苏教版八年级数学反比例函数专题讲练
专题. 反比例函数(对称性问题)(培优篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.25反比例函数(对称性问题)(培优篇)(专项练习)一、单选题1.如图,若双曲线(0)ky k x=>与它的一条对称轴y x =交于A 、B 两点,则线段AB 称为双曲线(0)k y k x =>的“对径”.若双曲线(0)ky k x=>的对径长是k 的值为()A .2B .4C .6D .2.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y=和y=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①=;②阴影部分面积是(k 1+k 2);③当∠AOC=90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是()A .①②③B .②④C .①③④D .①④3.如图,点A 与点B 关于原点对称,点C 在第四象限,∠ACB=90°.点D 是x 轴正半轴上一点,AC 平分∠BAD ,E 是AD 的中点,反比例函数ky x=(0k >)的图象经过点A,E .若△ACE 的面积为6,则k 的值为()A .4B .6C .8D .124.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称.下列命题:①图象C与函数3y x =的图象交于点3,22⎛⎫⎪⎝⎭;②点1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4,④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >.其中真命题是()A .①②B .①③④C .②③④D .①②④5.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是()A .5B .2C .42-D .56.点()1,3-关于y 轴的对称点在反比例函数ky x=的图像上,下列说法不正确的是()A .y 随x 的增大而减小B .点()1,3在该函数的图像上C .当1x ≥时,03y <≤D .该函数图像与直线y x =33337.如图,矩形AOBC 的顶点坐标分别为(0,3),(0,0),(4,0),(4,3)A O B C ,动点F 在边BC 上(不与B C 、重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G .给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <<;④若2512DE EG ⋅=,则1k =.其中正确的命题个数是()A .1个B .2个C .3个D .4个8.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称下列命题:①图象C 与函数3y x =的图象交于点3,22⎛⎫ ⎪⎝⎭;②1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4;④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >,其中真命题是()A .①②B .①③④C .②③④D .①②③④9.如图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A 、B 和C ,下列结论中,正确的个数是()①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是(1,2);④ABC ∆是直角三角形.A .1B .2C .3D .410.如图,矩形AOBC 的边3OA =,4OB =,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G .给出以下命题:①若6k =,则OEF 的面积为92;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若256DE EG ⋅=,则2k =;其中正确的命题个数是()A .1个B .2个C .3个D .4个二、填空题11.已知A 、B 两点为反比例函数()0ky k x=<的图像上的动点,他们关于y 轴的对称点恰好落在直线21y x m =++上,若点A 、B 的坐标分别为1122(,),(,)x y x y 且120x x +≠,则1212y y x x +=+________.12.如图反比例函数ky x=的图像经过点A ,点B 与点A 关于x 轴对称,点C 是y 轴上一点,若ABC ∆的面积为2,则该反比例函数的解析式为_____________13.如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是.14.如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)ky k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知2CD =.若该反比例函数图象与DE 交于点Q ,则点的Q 横坐标是_________.15.如图,P 是反比例函数12(0)y x x=>上的一个动点,过P 作PA x ⊥轴,PB y ⊥轴.(1)若矩形的对角线10AB =,则矩形OAPB 周长为________;(2)如图,点E 在BP 上,且2BE PE =,若E 关于直线AB 的对称点F 恰好落在坐标轴上,连结,,AE AF EF ,则AEF △的面积为___________.16.如图,Rt △AOB 的顶点O 是坐标原点,点B 在x 轴上,∠OAB =90°,反比例函数7y x=(0x >)的图象关于AO 所在的直线对称,且与AO 、AB 分别交于D 、E 两点,过点A 作AH ⊥OB 交x 轴于点H ,过点E 作EF //OB 交AH 于点G ,交AO 于点F ,则四边形OHGF 的面积为_________17.如图,矩形AOBC 的顶点坐标分别为(03)A ,、00O (,)、(40)B ,、(43)C ,,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若2512DE EG ⋅=,则2k =.其中正确的命题的序号是________.(写出所有正确命题的序号)18.如图,在平面直角坐标系xOy 中,菱形ABCD 与菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,点A ,F 在反比例函数y =kx(k >0,x >0)的图象上,延长AB 交x 轴于点P (1,0),若∠APO =120°,则k 的值是_____________.三、解答题19.综合与探究如图1,反比例函数的图象8y x=-经过点A ,点A 的横坐标是-2,点A 关于坐标原点O 的对称点为点B ,作直线AB .(1)判断点B 是否在反比例函数8y x=-的图象上,并说明理由;(2)如图1,过坐标原点O 作直线交反比例函数8y x=-的图象于点C 和点D ,点C 的横坐标是4,顺次连接AD ,DB ,BC 和CA .求证:四边形ACBD 是矩形;(3)已知点P 在x 轴的正半轴上运动,点Q 在平面内运动,当以点O ,B ,P 和Q 为顶点的四边形为菱形时,请直接写出此时点P 的坐标.20.如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图像上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当PE PB -最大时,求点P 的坐标.21.如图,在平面直角坐标系xOy 中,直线2y x =与双曲线ky x=与相交于A ,B 两点(点A 在点B 的左侧).(1)当25AB =k 的值;(2)点B 关于y 轴的对称点为C ,连接AC BC ,;①判断ABC 的形状,并说明理由;②当ABC 的面积等于16时,双曲线上是否存在一点P ,连接AP BP ,,使PAB 的面积等于ABC 面积?若存在,求出点P 的坐标,若不存在,请说明理由.22.如图,矩形ABCD 的面积为8,它的边CD 位于x 轴上.双曲线4y x=经过点A ,与矩形的边BC 交于点E ,点B 在双曲线4ky x+=上,连接AE 并延长交x 轴于点F ,点G 与点О关于点C 对称,连接BF ,BG .(1)求k 的值;(2)求BEF △的面积;(3)求证:四边形AFGB 为平行四边形.23.如图,直线y x m =-+与反比例函数ky x=的图象相交于点()2A n -,,与x 轴交于点()20B ,.(1)求m 和k 的值.(2)若点()P t t ,与点O 关于直线AB 对称,连接AP .①求点P 的坐标;②若点M 在反比例函数ky x=的图象上,点N 在x 轴上,以点A P M N ,,,为顶点的四边形能否为平行四边形?若能,直接写出点M 的坐标;若不能,请说明理由.24.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(12,5),双曲线ky x的图象经过点A .(1)菱形OABC 的边长为____;(2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于y 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标;②将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.参考答案1.B【分析】根据题中的新定义:可得出对径AB=OA+OB=2OA ,由已知的对径长求出OA 的长,过A 作AM 垂直于x 轴,设A (a ,a )且a>0,在直角三角形AOM 中,利用勾股定理列出关于a 的方程,求出方程的解得到a 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中,即可求出k 的值.解:过A 作AM ⊥x 轴,交x 轴于点M ,如图所示:设A (a ,a ),a >0,可得出AM =OM =a ,又∵双曲线的对径AB=,∴OA =OB=在Rt △AOM 中,根据勾股定理得:AM 2+OM 2=OA 2,则a 2+a 2=()2,解得:a =2或a =−2(舍去),则A (2,2),将x =2,y =2代入反比例解析式得:2=2k,解得:k =4故选B 2.D解:试题分析:过点C 作CD ⊥y 轴于点D ,过点A 作AE ⊥y 轴于点E .∵111··222ABCD CD OB AE OB S ==四边形,∴CD=AE .由题意,易得四边形ONCD 与四边形OMAE 均为矩形,∴CD=ON ,AE=OM ,∴ON=OM .∵,CN·ON=2k ,AM·OM=1k ∴12k AMCN k =,结论①正确.由题意1k >0,2k <0,∴阴影部分的面积为121211()()22k k k k +=-,∴结论②错误.当∠AOC=90°时,易得△CON ∽△OAM ,要使12k k =成立,则需△CON ≌△OAM ,而△CON 与△OAM 不一定全等,故结论③错误.若四边形OABC 为菱形,则OA=OC ,∵ON=OM ,∴Rt △ONC ≌Rt △OMA (HL ),∴1k =2k ,即1k =-2k ,∴两双曲线既关于x 轴对称,也关于y 轴对称,结论④正确.考点:反比例函数的性质、三角形全等.3.C【分析】过A 作,AF OD EG OD ⊥⊥,连接OC 、OE ,根据点A 与点B 关于原点对称,∠ACB=90°,AC 平分∠BAD 得出//AE OC ,从而得出三角形AEC 的面积与三角形AOE的面积相等,设,k A m m ⎛⎫ ⎪⎝⎭,根据E 是AD 的中点得出2,2k E m m ⎛⎫ ⎪⎝⎭得出三角形OAE 的面积等于四边形AFGE 的面积建立等量关系求解.解:过A 作,AF OD EG OD ⊥⊥,连接OC ,连接OE :∵点A 与点B 关于原点对称,∠ACB=90°∴,OA OB OC OCA OAC==∠=∠又∵AC 平分∠BAD ∴OAC CAD =∠∠∴//AE OC ∴AEO AECS S ∆∆=设,k A m m ⎛⎫ ⎪⎝⎭,根据E 是AD 的中点得出:2,2k E m m ⎛⎫ ⎪⎝⎭∴1622AEO AFGE kk S S m m m ∆⎛⎫==+⨯⨯= ⎪⎝⎭四解得:8k =故答案选:C .【点拨】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC 的面积转化与三角形AOE 的面积相等是解题关键.4.A【分析】根据轴对称的性质和图象点的特征可知①正确;根据点1,22⎛⎫- ⎪⎝⎭关于y=2的对称点坐标在函数3y x=图象上,即可判定②正确;由3y x=上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-可判断③错误;由关于2y =对称点性质可判断④不正确;解: 点3(2,2)是函数3y x =的图象的点,也是对称轴直线2y =上的点,∴点3(2,2)是图象C 与函数3y x =的图象交于点;∴①正确;点1(2,2)-关于2y =对称的点为点1(2,6),1(2,6)在函数3y x =上,∴点1(2,2)-在图象C 上;∴②正确;3y x=中0y ≠,0x ≠,取3y x=上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-;∴图象C 上的点的纵坐标不一定小于4.故③错误;1(A x ,1)y ,2(B x ,2)y 关于2y =对称点为1(x ,14)y -,2(B x ,24)y -在函数3y x=上,1134y x ∴-=,2234y x -=,若120x x >>,则12y y >;若120x x >>或120x x >>,则12y y <;∴④不正确;故选A .【点拨】本题考查反比例函数图象及性质及轴对称的性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.5.A【分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ ,所以∠BPQ=∠B′PQ=45°,于是得到B′P ⊥y 轴,则点B 的坐标可表示为(-4t,t ),于是利用PB=PB′得t-2=|-4t |=4t,然后解方程可得到满足条件的t 的值.解:如图,∵点A 坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4x,∵OB=AB=2,∴△OAB 为等腰直角三角形,∴∠AOB=45°,∵PQ ⊥OA ,∴∠OPQ=45°,∵点B 和点B′关于直线l 对称,∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P ⊥y 轴,∴点B′的坐标为(-4t,t ),∵PB=PB′,∴t-2=|-4t |=4t,整理得t 2-2t-4=0,解得t1=1,(不符合题意,舍去),∴t 的值为1.故选A .【点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.6.A【分析】先确定对称点坐标为(-1,-3),将其代入反比例函数ky x=中求得k=3,得到函数解析式,根据函数的性质解答.解:点()1,3-关于y 轴的对称点坐标为(-1,-3),将(-1,-3)代入ky x=,得k=(1)(3)3-⨯-=,∴反比例函数解析式为3y x=,∵k=3>0,∴在每个象限内y 随着x 的增大而减小,故A 错误;当x=1时,y=3,故B 正确;当1x ≥时,03y <≤,故C 正确;解方程组3y x y x =⎧⎪⎨=⎪⎩,得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩故函数3y x=图像与直线y x =故D 正确,故选:A.【点拨】此题考查待定系数法求反比例函数解析式,轴对称的性质,反比例函数的性质,函数图象交点问题.7.D【分析】①若4k =,则计算163OEF S ∆=,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点(4,3)C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG =,求出1k =,故命题④正确.解:命题①正确.理由如下:4k = ,4(3E ∴,3),(4,1)F ,48433CE ∴=-=,312CF =-=.1111411843341222223223OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF ∆∆∆∆∴=---=-⋅-⋅-⋅=⨯-⨯⨯-⨯⨯-⨯⨯=矩形矩形,故①正确;命题②正确.理由如下:218k =,7(8E ∴,3),21(4,)32F ,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN ∆中,由勾股定理得:78MN =,7794884BN OB OM MN ∴=--=--=.在Rt BFN ∆中,由勾股定理得:7532NF ==.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③正确.理由如下:由题意,点F 与点(4,3)C 不重合,所以4312k ≠⨯=,012k ∴<<,故③正确;命题④正确.理由如下:设12k m =,则(4,3)E m ,(4,3)F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,(0,33)D m ∴+;令0y =,得44x m =+,(44,0)G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE ∆中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG ∆中,(44)44MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴=⨯==,解得112m =,121k m ∴==,故命题④正确.综上所述,正确的命题是:①②③④,共4个,故选:D.【点拨】此题是反比例函数综合题,主要考查了函数的图象与性质、反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法、矩形及勾股定理等多个知识点,有一定的难度.本题计算量较大,解题过程中注意认真计算.8.A【分析】根据题意画出图形,①将32x =代入3y x =得2y =,从而可判断①正确;②令12x =时,16y =,即162⎛⎫ ⎪⎝⎭,关于2y =时的对称点为122⎛⎫- ⎪⎝⎭,从而可判断②正确;③根据图形分析可得C 右侧图与x 轴间距离小于4,但y 轴左侧与x 轴距离大于4,从而可判断③错误;④由图像即可判断④错误.解:由图像C 与反比例函数3y x=关于2y =对称可得如下图,①当32x =时,2y =,故①正确;②当12x =时,16y =,即162⎛⎫ ⎪⎝⎭,关于2y =时的对称点为122⎛⎫- ⎪⎝⎭,,故②正确;③如图:3y x=与2y =之间距离小于2,即C 与x 轴间距离小于4(C 右侧图),但y 轴左侧与x 轴距离大于4,故③错误;④当0x >时,12x x >,则124y y >>;当0x <时,12x x >,则124y y >>;∴当x 1>0>x 2时,y 2>y 1故④错误.故答案为:A .【点拨】本题考查了反比例函数图象及性质;熟练掌握函数关于直线对称时,对应点关于直线对称是解题的关键.9.D【分析】根据题意,由反比例函数的性质和一次函数的性质分别求出点A 、B 、C 的坐标,然后通过计算,分别进行判断,即可得到答案.解:根据题意,由22y x y x⎧=⎪⎨⎪=⎩,解得:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩,∴点A 为(1,2),点B 为(1-,2-),∴点A 与点B 关于原点对称;故①③正确;由21y x y x ⎧=⎪⎨⎪=+⎩,解得:12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,∴点C 为(2-,1-);∴OA ==OC ==∴OA OC =,故②正确;∵AC ==,AB ==,BC =∵222=+,∴222AB AC BC =+,∴ABC ∆是直角三角形,故④正确;故选:D .【点拨】本题考查了反比例函数的性质,一次函数的性质,勾股定理求两点间的长度,以及两直线的交点问题,解题的关键是熟练掌握所学的性质进行解题.10.B【分析】①若6k =,则计算92OEF S = ,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点()4,3C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式256DE EG ⋅=,求出1k =,故命题④错误.解:命题①正确.理由如下:6k =Q ,()2,3E ∴,34,2F ⎛⎫⎪⎝⎭,422CE ∴=-=,33322CF =-=,111222OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF∴=---=-⋅-⋅-⋅矩形矩形113139433242222222=⨯-⨯⨯-⨯⨯-⨯⨯=,故①正确;命题②正确.理由如下:218k =,7,38E ⎛⎫∴ ⎪⎝⎭,214,32F ⎛⎫ ⎪⎝⎭,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN △中,由勾股定理得:78MN ==,7794884BN OB OM MN ∴=--=--=.在Rt BFN △中,由勾股定理得:7532NF =.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③错误.理由如下:由题意,点F 与点()4,3C 不重合,所以4312k ≠⨯=,012k ∴<<,故③错误;命题④错误.理由如下:设12k m =,则()4,3E m ,()4,3F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,()0,33D m ∴+;令0y =,得44x m =+,()44,0G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE △中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG 中,()4444MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴⋅=⨯==,解得112m =,121k m ∴==,故命题④错误.综上所述,正确的命题是:①②,共2个,故选:B.【点拨】本题属于反比例函数综合题,考查勾股定理,待定系数法求一次函数解析式,反比例函数图象上点的坐标特征等,综合性比较强,难度较大.11.1【分析】设点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22’,k B x x ⎛⎫- ⎪⎝⎭,代入21y x m =++,求出k ,再求1212y y x x ++即可.解:A 、B 两点为反比例函数()0ky k x=<的图像上,点A 、B 的坐标分别为1122(,),(,)x y x y ,则点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22,k B x x '⎛⎫- ⎪⎝⎭,把A ′、B ′坐标分别代入21y x m =++得,1121k x m x =-++和2221kx m x =-++,两式相减得,1212k kx x x x -=-+,解得12k x x =,则12y x =,21y x =122112121y y x x x x x x ++==++,故答案为1.【点拨】本题考查了一次函数和反比例函数的综合,解题关键是熟练运用一次函数和反比例函数知识,通过设坐标建立等量关系,表示出比例系数.12.2y x=-【分析】根据题意,设点A 为(x ,y ),则AB=2y ,由点C 在y 轴上,则△ABC 的AB 边上的高为x ,结合面积公式,即可求出k 的值.解:∵反比例函数ky x=的图像经过点A ,∴设点A 为(x ,y ),且点A 在第二象限,∵点B 与点A 关于x 轴对称,∴AB=2y ,∵点C 在y 轴上,∴△ABC 的AB 边上的高为x ,∴1222S y x =⨯⨯=,∴2x y =g ,∵点A 在第二象限,则0x <,∴2x y xy =-=g ,∴2xy =-,即2k =-,∴反比例函数的解析式为:2y x =-.故答案为:2y x=-.【点拨】本题考查了反比例函数图象上点的坐标特征和反比例函数的几何意义,能根据三角形的面积求出xy 的值是解此题的关键.13.(1)(4,0);(2)4≤t ≤-t ≤-4【分析】(1)当点O′与点A 重合时,即点O 与点A 重合,进一步解直角三角形AOB ,利用轴对称的现在解答即可;(2)分别求出O′和B′在双曲线上时,P 的坐标即可.解:(1)当点O´与点A 重合时,∵∠AOB=60°,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O´B´.AP′=OP′,∴△AOP′是等边三角形,∵B (2,0),∴BO=BP′=2,∴点P 的坐标是(4,0),(2)∵∠AOB=60°,∠P′MO=90°,∴∠MP′O=30°,∴OM=12t ,OO′=t ,过O′作O′N ⊥X 轴于N ,∠OO′N=30°,∴ON=12t ,NO′=2t ,∴O′(12tt ),根据对称性可知点P 在直线O′B′上,设直线O′B′的解析式是y=kx+b,代入得1220tk b tk b ⎧+=⎪⎨⎪+=⎩,解得:k b ⎧=⎪⎨=⎪⎩∴y=①,∵∠ABO=90°,∠AOB=60°,OB=2,∴OA=4,∴A (2,∴2,即x 2﹣tx+4=0③,b 2﹣4ac=t 2﹣4×1×4≥0,解得:t≥4,t≤﹣4.又O′B′=2,根据对称性得B′点横坐标是1+12t ,当点B′为直线与双曲线的交点时,由③得,(x ﹣12t )2﹣24t +4=0,代入,得(1+12t ﹣12t )2﹣24t +4=0,解得而当线段O′B′与双曲线有交点时,t≥﹣综上所述,t 的取值范围是﹣4.【点拨】本题主要考查对用待定系数法求一次函数、反比例函数的解析式,勾股定理,解二元一次方程组,解不等式,含30度角的直角三角形的性质,三角形的内角和定理,根的判别式等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.14.32【分析】过点P 作x 轴垂线PG ,连接BP ,可得BP =2,G 是CD 的中点,所以P (2,D (3,0),E ,待定系数法求出DE 的解析式为y -,联立反比例函数与一次函数即可求点Q 的坐标.