【详解】 2A π∠=,1AB =,2AC =,AM AB AC λμ=+,则0AB AC ⋅=,且12AM =, 则()222222221244AM AB AC AB AB AC AC λμλλμμλμ=+=+⋅+=+=, 点M 在ABC 内,则0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭, ()3523cos sin sin 44λμθθθϕ∴+=+=+,其中4tan 3ϕ=, 因此,4λμ+的最大值为54. 故答案为:54. 8.如图,扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________【解析】【分析】根据题意将OC xOA yOB =+,两边同时平方可得221x y =+,再三角代换cos sin [0,]2x y πααα==∈,,,利用三角函数的性质即得.【详解】由题意得,0OA OB ⋅=,1OA OB ==,1OC =,由OC xOA yOB =+,等式两边同时平方,得2OC =22222x OA y OB xy ++OA OB ⋅, 所以221x y =+,令AOC α∠=,则cos sin [0,]2x y πααα==∈,,,则22cos sin )x y αααθ+=+=+,其中sin cos [0,]2πθθθ==∈, 因为2πθαθθ≤+≤+,sin()1αθ≤+≤,所以1)αθ≤+≤即2x y +。
平面向量的基本概念与运算法则
平面向量的基本概念与运算法则平面向量是解决几何问题的重要工具之一,它能够描述物体在平面内的方向和大小,能够进行加减乘除等基本运算,为我们解决问题提供了很大的便利。
本文将介绍平面向量的基本概念和运算法则,帮助读者理解和运用平面向量。
1. 平面向量的定义平面向量是具有大小和方向的量,用箭头来表示。
平面向量通常用线段AB来表示,方向由起点A指向终点B,记作→AB或者AB。
2. 平面向量的表示和坐标平面向量可以使用坐标来表示。
设向量AB的起点为原点O,终点为点P(x,y),则向量→AB可以表示为(x,y)。
其中,x表示向量在x轴上的投影,y表示向量在y轴上的投影。
3. 平面向量的运算法则平面向量有多种基本运算法则,下面依次介绍:(1) 向量的加法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB + →CD的终点为R(x1+x2 , y1+y2)。
也就是说,将两个向量的x轴和y轴分量分别相加,得到新的向量的坐标。
(2) 向量的减法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB - →CD的终点为R(x1-x2 , y1-y2)。
也就是说,将两个向量的x轴和y轴分量分别相减,得到新的向量的坐标。
(3) 向量的数量乘法:设向量→AB的终点为P(x,y),数k为实数,则k × →AB的终点为R(kx, ky)。
也就是说,将向量的每个分量分别乘以实数k,得到新的向量的坐标。
(4) 向量的点乘法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则→AB · →CD = x1 x2 + y1 y2。
也就是说,将两个向量的x轴和y轴分量分别相乘,再将结果相加,得到点乘法的结果。
4. 平面向量的性质平面向量有一些重要的性质,下面列举几个常用的性质:(1) 平行向量的性质:如果两个向量→AB和→CD平行,则它们可以表示为→AB = k × →CD,其中k为实数。
平面向量5类解题技巧(学生版)
平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。
平面向量中的定理
平面向量中重要定理总结(非常经典)1、共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .2、三点共线的证明方法若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线.3、平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.4、奔驰定理:已知O 是ABC ∆内一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S AOB AOC BOC推论:已知O 是ABC ∆内一点,若=⋅+⋅+⋅z y x ,则z y x S S S AOB AOC BOC ::::=∆∆∆5、极化恒等式定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍. 即:)|||(|2|AD ||AB |2222BO AO +=+ 设.,b AD a AB == 则,,b a DB b a AC -=+= 极化恒等式:[]22)()(41b a b a b a --+=⋅,即:=⋅6、三点共线定理:已知OB y OA x OC +=,且1=+y x ,则C B A ,,三点共线 OABC向量等和线: 平面内一组基底,及任意向量,21λλ+=,若点P 在直线AB 上或在与AB 平行的直线上,则k =+21λλ(||OC k =反之也成立,我们把直线AB 以及与AB 平行的直线称为基底系数等和线7、三角形各“心”的概念介绍重心:三角形的三条中线的交点,重心将中线长度分成2∶1;垂心:三角形的三条高线的交点,垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心),内心到三角形三边的距离相等;外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心),外心到三角形各顶点的距离相等.三角形各“心”的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2).(4)O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0.注意:向量λ((AB →|AB →|+AC →|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).。
2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量的等和线、等差线、等积线、等商线等
平面向量基本定理系数的等值线法一、适用题型在平而向量搖本崖理的表达式中.若需研究两系数的和差积商、线性表达式及平方和时.可以用等值线法・二基本理论(一)平面向*共线定理已知鬲=久西+“況.若久十“ = I, UIUB.C三点共线:反之亦然(二)等和线平面内一俎慕底oNoS及任一向量亦.亦二人花+ 〃亦(人若 0 P在直线朋上或在平行于肋的直线上,则2+“ =尿定值)仮Z也成孙我们把直线*〃以及与宜线.4B 平行的直线成为等和线。
(1)当等和线恰为直线时.A=l:⑵ 当等和线在O点和直线朋之间时.仁(0,1);(3)当住线M在O点和等和线之间时"<仏+00);(4>当等和线过O点时.^ = 0;(5)若两等和线关于O点对称.则左值《互为相反数:(6)泄值人-的变化与等和线到O点的師离成正比:(三)等差仪平面内一组慕底OA,OB及任一向量帀・帀“鬲+ “亦亿C为线段的中点.若点P在直线0C上或在平行于CC的買线上.则八戸=灿上值八反Z也成匕我们把fL线"以及线OC半行的直线称为等差线.(1)当等荃线恰为直线OC时,A=0:(2)斗等差线过X点时.A=l:(4)当等差线与阳延长线相交时.2(1卄8);⑶ 当等差线在直线0C与点/之何时.JtG(0,l):(5>若两等差线关于直线OC对称.则两足为相反数:(四)等积线平面内一组基底OA.OBJ^任一向&OP ・ 丽=几刃+ “亦(入“wR )・若 点P 在以苴线OA.OB 为渐近线的女曲线上.则“为足值I 反Z 也成必 我们 把以直线OA.OB 为渐近线的双曲线称为%积线(1) 当双曲线有一支金厶103内时,k>0t(2) 当双曲线的两支都不在乙4OB 内时.X <0:(3) 特别的.若tU=(a 上讥加= (“,"),点P 住双曲线(五)等商线点P 在过O 点(不与0/1重合〉的直线上,则虫=川定值),反之也成立。
高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》
衡阳市数学学会高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》衡东一中朱亚旸一、问题的提出平面向量与代数、几何融合考查的题目综合性强,难度大,考试要求高.近年,高考、模考中有关“等和线定理”(以下简称等和线)背景的试题层出不穷.学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高.在平时教学中,我们能不能给出一个简单、有效的方法解决此类问题呢?带着这个问题,笔者设计本微型专题.二、等和线定理平面内一组基地 OA, OB 及任一向量 OC ,OC = λOA + μOB(λ,μ ∈ R),若点C 在直线 AB 上或在平行于 AB 的直线上,则λ + μ = k (定值),反之也成立,我们把直线 AB 以及直线 AB 平行的直线称为“等和线”.(1)当等和线恰为直线 AB 时, k =1;(2)当等和线在 O 点和直线 AB 之间时, k ∈(0,1);(3)当直线 AB 在 O 点和等和线之间时, k ∈(1,+∞);(4)当等和线过 O 点时, k =0;(5)若两等和线关于 O 点对称,则定值 k 互为相反数;(6)定值 k 的变化与等和线到 O 点的距离成正比;⎛ x y ⎫简证,如图1若 OC = λOD ,那么 OC = xOA + yOB = λ OA + OB⎪ = λOD ,λ λ⎝ ⎭从而有x+y= 1 ,即x+y= λ.另一方面,过C点作直线l // AB,在l上任作一λ λ点 C',连接 OC'⋂ AB = D',同理可得,以 OA, OB 为基底时,OC'对应的系数和依然为λ .三、定理运用(一)基底起点相同例1:(2017年全国Ⅲ卷理科第12题)在矩形 ABCD中, AB =1, AD =2,动点 P 在以 C 为圆心且与 BD 相切的圆上,若 AP = λ AB + μ AD ,则λ + μ的最大值()A .3B .22C . 5D .2【分析】如图2,由平面向量基底等和线定理可知,当等和线 l与圆相切时,λ + μ最大,此时λ + μ =AF=AB+BE+EF=3AB=3,故选 A .AB AB AB练习 1:(2006年湖南卷15题)如图3所示,OM // AB ,点 P 在由射线 OM 、射线段 OB 及 AB的延长线围成的阴影区域内(不含边界)运动,且 OP = xOA + yOB(1)则 x 的取值范围是;(2)当 x = - 1 时, y 的取值范围是.2【分析】(1),根据题意,很显然 x <0;(2)由平面向量基底等和线定理可知,0< x + y <1,结合 x = -12,可得12< y <32.