解:过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴CG=1,CP=2,∴PG∴P (2∵P 在反比例函数ky x=上,∴k =∴y =∵OD=OC+CD=3,BE=2BP=4,∴D (3,0),E (4设DE 的解析式为y =mx +b ,∴304m b m b +=⎧⎪⎨+=⎪⎩∴m b ⎧=⎪⎨=-⎪⎩,∴y -,联立方程y y ⎧=-⎪⎨=⎪⎩解得32x ±=∵Q 点在第一象限,∴Q点横坐标为32,【点拨】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标将结合是解题的关系.15.4或163【分析】(1)设矩形OAPB 的两边为m 、n ,利用反比例函数k 的几何意义得到6mn =,再根据勾股定理得到22210m n +=,根据完全平分公式变形得到2()2100m n mn +-=,则可计算出m n +=OAPB 的周长;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,利用三角形面积公式得到4ABE S ∆=,再根据对称轴的性质得AB 垂直平分EF ,EQ FQ =,接着证明FQ 垂直平分AB 得到BQ AQ =,所以122AQE ABE S S ∆∆==,则24AEF AQE S S ∆∆==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,证明四边形OAPB为正方形得到P,则可计算出83BEF S ∆=,而2AOE APE S S ∆∆==,于是得到163AEF S ∆=.解:(1)设矩形OAPB 的两边为m 、n ,则12mn =,矩形的对角线10AB =,22210m n ∴+=,2()2100m n mn ∴+-=,2()100212m n ∴+=+⨯,m n ∴+=,∴矩形OAPB 的周长为,故答案为;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,矩形OAPB 的面积12=,而2BE PE =,4ABE S ∆∴=,点E 与点F 关于AB 对称,AB ∴垂直平分EF ,EQ FQ =,AE AF ∴=,AEF AFE ∴∠=∠,//PB OA ,AFE BEF ∴∠=∠,BEF AEF ∴∠=∠,FQ ∴垂直平分AB ,BQ AQ ∴=,122AQE ABE S S ∆∆∴==,24AEF AQE S S ∆∆∴==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,点E 与点F 关于AB 对称,BE BF ∴=,AB EF ⊥,BEF ∴∆为等腰直角三角形,AB ∴平分OBP ∠,∴四边形OAPB 为正方形,P ∴,BE BF ∴=1823BEF S ∆∴==,而2AOF APE S S ∆∆==,816122233AEF S ∆∴=---=,综上所述,AEF ∆的面积为4或163,故答案为4或163.【点拨】本题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和轴对称的性质;灵活运用矩形的性质进行几何计算;理解坐标与图形性质.16.72【分析】先根据反比例函数的性质可得直线AO 的解析式为y x =,从而可得45AOB ∠=︒,再根据等腰直角三角形的判定可得Rt AEF △是等腰直角三角形,从而可得AG EG FG ==,然后设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,)(0)E b b b>,由此可得AG FG EG b a ===-,AH OH a ==,7AG AH GH a b =-=-,从而可得72a b b-=,最后利用Rt AOH 面积减去Rt AFG 面积即可得.解: 反比例函数7y x=的图象关于AO 所在的直线对称,∴直线AO 的解析式为y x =,45AOB ∴∠=︒,AH OB ⊥ ,//EF OB ,,45AH EF AFE AOB ∴⊥∠=∠=︒,Rt AEF ∴ 是等腰直角三角形,AG EG FG ∴==(等腰三角形的三线合一),设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,)(0)E b b b>,AG FG EG b a ∴===-,AH OH a ==,7AG AH GH a b=-=-,7b a a b ∴-=-,即72a b b-=,则四边形OHGF 的面积为1122Rt AOH Rt AFG S S AH OH FG AG -=⋅-⋅ ,2211()22a b a =--,1(2)2b a b =-,72=,故答案为:72.【点拨】本题考查了反比例函数与几何综合、等腰直角三角形的三线合一等知识点,熟练掌握反比例函数的性质是解题关键.17.①②【分析】①若k =4,则计算S △OEF =163,故命题①正确;②若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点C (4,3),所以k ≠12,故命题③错误;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG ⋅=,求出k =1,故命题④错误.解:命题①正确.理由如下:∵k =4,∴E (43,3),F (4,1),∴CE =4−43=83,CF =3−1=2.∴S △OEF =S 矩形AOBC −S △AOE −S △BOF −S △CEF=S 矩形AOBC −12OA •AE −12OB •BF −12CE •CF =4×3−12×3×43−12×4×1−12×83×2=12−2−2−83=163,故命题①正确;命题②正确.理由如下:∵218=k ,∴E (78,3),F (4,2132),∴CE =4−78=258,CF =3−2132=7532.如图,过点E 作EM ⊥x 轴于点M ,则EM =3,OM =78;在线段BM 上取一点N ,使得EN =CE =258,连接NF .在Rt △EMN 中,由勾股定理得:MN 2=EN 2−EM 2=2225()38-,∴MN =78,∴BN =OB −OM −MN =4−78−78=94.在Rt △BFN中,由勾股定理得:NF 2=BN 2+BF 2=22921432⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,∴NF =7532.∴NF =CF ,又EN =CE ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故命题②正确;命题③错误.理由如下:由题意,得点F 与点C (4,3)不重合,所以k ≠4×3=12,故命题③错误;命题④正确.理由如下:设k =12m ,则E (4m ,3),F (4,3m ).设直线EF 的解析式为y =ax +b ,则4343ma b a b m ⎧⎨⎩+=+=,解得3433a b m ⎧-⎪⎨⎪+⎩==,∴y =34-x +3m +3.令x =0,得y =3m +3,令y =0,得x =4m +4,∴D (0,3m +3),G (4m +4,0).如图,过点E 作EM ⊥x 轴于点M ,则OM =AE =4m ,EM =3.在Rt △ADE 中,AD =OD −OA =3m ,AE =4m ,由勾股定理得:DE =5m ;在Rt △MEG 中,MG =OG −OM =(4m +4)−4m =4,EM =3,由勾股定理得:EG =5.∴DE •EG =5m ×5=25m =2512,解得m =112,∴k =12m =1,故命题④错误.综上所述,正确的命题是:①②,故答案为:①②.【点拨】本题综合考查函数的图象与性质,反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法求解析式、矩形的性质及勾股定理等知识点,本题计算量较大,正确的计算能力是解决问题的关键.18.【分析】连接AB 、BD 交于点N ,作BM x ⊥轴于点M ,设线段PM a =,得BM ,由菱形ABCD 和菱形GFED 关于点D 成中心对称结合120APO ∠=︒可得点A 和点F 的坐标,再结合反比例函数图象上点的坐标特征列出方程,求a ,最后求得k .解:连接AB 、BD 交于点N ,作BM x ⊥轴于点M,设PM a =,120APO ∠=︒,BM ∴,2PB a =,菱形ABCD 和菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,AC x ∴⊥轴,AB BC =,30PAC ∴∠=︒,60BAD =∴∠︒,60BCP ∴∠=︒,CM BN ND PM a ∴====,2AC BM ==,∴点(12A a +,),(15)F a +,点A 和点F 在反比例函数图象上,(12)(15)a a ∴+=+,解得:0a =(舍)或1a =,(3A ∴,,3k ∴=⨯=故答案为:【点拨】本题考查了菱形的性质、含30︒角的直角三角形三边关系、反比例函数图象上点的坐标特征,解题的关键是利用菱形的性质表达出点A 和点F 的坐标.19.(1)点B 在反比例函数8y x=-的图象上,理由见分析;(2)见分析;(3)()4,0,()和()5,0【分析】(1)求出点B 的坐标,判断即可;(2)证明OA =OB ,OC =OD ,推出四边形ADBC 是平行四边形,再证明AB =CD ,可得结论;(3)当四边形OBPQ 是菱形时,对图形进行分类讨论,设点P 的坐标为(,0)m ,然后根据邻边相,用两点间距离公式表示线段长度列方程即可.解:(1)结论:点B 在反比例函数8y x=-的图象上,理由如下:∵反比例函数8y x=-的图象经过点A ,点A 的横坐标是-2,∴把2x =-代入8y x=-中,得842y =-=-,∴点A 的坐标是()2,4-,∵点A 关于坐标原点O 的对称点为点B ,∴点B 的坐标是()2,4-,把2x =代入8y x=-中,得842y =-=-,∴点B 在反比例函数8y x=-的图象上;(2)证明:在反比例函数8y x=-中令x =4则y =-2,∵过坐标原点O 作直线交反比例函数8y x =-的图象于点C 和点D ,∴C ,D 关于原点对称,∴C (4,-2),D (-4,2),OC =OD ,∵A ,B 关于原点对称,∴OA =OB ,∴四边形ACBD 是平行四边形,∵∴AB =CD ,∴四边形ACBD 是矩形;(3)设点P 的坐标为(,0)m ,如图,当四边形OBP 1Q 1是菱形时,可得1OB OP =,∴022m +=,解得4m =,∴P 1()4,0;当四边形OBQ 2P 2是菱形时,可得2OB OP =,∴2OB OP =∴P 2();当四边形OP 3BQ 3是菱形时,可得33OP BP =,∴m =,解得5m =,∴P 3()5,0,综上所述,满足条件的点P 的坐标分别为()4,0,()和()5,0.【点拨】本题属于反比例函数综合题,考查了反比例函数的性质,一次函数的性质,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.(1)点E 在这个反比例函数的图像上,理由见分析;(2)①1k =,2b =;②点P 的坐标为(0,2)-【分析】(1)设点A 的坐标为8(,)m m,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD =,设点A 的坐标为8(,m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB -=-,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =-,于是得到结论.(1)解:点E 在这个反比例函数的图像上.理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,∴设点A 的坐标为8(,m m, 点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=,AD x ⊥ 轴于D ,CE x ∴∥轴,90ADB ∠=︒,90CDO ADC ∴∠+∠=︒,CB CD = ,CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m ∴,428m m⨯= ,∴点E 在这个反比例函数的图像上;(2)解:① 四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m ,CH m ∴=,8AD m=,182m m∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,∴12k b =⎧⎨=⎩;②延长ED 交y 轴于P ,如图所示:CB CD = ,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB ∴-=-,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n =+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==-⎧⎨⎩,∴直线DE 的解析式为2y x =-,当0x =时,=2y -,即()0,2-,故当PE PB -最大时,点P 的坐标为(0,2)-.【点拨】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.21.(1)2k =;(2)①ABC 为直角三角形,理由见分析;②点P 的坐标为(222-++,或(22242---,或()2224+-,或()22224---,.【分析】(1)设点B 的坐标为(2)m m ,,则点(2)A m m --,,则22(25)AB =,即可求解;(2)①点A 、C 的横坐标相同,AC y 轴,点B 关于y 轴的对称点为C ,故BC y ⊥轴,即可求解;②过点C 作直线m AB ,交反比例函数于点P ,则点P 符合题设要求,同样在AB 下方等间隔作直线n AB ∥交反比例函数于点P ,则点P 也符合要求,进而求解.(1)解:设点B 的坐标为(2)m m ,,则点(2)A m m --,,则:()()222222(25)AB m m m m =+++=,解得1m =(负值已舍去),故点B 的坐标为(12),,将点B 的坐标代入反比例函数表达式得∶21k =,解得∶2k =;(2)解:①ABC 为直角三角形,理由∶设点(2)B m m ,,则点(2)(2)C m m A m m ---,,,,。
专题. 反比例函数(最值问题)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.27反比例函数(最值问题)(巩固篇)(专项练习)反比例函数中最值问题主要包括两方面内容:一个是利用反比例函数的增减性求最值;另一个是利用几何最短路径(垂线段最短、两点之间线段最短)求最值问题,还有就是利用非负性求最值,本专题以基础、巩固、培优三个梯度精选了部分最值问题供大家选择使用。
一、单选题1.设函数y 1=k x ,y 2=﹣kx(k >0).当﹣3≤x ≤﹣2时,y 1的最大值为a ,y 2的最小值为a +2,则实数a 与k 的值为()A .a =3,k =1B .a =﹣1,k =﹣1C .a =3,k =3D .a =﹣1,k =32.如图,在平面直角坐标系中,反比例函数()0ky x x=>的图象与边长是8的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN 的面积为7.5.若动点P 在x 轴上,则PM +PN 的最小值是()A .15B CD .103.如图,Rt ABC 位于第一象限,22AB AC ==,,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数(0)ky k x=≠的图象与ABC 有交点,则k 的最大值是()A .5B .4C .3D .24.如图,点()11,A x y ,()22,B x y 分别是反比例函数11k y x=与22ky x =在第一象限图象上的动点.①21k k >②当12y y =时,21x x >;③OAB 的面积可能是212k k -;④OA OB +的最.以上结论中正确的有()A .4个B .3个C .2个D .1个5.已知反比例函数5y x=,若5x,则函数y 有()A .最大值1B .最小值1C .最大值0D .最小值06.如图,点A (a ,1),B (b ,3)都在双曲线3y x=-上,点P ,Q 分别是x 轴,y 轴上的动点,则四边形ABQP 周长的最小值为()A .42B .62C .2102+D .827.已知反比例函数(0),ky k x=≠当21x -≤≤-时,y 的最大值是3,则当6x ≥时,y 有()A .最大值12-B .最大值1-C .最小值12-D .最小值1-8.如图所示,已知A (1,y 1),B (2,y 2)为反比例函数y 2=x图象上的两点,动点P(x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大值时,点P 的坐标是()A .(3,0)B .(72,0)C .(53,0)D .(52,0)9.在平面直角坐标系xOy 中,直线y =kx 与双曲线y =4x的图象交于A ,B 两点,点P 在x 轴的正半轴上,若PA ⊥PB ,则OP 的最小值是()A .4B .2C .D .10.如图,(0,1)A ,(1,5)B 曲线BC 是双曲线(0)ky k x=≠的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线".若点()2025,P m ,(,)Q x n 在该“波浪线上,则m 的值及n 的最大值为()A .1m =,1n =B .5m =,1n =C .1m =,5n =D .1m =,4n =二、填空题11.如图,一次函数6y x =与反比例函数(0)ky k x=>的图象交于点A ,B 两点,点C 在x 轴上运动,连接AC ,点Q 为AC 中点,若点C 运动过程中,OQ 的最小值为2,则k =_______________.12.如图,已知点(1)(31)A m m B m m ++-,,,都在反比例函数1(0)k y x x=>的图象上.将线段AB 沿直线2y k x b =+进行对折得到线段11A B ,且点1A 始终在直线OA 上.当线段11A B 与x 轴有交点时,b 的取值的最大值是____.13.设函数1ky x =,2(0)k y k x-=>,当23x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则=a _____.14.如图,矩形OABC 的面积为4,反比例函数ky x=的图象与矩形的两边AB 、BC 分别交于点E 、F ,则四边形OAEF 的面积最大值为_________.15.观察理解:当a >0,b >0时,20≥,∴0a b -≥,由此可得结论:a b +≥.即对于正数a ,b ,当且仅当a =b 时,代数式a b +取得最小值问题解决:如图,已知点P 是反比例函数4y x=(x >0)图象上一动点,A (1-,1),则△POA 的面积的最小值为________.16.如图,在平面直角线坐标系中,点A ,B 在反比例函数5y x=的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度最小值是___________.17.已知直线()0y ax a =>与双曲线2y x=相交于点()11,P x y ,()22,Q x y ,则1212x x x +的最大值是__________.18.如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图象与边长是3的正方形OABC 的两边AB ,BC 分别相交于D ,E 两点,ODE 的面积为52,若动点P 在y 轴上,则PD PE +的最小值是______.三、解答题19.如图1,木匠陈师傅现有一块五边形ABFED 木板,它是矩形ABCD 木板用去CEF △后的余料,4=AD ,5AB =,1DE =,F 是BC 边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD 上.(1)[初步探究]当2BF =时.①若截取的矩形有一边是DE ,则截取的矩形面积的最大值是______;②若截取的矩形有一边是BF ,则截取的矩形面积的最大值是______;(2)[问题解决]如图2,陈师傅还有另一块余料,90BAF AFE ∠=∠=︒,1AB EF ==,3CD =,8AF =,CD AF ∥,且CD 和AF 之间的距离为4,若以AF 所在直线为x 轴,AF 中点为原点构建直角坐标系,则曲线DE 是反比例函数ky x=图象的一部分,陈师傅想利用该余料截取一块矩形MNGH 材料,其中一条边在AF 上,所截矩形MNGH 材料面积是736.求GN 的长.20.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式;(2)结合图象直接写出kmx n x>+的解集;(3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.21.如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()()0420A B -,、,,交反比例函数y mx=()0x >的图象于点()3C a ,,点P 在反比例函数的图象上,横坐标为()03n n PQ y <<,轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD QD 、.(1)求一次函数和反比例函数的表达式;(2)求DPQ 面积的最大值.22.阅读与思考(1)填空:已知0x >,只有当x =______时,4x x+有最小值,最小值为______.(2)如图,P 为双曲线()60y x x=>上的一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,求PC PD +的最小值.23.某企业生产一种必需商品,经过长期市场调查后发现:商品的月总产量稳定在600件.商品的月销量Q (件)由基本销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价工(元/件)(10x ≤)成反比例,且可以得到如下信息:售价x (元/件)58商品的销售量Q (件)580400(1)求Q 与x 的函数关系式.(2)若生产出的商品正好销完,求售价x .(3)求售价x 为多少时,月销售额最大,最大值是多少?24.如图1,矩形OABC 的顶点A 、C 分别落在x 轴、y 轴的正半轴上,点()4,3B ,反比例函数(0)k y x x=>的图象与AB 、BC 分别交于D 、E 两点,1BD =,点P 是线段OA 上一动点.(1)求反比例函数关系式和点E 的坐标;(2)如图2,连接PE 、PD ,求PD PE +的最小值;(3)如图3,当45PDO ∠=︒时,求线段OP 的长.参考答案1.D【分析】先利用反比例函数的增减性分别用含k 的代数式表示y 1的最大值,y 2的最小值,再解方程组即可.解: 函数y 1=kx(k >0),当﹣3≤x ≤﹣2时,y 1的最大值为a ,∴当3x =-时,1y 最大,此时,3ka =- y 2=﹣kx(k >0),y 2的最小值为a +2,∴当3x =-时,2y 最小,此时2,3k a +=2,33k k∴-+=解得:3,k =31,3a ∴=-=-故选D【点拨】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解本题的关键.2.B【分析】作点M 关于x 轴的对称点M ',连接M N ',与x 轴的交点为P ,此时PM +PN 的值最小,根据正方形的边长为8,表示出M ,N 点坐标,再根据△OM N 的面积即可求出k 的值,进一步求出M ,N ,M '的坐标,即可求出PM +PN 的最小值M N '的值.解:如图,作NE ⊥x 轴交OM 于点F ,作点M 关于x 轴的对称点M ',连接M N ',与x 轴的交点为P ,此时PM +PN 的值最小,∵正方形OABC 的边长为8,且M ,N 在反比例函数图象上,∴8,8k M ⎛⎫⎪⎝⎭,,88k N ⎛⎫ ⎪⎝⎭,∵12OEN OAM S k S ==△△,∴OFN AEFM S S =△四边形,∴OMN OFN FMN FMN AEFM S S S S S =+=+△△△△四边形∴1887.5288OMN AENM k k S S ⎛⎫⎛⎫==⨯-+= ⎪⎪⎝⎭⎝⎭△梯形,解得:56k =,∴()8,7M ,()7,8N ,∴()8,7M '-,∴()()227887226M N '=-++=,即PM +PN 226.故选:B .【点拨】本题考查了反比例函数与正方形的综合,根据正方形的性质以及反比例函数图象上点的特征求出点M 和N 的坐标是解决本题的关键.3.B【分析】设直线y =x 与BC 交于E 点,分别过A ,E 两点作x 轴的垂线,垂足为D ,F ,EF 交AB 于M ,求出A ,E 点坐标,即可求出k 的取值范围,进一步可知k 的最大值.解:如图,设直线y =x 与BC 交于E 点,分别过A .E 两点作x 轴的垂线,垂足为D ,F ,EF 交AB 于M ,∵A 点的横坐标为1,A 点在直线y =x 上,∴A (1,1),又∵AB =AC =2,AB x 轴,AC y 轴,∴B (3,1),C (1,3),且ABC 为等腰直角三角形,BC 的中点坐标为3113(,)22++,即为(2,2),∵点(2,2)满足直线y =x ,∴点(2,2)即为E 点坐标,E 点坐标为(2,2),∴k =OD ×AD =1,或k =OF ×EF =4,当双曲线与△ABC 有交点时,1⩽k ⩽4,即k 的最大值为:4故选:B【点拨】本题考查一次函数与双曲线函数的综合,等腰直角三角形性质,中点坐标表示方法,解题的关键是求出E 点坐标为(2,2),利用点A ,E 坐标求出k 的取值范围.4.A【分析】由图象可直接判断①;当y 1=y 2时,作出图形,可直接判断②;在②的基础上可得出△OAB 的面积,进而可判断③;当OA +AB 最小时,需要OA 最小且OB 最小时取得,只需要分别求出OA 和OB 的最小值即可判断④.解:当x 1=x 2=1时,y 1=k 1,y 2=k 2,显然y 2>y 1,则k 2>k 1.故①正确;当y 1=y 2时,x 2=22k y ,x 1=11k y ,由k 2>k 1可得x 2>x 1.故②正确;当y 1=y 2时,如图所示,此时△OAB 的面积可能是212k k -,故③正确;当OA +AB 最小时,需要OA 最小且OB 最小时取得,设点A 的坐标为(m ,n ),∴OA 2=m 2+n 2≥2mn =2k 1,当且仅当m =n 时,OA 12k 同理可得OB 22k∴OA+OB,故④正确.综上可得,正确的有:①②③④,共4个,故选:A.【点拨】本题主要考查反比例函数中k的几何意义,关键是知道当OA+AB最小时,需要OA最小且OB最小时取得.5.A【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的性质解答即可.解:∵k=5>0,∴在每个象限内y随x的增大而减小,又∵当x=5时,y=1,∴当x>5时,y<1;∴函数y有最大值1故选:A.【点拨】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.6.B【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(-3,-1),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形ABPQ的周长最小,然后利用两点间的距离公式求解可得.解:∵点A(a,1),B(b,3)都在双曲线y=-3x上,∴a×1=3b=-3,∴a=-3,b=-1,∴A(-3,1),B(-1,3),作A点关于x轴的对称点D(-3,-1),B点关于y轴的对称点C(1,3),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABPQ 周长=AB+BQ+PQ+PA=AB+CD ,∴CD ==,∴四边形ABPQ 周长最小值为,故选:B .【点拨】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.7.C【分析】由函数经过第二象限,可确定k <0,则在21x --上,y 值随x 值的增大而增大,即可确定函数的解析式为3y x=-,由此可求解.解:∵当21x --时,y 的最大值是3,∴反比例函数经过第二象限,∴k <0,∴在21x --上,y 值随x 值的增大而增大,∴当x =—1时,y 有最大值—k ,∵y 的最大值是3,∴—k =3,∴k =—3,∴3y x=-,当6x 时,3y x=-有最小值12-,故选:C .【点拨】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质,通过所给条件确定k <0是解题的关键.8.A思路引领:求出A 、B 的坐标,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP ﹣BP |<AB ,延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB =AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.解:∵把A (1,y 1),B (2,y 2)代入反比例函数y 2x=得:y 1=2,y 2=1,∴A (1,2),B (2,1),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP |<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB =AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入得:221k b k b +=⎧⎨+=⎩,解得:k =﹣1,b =3,∴直线AB 的解析式是y =﹣x +3,当y =0时,x =3,即P (3,0).故选:A .9.D【分析】由图象的对称性可得OA OB =,从而可得OP OA =,设点A 坐标为4,m m ⎛⎫ ⎪⎝⎭,进而求解.解:如图,直线y kx =与双曲线4y x=的图象关于原点成中心对称,OA OB ∴=,即点O 为AB 中点,PA PB ⊥ ,∴在Rt APB ∆中,12OP AB OA ==,设点A 坐标为4,m m ⎛⎫ ⎪⎝⎭,则OP OA ===∴当4m m=,即2m =时,OP 取最小值为故选:D .【点拨】本题考查反比例函数与一次函数的交点问题,解题关键是掌握反比例函数的性质,掌握函数与方程的关系,掌握直角三角形斜边中线长度等于斜边的一半.10.C【分析】根据题意利用点B 的坐标可以求k 的值,然后根据图象可知每5个单位长度为一个循环,从而可以求得m 的值和n 的最大值.解:∵点(1,5)B 在双曲线(0)k y k x=≠的图象上,∴5k =,∵(0,1)A ,曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一线“波浪线”.∴C 的纵坐标为1,∵点C 在5(0)y k x =≠的图象上,点C 的纵坐标为1,∴点C 的横坐标是5,∴点C 的坐标为()5,1,∵20255405÷=,∴()2025,P m 中1m =,∵(,)Q x n 在该“波浪线”上,∴结合图象,可知n 的最大值是5.综上所述,1m =,5n =.故选:C .【点拨】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.11.83【分析】如图(见分析),先根据一次函数与反比例函数的性质可得点O 是AB 的中点,再根据三角形中位线定理可得12OQ BC =,从而可得BC 的最小值为4,然后根据垂线段最短可得当BC x ⊥轴时,BC 取得最小值,从而可得此时点B 的纵坐标为4-,最后代入一次函数的解析式可得点B 的坐标,将其代入反比例函数的解析式即可得.解:如图,连接BC ,由题意得:点O 是AB 的中点,点Q 为AC 的中点,OQ ∴是ABC 的中位线,12OQ BC ∴=, 点C 运动过程中,OQ 的最小值为2,∴点C 运动过程中,BC 的最小值为4,由垂线段最短得:当BC x ⊥轴时,BC 取得最小值,∴此时点B 的纵坐标为4-,将4y =-代入一次函数6y x =得:64x =-,解得23x =-,即2(,4)3B --,将2(,4)3B --代入反比例函数k y x=得:()28433k =-⨯-=,故答案为:83.【点拨】本题考查了一次函数与反比例函数的综合、三角形中位线定理等知识点,熟练掌握反比例函数的性质是解题关键.12.7916【分析】由题可得m (m +1)=(m +3)(m -1),解这个方程求出m 的值,由于点A 关于直线y =kx +b 的对称点点A 1始终在直线OA 上,因此直线y =kx +b 必与直线OA 垂直,只需考虑两个临界位置(A 1在x 轴上、B 1在x 轴上)对应的b 的值,就可以求出b 的取值范围,再确定b 的最大值.解:∵点A (m ,m +1),B (m +3,m -1)都在反比例函数y=k x的图象上.∴m(m+1)=(m+3)(m-1).解得:m=3.①当点B1落到x轴上时,如图1,设直线OA的解析式为y=ax,∵点A的坐标为(3,4),∴3a=4,即a=4 3.∴直线OA的解析式为y=43x.∵点A1始终在直线OA上,∴直线y=kx+b与直线OA垂直.∴43k=-1.∴k=3 4-.∴直线y=34-x+b,由于BB1∥OA,可设直线BB1解析式为y=43x+c.∵点B的坐标为(6,2),∴43×6+c=2,即c=-6.∴直线BB1解析式为y=43x-6.当y=0时,43x-6=0.则有x=92.∴点B1的坐标为(92,0).∵点C是BB1的中点,∴点C的坐标为(96+22,2+02)即(214,1).∵点C 在直线y =-34x +b 上,∴34-×214+b =1.解得:b =7916.②当点A 1落到x 轴上时,如图2,此时,点A 1与点O 重合.∵点D 是AA 1的中点,A (3,4),A 1(0,0),∴D (32,2).∵点D 在直线y =34-x +b 上,∴34-×32+b =2.解得:b =258.综上所述:当线段A 1B 1与x 轴有交点时,则b 的取值范围为258≤b ≤7916.b 的取值的最大值是7916,故答案为:7916.【点拨】本题考查了反比例函数图象上点的坐标特征,中点坐标公式待定系数法求一次函数解析式,等知识,利用线段A 1B 1与x 轴有交点时,分类讨论A 1、B 1在x 轴上的思想方法,是一道好题.13.2【分析】首先根据k 与x 的取值分析函数1k y x=,()20k y k x =->的增减性,根据增减性确定最值,进而求解.解:∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1取最大值,最大值为2k =a ①;当x =2时,y 2取最小值,最小值为−2k =a −4②;由①②得a =2,k =4,故答案为:2.【点拨】本题考查了反比例函数的性质,关键是能根据反比例函数的增减性确定最值.14.52【分析】设B (a ,b ),则ab =4,根据反比例函数图象上点的坐标特征可得E 点,F 点的坐标,进而可得关于BE ,BF 长度的代数式,根据三角形的面积公式,以及反比例函数系数k 的几何意义,得到关于四边形OAEF 的面积的代数式,利用二次函数的最值求解即可.解:设B (a ,b ),则ab =4,E (k b ,b ),F (a ,k a),则四边形OAEF 的面积为:OCF BEFABOC S S S --△△矩形11=422k k k a b b a ⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭,()215282k =--+,故当k =2时,四边形OAEF 的面积最大,最大面积为:52.故答案为:52.【点拨】本题考查反比例函数,以及反比例函数的系数k 的几何意义,熟练掌握数形结合思想是解决本题的关键.15.2【分析】将△POA 的面积表示出来,再结合材料所给的信息,即可求解.解:过点P 作y 轴的垂线,与过点A 作的x 轴的垂线交于点B ,过点A 作x 轴的垂线交x 轴于点C ,过点P 作x 轴的垂线交x 轴于点D ,如图,∵点P 是反比例函数4y x=(x >0)图象上一动点,设点4()P a a,,其中a >0,∵A (1-,1),∴44111BP a AB BC PD AC CO OD a a a=+=-=====,,,,,∴POA ABP ACO DOPBCDP S S S S S =---△△△△矩形111222BP BC AB BP AC CO OD PD =⋅-⋅-⋅-⋅414114(1)(1)(1)11222a a a a a a=+⋅--+-⨯⨯-⋅22a a =+,∵a >0,∴2002a a >>,,∴222a a +≥=,∴对于正数22a a ,,当且仅当22a a =时,代数式22a a +取得最小值为2.∴△POA 的面积的最小值为2.故答案为:2.【点拨】本题考查了反比例函数与三角形面积的综合应用,解题的关键是读懂材料.16.【分析】如图,当OM AB ⊥时,线段OM 长度的最小.首先证明点A 与点B 关于直线y x =对称,因为点A ,B 在反比例函数5y x =的图象上,AB =,所以可以假设5,A m m ⎛⎫ ⎪⎝⎭,则54,4B m m ⎛⎫+- ⎪⎝⎭,则()5445m m ⎛⎫+-= ⎪⎝⎭,整理得254m m =+,推出()1,5A ,()5,1B ,可得()3,3M ,求出OM 即可解决问题.解:如图,因为反比例函数关于直线y x =对称,观察图象可知:当线段AB 与直线y x =垂直时,垂足为M ,此时AM BM =,OM 的值最小,∵M 为线段AB 的中点,∴OA OB =,∵点A ,B 在反比例函数5y x=的图象上,∴点A 与点B 关于直线y x =对称,∵AB =,∴设5,A m m ⎛⎫ ⎪⎝⎭,则54,4B m m ⎛⎫+- ⎪⎝⎭,∴()5445m m ⎛⎫+-= ⎪⎝⎭,整理得254m m =+,解得:1m =(负值舍去),∴()1,5A ,()5,1B ,∴()3,3M ,∴OM =,∴线段OM 的最小值为故答案为:【点拨】本题主要考查了反比例函数的综合,勾股定理,垂直平分线的性质,轴对称性质,判断OM 取得最小值时A ,B 两点的位置,熟练掌握对称两点坐标的设法,函数解析式代入求值,由坐标计算线段长度的方法是解题的关键.17.1【分析】由题意易得12x x =-,则有()221211112211x x x x x x +=-+=--+,然后问题可求解.解:由直线y ax =与双曲线b y x=相交于点()()1122,,,P x y Q x y 可得:12x x =-,∴()221211112211x x x x x x +=-+=--+,∵()2110x --≤∴当11x =时,()2111x --+有最大值,最大值为1;故答案为1.【点拨】本题主要考查反比例函数及配方法求最值,熟练掌握反比例函数及完全平方公式进行变形是解题的关键.18【分析】由正方形OABC 的边长是3,得到点D 的横坐标和点E 的纵坐标为6,求得33k D ⎛⎫ ⎪⎝⎭,,33k E ⎛⎫ ⎪⎝⎭,根据三角形的面积列方程得到()32D ,,()23E ,,作E 关于y 轴的对称点E ',连接E D '交y 轴于P ,则E D '的长PD PE =+的最小值,根据勾股定理即可得到结论.解:∵正方形OABC 的边长是3,∴点D 的横坐标和点E 的纵坐标为3,∴33k D ⎛⎫ ⎪⎝⎭,,33k E ⎛⎫ ⎪⎝⎭,,∴33k BE =-,33k BD =-,∵ODE 的面积为52,∴21115333332323232k k k ⎛⎫⨯-⨯⨯-⨯⨯-⨯-= ⎪⎝⎭,∴6k =或6-(舍去),∴()32D ,,()23E ,,作E 关于y 轴的对称点E ',连接E D '交y 轴于P ,则E D '的长PD PE =+的最小值,∵2CE CE '==,∴5BE '=,1BD =,∴DE ='.【点拨】本题考查了反比例函数的系数k 的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.19.(1)①4;②10;(2)72【分析】(1)①当DE 为矩形一条边,AD 为矩形另一条边时,截取的矩形面积的最大;②当BF 为矩形一条边,AB 为矩形另一条边时,截取的矩形面积的最大;(2)由题意可知()4,0A -,()4,0F ,()4,1B -,()4,1E ,再由E 点在函数k y x=图象上,求出反比例函数的解析式为4y x=,再求点()1,4D ,()2,4C -,用待定系数法求出直线BC 的解析式,设4,G t t ⎛⎫ ⎪⎝⎭,则214,33H t t ⎛⎫- ⎪⎝⎭,再由方程421473336S t t ⎛⎫=-+⋅= ⎪⎝⎭,求出t 的值即可求GN 的长.(1)解:①当DE 为矩形一条边,AD 为矩形另一条边时,截取的矩形面积的最大,4AD = ,1DE =,414S ∴=⨯=,∴截取的矩形面积的最大值4;故答案为:4;②当BF 为矩形一条边,AB 为矩形另一条边时,截取的矩形面积的最大,5AB = ,2BF =,5210S ∴=⨯=,∴截取的矩形面积的最大值10;故答案为:10;(2)解:8AF = ,()4,0A ∴-,()4,0F ,1AB EF == ,()4,1B ∴-,()4,1E ,E 点在函数k y x=图象上,4k ∴=,∴反比例函数的解析式为4y x =,CD 和AF 之间的距离为4,CD AF ∥,()14D ∴,,3CD = ,()2,4C ∴-,设直线BC 的解析式为y k x b '=+,4124k b k b ''-+=⎧∴⎨-+=⎩,解得327k b ⎧=⎪⎨⎪=⎩',372y x ∴=+,设4,G t t ⎛⎫ ⎪⎝⎭,则214,33H t t ⎛⎫- ⎪⎝⎭,421473336S t t t ⎛⎫∴=-+⋅= ⎪⎝⎭,解得72t =,GN ∴的长为72.【点拨】本题考查了反比例函数的图象及性质,矩形的性质,矩形的面积,熟练掌握知识点是解题的关键.20.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+;(2)2x <-或06x <<;(3)()10,0P 【分析】(1)由AOC 的面积为3,可求出a 的值,确定反比例函数的关系式,把点B 坐标代入可求b 的值.(2)结合图像观察,求一次函数图像位于反比例函数图像的下方时,自变量x 的取值范围即可.(3)作对称点B 关于x 的对称点B ',直线AB '与x 轴交点就是所求的点P ,求出直线与x 轴的交点坐标即可.(1)解:根据题意,3AC =,3AOC S = ,∴2OC =,结合图形,可得()2,3A -,将()2,3A -代入k y x=得6k =-,∴反比例函数的表达式为6y x=-.把()6,B b 代入反比例函数得1b =-,∴()6,1B -,将()2,3A -和()6,1B -代入y kx m =+解得:2m =,12k =-,∴一次函数表达式为122y x =-+.(2)由图象可以看出的k mx n x+>解集为<2x -或06x <<.(3)解:如图,作点B 关于x 轴的对称点B ',连接AB '与x 轴交于P ,此时PA PB -最大.()6,1B -,∴()6,1B ',设直线AP 的关系式为y k x b ''=+,将()2,3A -,()6,1B '代入,解得14k '=-,52b '=,∴直线AP 的关系式为1542y x =-+,当0y =时,解得10x =,∴()10,0P .【点拨】本题考查反比例函数的图像和性质、一次函数、轴对称以及待定系数法求函数关系式等知识,理解轴对称知识作图是解题的关键.21.(1)24y x =-;6y x=;(2)4【分析】(1)利用点()0,4A -、()2,0B 求解一次函数的解析式,再求C 的坐标,再求反比例函数解析式;(2)设6,,P n n ⎛⎫ ⎪⎝⎭则(),24,Q n n -再表示PQ 的长度,列出三角形面积与n 的函数关系式,利用函数的性质可得答案.(1)解:把()()0420A B -,、,代入一次函数y kx b =+得:420b k b -⎧⎨+⎩==,解得:24k b ⎧⎨-⎩==,∴一次函数的关系式为24y x =-,∴把()3C a ,代入得2a =,∴将()32C ,代入k y x=得326k =⨯=,∴6y x =;(2)∵点P 在反比例函数的图象上,点Q 在一次函数的图象上03n ,<<,∴点6,P n n ⎫⎛ ⎪⎝⎭,点Q (),24n n -,∴()624PQ n n=--,∴()()22162423142PDQ S n n n n n n =--ù=-++=-ú-éê犏臌+△,∵10<-,∴当1n =时,4PDQ S = 最大,所以,DPQ V 面积的最大值是4.【点拨】本题考查反比例函数、一次函数的解析式,将面积用函数的数学模型表示出来,利用函数的最值求解是解决问题的基本思路.22.(1)2,4;(2)【分析】(1)利用阅读材料的结论、并仿照阅读材料的例题解答即可;(2)设P 的坐标为6,x x ⎛⎫ ⎪⎝⎭,0x >,可得6,PD x PC x ==,然后根据阅读材料的结论解答即可.(1)解:令a x =,4b x =,由a b +≥44x x +≥=,∴44x x+≥,故当2m =时,4x x +有最小值4.故答案为2,4.(2)解:设P 的坐标为6,x x ⎛⎫ ⎪⎝⎭,0x >∴6,PD x PC x==∴6PC PD x x +=+≥=∴PC PD +的最小值为【点拨】本题主要考查了反比例函数的性质、完全平方公式的应用等知识点,读懂材料、理解a b +≥23.(1)2400100Q x=+;(2)4.8/元件;(3)当10x =时,月销售额最大,最大值为3400元【分析】(1)设k Q m x =+()m 为基本销售量,将()5580,、()8400,代入求解可得;(2)求出600Q =时x 的值即可得;(3)根据月销售额·1002400Q x x ==+且10x ≤可得.解:(1)设()k Q m m x=+为基本销售量,依题意,得58054008k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩解得1002400m k =⎧⎨=⎩∴()240010010Q x x=+≤(2)当600Q =时2400100600x+=解得 4.8x =(3)依题意,得月销售额·1002400Q x x ==+∵1000>∴Q 随x 的增大而增大则当10x =时,月销售额最大,最大值为3400元【点拨】本题主要考查了反比例函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数解析式.24.(1)8y x =,8,33⎛⎫ ⎪⎝⎭;(2)3;(3)103【分析】(1)根据题意求出点D 的坐标,进而求出反比例函数关系式,根据反比例函数图象上点的坐标特征求出点E 的坐标;(2)根据轴对称-最短路径确定点P 的位置,根据勾股定理计算,得到答案;(3)过点P 作PF OD ⊥于F ,根据勾股定理求出OD ,设PA m =,根据等腰直角三角形的性质、勾股定理列出方程,解方程得到答案.解:(1) 点B 的坐标为()4,3,1BD =,∴点D 的坐标为()4,2,反比例函数k y x=的图象经过点D ,428k ∴=⨯=∴反比例函数的解析式为:8y x =,由题意得:当E 的纵坐标为3,∴点E 的横坐标为83,∴点E 的坐标为8,33⎛⎫ ⎪⎝⎭;(2)如图2,作点D 关于x 轴的对称点D ¢,连接ED ',交OA 于点P ',连接P D ',则P D P E ''+的值最小,由(1)可知,84433BE =-=由勾股定理得:3D E '==,PD PE ∴+的最小值为3;(3)如图3,过点P 作PF OD ⊥于F ,则PFD 为等腰直角三角形,2∴==PF DF4= OA ,2OD =,==OD设PA m =,则4,=-=OP m PD2∴==PF DF ,2∴=OF ,在Rt OPF 中,222=+OP PF OF ,即222(4))-=+m 整理得:2316120m m +-=解得122,63m m ==-(舍去)210433OP ∴=-=【点拨】本题考查的是矩形的性质、反比例函数图象上点的坐标特征、轴对称-最短路径以及勾股定理的应用,作出PD PE +的最小时,点P 的位置是解题的关键.。
专题11.5 用反比例函数解决问题(知识讲解)八年级数学下册基础知识专项讲练(苏科版)
专题11.5 用反比例函数解决问题(知识讲解)【学习目标】1. 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解.2.根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的紧密联系,增强应用意识.【要点梳理】要点一、利用反比例函数解决实际问题1. 基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2. 一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示。
(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1. 当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2. 当工程总量一定时,做工时间是做工速度的反比例函数;3. 在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;【典型例题】类型一、反比例函数实际问题与图象1、(2021·山西吕梁市·九年级期末)近似眼镜的度数y (度)与镜片焦距x (米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近似眼镜,则镜片焦距x 的取值范围是( )A .0米0.25x <<米B .0.25x >米C .0米0.2x <<米D .0.2x >米【答案】B【分析】先利用待定系数法求出反比例函数的解析式,再利用反比例函数的性质即可得. 解:设反比例函数的解析式为(0)k y x x=>, 由题意,将点(0.5,200)代入得:2000.5k =,解得100=k , 则反比例函数的解析式为100y x =, 当400y =时,1000.25400x ==, 在0x >范围内,y 随x 的增大而减小,∴当0.25x >时,400y <,即若要配制一副度数小于400度的近似眼镜,则镜片焦距x 的取值范围是0.25x >米, 故选:B .【点睛】本题考查了反比例函数的性质,熟练掌握待定系数法和反比例函数的性质是解题关键.举一反三:【变式1】 (2020·全国九年级课时练习)在△ABC 中,BC 边的长为x ,BC 边上的高为y ,△ABC 的面积为2.y 关于x 的函数关系式是________,x 的取值范围是________; 【答案】4y x= x >0 【分析】根据三角形的面积公式即可得到结论.解:∵在∵ABC 中,BC 边的长为x ,BC 边上的高为y ,∵ABC 的面积为2, ∵12xy =2, ∵xy =4,∵y 关于x 的函数关系式是y 4x =, x 的取值范围为x >0,故答案为:y 4x=,x >0. 【点睛】本题考查了反比例函数的应用,通过三角形面积确定函数表达式是本题解题的关键.举一反三:【变式2】(2020·安徽九年级月考)如图,点A ,B 分别在y 轴和x 轴上,4AB =,30ABO ∠=︒,沿AB 所在直线将AOB 翻折,使点O 落在点O '处,若反比例函数()0k y k x=≠的图象经过点O ',则k 的值为______.【答案】【分析】由将∵AOB 沿直线AB 翻折知2AO AO '==,过点O '作O C y '⊥轴于点C ,而60'∠=︒O AC ,30'∠=︒AO C ,由此可以求出O '的坐标,进而得k 的值.解:∵4AB =,30ABO ∠=︒, ∵122OA AB ==, 由翻折知2AO AO '==,60'∠=∠=︒O AB OAB .过点O '作O C y '⊥轴于点C ,∵60'∠=︒O AC ,30'∠=︒AO C ,∵112'==AC AO ,'=O C∵点O '的坐标为).∵反比例函数()0k y k x =≠的图象经过点)'O ,∵3= ∵k =.【点睛】本题考查了反比例函数的性质、坐标意义及直角三角形性质,正确求得O '的坐标是关键.类型二、利用反比例函数解决实际问题2、 (2021·贵州贵阳市·九年级期末)一个蓄水池装满了水,蓄水池的排水速度()3m h v 是排完水池中的水所用时间()t h 的反比例函数,其图象如图所示.(1)求出该蓄水池的蓄水量;(2)若要在3h 6h -(包括3h 和6h )将水池的水排完,请求出排水速度的范围.【答案】(1)312m ;(2)24v ≤≤.【分析】(1)根据蓄水池的排水速度×排水时间可得结论;(2)运用待定系数法求出函数关系式,分别求出相应的函数值即可.解:(1)由图可知当排完水池中的水所用时间6t =时,排水速度2v =,∵该蓄水池的蓄水量为36212m ⨯=:(2)设k v t =,将()6,2代入k v t=得12k =, ∵12v t= 当3t =时,4v =; 当6t =时,2v =,∵当36t ≤≤时,24v ≤≤.【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.举一反三:【变式】 (2020·全国八年级课时练习)某三角形的面积为15cm 2,它的一边长为xcm ,且此边上高为ycm ,请写出x 与y 之间的关系式,并求出x=5时,y 的值. 【答案】30y x=,x=5时,y=6. 【分析】三角形的面积=边长×这边上高÷2,那么这边上高=2×三角形的面积÷边长,进而把相关数值代入求值即可.