练习2:(衡水中学 2018届高三二次模拟)如图4,边长为 2 的正六边形ABCDEF 中,动圆 Q 的半径为1,圆心在线段 CD (含短点)上运动, P 是圆 Q 上及其内部的动点,设向量 AP = m AB + n AF(m, n ∈ R),则 m + n 的取值范围是()A .(1,2] B .[5,6] C .[2,5] D .[3,5]【分析】如图5,设 AP = m AB + n AF ,由等和线结论,m + n = AG = 2 AB = 2 .此为m+n1 AB AB的最小值;同理,设 AP = m AB + n AF ,由等和线结论,m + n = AH = 5 .此为m+n2 AB的最大值.综上可知 m + n ∈[2,5].(二)基底起点不同例 2:(2013 年江苏高考第 10 题)设 D , E 分别是 ∆ABC 的边 AB , BC 上的点,且有 AD =12 AB , BE = 23 BC , 若 DE = λ1 AB + λ2 AC (λ1 , λ2 ∈ R ),则 λ1+ λ2 的值为【分析】过点 A 作 AF = DE ,设 AF , BC 的延长线交于点 H ,易知 AF = FH ,即 AF = FH ,即 DF 为 BC 的中位线,因此 λ1 + λ2 =12 .练习 3:如图 7,在平行四边形 ABCD 中,M , N 为 CD 的三等分点,S 为 AM 与 BN 的交点,P 为边 AB 上一动点,Q 为 ∆SMN 内一点(含边界),若 PQ = x AM + y BN ,则 x + y 的取值范围是 .【分析】如图 8 所示,作 PS = AM ,PT = BN ,过 I 作直线 MN 的平行线,由等和线定理⎡3 ⎤可知, x + y ∈ ⎢ ,1⎥ .4 ⎣ ⎦(三)基底一方可变例 3:在正方形 ABCD 中,如图 9, E 为 AB 中点, P 以 A 为圆心, AB 为半径的圆弧上的任意一点,设 AC = x DE + y AP ,则 x + y 的最小值为 .【分析】由题意,作 AK = DE ,设 AD = λ AC ,直线 AC 与直线 PK 相交与点 D ,则有AD = λx AK + λy AP ,由等和线定理,λx + λy =1,从而 x + y =λ1,当点 P与点 B 重合时,如图10,λmax= 2 ,此时,(x+y)min=1 2.练习4:在平面直角坐标系 xoy 中,已知点 P 在曲线Γ:y = 1 -x42(x≥ 0)上,曲线Γ与 x 轴相交于点 B ,与 y 轴相交于点 C ,点 D(2,1)和 E(1,0)满足OD = λCE + μOP(λ,μ ∈ R)则λ + μ的最小值为___.【分析】作CE = OA ,令 OD1= xOD ,有 OD1= xλOA + xμOP ,由等和线定理, xλ + xμ =1,所以λ + μ =1x,如图11,再由等和线定理,得(λ + μ)min=12 .(四)基底合理调节例题4:(2013 年高考安徽理科卷)在平面直角坐标系中,O 是坐标原点,两定点A, B 满足 OA = OB = OA⋅OB =2,则点集{P OP = λOA + μOB,λ + μ ≤1,λ,μ ∈ R}所表示的区域面积是()A .22B .23C .42D .4 3【分析】由 OA = OB = OA⋅OB =2可知,OA, OB = π3 .如图 12 所示,当 λ ≥ 0,μ ≥ 0 时,若λ + μ = 1 ,则点P位于线段AB上;当λ ≥ 0,μ ≤ 0 时,若λ - μ = 1,则点P位于线段 AB'上;当λ ≤0,μ ≥0时,若- λ + μ =1,则点 P 位于线段 A' B 上;当λ≤ 0,μ ≤ 0 时,若- λ - μ = 1 ,则点P位于线段A'B'上;又因为λ + μ ≤ 1 ,由等和线定理可知,点 P 位于矩形 ABA' B'内(含边界).其面积 S =4S∆AOB=4 3 .衡阳市数学学会练习5:如图13所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长线交于圆 O 外的点 D ,若 OC = mOA + nOB ,则 m + n 的取值范围是.【分析】作 OA, OB 的相反向量 OA1, OB1,如图14所示,则 AB // A1 B1,过 O 作直线 l // AB ,则直线 l , A1 B1为以 OA, OB 为基底的平面向量基本定理系数等和线,且定值分别为0,-1 ,由题意CO的延长线与线段BA的延长线交于圆O外的点D,所以点C在直线 l 与直线 A1 B1之间,所以 m + n ∈(-1,0).练习6:如图15,在扇形 OAB 中,∠AOB =π3, C 为弧 AB 上的一个动点,若OC = xOA + yOB ,则 x +3 y 的取值范围是.【分析】,令 OB'=OB,依题意, OC = xOA +3 y OB⎪⎛ ⎫⎪3⎝ 3 ⎭重新调整基底 OA, OB'.显然,当 C 在 A 点时,经过 k =1的等和线, C 在 B 点时经过 k =3的等和线,这两个分别是最近跟最远的等和线,所以系数和x+ 3 y∈[1,3].(五)“基底+”高度融合例 5 :已知三角形∆ABC 中, BC =6 , AC =2 AB ,点 D 满足AD = 2x AB + y AC ,设f(x,y)= AD , f (x, y)≥ f (x , y )恒成立,2(x+y)x + y 0 0则 f (x0, y0)的最大值为.【分析】衡阳市数学学会本题为“基底+阿氏圆”交汇命题.思路1:如图16所示,以 BC 为 x 轴,中垂线为 y 轴建立直角坐标系,易知点 B 的轨迹方程是(x -5)2+ y 2 = 16 .取AC中点F,延长AB 到 E ,且 AB = BE .于是,AD =2xAB +yAC ,∴ AD =x (2 AB)+ y ⎛ 1 AC ⎫⎪ ,即有x + y 2(x+y) x + y (x + y)⎝2 ⎭AD =xAE +yAF ,从而 D ∈ EF ,进一步得到x + y x + yf (x, y)≥ f (x0, y0)= AK ,且有 AK =2 BG ,因为EF恒过∆ACE重心H,所以AK =2 BG ≤2 BH =4,即 f (x0, y0)max=4.思路2:如图17所示,同上分析, D ∈ EF .当 AD ⊥ EF 时,f(x,y)=AD取得最小值,此时 f (x0, y0)= AD .易知∆ABC ≅ ∆AEF ,则AD=AH≤r=4.四、解题总结1、确定等值线为 1 的直线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值或最小值.五、后记等和线定理巧妙的将代数问题转化为图形关系,将具体的代数式运算转化为距离的长短比例关系问题,这是数形结合思想的非常直接的体现。
初中数学平面向量知识点详解,掌握向量基本性质和运算法则
初中数学平面向量知识点详解,掌握向量基本性质和运算法则介绍:平面向量是初中数学中重要的一个知识点,掌握它可以帮助我们更好地理解平面几何中的许多概念和问题,也可以帮助我们更好地理解物理学中的运动和力的性质。
本文将详细介绍初中数学中平面向量的相关知识点和运算法则,并提供大量练习题,帮助读者掌握和应用这些知识。
一、向量的基本概念1. 向量的定义:向量是大小和方向都有明确意义的量。
2. 向量的表示法:通常用有向线段表示。
箭头表示向量的方向,线段的长度表示向量的模。
3. 向量的模:代表向量的长度大小,通常用单竖线表示,如|AB|表示向量AB的长度。
4. 向量的方向角:表示向量与x轴正方向的夹角。
通常用小写希腊字母表示,如α表示向量的方向角。
5. 向量的共线性:若两个向量的方向相同或相反,则这两个向量共线。
6. 向量的相等:若两个向量的模相等,且方向相同,则这两个向量相等。
表示为AB=CD。
二、向量的常用运算法则1. 向量的加减法:将向量首尾相接,求得连接两个向量首尾的向量即为两个向量的和。
两个向量相减,是将被减向量的方向取反后再相加。
2. 标量乘法:一个向量乘以一个标量,相当于将向量的模变成原来的k倍,方向不变。
表示为k*a。
3. 向量的数量积:向量a和向量b的数量积,等于向量a的模与向量b在a方向上的投影的乘积,表示为a·b。
其中,投影是指线段b在线段a所在的直线上的投影。
若两个向量之间的夹角为θ,则向量a的模与向量b在a方向上的投影的乘积为|a|*|b|*cosθ。
4. 向量的叉积:向量a和向量b的叉积,等于向量a和向量b所在平行四边形的面积,表示为a×b。
其中,面积的大小等于向量a和向量b所在的平行四边形的底边长度(即|a|)与高的乘积(即|b|×sinθ),其中θ为向量a和向量b之间的夹角。
三、练习题1. 设向量a=(-1,1),向量b=(2,-3),求a+b的坐标。
平面向量基本定理系数等值线
平面向量基本定理系数等值线潘成银(江苏省南京民办实验学校,210019) 平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线的向量,那么对于这个平面内的任一向量a ,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,我们称λ1,λ2为平面向量基本定理系数.1 三点共线定理 定理1 平面内一组基底OA ,OB 及任一向量OP ,OP =λ1OA +λ2OB (λ1,λ2为实数),则A ,P ,B 三点共线的充要条件是λ1+λ2=1,如图1.设线段AB 中点为C ,由平面向量加法平行四边形法则可知图 1当P 在点C 时,λ1=λ2=12;当P 在点A 时,λ1=1,λ2=0;当P 在点B 时,λ1=0,λ2=1;当P 在线段AC 上(除端点)时,0<λ2<λ1<1;当P 在线段BC 上(除端点)时,0<λ1<λ2<1;当P 在线段AB 延长线上时,λ1<0,λ2>1; 当P 在线段BA 延长线上时,λ1>1,λ2<0.借助上面的结论,我们可以对平面向量基本定理系数的性质作进一步研究.2 等和线 图 2如图2,平面内一组基底OA ,OB ,作直线l ∥AB ,直线OA ,OB 分别与l 交于A 1,B 1,设OA 1=k OA (k ∈R ),则OB 1=k OB ,若P 为l 上任意一点,OP =OA 1+A 1P =OA 1+t A 1B 1=OA 1+t (OB 1-OA 1)=(1-t )k OA +tk OB (t 为实数),设λ1=(1-t )k ,λ2=tk ,则λ1+λ2=k ,显然k 只与l 和直线AB 相对位置有关,而与P 在l 上的位置无关,所以,对于直线l 上任意一点P ,以O A ,OB 底的向量OP 的平面向量基本定理的系数和为定值.反之,对于任意两个向量OP 1,OP 2,OP 1=λ1OA +λ2OB ,OP 2=λ3OA +λ4OB (λ1,λ2,λ3,λ4为实数),若λ1+λ2=λ3+λ4,移项得λ3-λ1=点处的切线平行于这些弦.(2)椭圆焦点弦两端点处的两条切线相交在准线上.(3)设椭圆的中心为C ,如果CP 平分平行于CD 的弦,那么CD 也平分平行于CP 的弦.