解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,则有1152xy=,∵30yx =;当x=5时,y=6(cm).3、(2020·河南周口市·八年级期末)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x(时)变化的图象,如下图(图象由线段OA与部分双曲线AB组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)18032y xx≥;(2)不能,见解析【分析】(1)首先求得线段OA所在直线的解析式,然后求得点A的坐标,代入反比例函数的解析式即可求解;(2)把.20x.代入反比例函数解析式可求得时间,结合规定可进行判断.解:(1)依题意,直线OA过1(4,20),则直线OA的解析式为80y x=,当32x =时,120y =,即3(2A ,120), 设双曲线的解析式为k y x=,将点3(2A ,120)代入得:180k =, 1803()2y x x ∴=; 由180y x=得当20y =时,9x =, 从晚上22:30到第二天早上7:00时间间距为8.5小时,8.59<,∴第二天早上7:00不能驾车去上班.【点睛】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点,熟练相关性质是解题的关键.4、(2020·全国九年级单元测试)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ∵,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600∵,煅烧时温度y (∵)与时间x (min)成一次函数关系;锻造时,温度y (∵)与时间x (min)成反比例函数关系(如图),已知该材料初始温度是26 ∵.(1)分别求出材料煅烧和锻造时y 关于x 的函数解析式,并写出自变量x 的取值范围; (2)根据工艺要求,当材料温度低于400∵时,须停止操作,那么锻造的操作时间有多长?【答案】(1)材料煅烧时:12926(06)y x x =+<,锻造时:()48006y x x=≥;(2)锻造的操作时间有6min【分析】 (1)首先根据题意,材料煅烧时,温度y 与时间x 成一次函数关系;锻造操作时,温度y 与时间x 成反比例关系,将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=480代入4800y x=中,进一步求解可得答案. 解:(1)设材料锻造时y 关于x 的函数解析式为(0)k y k x=≠,将点C (8,600)代入得, 4800600,4800,8k k y x=∴=∴=. 当800y =时,4800800x =,解得6x =, ∵点B 的坐标为(6,800),锻造时y 关于x 的函数解析式为()48006y x x=≥. 设材料煅烧时y 关于x 的函数解析式为()0y ax b a =+≠,将点A(0,26),点B (6,800)代入得,266800b a b =⎧⎨+=⎩,解得12926a b =⎧⎨=⎩, ∵材料煅烧时y 关于x 的函数解析式为12926(06)y x x =+<.(2)把400y =代入4800y x=,得12x =, ()1266min -=,∵锻造的操作时间有6min .【点睛】考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.举一反三:【变式】 (2021·河北邯郸市·九年级期末)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式;(2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间【分析】 (1)直接利用反比例函数解析式和一次函数解析式求法得出答案;(2)利用(1)中所求解析式,当y=20时,得出答案;(3)当y=40时,代入反比例函数解析式,结合水温的变化得出答案.解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∵当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∵当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =;(3)当40y =时,8002040x ==.∵要想喝到不低于40C ︒的开水,x 需满足820x ≤≤,即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.。
专题. 反比例函数(动点问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.29反比例函数(动点问题)(基础篇)(专项练习)一、单选题1.如图,点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y轴,垂足分别为B ,C ,则矩形ABOC 的面积为()A .-4B .2C .4D .82.如图,在平面直角坐标系中,矩形ABCD 的边BC 在x 轴上,点D 的坐标为(-2,6),点B 是动点,反比例函数(0)ky x x=<经过点D ,若AC 的延长线交y 轴于点E ,连接BE ,则△BCE 的面积为()A .6B .5C .3D .73.如图,点A 是双曲线y =6x是在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为()A .13y x=-B .3y x =-C .16y x=-D .6y x=-4.一次函数(0)y kx b k =+≠的图像经过点(1,4)A --,(2,2)B 两点,P 为反比例函数kby x=图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则PCO △的面积为()A .2B .4C .8D .不确定5.如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是函数()0,0ky k x x=>>的图象上的一个动点,PB y ⊥轴于点B .当点P 的纵坐标逐渐增大时,四边形OAPB 的面积的变化为()A .不变B .逐渐增大C .逐渐减小D .先增大后减小6.如图,已知A (1,a ),B (b ,1)为反比例函数y =2x图象上y 的两点,动点P 在x 轴正半轴上运动,当线段AP 与线段BP 之和最小时,则点P 的坐标是()A .(35,0)B .(1,0)C .(53,0)D .(2,0)7.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .48.如图,在平面直角坐标系xoy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上,8OA =,6OC =,点D 是BC 边上一动点,过点D 的反比例函数(0)k y x x=>与边AB 交于点E .若将DBE ∆沿DE 折叠,点B 的对应点F 恰好落在对角线AC 上.则反比例函数的解析式是()A .6y x=B .12y x=C .24y x=D .36y x=9.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积()A .不变B .逐渐变大C .逐渐变小D .先变大后变小10.如图,已知点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n),则m ,n 满足的关系式为()A .n =-2mB .n =-2mC .n =-4mD .n =-4m二、填空题11.如图,已知点A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化,设点C 的坐标为(),m n ,则m ,n 满足的关系式为______.12.如图,已知点A 是反比例函数()40y x x=>图象上的动点,AB x ∥轴,AC y ∥轴,分别交反比例函数1y x=(0x >)的图象于点B 、C ,交坐标轴于点E 、D ,连接BC .则ABC 的面积是______.13.如图,A 、B 是函数6y x=上两点,P 为一动点,作PB y ∥轴,PA x ∥轴,若2BOP S =△,则ABP S =△______.14.如图,在平面直角坐标系中,已知第一象限上的点A (m ,n )是双曲线ky x=上的动点,过点A 作AM ∥y 轴交x 轴于点M ,过点N (0,2n )作NB ∥x 轴交双曲线于点B ,交直线AM 于点C ,若四边形OACB 的面积为4,则k 的值为________.15.如图,在平面直角坐标系xOy 中,点A 为反比例函数y =-4x(x >0)的图象上一动点,AB ⊥y 轴,垂足为B ,以AB 为边作正方形ABCD ,其中CD 在AB 上方,连接OA ,则OA 2-OC 2=_______.16.反比例函数2y x=和3y x =在第一象限的图象如图所示,点A 在函数3y x =的图象上,点B 在函数2y x=的图象上,点C 是y 轴上一个动点,若AB y ∥轴,则ABC 的面积是______.17.如图,点A 是反比例函数2y x =-在第二象限内图像上一点,点B 是反比例函数4y x=在第一象限内图像上一点,且AB x ∥轴,C 为x 轴上动点,连接CA 、CB ,则CAB △的面积是___________.18.如图,平行于x 轴的直线分别交反比例函数2(0)y x x =>和4(0)y x x=-<的图像于点A 和点B ,点C 是x 轴上的动点,则ABC 的面积为__________.19.如图,已知点A 是反比例函数y =6xOA ,3为长,OA 为宽作矩形AOCB ,且点C 在第四象限,随着点A 的运动,点C 也随之运动,但点C 始终在反比例函数y =kx的图象上,则k 的值为________.20.如图,□OABC 的顶点A 的坐标为()2,0,,B C 在第一象限反比例函数1k y x=和22ky x =的图象分别经过,C B 两点,延长BC 交y 轴于点D .设P 是反比例函数1k y x=图象上的动点,若POA ∆的面积是PCD ∆面积的2倍,POD ∆的面积等于28k -,则k 的值为________.三、解答题21.在矩形AOBC 中,4OB =,3OA =分别以OB 、OA 在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B 、C 合),过点F 的反比例函数(0)ky k x=>的图像与AC 边交于点E .(1)求证:AOE △与BOF 的面积相等;(2)记OEF ECF S S S =- ,求当k 为何值时,S 有最大值,最大值是多少?22.如图,点(,2)A a 在反比例函数4y x=的图象上,AB x 轴,且交y 轴于点C ,交反比例函数ky x=的图象于点B ,已知2AC BC =.(1)求反比例函数ky x=的解析式;(2)点D 为反比例函数ky x=图象上一动点,连接AD 交y 轴于点E ,当E 为AD 中点时,求OAD △的面积.23.如图,在平面直角坐标系中,直线y =k 1x +b 与反比例函数y =2k x的图象交于A 、B 两点,已知A (1,2),B (m ,1).(1)求m 的值及直线AB 的解析式;(2)若点P 是直线AB 上的一动点,将直线AB 向下平移n 个单位长度(0<n <3),平移后直线与x 轴、y 轴分别交于点D 、E ,当△PED 的面积为1时,求n 的值.24.直线y kx b =+与反比例函数8(0)y x x=>的图象分别交于点A (m ,4)和点B (8,n ),与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)观察图象,当0x >时,直接写出8kx b x+>的解集;(3)若点P 是x 轴上一动点,当△ADP 的面积是6时,求出P 点的坐标.25.已知,如图,正比例函数y =ax 的图象与反比例函数图象交于A 点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x 的取值范围?(3)M (m ,n )是反比例函数上一动点,其中0大于m 小于3,过点M 作直线MN 平行x 轴,交y 轴于点B .过点A 作直线AC 平行y 轴,交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.26.已知:在矩形AOBC 中,4,3OB OA ==.分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B ,C 重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)记OEF ECF S S S =- ,当S 取得最大值时,求k 的值;(2)在(1)的条件下,若直线EF 与x 轴、y 轴分别交于点,M N ,求EM FN ⋅的值.参考答案1.C【分析】根据反比函数的几何意义,可得矩形ABOC 的面积等于比例系数的绝对值,即可求解.解:∵点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,∴矩形ABOC 的面积44-=.故选:C .【点拨】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数()0ky k x=≠中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积等于k 是解题的关键.2.A【分析】依据点D 的坐标为(-2,6),CD ⊥CO ,即可得出CO=2,CD=6=AB ,进而得到CO×AB=12,再根据BC AB OC EO=,可得BC•EO=AB•CO=12,进而得到△BCE 的面积1BC OE 62=⨯⨯=.解:∵点D 的坐标为(-2,6),CD ⊥CO ,∴CO=2,CD=6=AB ,∴CO×AB=12,∵AB ∥OE ,∴BC AB OC EO=,即BC•EO=AB•CO=12,∴△BCE 的面积1BC OE 62=⨯⨯=【点拨】本题主要考查了反比例函数系数k 的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用.解题的关键是将△BCE 的面积与点D 的坐标联系在一起,体现了数形结合的思想方法.3.D【分析】连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,利用反比例函数的性质和等腰直角三角形的性质,根据“AAS”可判定△COD ≌△OAE ,设A 点坐标为(a ,6a ),得出OD =AE =6a,CD =OE =a ,最后根据反比例函数图象上点C 的坐标特征确定函数解析式.解:如图,连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y =6x的交点,∴点A 与点B 关于原点对称,∴OA =OB ,∵△ABC 为等腰直角三角形,∴OC =OA ,OC ⊥OA ,∴∠DOC +∠AOE =90°,∵∠DOC +∠DCO =90°,∴∠DCO =∠AOE ,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,6a ),得出OD =AE =6a ,CD =OE =a ,∴C 点坐标为(-6a ,a ),∵-6a•a =-6,∴点C 在反比例函数y =-6x 图象上.故选:D .【点拨】本题主要考查了用待定系数法求反比例函数的解析式,解题时需要综合运用反比例函数图象上点的坐标特征、等腰直角三角形的性质.判定三角形全等是解决问题的关键环节.4.A【分析】由一次函数图像上的两个点(1,4)A --,(2,2)B ,可确定一次函数中的参数k 、b 的值,从而确定反比例函数的关系式,再根据反比例函数k 的几何意义直接求解.解:把点(1,4)A --,(2,2)B 代入(0)y kx b k =+≠得:422k b k b -=-+⎧⎨=+⎩,解得:22k b =⎧⎨=-⎩,所以反比例函数表达式为4y x-=,根据题意可得:1|4|22PCO S =⨯-= .故选:A .【点拨】本题考查了反比例函数k 的几何意义、一次函数关系式的确定,熟练掌握反比例函数k 的几何意义是解题的关键.5.B【分析】连接OP ,根据反比例函数的比例系数的几何意义,可得2BOP k S =V ,再由四边形OAPB 的面积等于p 12BOP AOP k S S y OA x +=+´V V ,即可求解.解:如图,连接OP ,∵PB ⊥y 轴,∴2BOP k S =V ,∵四边形OAPB 的面积等于p 12BOP AOP k S S y OA x +=+´V V ,∵点A 是x 轴正半轴上的一个定点,点P 的纵坐标逐渐增大∴四边形OAPB 的面积随点P 的纵坐标的增大而增大.故选:B【点拨】本题主要考查了反比例函数的比例系数的几何意义,利用数形结合思想解答是解题的关键.6.C【分析】先求出A ,B 的坐标,然后作B 点关于x 轴的对称点B ′,连接AB ′交x 轴即为P ,此时PA +PB 最小,最小值为AB ′的长,然后求出直线AB ′的解析式,求出其与x 轴的交点坐标即可.解:把A (1,a ),B (b ,1)代y =2x得a =2,b =2,则A 点坐标为(1,2),B 点坐标为(2,1),作B 点关于x 轴的对称点B ′,连接AB ′交x 轴即为P ,此时PA +PB 最小,最小值为AB ′的长,∵B点坐标为(2,1),∴B′点坐标为(2,﹣1),设直线AB′的解析式为y=kx+b,∴2 21 k bk b+=⎧⎨+=-⎩解得35 kb=-⎧⎨=⎩∴直线AB′的解析式为y=﹣3x+5,令y=0,则﹣3x+5=0,∴x=5 3,∴P的坐标为(53,0),故选C.【点拨】本题主要考查了反比例函数与一次函数的综合,解题的关键在于能够熟练掌握相关知识进行求解.7.A【分析】连接OA、OB,延长AB,交x轴于D,如图,利用三角形面积公式得到S△OAB=S△ABC,再根据反比例函数的比例系数k的几何意义得到S△OAD=3,S△OBD=2,即可求得S△OAB=S△OAD-S△OBD=1.解:连结OA、OB,延长AB,交x轴于D,如图,∵AB ∥y 轴,∴AD ⊥x 轴,OC ∥AB ,∴S △OAB =S △ABC ,而S △OAD =12×6=3,S △OBD =12×4=2,∴S △OAB =S △OAD ﹣S △OBD =1,∴S △ABC =1,故选:A .【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.8.C 【分析】设,4,6,46K K D E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,求得DC=4K ,AE=6K ,得到DB=6-4K ,BE=4-6K ,根据三角函数的定义得到tan ∠BAC=tan ∠BED ,根据平行线的判定定理得到DE ∥AC,连接BF ,根据折叠的性质得到BH=FH ,根据平行线分线段成比例得到AE=BE=2,于是得到结论.解:∵四边形OABC 是矩形,OA=6,OC=4,∴BC=OA=6,AB=OC=4,∴()6,4B ,设,4,6,46K K D E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴DC=4K ,AE=6K ,∴DB=6-4K ,BE=4-6K ,∴tan ∠BED=BD BE =634246K K -=-,∵tan ∠BAC=6342BC AB ==,∴tan ∠BAC=tan ∠BED ,∴∠BED=∠BAC,∴DE ∥AC,连接BF,∵将△DBE 沿DE 折叠,点B 的对应点F 正好落在对角线AC 上,∴BH=FH ,∴AE=BE=2,∴26k=,∴k=12.∴反比例函数的解析式12y x=.故选C.【点拨】本题主要考查反比例函数的图像性质,结合了矩形的性质和翻转折叠的知识点.9.A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S COF S = 12=,则四边形OFAE 的面积为定值1k -.解:∵点A 是函数(0k y x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上,∴BOE S COF S = 12=,∴四边形OFAE 的面积11122k k =--=-,故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点拨】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.10.B解:首先根据点C 的坐标为(m ,n ),分别求出点A 为(2n ,n ),点B 的坐标为(-2n ,-n ),根据图像知B 、C 的横坐标相同,可得-2n=m.故选B .【点拨】此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x ,y)的横纵坐标的积是定值k ,即xy=k ;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x 轴、y 轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.11.2mn =-【分析】首先根据点C 的坐标为(,)m n ,分别求出点A 的坐标、点B 的坐标;然后根据点B 和点C 的横坐标相同,求出m ,n 满足的关系式即可.解:由反比例函数的性质可知,A 点和B 点关于原点对称,点C 的坐标为(,)m n ,∴点A 的坐标为2(n ,)n ,∴点B 的坐标为2(n -,)n -,根据图象可知,B 点和C 点的横坐标相同,2m n ∴-=,即2n m=-.故答案为:2mn =-.【点拨】此题主要考查了反比例函数的图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(,)x y 的横纵坐标的积是定值k ,即xy k =;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值||k .12.98##1.125【分析】设点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭,可得点B 的坐标为4,4a a ⎛⎫ ⎪⎝⎭,点C 的坐标为1,a a ⎛⎫ ⎪⎝⎭,AB AC ⊥,从而得到33,4AB a AC a==,即可求解.解:设点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭,∵AB x ∥轴,AC y ∥轴,分别交反比例函数1y x=(0x >)的图象于点B 、C ,∴点B 的坐标为4,4a a ⎛⎫ ⎪⎝⎭,点C 的坐标为1,a a ⎛⎫ ⎪⎝⎭,AB AC ⊥,∴33,4AB a AC a==,∴ABC 的面积是113392248AB AC a a ⨯⨯=⨯⨯=.故答案为:98【点拨】本题主要考查了反比例函数图象上点的坐标特征,三角形的面积,熟练掌握反比例函数图象上点的坐标特征是解题的关键.13.4【分析】设6,A m m ⎛⎫ ⎪⎝⎭、6,B n n ⎛⎫ ⎪⎝⎭,根据2BOP S =△找到m 、n 之间的关系,最后表述出ABP S △,整体代入求值即可.解:设6,A m m ⎛⎫ ⎪⎝⎭、6,B n n ⎛⎫ ⎪⎝⎭,∴6,P n m ⎛⎫ ⎪⎝⎭∴66PB n m=-,PA m n =-,∴1662()2BOP S n n m==⋅-△,整理得3m n =,∴1166166(()()(3)42223ABP PA PB m n n nS n n m n =⋅=-⋅-=-⋅-=△,故答案为:4.【点拨】本题考查的是反比例函数的性质、三角形面积公式,掌握反比例函数图象上点的坐标特征是解本题的关键.14.4【分析】根据反比例函数系数k 的几何意义得到S △AOM =S △BON 12=k ,列方程即可得到结论.解:∵NB ∥x 轴,AM ∥y 轴,∴四边形OMCN是矩形,∵点A、点B在双曲线上,∴S△AOM=S△BON12=k,∵四边形OACB的面积为4,∴12k12+k+4=m•2n,∵点A(m,n),∴mn=k,∴k=4,故答案为:4.【点拨】本题考查了反比例函数系数k的几何意义,矩形和三角形的面积的矩形,正确的识别图形是解题的关键.15.8【分析】利用反比例函数系数k的几何意义、正方形的性质以及勾股定理即可求得OA2-OC2=8.解:正方形ABCD中,BC=AB,∴OC=BC-OB=AB-OB,∵点A为反比例函数y=-4x(x>0)的图象上一动点,AB⊥y轴,垂足为B,∴AB•OB=4,OA2=AB2+OB2,∴OA2-OC2=AB2+OB2-(AB-OB)2=2AB•OB=2×4=8,故答案为:8.【点拨】本题考查了正方形的性质,勾股定理的应用以及反比例函数系数k的几何意义,得出OC=BC-OB=AB-OB,AB•OB=4,OA2=AB2+OB2是解题的关键.16.12##0.5【分析】设A(m,3m),B(m,2m),则AB=3m-2m,△ABC的高为m,根据三角形面积公式计算即可得答案.解:∵A、B分别为3yx=、2yx=图象上的点,AB//y轴,∴设A(m,3m),B(m,2m),∴S△ABC=12(3m-2m)m=12,故答案为:12【点拨】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.17.3【分析】连接OA ,OB ,设AB 与y 轴交于点D ,由AB x ∥轴,可得OAB ABC S S =△△,又由反比例函数系数k 的几何意义可知,212OAD S ==△,422OBD S ==△,进而可得OAB 的面积,由此可得出结论.解:如图,连接OA ,OB ,设AB 与y 轴交于点D ,∵AB x ∥轴,∴OAB ABC S S =△△,∵点A 是反比例函数2y x =-在第二象限内图像上一点,点B 是反比例函数4y x =在第一象限内图像上一点,∴212OAD S ==△,422OBD S ==△,∴3OAB OAD OBD S S S =+=△△△,∴3ABC OAB S S ==△△.故答案为:3.【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数k y x=图像中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值k .18.3【分析】根据反比例函数图象上点的坐标特征设点A (a ,2a ),代入4y x=-中求出点B 坐标,再利用三角形面积公式计算.解:设点A 的坐标为(a ,2a ),将y =2a 代入4y x=-中,得:2x a =-,∴点B 的坐标为(2a -,2a ),∴△ABC 的面积为()1222a a a ⨯⨯--⎡⎤⎣⎦=3,故答案为:3.【点拨】此题主要考查了反比例函数系数k 的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,表示出相应线段长度即可求解问题.19.【分析】设A (a ,b ),则A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,根据相似三角形的判定证得△AOE ∽△COF ,由相似三角形的性质得到,,则.