(4)若椭圆在其点P 处的切线交长轴延长线于T ,PN 垂直于长轴,垂足为N ,C 是中心,A 是长轴的一个端点,则CN ·CT =CA 2.[1]等等.3 结语 今天,变换的基本观点与基本思想为中学数学教学,特别是解析几何的教学提供了十分有益的指导.显然,平面上的变换就是到自身的一个对应.或者说,“变换无非是简单的函数概念的推广.”[2]本文表明,在高中数学内容中引入变换的观点是非常必要的.变换观点与变换思想的引入是对高中数形结合思想的进一步提升,也使高中阶段用代数方法研究几何问题达到了一个更高的层次.特别地,对于解析几何的问题解决来说,一切都变得简单而又自然.参考文献:[1] [英]A .科克肖特,F .B .沃尔特斯著,蒋声译.圆锥曲线的几何性质[M ].上海:上海教育出版社,2002.[2] [德]F .克莱因著,舒湘芹等译.高观点下的初等数学(第二册)[M ].上海:复旦大学出版社,2007.(收稿日期:2012-10-23)-(λ4-λ2),所以P 1P 2=OP 2-OP 1=(λ3-λ1)O A +(λ4-λ2)OB =(λ3-λ1)(O A -OB )=(λ3-λ1)BA ,从而P 1P 2∥AB .于是有:定理2 平面内一组基底O A ,OB 及任一向量OP ,OP =λ1OA +λ2OB λ1,λ2为实数),若点P 在直线AB 上或在平行于AB 的直线上,则λ1+λ2=k (定值),反之也成立.我们把直线AB 以及与AB 平行的直线叫平面向量基本定理系数的等和线,如图3.根据证明过程可知:图 3(1)当等和线即为直线AB 时,k =1;(2)当等和线在点O 与直线AB 之间时,k ∈(0,1);(3)当直线AB 在点O 与等和线之间时,k ∈(1,+∞);且以上定值的变化与等和线到点O 的距离成正比.(4)当等和线过点O 时,k =0;由相反向量概念可知:(5)若两等和线关于O 点对称,则相应的定值互为相反数.3 等差线 图 4如图4,平面内一组基底O A ,OB ,C 为线段AB 的中点,OC =12(OA +OB ),设P ′为直线OC 上任意一点,则OP ′=λOC =λ2O A +λ2OB ,此时λ1=λ2=λ2,λ1-λ2=0.作直线l ∥OC ,直线OA 与l 交于点M ,直线AB 与l 交点为N ,显然■OAC ∽■M AN ,设AM =k OA ,则OM =(1+k )OA ,NM =k OC =k 2(OA +OB ),若P 为直线l 上任意一点,则OP =O M +MP =(1+k )OA +t NM =(1+k )OA +kt OC =(1+k +kt 2)OA +kt 2OB (t 为实数),此时λ1=1+k +kt 2,λ2=kt 2,λ1-λ2=1+k ,由于k 只与l 和OC相对位置有关,而与P 在l 上的位置无关,所以对于直线l 上任意一点P ,以OA ,OB 基底的向量OP 的平面向量基本定理的系数差为定值.反之,对于任意两个向量OP 1,OP 2,OP 1=λ1OA +λ2OB ,OP 2=λ3OA +λ4OB (λ1,λ2,λ3,λ4为实数),若λ1-λ2=λ3-λ4,移项得λ3-λ1=λ4-λ2,所以P 1P 2=OP 2-OP 1=(λ3-λ1)OA +(λ4-λ2)OB =(λ3-λ1)(OA +OB )=2(λ3-λ1)OC ,从而P 1P 2∥OC .于是有:定理3 平面内一组基底O A ,OB 及任一向量OP ,OP =λ1OA +λ2OB (λ1,λ2为实数),C 为线段AB 中点,若点P 在直线OC 上或在平行于OC 的直线上,则λ1-λ2=k (定值),反之也成立.我们把直线OC 以及与OC 平行的直线叫平面向量基本定理系数的等差线,如图5.根据证明过程和定理1可知:图 5(1)当等差线过AB 中点C 时,k =0;(2)当等差线过点A 时,k =1;(3)当等差线在直线OC 与点A 之间时,k ∈(0,1);(4)当等差线与B A 延长线相交时,k ∈(1,+∞);由相反向量概念和平面几何知识易证:(5)若两等差线关于OC 对称,则相应的定值互为相反数.4 等商线 图 6如图6,平面内一组基底OA ,OB ,设直线l 是过点O 不与OA ,OB 重合的任意直线,设P 1,P 是直线l 上不同于O 的任意两点,则存在实数t ,使得OP 1=t OP ,若OP =λ1OA +λ2OB (λ1,λ2为实数),则OP 1=t (λ1OA +λ2OB )=t λ1OA +t λ2OB ,所以t λ1t λ2=λ1λ2,所以对于是直线l 上任意点P (非点O ),以OA ,OB 基底的向量OP 的平面向量基本定理的系数的比值为定值.反之,对于任意两个向量OP 1,OP 2,OP 1=λ1O A +λ2OB ,OP 2=λ3O A +λ4OB (λ1,λ2,λ3,λ4为实数且非零),若λ1λ2=λ3λ4,则λ3λ1=λ4λ2,设λ3λ1=λ4λ2=k ,所以P 1P 2=OP 2-OP 1=(λ3-λ1)O A +(λ4-λ2)OB =(k λ1-λ1)OA +(k λ2-λ2)OB =(k -1)(λ1OA +λ2OB )=(k -1)OP 1,P 1P 2∥OP 1,即O ,P 1,P 2三点共线.于是有:定理4 平面内一组基底OA ,OB 及任一非零向量OP ,OP =λ1O A +λ2OB (λ1,λ2为实数),若点P 在过点O (不与OA 重合)的直线l 上,则λ1λ2=k (定值),反之也成立.我们把过点O 的直线(除O A 及不含点O )叫平面向量基本定理系数的等商线,如图7.