解:设A(a,b),∴OE=a ,AE=b ,∵在反比例函数y=x图象上,∴分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,∵矩形AOCB ,∴∠AOE+∠COF=90°,∴∠OAE=∠COF=90°−∠AOE ,∴△AOE ∽△OCF ,∵,∴OCOA =OF AE =CF OE ∴,∵C 在反比例函数y=k x的图象上,且点C 在第四象限,∴k=−OF ⋅.【点拨】本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.20.6.4【分析】根据题意求得CD =BC =2,即可求得OD =2k ,由△POA 的面积是△PCD 面积的2倍,得出x P =3,根据△POD 的面积等于2k ﹣8,列出关于k 的方程,解方程即可求得.解:∵▱OABC 的顶点A 的坐标为(2,0),∴BD ∥x 轴,OA =BC =2,∵反比例函数1k y x=和22k y x =的图象分别经过C ,B 两点,∴DC•OD =k ,BD•OD =2k ,∴BD =2CD ,∴CD =BC =2,BD =4,∴C (2,2k ),B (4,2k ),∴OD =2k ,∵△POA 的面积是△PCD 面积的2倍,∴y P =2323k k ⨯=,∴x P =3kk =3,∵△POD 的面积等于2k ﹣8,∴12OD•x P =2k ﹣8,即122k ⨯×3=2k ﹣8,解得k =6.4,故答案为6.4.【点拨】本题考查反比例函数系数k 的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P 的横坐标是解题的关键.21.(1)证明过程见详解;(2)当6k =时,S 有最大面积,最大面积为3【分析】(1)设11(,)E x y ,22(,)F x y ,根据点E ,F 在反比例函数图像上,则可求出11x y k =,22x y k =,且11112AOE S S x y ==△,22212BOF S S x y ==△,由此即可求证;(2)确定,33k E ⎛⎫ ⎪⎝⎭,4,4k F ⎛⎫ ⎪⎝⎭,11432234ECF k k S EC CF ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭ △,EOF AOE BOF ECF AOBC S S S S S =--- 矩形,将OEF ECF S S S =- 转化为含有k 的一元二次方程方程,根据一元二次方程的顶点式即可求解.解:(1)证明:设11(,)E x y ,22(,)F x y ,AOE △的面积为1S ,BOF 的面积为2S ,∵11(,)E x y ,22(,)F x y 都在反比例函数(0)k y k x =>的图像上,∴11k y x =,22k y x =,则11x y k =,22x y k =,∴1111122AOE S S x y k ===△,2221122BOF S S x y k ===△,∴12AOE BOF S S k ==△△.(2)解:根据题意可知,,33k E ⎛⎫ ⎪⎝⎭,4,4k F ⎛⎫ ⎪⎝⎭,∴11432234ECF k k S EC CF ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭△,∴EOF AOE BOF ECF AOBC S S S S S =--- 矩形,即S 121222EOF ECF ECF k k S k S =---=--△△△,∴112212243234OEF ECF ECF k k S S S k S k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△,即2211(6)31212S k k k =-+=--+,∴当6k =时,S 有最大面积,最大面积为3.【点拨】本题主要考查矩形的性质,反比函数与几何的综合问题,掌握反比例函数图形的性质,矩形的性质是解题的关键.22.(1)2y x=-;(2)3【分析】(1)把点A 坐标代入反比例函数4y x =求得点A 坐标,根据AC =2BC 求出点B 的坐标,然后把点B 的坐标代入k y x =中求得k 的值,即可求出k y x=的解析式.(2)设2,D n n -⎛⎫ ⎪⎝⎭.根据AD 的中点E 在y 轴上求出点D 和点E 坐标,然后根据三角形面积公式求解即可.(1)解:∵点(,2)A a 在反比例函数4y x=的图象上,∴42a =.∴a =2.∴(2,2)A .∵AB x 轴,且交y 轴于点C ,∴2AC =.∵2AC BC =,∴1BC =.∴(1,2)B -.∴把点B 坐标代入k y x=得21k =-.∴2k =-.∴该反比例函数的解析式为2y x =-.(2)解:设2,D n n -⎛⎫ ⎪⎝⎭.∵(2,2)A ,点E 为AD 的中点,∴21,2n n E n +-⎛⎫ ⎪⎝⎭.∵点E 在y 轴上,∴20n n+=.∴2n =-.∴(2,1)-D ,30,2E ⎛⎫ ⎪⎝⎭.∴32OE =.∴1322OEA A S OE x =⋅=△,1322OED D S OE x =⋅=△.∴3OE OAD OED A S S S =+=△△△.∴△OAD 的面积为3.【点拨】本题考查根据函数值求自变量,待定系数法求反比例函数解析式,中点坐标,熟练掌握这些知识点是解题关键.23.(1)m =2;3y x =-+;(2)n =2或1.【分析】(1)求出点A 、B 的坐标,即可求解;(2)△PED 的面积S =S 四边形PDOE -S △ODE =1,即可求解.(1)解:反比例函数y =2k x 的图象过点A ,则k 2=1×2=2,故反比例函数的表达式为:y =2x;点B (m ,1)在该函数上,故m ×1=2,解得:m =2,故点B (2,1);将点A 、B 的坐标代入一次函数表达式得:11212k b k b +=⎧⎨+=⎩,解得113k b =-⎧⎨=⎩,故一次函数的表达式为y =-x +3;(2)解:连接PO ,设点P (m ,3-m ),平移后直线的表达式为:y =-x +3-n ,令x =0,则y =3-n ,令y =0,则x =3-n ,即点D 、E 的坐标分别为(3-n ,0)、(0,3-n ),即OD =OE =3-n ,△PED 的面积=S 四边形PDOE -S △ODE =S △OPD +S △OPE -S △OED =12×OD ×xP +12×OE ×yP -12×OD ×OE =12×(3-n )(3-m +m )−12(3-n )2=1,整理得:n 2-3n +2=0,解得:n =2或1.【点拨】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.24.(1)152y x =-+;(2)28x <<;(3)点P 的坐标为()7,0或()13,0【分析】(1)根据反比例函数上的点的特点求得,m n 的值进而求得点,A B 的坐标,待定系数法求直线解析式即可;(2)根据反比例函数和直线在第一象限的图象直接求得直线在双曲线上方时,x 的取值范围即可;(3)根据(1)的解析式求得点D 的坐标,设P 点坐标为(),0a ,则10PD a =-,根据三角形面积公式求解即可,进而解绝对值方程求得a 的值,即可求得点P 的坐标.解:(1) 点(),4A m 和点()8,B n 在8y x=图象上,824m ∴==,818n ==,即()2,4A ,()8,1B 把()2,4A ,()8,1B 两点代入y kx b =+中得4218k b k b =+⎧⎨=+⎩解得:125k b ⎧=-⎪⎨⎪=⎩,所以直线AB 的解析式为:152y x =-+(2)由图象可得,当0x >时,8kx b x+>的解集为28x <<(3)由(1)得直线AB 的解析式为152y x =-+,当0y =时,10x =,D ∴点坐标为()10,0设P 点坐标为(),0a ,则10PD a=- ADP 的面积是612∴×4×PD =6 ∴PD =3103a ∴-=解得7a =或13∴P 的坐标为()7,0或()13,0因此,点P 的坐标为()7,0或()13,0时, ADP 的面积是6.【点拨】本题考查了反比例函数与一次函数结合,一次函数与坐标轴交点问题,一次函数与坐标轴围成的面积问题,掌握一次函数与反比例函数的图象与性质是解题的关键.25.(1)6y x =,23y x =;(2)03x <<;(3)理由见分析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点拨】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.26.(1)6;(2)25【分析】(1)由条件可分别表示出E 、F 的坐标,用k 可表示出S ,再根据函数的性质可求得其最大值,及取得最大值时的k 的值;(2)求得E 、F 的坐标,即可求得EC =2,CF =32,根据勾股定求得EF =52,设∠CEF =α,即可求得sin α=35,cos α=45,进而解直角三角形求得EM =3sin α,FN =4cos α,从而求得EM•FN 的值.解:(1)∵OB =4,OA =3,且E 、F 为反比例函数图象上的两点,∴E ,F 两点坐标分别为E (3k ,3),F (4,4k ),如图,连接OE 、OF,∴S △ECF =12(4−3k )(3−4k ),∴S △EOF =S 矩形AOBC −S △AOE −S △BOF −S △ECF =3×4−12×3k ×3−12×4×4k −S △ECF ,∴S △EOF =12−k−S △ECF ,∴S =S △OEF −S △ECF =12−k−2S △ECF =12−k−2×12(4−3k )(3−4k ),∴S =−112k 2+k .当k =161212-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值,即S 取得最大值时k =6.(2)∵k =6,∴E (2,3),F (4,32),∴EC =2,FC =32,EF =52,设∠CEF =α,则sin α=332552=,cos α=24552=,∴EM•FN =3425sin cos αα⋅=.【点拨】本题主要考查反比例函数k 的意义及二次函数的性质,解直角三角形等,掌握反比例函数图象上点的坐标满足k =xy 是解题的关键.。
苏教版八年级数学(下)第九章反比例函数复习讲义
当 $k > 0$ 时,双曲线的两支 分别位于第一、三象限;当 $k < 0$ 时,双曲线的两支分别位
于第二、四象限。
在每个象限内,随着 $x$ 的增 大,$y$ 的值逐渐减小,但永远
不会等于 0。
反比例函数性质总结
01
02
03
04
比例系数 $k$ 决定了反比例 函数的图像所在象限和增减性
。
反比例函数的图像关于原点对 称,即如果点 $(x, y)$ 在图像 上,则点 $(-x, -y)$ 也在图像
代数法
联立反比例函数和直线的方程,通过 解方程组判断是否有解,从而确定是 否有交点。
交点坐标求解方法
联立方程法
将反比例函数和直线的方程联立起来,解方程组即可求得交 点坐标。
图像法
在坐标系中分别画出反比例函数和直线的图像,通过图像的 交点确定交点坐标。
典型例题解析
例题1
已知反比例函数 $y = frac{k}{x}$ 和直线 $y = mx + b$,求它们的交点坐标。
经济问题中反比例关系分析
生产成本问题
在生产过程中,随着产量的增加,单位产品的成本通常会降低。这种关系可以通 过反比例函数来描述,帮助企业分析生产成本和制定合理的产量计划。
投资回报问题
在投资领域,投资回报率与投资金额之间往往存在反比例关系。通过建立反比例 函数模型,投资者可以预测不同投资金额下的预期回报,从而做出更明智的投资 决策。
函数$y = frac{m}{x}$图象的两个交点,且$x_1^2 + x_2^2 = 10$,
$x_1x_2 = -3$,求这两个函数的解析式及点$A$、$B$的坐标。
XXX
PART 05
反比例函数(中考常考知识点分类专题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.42反比例函数(中考常考知识点分类专题)(基础篇)(专项练习)一、单选题【考点一】反比例函数➽➼定义✭★参数1.下列函数中,y 是x 的反比例函数的是()A .5y x=B .21y x =C .2x y =D .11y x =+2.已知反比例函数2k y x-=的图象位于第二、第四象限,则k 的取值范围是()A .2k >B .2k >C .2k ≤D .2k <【考点二】反比例函数➽➼函数值✭★自变量3.下列各点中,在反比例函数4y x=的图象上的是()A .()22-,B .()22,C .()1,4-D .()4,1-4.反比例函数3y x=的图像向下平移1个单位,与x 轴交点的坐标是()A .()3,0-B .()2,0-C .()2,0D .()3,0【考点三】判断反比例函数图象✭★由图象求解析式5.下列图象中,是函数1y x=的图象是()A .B .C .D .6.若反比例函数()2221k y k x -=-的图象位于第一、三象限,则k 的值是()A .1B .0或1C .0或2D .4【考点四】反比例函数图象的对称性➽➼轴对称✭★中心对称7.一次函数y mx =和反比例函数ny x=的一个交点坐标为(3,4)-,则另一个交点坐标为()A .(3,4)-B .(3,4)--C .(3,4)D .(4,3)-8.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为()A .4B .3C .2D .1【考点五】反比例函数图象➽➼位置✭★参数9.若反比例函数=y 42mx-的图象在一、三象限,则m 的值可以是()A .1B .2C .3D .410.在平面直角坐标系xOy 中,反比例函数ky x=图象经过点()1,P m ,且在每一个象限内,y 随x 的增大而减小,则点P 在()A .第一象限B .第二象限C .第三象限D .第四象限【考点六】反比例函数图象➽➼增减性✭★参数11.已知反比例函数ky x=图象过点()2,4-,若14x -<<,则y 的取值范围是()A .28y -<<B .82y -<<C .8y <-或2y >D .2y <-或8y >12.在反比例函数1k y x-=的图象的每一支上,y 都随x 的增大而减小,且整式24x kx -+是一个完全平方式,则该反比例函数的解析式为()A .3y x=B .3y x=-C .5y x=D .5y x=-【考点七】反比例函数图象的增减性➽➼比较因变(自变)量大小13.点()12y -,,()21y -,,()31y ,,()42y ,都在反比例函数1y x=的图象上,则1234y y y y ,,,中最小的是()A .1y B .2y C .3y D .4y 14.若点123(,3),(,5),(,8)A x B x C x -都在反比例函数7y x=的图像上,则123x x x ,,的大小关系是()A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x <<【考点八】反比例函数比例系数(面积)➽➼面积(比例系数)15.如图,过反比例函数()90y x x=>的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设AOC 和BOD 的面积分别是1S 、2S ,比较它们的大小,可得()A .12S S >B .12S S =C .12S S <D .大小关系不能确定16.如图,点B 在y 轴的正半轴上,点C 在反比例函数()0ky x x=<的图像上,菱形OABC 的面积为4,则k 的值为()A .1-B .2-C .3D .4【考点九】反比例函数的解析式17.如图,在平面直角坐标系中,点A 在反比例函数()20=>y x x的图象上,点B 在反比例函数()0k y x x=>的图象上,AB x ∥轴,BD x ⊥轴与反比例函数2y x=的图象交于点C ,与x 轴交于点D ,若2BC CD =,则k 的值为()A .4B .5C .6D .718.将一次函数y x =的图象向上平移后2个单位经过点()0,2,得到的直线解析式为2y x =+,那么函数1y x=的图象向右平移2个单位后,得到的函数解析式为()A .12y x =+B .12y x=-C .12y x =-D .3y x=【考点十】反比例函数与几何综合19.如图所示,ABC 的三个顶点分别为()2,3A ,()4,3B ,()4,5C ,若反比例函数ky x=在第一象限内的图像与ABC 有交点,则k 的取值范围是()A .612k ≤≤B .620k ≤≤C .1220k ≤≤D .20k ≤20.如图,在平面直角坐标系中,矩形OABC 的顶点A ,B 在反比例函数()0ky x x=<图像上,纵坐标分别为1,4,则k 的值为()A .32-B .52-C .2-D .4-【考点十一】一次函数与反比例函数综合➽➼图象综合✭★交点问题21.函数y kx k =-+与()0ky k x=≠在同一平面直角坐标系中的图象可能是()A .B .C .D .22.如图是同一直角坐标系中函数12y x =和22y x =的图象,观察图象可得不等式22x x<的解集为()A .1<<1x -B .<1x -或>1xC .<1x -或01x <<D .10x -<<或>1x 【考点十二】一次函数与反比例函数综合➽➼实际应用23.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x ≤≤时,y 与x 成反比例).血液中药物浓度不低于6微克毫升的持续时间为()A .73B .3C .4D .16324.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在温度为15∼20℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度()C y随时间x (小时)变化的函数图象,其中BC 段是双曲线()0ky k x=≠的一部分,则下列说法错误的是()A .k 的值为240B .当1x =时,大棚内的温度为15℃C .恒温系统在这天保持大棚内温度20℃的时间有10小时D .恒温系统在这天保持大棚内温度在1520~℃的时间有16小时【考点十三】反比例函数实际应用➽➼实际应用✭★学科应用25.在一个可以改变体积的密闭容器内装有一定质量的气体,当改变容器的体积时,气体的密度也会随之改变,密度()3kg /m ρ是体积()3mV 的反比例函数,它的图象如图所示,当气体的密度为38kg /m ρ=时,体积是()3m .A .1B .2C .4D .826.如图,某校园艺社计划利用已有的一堵长为10米的墙,用篱笆围一个面积为212m 的矩形园子.设AB x =米,BC y =米,则下列说法正确的是()A .y 关于x 的函数关系式为6y x=B .自变量x 的取值范围为0x >,且y 随x 的增大而减小C .当6y ≥时,x 的取值范围为1.22x ≤≤D .当AB 为3米时,BC 长为6米二、填空题【考点一】反比例函数➽➼定义✭★参数27.若函数3a y x -=是反比例函数,则=a _____.28.若反比例函数21k y x-=-经过点()1,2,则k 的值为________.【考点二】反比例函数➽➼函数值✭★自变量29.已知点(),A a b 在反比例函数6y x=的图像上,且2213a b +=,则2()a b +=________.30.在平面直角坐标系xOy 中,点()2,A m ,(),3B n 都在反比例函数6y x=的图象上,则mn的值为______.【考点三】判断反比例函数图象✭★由图象求解析式31.如图所示是三个反比例函数1k y x=、2k y x =、3k y x =的图象,由此观察得到1k 、2k 、3k 的大小关系是_____(用“<”连接).32.如图,正比例函数y =x 和反比例函数y =kx(k ≠0)的图象在第一象限交于点A ,且OA =2,则k 的值为_____.【考点四】反比例函数图象的对称性➽➼轴对称✭★中心对称33.如图,点A 是y 轴正半轴上一点,过点A 作y 轴的垂线交反比例函数y =3m x-的图象于点B ,交反比例函数y =6m x+的图象于点C ,若AB =2AC ,则m 的值是_____.34.若反比例函数ky x=与一次函数y mx =的图像的一个交点的坐标为()1,a ,则关于x 的方程kmx x=的解是______________.【考点五】反比例函数图象➽➼位置✭★参数35.反比例函数2m y x-=的图象的一个分支在第二象限,则m 的取值范围是________.36.如图,菱形OABC 的面积为8,点B 在y 轴上,点C 在反比例函数的图像上,则反比例函数的表达式为______.【考点六】反比例函数图象➽➼增减性✭★参数37.已知:点()12,A y -,()22,B y ,()33,C y 都在反比例函数ky x=图象上()0k >,用“<”表示1y 、2y 、3y 的大小关系是_____.38.双曲线1m y x-=在每个象限内,函数值y 随x 的增大而减小,则m 的取值范围是___________.【考点七】反比例函数图象的增减性➽➼比较因变(自变)量大小39.若点()13,A y -,()21,B y -,()33,C y 都在反比例函数2y x=-的图象上,则1y 、2y 、3y 的大小关系是___________(用“<”连接).40.若点()1,13A x ,()2,3B x -,()3,11C x 都在反比例函数21k y x+=-的图像上,则1x ,2x ,3x 的大小关系是___________.【考点八】反比例函数比例系数(面积)➽➼面积(比例系数)41.如图,双曲线m y x =与ny x=在第一象限内的图象依次是m 和,n 设点P 在图象m 上,PC 垂直于x 轴于点C ,交图象n 于点A ,PD 垂直于y 轴于D 点,交图象n 于点B ,则四边形PAOB 的面积为_______42.如图,若反比例函数ky x=(k ≠0)的图象经过点A ,AB x ⊥轴,且ABC 的面积3,则k =_____.【考点九】反比例函数的解析式43.一次函数173y x =+和2y x =-的图象相交于点A ,反比例函数k y x=的图象经过点A ,则反比例函数表达式的______.44.在平面直角坐标系xOy 中,A 是双曲线上一点,作AB x ⊥轴于B ,连接OA 得OAB 的面积是6,则该双曲线的函数解析式是_____.【考点十】反比例函数与几何综合45.如图,正方形OAPB ,矩形ADFE 的顶点O ,A ,D ,B 在坐标轴上,点E 是AP 的中点,点P ,F 在函数()10y x x=>图象上,则点F 的坐标是__________.46.如图,在平面直角坐标系中,AOBC 的对角线OC 落在x 轴正半轴上,点A 是反比例函数ky x=图象在第一象限内一点,点B 坐标为()4,2-,若AOBC 的面积是12,则k 的值为__________.【考点十一】一次函数与反比例函数综合➽➼图象综合✭★交点问题47.若反比例函数ky x=(0k ≠)的图象经过点(13)-,,则一次函数()0y kx k k =-≠的图象不经过第______________象限.48.如图,正比例函数1y k x =的图象与反比例函数2k y x=的图象交于A ,B 两点,已知点A 的横坐标为1,当21k k x x<时,x 的取值范围为__________.【考点十二】一次函数与反比例函数综合➽➼实际应用49.点(),A a b 是一次函数1y x =+与反比例函裂4y x=图像的交点,其22a b ab -=_____________.50.为预防“新冠病毒”,学校对教室喷洒84消毒液(含氯消毒剂)进行消杀,资料表明空气中氯含量不低于0.5%,才能有效杀灭新冠病毒.如图,喷洒消毒液时教室空气中的氯含量()%y 与时间()min t 成正比例,消毒液挥发时,y 与t 成反比例,则此次消杀的有效作用时间是______min .【考点十三】反比例函数实际应用➽➼实际应用✭★学科应用51.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为__________元.售价x (元/双)200250300400销售量y (双)3024201552.如图,一块砖的A 、B 、C 三个面的面积比是4:2:1,如果B 面向下放在地上,地面所受压强为Pa a ,那么A 面向下放在地上时,地面所受压强为_____Pa .三、解答题53.如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.54.如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围.55.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.56.如图,在平面直角坐标系中,反比例函数y kx=(x >0)的图象经过点A (2,6),将点A 向右平移2个单位,再向下平移a 个单位得到点B ,点B 恰好落在反比例函数y kx=(x>0)的图象上,过A ,B 两点的直线与y 轴交于点C .(1)求k 的值及点C 的坐标;(2)在y 轴上有一点D (0,5),连接AD ,BD ,求△ABD 的面积.57.如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP 的面积;(3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.58.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点(2,3)A ,(,1)B a -.(1)求反比例函数和一次函数的解析式;(2)判断点(2,1)P -是否在一次函数1y k x b =+的图象上,并说明理由;(3)直接写出不等式21kk x b x+ 的解集.参考答案1.A【分析】根据定义判断即可.解:A 、函数5y x=中,y 是x 的反比例函数,故符合题意;B 、函数21y x=中,y 不是x 的反比例函数,故不符合题意;C 、函数2xy =中,y 不是x 的反比例函数,故不符合题意;D 、函数11y x =+中,y 不是x 的反比例函数,故不符合题意;故选:A .【点拨】本题考查了反比例函数的定义即形如()0ky k x=≠,正确理解定义是解题的关键.2.D【分析】由反比例函数的图象位于第二、四象限,得出20k -<,即可得出结果.解:∵反比例函数的图象位于第二、四象限,∴20k -<,∴2k <,故选:D .【点拨】本题考查了反比例函数的图象以及性质;熟练掌握反比例函数的图象和性质,并能进行推理论证是解决问题的关键.3.B【分析】根据反比例函数解析式逐项进行判断即可.解:A 、∵2244-⨯=-≠,∴点()22-,不在反比例函数4y x=图象上,故A 不符合题意;B 、∵224⨯=,∴点()22,在反比例函数4y x=图象上,故B 符合题意;C 、∵()1444⨯-=-≠,∴点()1,4-不在反比例函数4y x=图象上,故C 不符合题意;D 、∵4144-⨯=-≠,∴点()4,1-不在反比例函数4y x=图象上,故D 不符合题意.故选:B .【点拨】本题主要考查了反比例函数的图象和性质,解题的关键是熟练掌握反比例函数点的坐标特点.4.D【分析】先得出平移后的解析式,再令0y =即可得解;解:∵反比例函数3y x=的图像向下平移1个单位,∴平移后的解析式为:31y x=-,令0y =,则301x=-,∴3x =;∴与x 轴的坐标为()3,0;故答案选D .【点拨】本题主要考查了反比例函数的图象性质,准确计算是解题的关键.5.C【分析】反比例函数的图象是双曲线,根据x 、y 的取值来确定函数1y x=的图象所在的象限.解: 函数1y x=中的10>,∴该函数图象经过第一、三象限;又 无论()0x x ≠取何值,都有0y >,∴函数1y x=的图象关于y 轴对称,即它的图象经过第一、二象限.故选C .【点拨】本题考查了反比例函数的图象.注意,y 的取值范围是:0y >.6.A【分析】先将反比例函数解析式变形为()22222121kk k k y x x-----==,根据题意可得221021k k -⎧⎨-=⎩>,问题随之得解.解:反比例函数()2221k y k x-=-的解析式变形为:()22222121kk k k y x x-----==,则根据题意,可得:221021k k -⎧⎨-=⎩>,解得:1k =,故选:A .【点拨】本题主要考查了反比例函数的定义、图象和性质,掌握反比例函数的图象与性质是解答本题的关键.7.A【分析】根据正比例函数与反比例函数交点关于原点对称即可求解.解:一次函数y mx =和反比例函数ny x=的一个交点坐标为(3,4)-,∴另一个交点坐标为(3,4)-,故选:A .【点拨】题目主要考查正比例函数与反比例函数图像的交点的特点,掌握两个交点关于原点对称是解题关键.8.B【分析】因为圆既是轴对称图形又是中心对称图形,故关于原点对称;而双曲线也既是轴对称图形又是中心对称图形,故关于原点对称,且关于y =x 和y =−x 对称.解:把=1x -代入3y x=,得3y =,故A 点坐标为(1,3)A -.∵A 、C 关于y x =对称,∴点C 坐标为(3,1)-,∴点C 的横坐标为3.故选:B.【点拨】本题主要考查了反比例函数图象的中心对称性和轴对称性,要熟练掌握,灵活运用.9.A【分析】根据反比例函数的性质:反比例函数的图象位于第一、三象限,则可知系数420m ->,解得m 的取值范围即可.解:∵反比例函数=y 42mx-的图象在一、三象限,∴420m ->,解得:2m <.结合选项可知,只有1符合题意;故选:A .【点拨】本题主要考查反比例函数的性质,当0k >时,双曲线的两个分支在一,三象限,在每一分支上y 随x 的增大而减小;当0k <时,双曲线的两个分支在二,四象限,在每一分支上y 随x 的增大而增大.10.A【分析】根据反比例函数的增减性可得0k >,从而可得反比例函数的图象在第一、三象限,再根据点P 的横坐标大于0即可得出答案.解: 反比例函数ky x=图象在每一个象限内,y 随x 的增大而减小,0k ∴>,∴这个反比例函数的图象位于第一、三象限,又 反比例函数ky x=图象经过点()1,P m ,且10>,∴点P 在第一象限,故选:A .【点拨】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.11.D【分析】先将()2,4-代入ky x=,求出k 值,再结合反比例函数的图象判断y 的取值范围.解: 反比例函数ky x=图象过点()2,4-,∴24k-=,解得8k =-,∴8y x=-,可知反比例函数图象位于第二、四象限,在每个象限内,y 随x 的增大而增大,当=1x -时,881y =-=-,当4x =时,824y =-=-,∴若14x -<<,则y 的取值范围是2y <-或8y >,故选D .【点拨】本题考查反比例函数的图象和性质,正确求出函数解析式,判断图象的增减性是解题的关键.12.A【分析】先根据反比例函数的性质得到1k >,再根据完全平方式的特点222a ab b ±+求得4k =±,进而求得k 即可求解.解:∵在反比例函数1k y x-=的图象的每一支上,y 都随x 的增大而减小,∴10k ->,则1k >,∵整式24x kx -+是一个完全平方式,∴2124k -=±⨯⨯=±,则4k =±,∴4k =,∴该反比例函数的解析式为3y x=,【点拨】本题考查反比例函数的图象与性质、完全平方式,熟知完全平方式的结构是解答的关键.13.B【分析】把四个点的坐标代入1y x=分别求出1234y y y y ,,,的值,然后比较大小即可.解:∵点()12y -,,()21y -,,()31y ,,()42y ,都在反比例函数1y x=的图象上,∴1234111122y y y y =-=-==,,,,∴1234y y y y ,,,中最小的是2y .故选:B .【点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.14.B【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据反比例函数的性质,可以判断出123x x x ,,的大小关系,本题得以解决.解:∵反比例函数7y x=中70k =>,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y 随x 的增大而减小.∵点123(,3),(,5),(,8)A x B x C x -都在反比例函数7y x=的图象上,3058-<<<,∴132x x x <<,故选:B .【点拨】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.15.B【分析】根据反比例函数的几何意义,直接求出1S 、2S 的值即可进行比较.解:由于A 、B 均在反比例函数9y x=的图象上,且AC x ⊥轴,BD x ⊥轴,则192S =;292S =.故12S S =.【点拨】此题考查了反比例函数k 的几何意义,找到相关三角形,求出k 的一半即为三角形的面积.16.B【分析】过点C 作CD OB ⊥于点D ,根据菱形的性质,可得OC BC =,OD BD =,根据菱形OABC 的面积,可得OCD 的面积,根据反比例函数系数k 的几何意义,可得k 的值.解:过点C 作CD OB ⊥于点D ,如图所示:在菱形OABC 中,OC BC =,∴OD BD =,∵菱形OABC 的面积为4,点B 在y 轴的正半轴上,∴OCB 的面积为2,∴OCD 的面积为1,∴12k =,∴2k =,∵0k <,∴2k =-,故选:B .【点拨】本题考查了反比例函数系数k 的几何意义,菱形的性质,熟练掌握反比例函数系数k 的几何意义和菱形的性质是解题的关键.17.C【分析】设点C 的坐标为2,a a ⎛⎫⎪⎝⎭,可得2CD a =,再由2BC CD =,可得4BC a =,从而得到6BD a =,从而得到点B 的坐标为6,a a ⎛⎫⎪⎝⎭,即可求解.解:设点C 的坐标为2,a a ⎛⎫ ⎪⎝⎭,∴2CD a=,∵2BC CD =,∴4BC a=,∴6BD a=,∵BD x ⊥轴,∴点B 的坐标为6,a a ⎛⎫⎪⎝⎭,∵点B 在反比例函数()0k y x x=>的图象上,∴66k a a=⨯=.故选:C【点拨】本题主要考查了反比例函数的图象上点的特征,熟练掌握反比例函数的图象上点的特征是解题的关键.18.C【分析】根据左加右减、上加下减的原则进行解答即可解:∵将函数1y x=的图象向右平移2个单位,∴得到的函数解析式为:12y x =-,故选:C【点拨】本题考查了一次函数图象的平移及反比例函数的图象的平移,熟练掌握平移的规律是解决问题的关键19.B【分析】由题意可知ABC 是直角三角形,结合反比例函数的图像与性质可知当反比例函数ky x=经过点A 时k 最小,经过点C 时k 最大,即可获得答案.解:∵ABC 的三个顶点分别为()2,3A ,()4,3B ,()4,5C ,∵ABC 是直角三角形,∴当反比例函数ky x=经过点A 时k 最小,经过点C 时k 最大,∴236k =⨯=最小,4520k =⨯=最大,∴620k ≤≤.故选:B .【点拨】本题主要考查了反比例函数图像上点的坐标特征、反比例函数的性质等知识,利用数形结合的思想分析问题是解题关键.20.C【分析】过点A 作AD x ⊥轴,过B 点作BE AD ⊥,交DA 延长线于E ,利用矩形性质及角相等来证明BAE AOD V V ∽,根据A ,B 两点在反比例函数图像上,设带有k 值的两点坐标,利用两边对应成比例求出k 的值.解:矩形OABC 的顶点A ,B 在反比例函数()0ky x x=<图像上,A 的纵坐标为1,B 的纵坐标为4,过点A 作AD x ⊥轴,过B 点作BE AD ⊥,交DA 延长线于E .90E ADO ∴∠=∠=︒,90BAO ∠=︒ ,90EAB DAO ∴∠+∠=︒,90EBA EAB ∠+∠=︒,DAO BAE ∴∠=∠,BAE AOD ∴V V ∽,BE AEAD OD∴=,设(),1A k ,,44k B ⎫⎛ ⎪⎝⎭,则OD k =-,1AD =,3AE =,34BE k =-,BE AEAD OD=Q,3341kk-∴=-,2334k ∴=,解得:2k =±,反比例函数在第二象限,∴0k <,2k ∴=-,故选:C.【点拨】本题考查了反比例函数图像性质,反比例函数与几何知识相结合的应用,证明BAE AOD V V ∽,利用两边对应成比例是解答本题的关键.21.B【分析】根据图像的性质进行排除选择即可.解:一次函数y kx k =-+中,k -与k 异号,因此要么经过第一、三、四象限,要么经过一、二、四象限,即可排除A ,C ,D .故选:B.【点拨】此题考查反比例函数和一次函数的图像和性质,解题关键是通过图像位置直接判断系数的正负.22.C【分析】根据图象进行分析即可得结果;解:∵22x x<,∴12y y <,由图象可知,函数12y x =和22y x=分别在一、三象限有一个交点,交点的横坐标分别为1和1-,由图象可以看出当<1x -或01x <<时,函数12y x =在22y x=下方,即12y y <,故选:C .【点拨】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键.23.A【分析】先分别利用正比例函数以及反比例函数解析式,再利用y =6分别得出x 的值,进而得出答案.解:当0≤x ≤4时,设直线解析式为:y =kx ,将(4,8)代入得:8=4k ,解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设反比例函数解析式为:y =a x,将(4,8)代入得:8=4a ,解得:a =32,故反比例函数解析式为:y =32x ;因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x ≤4),下降阶段的函数关系式为y =32x(4≤x ≤10).当y =6,则6=2x ,解得:x =3,当y =6,则6=32x ,解得:x =163,∵163−3=73(小时),∴血液中药物浓度不低于6微克/毫升的持续时间73小时故选A .【点拨】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.24.D【分析】将点B 的坐标代入()0ky k x=≠即可求出k 的值,进而判断A 选项;首先求出02~小时时函数的表达式,然后将1x =代入即可判断B 选项;根据图象即可判断C 选项;求出当15y =时的x 的值,然后结合图象求解即可判断D 选项.解:将点()12,20B 代入()0ky k x=≠,得240k =,故A 选项正确;设02~小时时函数的表达式为y kx b =+,∴将点()0,10和()2,20代入得,10220b k b =⎧⎨+=⎩,∴510y x =+,∴当1x =时,15y =,∴此时大棚内的温度为15℃,故B 选项正确;∵12210-=(小时),∴恒温系统在这天保持大棚内温度20℃的时间有10小时,故C 选项正确;当02~小时时,510y x =+,当1x =时,15y =,当1224:小时,240y x=,当15y =时,16x =,由图象可得,从116~小时大棚内温度在1520~℃,∴16115-=(小时),∴恒温系统在这天保持大棚内温度在1520~℃的时间有15小时,故D 选项错误.故选:D .【点拨】此题考查了待定系数法求一次函数和反比例函数解析式以及应用,正确利用图象得出点的坐标是解题关键..25.A【分析】根据图象求出反比例函数解析式,再代入求值即可.解:∵密度()3kg /m ρ是体积()3mV 的反比例函数,∴设解析式为kVρ=,把(4,2)代入得,24k =,解得,8k =,解析式为8Vρ=,把38kg /m ρ=代入得,88V=,解得,1V =,故选:A .【点拨】本题考查了反比例函数的应用,解题关键是根据图象上的坐标,求出反比例函数解析式.26.B【分析】根据12xy =可得y 关于x 的函数关系式为12y x=,利用反比例函数的图象和性质逐项判断即可得出答案.解:根据矩形园子的面积为212m 可知12xy =,∴12y x=,故A 选项错误,不合题意;由题意可知自变量x 的取值范围为0x >,且y 随x 的增大而减小,故B 选项正确,符合题意;当6y ≥时,126x≥,解得2x ≤,又0x >,∴x 的取值范围为02x <≤,故C 选项错误,不合题意;当AB 为3米时,431212BC AB ===米,故D 选项错误,不合题意;故选B .【点拨】本题考查反比例函数的实际应用,熟练掌握反比例函数的图象及性质是解题的关键.27.13【分析】根据反比例函数的定义进行求解即可.解:∵函数3a y x -=是反比例函数,∴31a -=-,解得:13a =.故答案为:13.【点拨】本题主要考查了反比例函数的定义,熟知反比例函数的定义是解题的关键:一般地,形如()10ky kx k x-==≠的函数叫做反比例函数.28.12-【分析】直接把()1,2代入21k y x-=-中可求出k 的值.解:把()1,2代入21k y x-=-得2121k -=-,解得12k =-.故答案为:12-.【点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k=29.25【分析】根据反比例函数图像上点的坐标特征得到6ab =,然后()a b +2变形为222a b ab ++,然后整体代入即可得出答案.解:∵点(),A a b 在反比例函数6y x=的图像上,∴6ab =,∵2213a b +=,∴()2222132625a b a b ab +=++=+⨯=.故答案为:25.【点拨】本题考查反比例函数图像上点的坐标特征,代数式求值,运用了整体代入的思想方法.根据坐标特征求得6ab =以及根据完全平方式把()a b +2进行变形是解题的关键.30.32【分析】把()2,A m ,(),3B n 代入反比例函数6y x=,求出m 、n 的值即可.解:∵点()2,A m ,(),3B n 都在反比例函数6y x=的图象上∴6263m n ⎧=⎪⎪⎨⎪=⎪⎩,解得32m n =⎧⎨=⎩∴32m n =故答案为:32.【点拨】本题考查反比例函数解析式,把坐标代入解析式是解题的关键.31.k 1<k 2<k 3【分析】根据反比例函数图象上点的坐标特点可得k =xy ,进而可分析k 1、k 2、k 3的大小关系.解:读图可知:反比例函数y =1k x的图象在第二象限,故k 1<0;y =2k x ,y =3k x 在第一象限;且y =3k x的图象距原点较远,故有:k 1<k 2<k 3;故答案为k 1<k 2<k 3.【点拨】本题考查反比例函数y =k x 的图象,反比例函数y =kx的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.且图象距原点越远,k 的绝对值越大.32.2【分析】利用正比例函数图象上点的坐标特征,设A (t ,t )(t >0),根据两点间的距离公式0得到2222t t +=,求出得到A 点坐标),然后把A 点坐标代入y =kx(k ≠0)中即可求出k 的值.解:设A (t ,t )(t >0),∵OA =2,∴2222t t +=,解得t∴A,把A代入y =kx得:k2.故答案为:2.【点拨】本题主要考查函数图象的交点,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.33.3-【分析】首先根据BC ∥x 轴,可设B (x ,y ),C (a ,y ),根据B 在反比例函数y =3m x-的图象上,可得xy =m ﹣3,再根据AB =2AC 可得2x a =-,再把2x a =-,代入xy =m ﹣3中求得ay =32m --,根据C 在反比例函数y =6m x +的图象上,得ay =m +6,得到32m -=m +6,解方程即可.解:∵BC ∥x 轴,∴设B (x ,y ),C (a ,y ),∵B 在反比例函数y =3m x-的图象上,∴xy =m ﹣3,∵AB =2AC ,∴|x |=2a ,∵x <0,∴2x a =-,∴﹣2ay =m ﹣3,∴ay =32m --,∵C 在反比例函数y =6m x+的图象上,∴ay =m +6,∴32m --=m +6,∴m =3-,故答案为:3-.【点拨】本题考查的是反比例函数的图像与性质,掌握反比例函数图像上点的坐标特点是解题的关键.34.11x =,21x =-【分析】反比例函数的图象是中心对称图形,与经过原点的直线的两个交点一定关于原点对称.解: 反比例函数ky x=与一次函数y mx =的图象的一个交点的坐标为(1,)a ,∴反比例函数ky x=与一次函数y mx =的图象的另一个交点的坐标是(1,)a --,∴关于x 的方程kmx x=的解是11x =,21x =-;。
苏教版八年级下学期-反比例函数-知识要点及典型例题专项训练
第9章 反比例函数【知识要点】1.反比例函数:一般地,形如:xky =(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.反比例函数有三种表示形式: 、 、 选 2.反比例函数图象及画法:一般地,反比例函数xky =(k 为常数,k ≠0)的图象是由两个分支组成的,是双曲线.这两个分支分别位于第一、三象限或第二、四象限.双曲线两个分支关于原点对称,由于反比例函数中,自变量x ≠0,函数值y ≠0,所以它的图象与 x 轴和y 轴都没有交点,即双曲线的两个分支无限地接近坐标轴,但永远不与坐标轴相交.反比例函数图象既是以直线 和直线为对称轴的轴对称图形;又是是以 为对称中心的中心对称图形。
过原点任意画一条直线,与两个分支交于两点,则这两个交点是关于 对称的,即若一个交点是)(b a P ,,则另一个交点是 .画反比例函数的图象的基本步骤为: ① 列表;描点;③ 连线.选3.反比例函数性质:(1)反比例函数图象的位置和函数值的增减性都是由比例系数k 来确定的:① 当 k >0时, x ,y 同号,图象在第一、三象限,在每一个象限内,由左至右呈下降趋势,y 随x 的增大而减小;② 当 k <0时, x ,y 异号,图象在第二、四象限,在每一个象限内,由左向右呈上升趋势,y 随x 的增大而增大.(2,否则,若笼统地说:“当k >0时,y 随x 的增大而减小”,就会出现与事实不符的错误,如函数xy =,当x 2-=时,y 3-=;当 x=2 时,y=3 .显然不是y 随x 的增大而减小.选 4.求反比例函数关系式的基本方法.(1)待定系数法是最基本的方法;(2)若已知两个函数的交点,可把交点坐标直接代入关系式;(3)若有两个函数时,先分别设出解析式(用 k 1, k 2分别表示比例系数),将两个解析式联立建立方程组,利用方程组的相关知识求解;(4)过反比例函数图象上的任意一点作 x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值,即22k xy S ==。
专题. 反比例函数(中考真题专练)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.35反比例函数(中考真题专练)(基础篇)(专项练习)一、单选题1.(2022·天津·统考中考真题)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<2.(2022·四川德阳·统考中考真题)一次函数1y ax =+与反比例函数ay x=-在同一坐标系中的大致图象是()A .B .C .D .3.(2022·湖北武汉·统考中考真题)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >4.(2022·江苏无锡·统考中考真题)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积()A .3B .134C .72D .1545.(2022·湖南怀化·统考中考真题)如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为()A .8B .9C .10D .116.(2022·广西贺州·统考中考真题)已知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为()A .B .C .D .7.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为()A .38B .22C .﹣7D .﹣228.(2022·吉林长春·统考中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()A .32B 3C .23D .49.(2022·山东东营·统考中考真题)如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A .10x -<<或2x >B .1x <-或02x <<C .1x <-或2x >D .12x -<<10.(2022·贵州贵阳·统考中考真题)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数()0ky k x=>的图象上.根据图中四点的位置,判断这四个点中不在函数ky x=的图象上的点是()A .点PB .点QC .点MD .点N二、填空题11.(2022·福建·统考中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)12.(2022·江苏淮安·统考中考真题)在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数ky x=的图像上,则k 的值是______.13.(2022·四川广元·统考中考真题)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.14.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是____.15.(2022·黑龙江齐齐哈尔·统考中考真题)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ⊥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.16.(2022·辽宁锦州·统考中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·辽宁丹东·统考中考真题)如图,四边形OABC 是平行四边形,点O 是坐标原点,点C 在y 轴上,点B 在反比例函数y =3x (x >0)的图象上,点A 在反比例函数y =k x(x >0)的图象上,若平行四边形OABC 的面积是7,则k =______.18.(2022·山东东营·统考中考真题)如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.三、解答题19.(2021·广西玉林·统考中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限.20.(2021·吉林·统考中考真题)如图,在平面直角坐标系中,一次函数423y x=-的图象与y轴相交于点A,与反比例函数kyx=在第一象限内的图象相交于点(),2B m,过点B作BC y⊥轴于点C.(1)求反比例函数的解析式;(2)求ABC的面积.21.(2021·四川德阳·统考中考真题)如图,在平面直角坐标系中,反比例函数ykx=(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数ykx=(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.(2021·山东淄博·统考中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP 的面积;(3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.23.(2022·河南·统考中考真题)如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.24.(2021·山东德州·中考真题)已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.参考答案1.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.解:将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x ;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选:B .【点拨】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.2.B【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;解:一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误;B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点拨】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.3.C【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点拨】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.4.D【分析】将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =mx的图像上,∴m =(-1m)•(-2m )=2,∴反比例函数的解析式为y =2x,∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD =12×3×2+12×3×12=154.故选:D ..【点拨】本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5.D 【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解.