根据证明过程和定理1可得:图 7(1)当等商线过AB 中点C 时,k =1;(2)当等商线与线段AC (除端点)相交时,k ∈(1,+∞);(3)当等商线与线段BC (除端点)相交时,k ∈(0,1);(4)当等商线即为OB 时,k =0;(5)当等商线与B A 延长线相交时,k ∈(-∞,-1);(6)当等商线与AB 延长线相交时,k ∈(-1,0);(7)当等商线与直线AB 平行时,k =-1.5 等积线 平面内一组基底OA ,OB ,以O 为原点,∠AOB 平分线所在直线为x 轴,建立直角坐标系,如图8,设OA =(a ,b ),OB =(c ,d ),若点A 关于x 轴对称点为B 1,则OB 1=(a ,-b ),且OB =λOB 1(λ为正实数),设P (x ,y )是直线OA ,OB 外任意一点,根据平面向量基本定理,存在非零实数λ1,λ2,使得OP =λ1O A +λ2OB =λ1OA +λλ2OB 1=λ1(a ,b )-λλ2b ).x y 两式相乘得x 2a 2-y 2b2=4λ(λ1λ2),图 8设双曲线C :x 2a 2-y 2b2=4λ(λ1λ2),它的渐近线为y =±b ax ,即为直线OA ,OB ,若当λ1λ2为定值,点P 在以OA ,OB 为渐近线的双曲线上;反之,若P 在以OA ,OB 为渐近线的某双曲线上,则x 2a 2-y 2b2的值为非零常数,所以4λ(λ1λ2)为常数,即λ1λ2为定值.于是有:定理5 平面内一组基底O A ,OB 及任一向量OP ,OP =λ1OA +λ2OB ,若λ1λ2为定值,则点P 在以直线OA ,OB 为渐近线的某条双曲线上;反之,点P 在以直线O A ,OB 为渐近线的某条双曲线上,则λ1λ2为定值.我们把以直线O A ,OB 为渐近线的双曲线叫平面向量基本定理系数的等积线,根据证明过程可知以下结论:(1)当双曲线有一支在∠AOB 内时,λ1λ2为正值;(2)当双曲线都不在∠AOB 内时,λ1λ2负值;(3)特别地,OA =(a ,b ),OB =(a ,-b ),点P 在双曲线x 2a 2-y 2b2=1上时,λ1λ2=14.应用平面向量基本定理系数等值线,可以直观、简捷、快速解决一些问题:图 9例1 (2009年安徽理科试题)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°,如图9,点C 在以O 为圆心的圆弧AB 上运动,若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值是.解析 连接AB ,过C 作直线l ∥AB ,则直线l 为以O A ,OB 为基底的平面向量基本定理系数的等和线,显然当l 与圆弧相切于C 1时,定值最大,因为∠AOB =120°,所以OC 1=OA +OB ,即x =y =1,所以x +y 的最大值为2.说明 原解是利用向量坐标表示,借助向量数量积及三角函数知识求解,是典型的向量问题代数化,应用平面向量定理系数的等和线解决,尤显直观、简捷、快速!例2 如图10所示,A ,B ,C 是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OC =m OA +n OB ,则m +n的取值范围是.图 10图 11解析 作O ,的相反向量OA 1,OB 1,如图11,则AB ∥A 1B 1,过O 作直线l ∥AB ,则直线l ,A 1B 1为以O A ,OB 为基底的平面向量基本定理系数的等和线,且定值分别为0,-1,由题意CO 的延长线与线段BA 的延长线交于圆O 外的点D ,所以C 在直线l 与直线A 1B 1之间,即过C 点的等和线在直线l 与直线A 1B 1之间,所以m +n ∈(-1,0).例3 (2010上海高考文科试题)在平面直角坐标系中,双曲线C 的中心在原点,它的一个焦点坐标为(5,0),e 1=(2,1),e 2=(2,-1)分别是两条渐近线的方向向量.任取双曲线C 上的点P ,若OP =a e 1+b e 2(a ,b ∈R ),则a ,b 满足的一个等式是.解 因为e 1=(2,1),e 2=(2,-1)是渐进线的方向向量,所以双曲线渐近线方程为y =±12x ,又它的一个焦点坐标为(5,0),c =5,双曲线C 的方程为x 24-y 2=1,ab =14.(收稿日期:2012-09-02)一个不等式猜想的简证及推广戴志祥(浙江省绍兴市高级中学,312000)1 引言 文[1]的最后提出了四个不等式猜想,文[2]中用构造函数再结合导数的方法给出了猜想1的肯定性证明与推广.本文应用柯西不等式与均值不等式给出猜想1的简证,并在此基础上给出猜想1的进一步推广.猜想1 若a ,b ,c 都是正实数,且满足abc =1,则a 22+a +b 22+b +c 22+c ≥1.2 猜想1的证明证明 由柯西不等式得,(2+a +2+b +2+c )(a 22+a +b 22+b +c 22+c) ≥(a +b +c )2,∴a 22+a +b 22+b +c 22+c≥(a +b +c )2a +b +c +6=(a +b +c )2-36a +b +c +6+36a +b +c +6=a +b +c -6+36a +b +c +6=49(a +b +c +6)+36a +b +c +6 +59(a +b +c +6)-12。
技巧八 平面向量基本定理系数的等值线法2 (1)
答案:
1 ,2 2
例 16 在平面直角坐标系中, O 为坐标原点,两定点 A, B 满足
OA OB OA OB 2, 则点集 P | OP OA OB, 1, , R 所表示
的区域面积为__________.