解:设1a B m m -⎛⎫ ⎪⎝⎭,,∵BD ⊥y 轴∴S △BCD =112a m m-⋅=5,解得:11a =故选:D .【点拨】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.6.A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内,即可求解.解:根据题意得:0,0k b >>,∴0k -<,∴一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内.故选:A【点拨】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.7.D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =k b a -,再根据ab =8,S △POQ =15,列出式子求解即可.解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a -,∴PQ =PM +MQ =k b a-.∵点P 在反比例函数y =8x 的图象上,∴ab =8.∵S △POQ =15,∴12PQ •OM =15,∴12a (b ﹣k a)=15.∴ab ﹣k =30.∴8﹣k =30,解得:k =﹣22.故选:D .【点拨】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.8.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.9.A【分析】根据不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.解:由题意得不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x +<的解集为10x -<<或2x >,故选A .【点拨】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.10.C【分析】根据反比例函数的性质,在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x =的图象上解:()0k y k x =>在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x=的图象上故选C【点拨】本题考查了反比例函数的性质,掌握反比例数图象的性质是解题的关键.11.-5(答案不唯一)【分析】根据反比例函数的图象分别位于第二、四象限可知k <0,进而问题可求解.解:由反比例函数k y x=的图象分别位于第二、第四象限可知k <0,∴实数k 的值可以是-5;故答案为-5(答案不唯一).【点拨】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.12.4-【分析】将点()2,3A 向下平移5个单位长度得到点B ,再把点B 代入反比例函数k y x=,利用待定系数法进行求解即可.解:将点()2,3A 向下平移5个单位长度得到点B ,则()2,2B -,∵点B 恰好在反比例函数k y x =的图像上,∴()224k =⨯-=-,故答案为:4-.【点拨】本题考查了坐标与图形变化—平移,待定系数法求反比例函数的解析式,熟练掌握知识点是解题的关键.13.-4【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解.解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数k y x=的图象上,∴设B m n (,).∵OAB 的面积为6,∴12OA n=,∴12,0A n ⎛⎫- ⎪⎝⎭.∵点C 是AB 的中点,∴12,22mn n C n -⎛⎫ ⎪⎝⎭.∵点C 在反比例函数k y x=的图象上,∴1222mn n mn n -⋅=,∴4mn =-,∴4k =-.故答案为:-4.【点拨】本题考查了反比例函数系数k 的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.14.223m <<【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围.解:当PQ 平行于x 轴时,点Q 的坐标为(),3m ,代入2y x =中,可得23m =;当PQ 平行于y 轴时,点Q 的坐标为()2,n ,可得2m =;∵一次函数y 随x 的增大而增大,∴m 的取值范围是223m <<,故答案为:223m <<.【点拨】本题考查一次函数和反比例函数图象的交点问题,找到两个临界是解决本题的关键.15.4-【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值.解:设点,k A a a ⎛⎫ ⎪⎝⎭,∵点D 为线段AB 的中点.AB ⊥y 轴∴22AB AD a ==-,又∵()1242=⨯-⨯=ABC k S a a△,∴4k =-.故答案为:4-【点拨】本题考查利用面积求反比例函数的k 的值,解题的关键是找出()1242=⨯-⨯=ABC k S a a△.16.2【分析】作A 过x 轴的垂线与x 轴交于C ,证明△ADC ≌△BDO ,推出S △OAC =S △OAB =1,由此即可求得答案.解:设A (a ,b ),如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∴∠ACD =∠BOD =90°,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAC =S △AOD +S △ADC =S △AOD +S △BDO =S △OAB =1,∴12×OC ×AC =12ab =1,∴ab =2,∵A (a ,b )在y =k x上,∴k =ab =2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.17.-4【分析】连接OB ,根据反比例函数系数k 的几何意义得到|k |+3=7,进而即可求得k 的值.解:连接OB ,∵四边形OABC 是平行四边形,∴AB ∥OC ,∴AB ⊥x 轴,∴S △AOD =12|k |,S △BOD =132=32,∴S △AOB =S △AOD +S △BOD =12|k |+32,∴S 平行四边形OABC =2S △AOB =|k |+3,∵平行四边形OABC 的面积是7,∴|k |=4,∵在第四象限,∴k =-4,故答案为:-4.【点拨】本题考查了反比例系数k 的几何意义、平行四边形的面积,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |是解答此题的关键.18.1y x=-【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点拨】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.19.1-【分析】由题意易得a<0,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限,∴a<0,∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭=()22211a a a a a -+-⨯-=1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.20.(1)6y x=;(2)6【分析】(1)因为一次函数与反比例函数交于B 点,将B 代入到一次函数解析式中,可以求得B 点坐标,从而求得k ,得到反比例函数解析式;(2)因为BC y ⊥轴,所以()0,2C ,利用一次函数解析式可以求得它与y 轴交点A 的坐标()0,2-,由A ,B ,C 三点坐标,可以求得AC 和BC 的长度,并且//BC x 轴,所以12ABC S AC BC =⋅V ,即可求解.解:(1)∵B 点是直线与反比例函数交点,∴B 点坐标满足一次函数解析式,∴4223m -=,∴3m =,∴()3,2B ,∴6k =,∴反比例函数的解析式为6y x=;(2)∵BC y ⊥轴,∴()0,2C ,//BC x 轴,∴3BC =,令0x =,则4223y x =-=-,∴()0,2A -,∴4AC =,∴162ABC S AC BC =⋅=△,∴ABC 的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.21.(1)k=12,C (0,9);(2)4【分析】(1)由点(2,6)A 求出反比例函数的解析式为12y x=,可得k 值,进而求得(4,3)B ,由待定系数法求出直线AB 的解析式为392y x =-+,即可求出C 点的坐标;(2)由(1)求出CD ,根据ABD ACD ACD S S S ∆∆∆=-可求得结论.解:(1)把点(2,6)A 代入k y x=,2612k =⨯=,∴反比例函数的解析式为12y x=, 将点A 向右平移2个单位,4x ∴=,当4x =时,1234y ==,(4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m n m n=+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩,392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.【点拨】本题考查了反比例函数系数k 的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB 的解析式是解题的关键.22.(1)11y x =-+,26y x=-;(2)152ABP S = ;(3)20x -<<或3x >【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP 以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-,∴26y x=-,∵点B 在反比例函数图象上,∴26m -=-,解得:3m =,∴()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩,∴11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,∵//BP x 轴,∴3BP =,∴点A 到PB 的距离为()325--=,∴1153522ABP S =⨯⨯= ;(3)由(1)及图象可得:当21k k x b x+<时,x 的取值范围为20x -<<或3x >.【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.23.(1)8y x=;(2)图见分析部分;(3)证明见分析【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ∠=∠,然后利用平行线的判定即可得证.(1)解:∵反比例函数()0k y x x=>的图像经过点()2,4A ,∴当2x =时,42k =,∴8k =,∴反比例函数的表达式为:8y x =;(2)如图,直线EF 即为所作;(3)证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD =,∴DAC DCA ∠=∠,∵AC 平分OAB ∠,∴DAC BAC∠=∠,∴BAC DCA∠=∠,∴CD AB∥.【点拨】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.(1)点C的坐标为(2,2);(2)4【分析】(1)先求出点A的坐标为(4,1),再由AB OA=,可得点B的坐标为(8,2),从而得到点C的纵坐标为2,即可求解;(2)设4(,)A mm,可得点B的坐标为8(2,)mm,从而得到点D的坐标为8(,)mm,(2mC,8m,分别求出△BOC和△ABD的面积,即可求解.(1)解:将点A坐标代入到反比例函数4yx=中得,44n=,1n∴=,∴点A的坐标为(4,1),AB OA=,(0,0)O,∴点B的坐标为(8,2),//BC x轴,∴点C的纵坐标为2,令2y =,则42x=,2x ∴=,∴点C 的坐标为(2,2);(2)设4(,A m m,AB OA = ,∴点B 的坐标为8(2,)m m,//BC x 轴,BC y ∴⊥轴,又AD BC ⊥,//AD y ∴轴,∴点D 的坐标为8(,)m m,//BC x 轴,且点C 在函数图象上,(2m C ∴,8)m ,Δ18434(2)6222OBC m m S BC m m m m =⋅⋅=-⋅=⋅= ,Δ114222ADB S BD AD m m=⋅=⋅=,∴四边形OCDA 的面积为:ΔΔ624OBC ADB S S -=-=.【点拨】本题主要考查了反比函数的图象和性质,熟练掌握反比函数的图象和性质是解题的关键.。
专题. 反比例函数(动点问题)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.30反比例函数(动点问题)(巩固篇)(专项练习)一、单选题1.如图,点M 是反比例函数y =4x(x <0)图象上一点,MN ⊥y 轴于点N .若P 为x 轴上的一个动点,则△MNP 的面积为()A .2B .4C .6D .无法确定2.如图,点A 是双曲线3y x =在第一象限上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.下列结论:①连接OC ,则AB OC ⊥;②点C 在函数()90y x x =->上运动.则()A .①对②错B .①错②对C .①②都对D .①②都错3.如图,过双曲线(0)ky x x =>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC △的面积为8,则k 的值为()A .10B .8C .16D .124.如图,矩形OABC 的顶点О与坐标原点重合,边OA ,OC 分别落在x 轴和y 轴上,点B 的坐标为()42,,点D 是边BC 上一动点,函数()0ky x x=>的图像经过点D ,且与边AB 交于点E ,连接OB 、OD .若线段OB 平分AOD ∠,则点E 的纵坐标为()A .12B .34C .1D .325.如图,A 、B 是函数y =12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴.若S △BOP =3.6,则S △ABP =()A .3.6B .4.8C .5.4D .66.如图,在平面直角坐标系中,A (8,0),点B 为一次函数y x =图像上的动点,以OB 为边作正方形OBCD ,当AB 最小时,点D 恰好落在反比例函数k y x =的图像上,则k =()A .-9B .-12C .-16D .-257.如图,线段AB 是直线y =x +1的一部分,其中点A 在y 轴上,点B 横坐标为2,曲线BC 是双曲线k y x=(0k ≠)的一部分,由点C 开始不断重复“A−B−C”的过程,形成一组波浪线,点P(2019,m )与Q(2025,n )均在该波浪线上,G 为x 轴上一动点,则△PQG 周长的最小值为()A .16B .6+C .6+D .98.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =k x上(k >0,x >0),则k 的值为()A .B .C .9D .9.如图,已知点A 是直线y=x 与反比例函数y=(k >0,x >0)的交点,B 是y=图象上的另一点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C ,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为()A .B .C .D .10.如图,反比例函数2y x =和正比例函数12y x =的图象交于点M ,N ,动点(),0P m 在x 轴上.若PMN 为直角三角形,则m 的值为()A .2m =5B .52m =52C .2m =±或52D .52m =±或5二、填空题11.如图,点()2,2A -在反比例函数k y x=的图象上,点M 在x 轴的正半轴上,点N 在y 轴的负半轴上,且5OM ON ==.点(),P x y 是线段MN 上一动点,过点A 和P 分别作x 轴的垂线,垂足为点D 和E ,连接OA 、OP .当OAD OPE S S < 时,x 的取值范围是________.12.如图,已知点A 是反比例函数3y x=-(0x <)的图像上的一个动点,连接OA ,若将线段OA 绕点O 顺时针旋转90°得到线段OB ,则点B 所在反比例图像的函数关系式是____.13.如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____.14.如图,A 、B 是函数y =12x图象上两点,P 为一动点.作PB ∥y 轴.PA ∥x 轴,下列说法中:①AOP BOP ≌△△;②AOP BOP S S =;③若OA =OB ,则OP 平分∠AOB ;④若4BOP S =,则16ABP S =.正确的序号是___.15.如图,点A 为反比例函数k y x=图象上的一点,过点A 作AB ⊥y 轴于B ,点C 为x 轴上的一个动点,△ABC 的面积为3,则k 的值为________.16.如图,点A 、B 是反比例函数y 12x =图象上的两个动点,过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y 3x=-图象于点C 、D ,得四边形ACBD 是平行四边形.当点A 、B 不断运动时,现有以,结论:①▱ACBD 可能是菱形;②▱ACBD 不可能是矩形;③▱ACBD 可能是正方形;④▱ACBD 不可能是正方形.其中正确的是_____.(写出所有正确结论的序号)17.如图,函数112y x =+与函数(0)k y x x =>图像的交于点P ,点P 的纵坐标为4,PB x ⊥轴,垂足为点B ,点M 是函数(0)ky x x =>图像上一动点(不与P 点重合),过点M 作MD AP⊥于点D ,若45PMD ∠=︒,点M 的坐标是________.18.如图,点A 是反比例函数()280y x x=>的图象上的一动点,过点A 分别作x 轴、y 轴的平行线,与反比例函数1k y x=(0k ≠,0x >)的图象交于点B 、点C ,连接OB ,OC .若四边形OBAC 的面积为5,则k =________.三、解答题19.如图,一次函数114y k x =+与反比例函数22k y x=的图象交于点()2,A m 和()6,2B --,与y 轴交于点C .(1)1k =,2k =;(2)过点A 作AD x ⊥轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP与线段AD 交于点E ,当:4:1ODE ODAC S S ∆=四边形时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形ABMN 是矩形时,求出点M 的坐标.20.如图,反比例函数1k y x=的图像与一次函数2y mx n =+的图像相交于(),1A a -,()1,3B -两点.(1)求反比例函数和一次函数的解析式;(2)点P 在线段AB 上,且:1:2AOP BOP S S = ,直接写出点P 的坐标;(3)设直线AB 交y 轴于点C ,点(),0N t 是x 轴正半轴上的一个动点,过点N 作NM x ⊥轴交反比例函数1k y x=的图像于点M ,连接CN ,OM .若S 四边形COMN >3,直接写出t 的取值范围.21.如图,在平面直角坐标系中,直线y x =与反比例函数图象交于点(),A a a ,点1,22B a a ⎛⎫ ⎪⎝⎭为反比例函数()0k y x x =>图象上的点,连接OB ,AB ,且AOB S ∆为3.(1)求反比例函数的解析式;(2)点P 为y 轴上一动点,当ABP 的周长最小时,直接写出点P 的坐标.22.一次函数2y x =--的图象与反比例函数k y x=的图象相交于()3,A m -,(),3B n -两点.(1)求这个反比例函数的解析式;(2)根据图象写出使一次函数值不大于反比例函数值的x 的取值范围.(3)若动点E 在y 轴上,且6EBA S =△,求动点E 的坐标.23.如图,一次函数()110y k x b k =+≠的图象与反比例函数()220k y k x=≠的图象交于点()14A ,,()4B n -,两点.(1)求一次函数和反比例函数的表达式;(2)连接AO 并延长交双曲线于点C ,点D 为y 轴上一动点,点E 为直线AB 上一动点,连接CD ,DE ,求当CD DE +最小时点D 的坐标;24.如图,点A 在反比例函数(00)m y m x x =>>,的图像上,点A 的纵坐标为3.过点A 作x 轴的平行线交反比例函数(0)n y n m x x=>>,的图像于点C .点P 为线段AC 上一动点,过点P 作AC 的垂线,分别交反比例函数m y x =和n y x =的图像于点B ,D .(1)当416m n ==,时,①若点P 的横坐标为4(如图1),求直线AB 的函数表达式;②若点P 是AC 的中点(如图2),试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,说明理由.参考答案1.A 【分析】根据1()2MNP P M S MN y y ∆=⋅-求解.解:设点M 坐标为(,)a b ,点M 在反比例函数图象上,4ab ∴=,111()()()2222MNP P M S MN y y a b ab ∆∴=⋅-=⨯--==.故选:A .【点拨】本题考查反比例函数系数k 的几何意义,解题关键是掌握xy k =,掌握坐标系内求图形面积的方法.2.C【分析】设点A 的坐标为(a ,3a),连接OC ,则OC ⊥AB ,表示出OC ,过点C 作CD ⊥x 轴于点D ,设出点C 坐标,在Rt △OCD 中,利用勾股定理可得出x 2的值,进而得出结论.解:如图,设A (a ,3a ),点C 始终在双曲线()0k y x x=->上运动,∵点A 与点B 关于原点对称,∴OA =OB ,∵△ABC 为等边三角形,∴AB ⊥OC ,OC,∵AO =∴CO 过点C 作CD ⊥x 轴于点D ,则可得∠AOD =∠OCD (都是∠COD 的余角),设点C 的坐标为(x ,y ),则tan ∠AOD =tan ∠OCD ,即3x a a y =-,解得23a y x =-.在Rt △COD 中,CD 2+OD 2=OC 2,即2222273y x a a +=+,将23a y x =-代入,可得:2227x a =,故23a x y x ==-=,则xy =-9,即k =-9,所以,点C 在函数()90y x x=->上运动.所以,①②都对,故选:C .【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.D【分析】设AB =a ,则PB =3a ,从而得到B kx a =,3C k x a =,根据矩形的性质,得到PC =AD =BE =B C x x -,利用三角形面积为载体建立等式计算即可.解:设AB =a ,则PB =3a ,过点C 作CE ⊥x 轴,垂足为E ,过点A 作AD ∥x 轴,交CE 于点D ,则四边形APCD 是矩形,四边形BPCE 是矩形,∴CE =PB =3a ,∵点A 、点C 都在函数(0)k y x x =>的图像上,∴A B k x x a==,3C k x a =,根据矩形的性质,得到PC =AD =BE =B C x x -=3kk a a -,∵APC △的面积为8,∴1(2823kk a a a-⨯=,解得k =12,故选D .【点拨】本题考查了反比例函数的图像及其性质,矩形的判定和性质,三角形面积计算,熟练掌握反比例函数的性质是解题的关键.4.B【分析】先根据矩形的性质,角平分线定义得出DBO DOB ∠=∠,然后根据等腰三角形的判定得出BD OD =,在Rt COD 中根据勾股定理可求出CD ,从而求出点D 的坐标,根据待定系数法求出反比例函数解析式,最后把4x =代入求解即可.解:解∶∵OB 平分AOD ∠,∴AOB DOB ∠=∠,∵四边形ABCD 是矩形,()42B ,,∴BC OA ∥,4BC AO ==,2==OC AB ,90BCO ∠=︒,∴DBO AOB ∠=∠,∴DBO DOB ∠=∠,∴BD OD =,设BD OD a ==,则4CD BC BD a =-=-,在Rt COD 中,222CO CD OD +=,∴()22242a a -+=,解得52a =,∴32CD =,∴3,22D ⎛⎫ ⎪⎝⎭,∴3232k =⨯=,∴3y x =,当4x =时,34y =,∴点E 的纵坐标为34.故选:B .【点拨】本题考查了矩形的性质,等腰三角形的判定,勾股定理,待定系数法等知识,正确求出点D 的坐标是解题的关键.5.C【分析】延长BP ,交x 轴于点C ,由题意可设点1212,,,A a B b a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则有1212,,AP a b BP OC b b a=-=-=,然后由S △BOP =3.6可进行求解问题.解:延长BP ,交x 轴于点C ,如图所示:∵PB ∥y 轴,PA ∥x 轴,∴AP BP ⊥,BC x ⊥轴,由题意可设点1212,,,A a B b a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则有1212,,AP a b BP OC b b a =-=-=,∵S △BOP =3.6,∴1 3.62BP OC ⋅=,即12127.2b b a ⎛⎫-= ⎪⎝⎭,解得:25b a =,∴()111212130123 5.42225APB S AP BP a b a b a a a ⎛⎫⎛⎫=⋅=--=⨯-⨯= ⎪ ⎪⎝⎭⎝⎭ ;故选C .【点拨】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数的性质及几何意义是解题的关键.6.C【分析】根据垂线段最短可得,当AB 垂直直线y x =时AB 最短,此时△AOB 是等腰直角三角形,易求OB =42D 作DE ⊥x 轴于点E ,知△DEO 为等腰直角三角形,求出DE ,OE 的长即可得到结论.解:根据垂线段最短可得,当AB 垂直直线y x =时AB 最短,∵∠AOB =45°∴∠BAO =45°∴△AOB 是等腰直角三角形,∵点A 的坐标为(8,0)∴OA =8∴42BO BA ==∵四边形OBCD 是正方形,∴90DO BO DOB ==∠=︒∴45DOC BOC ∠=∠=︒过点D 作DE ⊥x 轴于点E ,∴45ODE DOE ∠=∠=︒∴△DEO 为等腰直角三角形,∴4DE OE ==∵点D 在第二象限,∴D (-4,4)又点D 在反比例函数k y x=的图像上∴(4)416k =-⨯=-故选:C .