答案: 4 3
1 ; 2
三、解题步骤
1、确定等值线为 1 的线; 2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小 值; 3、从长度比或者点的位置两个角度,计算最大值和最小值;
四、几点补充
1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着 少数服从多数的原则,优先平移固定的向量; 2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研 究的代数式为基底的系数和或差;
(六)等平方和线 平面内一组基底 OA, OB 及任一向量 OP , OP OA OB , R ,且 若点 P 在以 AOB 角平分线为半长轴的椭圆上, 则 2 2 为定值 k , OA OB , 反之也成立,我们把以以 AOB 角平分线为半长轴的椭圆称为等平方和线。
OC mOA nOB ,则
答案:3
m 的值为_________. n
例 14 如图,倾斜角为 的直线 OP 与单位圆在第一象限的部分交于点 P ,单位 圆与坐标轴交于点 A(1,0) ,点 B (0,1) , PA 与 y 轴交于点 N , PB 与 x 轴交于
( x, y R ) ,求 x y 的最小值。 点 M ,设 PO x PM y PN,
答案:1
例 6 在正方形 ABCD 中, E 为 AB 中点, P 为以 A 为圆心, AB 为半径的圆弧上 AC xDE y AP 的任意一点,设 ,则 x y 的最小值为____________
2024年高考数学平面向量的基本定理总结(2篇)
2024年高考数学平面向量的基本定理总结平面向量是高考数学中的重要内容之一,也是一道很多学生所困扰的难题。
2024年高考数学试卷中关于平面向量的命题主要以基本定理为主。
基本定理是矢量分解定理和平行四边形定理的推论,也是解决平面向量问题的基础。
下面我将就2024年高考数学试卷中出现的平面向量基本定理进行总结,以便为考生复习提供参考。
一、平面向量的矢量分解定理平面向量的矢量分解定理是高考数学中使向量具有普通向量性质的基础。
矢量分解定理有两种表达形式:平行四边形法则和三角形法则。
1. 平行四边形法则平行四边形法则是指对于平面内的任意两个向量,它们可以用平行四边形的两条对角线表示。
对于平面中的向量AC和AD,可以有以下公式:AC = AB + BCAD = AE + ED其中AC和AD是两向量之和,AB和AE是两向量的矢量分解,BC 和ED是两向量的矢量共线分解。
2. 三角形法则三角形法则是指对于平面内的任意两个向量,它们可以用构成由这两个向量所在的两条边所组成的三角形的一条边和该边上的向量的和表示。
对于平面中的向量AC和AD,可以有以下公式:AC = AB + BCAD = AE + DE其中AC和AD是两向量之和,AB和AE是两向量的矢量分解,BC 和DE是两向量的矢量共线分解。
二、平面向量的平行四边形定理平面向量的平行四边形定理是基本定理的推论,也是较为重要的定理之一。
平行四边形定理有两个推论,分别是相等条件和平行条件。
1. 相等条件平行四边形定理的相等条件是指对于平行四边形形状的两个向量,它们互为相等向量。
对于平面中的向量AC和BD,如果满足AC = BD,则可以得出以下的结论:ABCD为平行四边形2. 平行条件平行四边形定理的平行条件是指对于平面中的两个向量,如果它们的终点相同,则这两个向量是平行向量。
对于平面中的向量AC和BD,如果满足C = D,则可以得出以下的结论:AC // BD三、基本定理的应用基本定理是解决平面向量问题的基础,通过运用矢量分解定理和平行四边形定理,可以解决各种与平面向量相关的问题,如求向量的模、方向、分解等问题。
(完整word版)平面向量基本定理及坐标表示
平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1、λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a 、b 共线⇔x 1y 2-x 2y 1=0.选择题:设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2).已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b B.12a -32b C .-32a -12b D .-32a +12b 解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12 C .1 D .2解析 ∵a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,∴1+λ3=24,∴λ=12已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83B.⎝ ⎛⎭⎪⎫-133,83C.⎝ ⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43 解析 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),∴c =⎝ ⎛⎭⎪⎫-133,-43.已知向量OA→=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23 B.43 C.12 D.13解析 AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2),∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝ ⎛⎭⎪⎫35,-45.已知点A (-1,5)和向量a =(2,3),若AB→=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)解析 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5),由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,∴m =-6,则“m =-6”是“a ∥(a +b )”的充要条件,故选A已知在□ABCD 中,AD→=(2,8),AB →=(-3,4),则AC →=( )A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12) 解析 ∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →=(-1,12)在△ABC 中,点D 在BC 边上,且CD→=2DB →,CD →=rAB →+sAC →,则r +s 等于( )A.23B.43 C .-3 D .0解析 ∵CD→=2DB →,∴CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC→=2AE →,则向量EM →=( )A.12AC →+13AB →B.12AC →+16AB →C.16AC →+12AB →D.16AC →+32AB → 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 解析 BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45解析 ∵AB→=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,∴AB→=85AN →-45AM →,∴λ+μ=45.填空题:已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. 解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).已知向量a =(x,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 ∵(x,1)+(2,y )=(1,-1),∴⎩⎪⎨⎪⎧ x +2=1,y +1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-2,∴x +y =-3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为( ) A .-1 B .-12 C.12 D .1解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析 ∵a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,∴u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又∵u ∥v ,∴3(2x +1)-4(2-x )=0,即10x =5,解得x =12.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________解析 AB→=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54在□ABCD 中,AC 为一条对角线,AB→=(2,4),AC →=(1,3),则向量BD →的坐标为__________.解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).已知□ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________ 解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为_______解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB ,∴DC→=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ),AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2), ∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).如图,在△ABC 中,AN→=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 解析:设BP→=kBN →,k ∈R .∵AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →, 且AP→=mAB →+211AC →,∴1-k =m ,k 4=211,解得k =811,m =311.在□ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2表示)解析 如图,MN→=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2如图,已知AB→=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=____________解析 AD→=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________.解析 AB→=(a -2,-2),AC →=(-2,b -2),则(a -2)(b -2)-4=0,即ab -2a -2b =0,∴1a +1b =12.设OA→=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________解析 由题意得AB→=(-a +2,-2),AC →=(b +2,-4),又AB →∥AC →,∴(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2,∴1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.解析 设C (x ,y ),则AC→=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________解析 若点A ,B ,C 能构成三角形,则向量AB→,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC→=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k ≠0,解得k ≠1.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 解析 ∵a ∥b ,∴sin2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0, ∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12解答题:已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC→=2AB →,求点C 的坐标.解析 (1)由已知得AB→=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB→∥AC →,∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC→=2AB →,∴(a -1,b -1)=2(2,-2). ∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴AM→与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.能力提升题组已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( ) A .-2 B .2 C .-12 D.12 解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1), ∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn 的值为( )A .2 B.52 C .3 D .4 解析 ∵OA →·OB→=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即m n =3如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且B P →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 解析 由题意知O P →=O B →+B P →,又B P →=2P A →,∴O P →=O B →+23B A →=O B →+23(O A →-O B →)=23O A →+13O B →,∴x =23,y =13.已知点A (-1,2),B (2,8),AC→=13AB →,DA →=-13BA →,则CD →的坐标为________解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2).由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6).∵AC →=13AB →,DA →=-13BA →,∴有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.∴点C ,D 的坐标分别为(0,4),(-2,0),从而CD→=(-2,-4).已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为|OP |+1=3+1=4,故(m -3)2+n 2的最大值为42=16.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________. 解析∵MA→+MB →+MC →=0,∴M 为△ABC 的重心. 如图所示,连接AM 并延长交BC 于D ,则D 为BC 的中点. ∴AM→=23AD →. 又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA→+nOB →,则m +n 的取值范围是________解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA→+nOB →=kλOA →+k (1-λ)OB →, ∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算好啦,今天我们来聊聊平面向量的基本定理和坐标运算。
这可是个很有趣的话题,别被那些数学术语吓跑哦!你知道吗,向量其实就像是一把钥匙,可以打开很多数学大门。
听上去挺高大上的,但实际上,我们生活中处处都离不开它们,就像你每天都离不开饭一样。
想象一下,你在操场上跑来跑去,运动会的时候,标记你起跑的地方和终点的地方。
用坐标来表示,就是一个个的点,比如 (2, 3) 代表着你起跑的地方,(5, 7) 是终点。
平面向量就像是连接这两个点的一根线,从 A 点到 B 点的过程就叫做向量的运算。
听起来是不是有点神秘?其实也没那么复杂。
向量不仅有方向,还有长度,这样一来,我们就能把它当成一个小箭头,指向目标,越远越好,嘿嘿。
再来看看坐标运算,简单来说,就是把这些向量在坐标系上转来转去。
比如说你要把一条向量从起点搬到终点,怎么搬?很简单,向量的加法就可以搞定。
想象一下,你有一个从 (2, 3) 到 (5, 7) 的向量,再加上一个从 (5, 7) 到 (8, 10) 的向量,结果就是从 (2, 3) 直接到 (8, 10)。
这就像你在操场上先跑到朋友那儿,然后一起跑到更远的地方,简直爽翻了。
向量的减法也好玩,想象你在吃汉堡,先吃了一个大汉堡,接着又吃了一个小汉堡。
这样一来,你的胃口就会受到影响嘛,向量的减法就是把一部分“胃口”给减掉。
把(5, 7) 的向量减去 (2, 3),就好比把你吃过的那部分减掉,最后留下的结果就是 (3, 4)。
这就像是记账,进账和出账的过程,清清楚楚,明明白白。
平面向量的基本定理告诉我们,两个向量如果相加,结果其实就是个新向量。
这和我们日常生活的积累特别像,不管是友情还是经历,都是点点滴滴积累起来的。
你在学校交了朋友,跑步时又认识了新伙伴,这些都是向量的相加。
每个人都是一个小向量,带着自己独特的方向和长度,拼凑起来就是一幅美丽的画面。
再说说方向和大小,向量的大小就是它的长度,方向就是箭头指向的地方。