【点拨】本题考查了最短路径问题、待定系数法求函数解析式、正方形的性质等知识,解答此题的关键是正确求出点D 的坐标.7.B【分析】由点B 在直线y=x+1上,点B 横坐标为2,可求纵坐标,确定点B 的坐标,进而求出反比例函数的关系式,再确定点C 的坐标,由点C 开始不断重复“A-B-C”的过程,可以推断点P (2019,m )与Q (2025,n )具体所在的位置,再依据对称,求线段的和最小的方法求出答案.解:当x=2时,y=x+1=2+1=3,∴B (2,3)∵B (2,3)在双曲线k y x =上,∴k=6把x=6代入6y x=得:y=1,∴C (6,1)∵2019÷6=336……3,2025÷6=337……3,∴点P 落在第337个“A-B-C”的P 处,而点Q 落在第338个“A-B-C”的Q 处,示意如图:把3x =代入6,y x =2,y ∴=∴P (2019,2),Q (2025,2),PQG 周长的最小,PQ=6定值,∴只要GP+GQ 最小即可,过Q 作QH x ⊥轴,使Q,H 关于x 轴对称,连接HP 交x 轴于,G ()2025,2,H ∴-6,4,PQ QH ∴==由勾股定理得:PH =∴PQG 周长的最小值为PQ+GP+GQ=6PH PQ +=+故选B .【点拨】考查反比例函数、一次函数的图象和性质,轴对称性质的应用,根据规律推断出点P 、Q 的位置,找出点G 的位置,依据勾股定理求出线段的长,是解决问题的关键.8.D【分析】根据等边三角形的性质表示出D ,C 点坐标,进而利用反比例函数图象上点的坐标特征得出答案.解:过点D 作DE ⊥x 轴于点E ,过C 作CF ⊥x 轴于点F ,如图所示.可得:∠ODE =30°,∠BCD =30°,设OE =a ,则OD =2a ,DE a ,∴BD =OB ﹣OD =10﹣2a ,BC =2BD =20﹣4a ,AC =AB ﹣BC =4a ﹣10,∴AF =12AC =2a ﹣5,CF AF 2a ﹣5),OF =OA ﹣AF =15﹣2a ,∴点D (a a ),点C [15﹣2a 2a ﹣5)].∵点C 、D 都在双曲线y =k x 上(k >0,x >0),∴a a =(15﹣2a )2a ﹣5),解得:a =3或a =5.当a =5时,DO =OB ,AC =AB ,点C 、D 与点B 重合,不符合题意,∴a =5舍去.∴点D (3,∴k =故选D .【点拨】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D 、C 的坐标.9.B解:设点P 的运动速度为v ,①由于点A 在直线y=x 上,故点P 在OA 上时,四边形OMPN 为正方形,四边形OMPN 的面积S=(vt )2,②点P 在反比例函数图象AB 时,由反比例函数系数几何意义,四边形OMPN 的面积S=k ;③点P 在BC 段时,设点P 到点C 的总路程为a ,则四边形OMPN 的面积=OC•(a ﹣vt )=﹣2OC v ⋅t+2OC a ⋅,只有B 选项图形符合.故选B .考点:动点问题的函数图象.10.D 【分析】联立方程组212y x y x ⎧=⎪⎪⎨⎪=⎪⎩并求解,得到(2,1),(2,1)M N --,由两点间距离公式求出,,PM PN MN 的长,再分90,90,90PMN PNM MPN ∠=︒∠=︒∠=︒三种情况依据勾股定理列出方程求解即可解:联立方程组得212y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得,21x y =-⎧⎨=-⎩或21x y =⎧⎨=⎩,(2,1),(2,1)M N ∴--∵(),0P m ∴[][]2222(2)0(1)45,PN m m m =--+--=++222(22)(11)20,MN =--+--=2222(2)(01)45,PM m m m =-+-=-+①若90PNM ∠=︒时,则有222PN MN PM +=,22452045m m m m ∴+++=-+,5,2m \=-②若90MPN ∠=︒时,则有222PM PN MN +=,22454520.m m m m ∴-++++=,m ∴=③若90PMN ∠=︒时,则有222PM MN PN +=,22452045m m m m ∴-++=++,52m ∴=;综上所述,m 的值为52±或故选:D .【点拨】本题考查了一次函数与反比例函数的交点问题,正确进行分类讨论是解题的关键.11.14x <<【分析】先求出反比例函数的解析式,再求出线段MN 的解析式,最后联立两个解析式求出B 和C 两个点的坐标,再根据k 的几何意义,确定P 点位置,即可得到相应的x 的取值范围.解:∵点()2,2A -∴()224k =⨯-=-,所以反比例函数的解析式为:4y x=-,因为5OM ON ==,∴()()5,0,0,5M N -,设线段MN 解析式为:()05y px q x =+≤≤,∴505p q q +=⎧⎨=-⎩,∴15p q =⎧⎨=-⎩,∴线段MN 解析式为:()505y x x =-≤≤,联立以上两个解析式得:54y x y x =-⎧⎪⎨=-⎪⎩,解得:14x y =⎧⎨=-⎩或41x y =⎧⎨=-⎩,经检验,符合题意;由图可知,两个函数的图像交点分别为点B 和点C ,∴()1,4B -,()4,1C -,∵OAD OPE S S < ,∴P 点应位于B 和C 两点之间,∴14x <<,故答案为:14x <<.【点拨】本题涉及到了动点问题,考查了反比例函数的图像与性质、k 的几何意义、待定系数法等内容,解决本题的关键是牢记反比例函数的图像与性质,理解k 的几何意义,以及能联立两个函数的解析式求交点坐标等,本题蕴含了数形结合的思想方法等.12.3y x=【分析】如图,设A (m ,n ),过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,得到AC =n ,OC =-m ,根据反比例函数图象上点的坐标特征可得3=-mn ,根据平角的定义及角的和差关系可得∠OAC =∠BOD ,根据旋转的性质可得OB =OA ,利用AAS 可证明△ACO ≌△ODB ,根据全等三角形的性质得到AC =OD =n ,CO =BD =-m ,可得点B 坐标,利用待定系数法即可得答案.解:如图,设A (m ,n ),过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 是反比例函数3y x=-(0x <)的图像上的一个动点,∴3=-mn ,AC =n ,OC =-m ,∵将线段OA 绕点O 顺时针旋转90°得到线段OB ,∴∠AOB =90°,OA =OB ,∴∠OAC +∠AOC =∠BOD +∠AOC =90°,∴∠OAC =∠BOD ,在△ACO 和△ODB 中,ACO BDO OAC BOD OA OB ∠=⎧⎪∠=∠⎨⎪=⎩,∴△ACO ≌△ODB ,∴AC =OD =n ,CO =BD =-m ,∴B (n ,-m ),设过点B 的反比例函数的解析式为k y x=,∴3k mn =-=,∴点B 所在反比例图像的函数关系式为3y x =,故答案为:3y x=【点拨】本题考查了坐标与图形变化-旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.13.y =-4x【分析】连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,如图,设A 点坐标为4,a a骣琪琪桫,再证明△COD ≌△OAE (AAS ),表示C 点坐标为4,a a骣琪-琪桫,从而可得答案.解:连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,如图,设A 点坐标为4,a a骣琪琪桫,∵A 点、B 点是正比例函数图象与双曲线4y x =的交点,∴点A 与点B 关于原点对称,∴OA =OB∵△ABC 为等腰直角三角形,∴OC =OA ,OC ⊥OA ,∴∠DOC +∠AOE =90°,∵∠DOC +∠DCO =90°,∴∠DCO =∠AOE ,∵在△COD 和△OAE 中CDO OEA DCO EOA CO OAìÐ=ÐïïÐ=Ðíï=ïî∴△COD ≌△OAE (AAS ),∴OD =AE =4a,CD =OE =a ,∴C 点坐标为4,a a骣琪-琪桫,∵44a a -=-g ,∴点C 在反比例函数4y x =-图象上.故答案为:4y x=-【点拨】本题考查的是等腰直角三角形的性质,三角形全等的判定与性质,反比例函数的图象与性质,利用三角形的全等确定C 的坐标是解本题的关键.14.②③##③②【分析】由点P 是动点,可判断出①错误,设出点P 的坐标,求出AP 、BP 的长,再利用三角形面积公式计算即可判断出②;利用角平分线定理的逆定理可判断③;先求出矩形OMPN 的面积为4,进而得出mn =4,最后用三角形的面积公式解答即可.解:∵点P 是动点,∴BP 与AP 不一定相等,∴BOP △与AOP 不一定全等,故①不正确;设P (m ,n ),∵BP ∥y 轴,∴B (m ,12m ),A (12n ,n )∴AP =|12n-m |∴S △AOP =12·|12n-m |n =12|12-mn |同理:S △BOP =12·|12m -n |m =12|12-mn |∴S △AOP =S △BOP ;故②正确;如图1,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴BOP S =12OB ·PE ,AOP S =12OA ·PF∵BOP AOP S S = ,∴OB ·PE =OA ·PF∵OA =OB ,∴PE =PF ,∵PE ⊥OB ,PF ⊥OA∴OP 是∠AOB 的平分线,故③正确;如图2,延长BP 交x 轴于N ,延长AP 交轴于M ,∵AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y =12x 上,∴6AMO ONB S S == ,∵4BOP S = ,∴2PMO PNO S S == ,∴S 矩形OMPN =4,∴mn =4,∴m =4n ∴12|3|2||BP n n n n m=-=-=,8||12AP m n n =-=∴1182||822||APBS AP BP n n ∆=⨯=⨯⨯=故④不正确;故答案为②③.【点拨】本题属于反比例函数与几何综合题,主要考查了反比例函数的性质、三角形面积公式、角平分线定理逆定理、矩形的判定和性质等知识点,正确作出辅助线并灵活应用所学知识是解答本题的关键.15.6【分析】连接OA ,可得S △ABO =S △ABC =3,根据反比例函数k 的几何意义,可求出k 的值.解:连接OA ,∵AB ⊥y 轴,∴AB ∥x 轴,∴S △ABO =S △ABC =3,即:12|k |=3,∴k =6或k =-6,∵在第二象限,∴k =-6,故答案为:-6.【点拨】考查反比例函数的图象和性质,理解反比例函数k 的几何意义以及同底等高的三角形的面积相等,是解决问题的前提.16.①②④【分析】设A(a,12a),B(b,12b),则C(a,-3a),D(b,-3b),由平行四边形的性质AC=BD列出方程求得a、b的关系,进而得B、C的坐标,根据坐标可以判断BC不与x轴平行,从而判断AC与BD垂直,进而判断③错误;②④正确;根据随着|a|不断变小,AC越来越大,BC越来越小,可以判断AC有可能与BC相等,进而判断①的正误.解:设A(a,12a),B(b,12b),则C(a,-3a),D(b,-3b),∵AC=BD,∴-15a=15b,∴a=-b,∴yC=-3a=3b≠yB=12b,∴BC不与x轴平行,∴AC与BC不可能垂直,∴▱ACBD不可能是矩形,▱ACBD不可能是正方形.故③错误;②④正确;∵随着|a|不断变小,AC越来越大,BC越来越小,∴AC有可能与BC相等,故①正确;故答案为①②④.【点拨】本题主要考查了反比例函数的图象与性质,平行四边形的性质,菱形的判定,矩形、正方形的判定,解题的关键是由平行四边形的对边相等,得出a、b的关系.17.(12,2)【分析】过点D作GH⊥PB,交BP的延长线于G,作MH⊥HG于H,证得△PGD≅△DHM(AAS),得PG=DH,DG=MH,设D(m,112m ),表示出点M的坐标,从而得出m的方程,解方程即可.解:过点D作GH⊥PB,交BP的延长线于G,作MH⊥HG于H,如图所示,∵△PMD 是等腰直角三角形,∴PD =DM ,∵∠PDG +∠MDH =90°,∠PDG +∠DPG =90°,∴∠DPG =∠MDH ,∵∠G =∠H ,∴△PGD ≅△DHM (AAS),∴PG =DH ,DG =MH ,∵点P 的纵坐标为4,∴将y =4代入112y x =+,得x =6,∴P 点坐标为(6,4),将P (6,4),代入(0)k y x x =>,得:k =24,∴反比例函数解析式为:24(0)y x x=>设D (m ,112m +),∴DG =m -6,PG =132m -,∴MH =m -6,DH =132m -,∴M (332m -,172m -),∵点M 在反比例24y x=的图象上,∴31372422m m ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭ ,解得16m =,210m =,当m =6时,M (6,4)(舍去),当m =10时,M (12,2),故答案为:(12,2).【点拨】本题是反比例函数与一次函数图象的交点问题,主要考查了函数图象上点的坐标的特征,等腰直角三角形的性质,全等三角形的判定与性质,构造全等三角形表示出点M 的坐标是解题的关键.18.3【分析】延长,AB AC 分别交y 轴,x 轴于点,E D ,易得四边形OBAC 的面积等于8k -,即可得解.解:延长,AB AC 分别交y 轴,x 轴于点,E D ,∵AB x 轴,AC y 轴,则:四边形AEOD 为矩形,,OBE ODC 为直角三角形,∵点A 在反比例函数()280y x x=>的图象上,点B 、点C 在反比例函数1k y x =(0k ≠,0x >)上,∴8AEOD S =矩形,2OBE ODC k S S ==,∴四边形OBAC 的面积85OBE ODC AEOD S S S k =--=-= 矩形,∴3k =;故答案为:3.【点拨】本题考查一直图形面积求k 值.熟练掌握k 值的几何意义,是解题的关键.19.(1)1,12;(2)⎝;(3)()0,8-或()8,0-.【分析】(1)根据点B 的坐标,利用待定系数法即可求出1k 、2k 的值;(2)根据一次函数图象上点的坐标特征求出点A 、C 的坐标,根据梯形的面积公式求出ODAC S 四边形的值,进而即可得出ODE S ∆的值,结合三角形的面积公式即可得出点E 的坐标,利用待定系数法即可求出直线OP 的解析式,再联立直线OP 与双曲线的解析式成方程组,通过解方程组求出点P 的坐标;(3)过点B 作直线12M M AB ⊥交x 轴于点2M 交y 轴于点1M ,作出符合题意的图形,利用待定系数法求出直线12M M 的解析式,再求出1M 、2M 的坐标即可.(1)解:将点()6,2B --代入114y k x =+,1264k -=-+,解得:11k =,故一次函数的解析式为;14y x =+,将点()6,2B --代入22k y x =,226k -=-,解得:212k =,故反比例函数的解析式为12y x =;故答案为:1,12(2)解:依照题意,画出图形,如图所示.当2x =时,246m =+=,∴点A 的坐标为()2,6;当0x =时,14044y x =+=+=,∴点C 的坐标为()0,4,∵()114621022()ODAC S OC AD OD =+⋅=⨯+⨯=四边形,:4:1ODE ODAC S S ∆=四边形,∴111210224ODE S OD DE DE =⋅=⨯=⨯ ,∴52DE =,即点E 的坐标为52,2⎛⎫ ⎪⎝⎭,设直线OP 的解析式为y kx =,将点52,2E ⎛⎫ ⎪⎝⎭代入y kx =,得522k =,解得:54k =,∴直线OP 的解析式为54y x =,联立得1254y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得:11x y ⎧⎪⎨⎪⎩22x y ⎧=⎪⎨⎪=⎩,∵点P 在第一象限,∴点P的坐标为⎝;(3)解:过点B 作直线12M M AB ⊥交x 轴于点2M 交y 轴于点1M ,依照题意画出图形,如图所示.则1290CBM CBM ∠=∠=︒时,四边形11ABM N 与22ABM N 是满足题意的矩形,∵直线AB 的解析式为4y x =+,∴可设直线12M M 的解析式为y x b =-+,把点()6,2B --代入y x b =-+得到26b -=+,解得8b =-,直线12M M 的解析式为8y x =--,当0x =时,8088y x =--=-=-,当0y =时,08x =--,解得8x =-,∴()10,8M -,()28,0M -,故点M 的坐标为()0,8-或()8,0-.【点拨】本题考查了待定系数法求出一次函数及反比例函数解析式、一次函数图象上点的坐标特征、梯形(三角形)的面积公式、矩形的性质,解题的关键是根据题意画出图形,作出辅助线.20.(1)反比例函数的解析式为3y x-=,一次函数解析式为2y x =-+;(2)点P 的坐标为(53,13);(3)t >32【分析】(1)将点B ,点A 坐标代入反比例函数的解析式,可求a 和k 的值,利用待定系数法可求一次函数解析式;(2)连接OA ,OB ,OP ,求得OC 的长,根据AOB AOC BOC S S S =+ ,:1:2AOP BOP S S = ,求得BOP BOC POC S S S =+ 进而求得点P 的坐标;(3)先求出点C 坐标,由面积关系可求解.解:(1)∵反比例函数k y x=的图像与一次函数y mx n =+的图像相交于(),1A a -,()1,3B -两点,∴()131k a =-⨯=⨯-,∴3,3k a =-=,∴点()3,1A -,∴反比例函数的解析式为3y x-=,由题意可得:313m n m n =-+⎧⎨-=+⎩,解得:12m n =-⎧⎨=⎩,∴一次函数解析式为2y x =-+;(2)连接OA ,OB ,OP ,令0x =代入22y x =-+,解得22y =,∴一次函数与y 轴的交点C 坐标为()0,2,∴2OC =,∵点P 在线段AB 上,∴设点P 为(),2m m -+,∵点A ()3,1-,点B ()1,3-,∴4AOB AOC BOC S S S =+= ,∵:1:2AOP BOP S S = ,∴2833BOP AOB S S == ,∵1BOP BOC POC S S S m =+=+ ,∴813m +=,解得53m =,∴123m -+=,∴点P 的坐标为51,33⎛⎫ ⎪⎝⎭;(3)∵直线AB 交y 轴于点C ,∴点C ()0,2,∴31222OMN OCN COMN S S S t =+=+⨯⨯ 四边形,∵3COMN S >四边形,∴312322t +⨯⨯>,∴32t >.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,反比例函数的性质等知识,求出两个解析式是解题的关键.21.(1)4y x =;(2)100,3P ⎛⎫ ⎪⎝⎭.【分析】(1)先求出直线OA 的解析式为y x =,直线OB 的解析式为4y x =,过点A作AC x ∥轴,交OB 于C ,在求出1,4C a a ⎛⎫ ⎪⎝⎭,进而得出1344AC a a a =-=,根据21313324244AOB AOC ABC S S S a a a a a =+=⨯⨯+⨯⨯= ,再根据面积即可得出a 的值,求出()2,2A ,即可得出答案;(2)根据(1)可得:()2,2A ,()1,4B ,由于点D 与点A 关于y 轴对称,可知当PA PB +的值最小,即B ,P ,D 三点在同一直线上时ABP 的周长最小,求出直线BD 的解析式为21033y x =+,即可得出答案.(1)解:∵设直线OA 的解析式为1y k x =,将(),A a a 代入,得出:11k =,∴直线OA 的解析式为y x =,设直线OB 的解析式为2y k x =,将1,22B a a ⎛⎫ ⎪⎝⎭代入,得出:24k =,∴直线OB 的解析式为4y x =,过点A 作AC x ∥轴,交OB 于C ,∵(),A a a ,∴点C 的纵坐标为a ,∵点C 在直线OB 上,∴点c 的横坐标为:14a ,∴1,4C a a ⎛⎫ ⎪⎝⎭,∴1344AC a a a =-=,∴21313324244AOB AOC ABC S S S a a a a a =+=⨯⨯+⨯⨯= ,∴2334a =,解得:12a =,22a =-(舍去),∴()2,2A ,∴224k =⨯=,∴反比例函数的解析式为:4y x=;(2)解:根据(1)可得:()2,2A ,()1,4B ,∵点D 与点A 关于y 轴对称,∴PA PD =,∴AB PA PB AB PD PB ++=++,∵AB 为定值,∴当PA PB +的值最小,即B ,P ,D 三点在同一直线上时ABP 的周长最小,∴()2,2D -,设直线BD 的解析式为y ax b =+,将()1,4B ,()2,2D -,代入得:422a b a b +=⎧⎨-+=⎩,解得:23103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BD 的解析式为21033y x =+,当0x =时,103y =,∴100,3P ⎛⎫ ⎪⎝⎭.【点拨】本题考查反比例函数与一次函数,轴对称的性质,正确得出反比例函数解析式是解题的关键.22.(1)3y x=-;(2)-<3≤0x 或1x ≥;(3)()0,5-或()0,1【分析】(1)将点A 坐标代入直线表达式,求出m ,得到具体坐标,再将点A 坐标代入反比例函数表达式,求出k 值可;(2)求出点B 坐标,结合图像可得结果;(3)设点E 坐标为()0,a ,求出直线AB 与y 轴交点F 的坐标,再根据6EBA S =△,列出方程,解之可得.(1)解:将()3,A m -代入2y x =--得:()321m =---=,∴()3,1A -,代入k y x=中,得:()313k =-⨯=-,∴3y x=-;(2)将(),3B n -代入2y x =--中,得32n -=--,解得:1n =,∴()1,3B -,由图像可知:当一次函数图像在反比例函数图像下方时,对应的x 为-<3≤0x 或1x >,∴使一次函数值不大于反比例函数值的x 的取值范围是-<3≤0x 或1x ≥.(3)设点E 坐标为()0,a ,直线AB 与y 轴交于点F ,在2y x =--中,令0x =,则=2y -,∴()0,2F -,∵6EBA S =△,∴()162B A EF x x ⨯⨯-=,即12462a ⨯--⨯=,解得:5a =-或1a =,∴点E 的坐标为()0,5-或()0,1.【点拨】本题考查了一次函数与反比例函数交点问题,用待定系数法确定反比例函数的解析式;要能够熟练掌握待定系数法,学会表示交点形成的三角形面积是解题的关键.23.(1)一次函数解析式为3y x =+,反比例函数解析式为4y x=;(2)()03D -,【分析】(1)先把点A 坐标代入反比例函数解析式中求出反比例函数解析式,进而求出点B 的坐标,再把A 、B 的坐标代入一次函数解析式中求出一次函数解析式即可;(2)设直线AB 与x 轴,y 轴分别交于N ,M ,作点C 关于y 轴的对称点H ,连接CH 交y 轴于G ,连接HD ,推出当H D E 、、三点共线且HD AB ⊥时,HD DE +最小,即CD DE +最小;求出()()3003N M -,,,,进而证明45OMN ONM ∠=∠=︒,即可退出45GHD GDH =︒=∠∠,得到DG HG =;由对称性可知()14C --,,则()14H -,,由此求出3OD =,则()03D -,.(1)解:把()14A ,代入到反比例函数()220k y k x=≠中得:241k =,∴24k =,∴反比例函数解析式为4y x =,把()4B n -,代入到()4B n -,4y x=中得:414n ==--,∴()41B --,;把()14A ,,()41B --,代入到一次函数()110y k x b k =+≠中得:11441k b k b +=⎧⎨-+=-⎩,∴113k b =⎧⎨=⎩,∴一次函数解析式为3y x =+;(2)解:设直线AB 与x 轴,y 轴分别交于N ,M ,作点C 关于y 轴的对称点H ,连接CH 交y 轴于G ,连接HD ,∴CD HD =,∴CD DE HD DE +=+,∴当H D E 、、三点共线且HD AB ⊥时,HD DE +最小,即CD DE +最小;在3y x =+中,令0x =,则3y =,令0y =,则3x =-,∴()()3003N M -,,,,∴3OM ON ==,∴45OMN ONM ∠=∠=︒,∴45GDH EDM ==︒∠∠,∴45GHD GDH =︒=∠∠,∴DG HG =;由对称性可知()14C --,,∴()14H -,,∴41OG DG HG ===,,∴3OD =,∴()03D -,.【点拨】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,等腰直角三角形的性质与判定,正确作出辅助线确定当H D E 、、三点共线且HD AB ⊥时,HD DE+最小,即CD DE +最小是解题的关键.24.(1)①直线AB 的解析式为344y x =-+;②四边形ABCD 是菱形,理由见分析;(2)四边形ABCD 能成为正方形,9m n +=.【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PD PB ,,即可得出结论;(2)先确定出33m A ⎛⎫ ⎪⎝⎭,,33n C ⎛⎫ ⎪⎝⎭,进而求出点P 的坐标,再求出B ,D 坐标,最后用BD AC =,即可得出结论.(1)解:①∵4m =,∴反比例函数为4y x=,当4x =时,1y =,∴()41B ,,当3y =时,∴43x =,∴43x =,∴433A ⎛⎫ ⎪⎝⎭,设直线AB 的解析式为y kx b =+,∴43341k b k b ⎧+=⎪⎨⎪+=⎩,解得344k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为344y x =-+;②四边形ABCD 是菱形,理由如下:由①知,433A ⎛⎫ ⎪⎝⎭,∵AC x ∥轴,∴1633C ⎛⎫ ⎪⎝⎭,,∵点P 是线段AC 的中点,∴1033P ⎛⎫ ⎪⎝⎭,,当103x =时,由4y x =得,65y =,由16y x =得,245y =,∴56359PB =-=,355249PD =-=,∴PB PD =,∵PA PC =,∴四边形ABCD 为平行四边形,∵BD AC ⊥,∴四边形ABCD 是菱形;(2)解:四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC BD ,的交点为P ,P 为AC 的中点,∴BD AC =,当3y =时,由m y x =得,3m x =,由n y x=得,3n x =,∴33m A ⎛⎫ ⎪⎝⎭,,33n C ⎛⎫ ⎪⎝⎭,∴36m n P +⎛⎫ ⎪⎝⎭,∴66m n m B m n +⎛⎫ +⎝⎭,,66m n n D m n +⎛⎫ ⎪+⎝⎭,,∵BD AC =,∴6633n m n m m n m n -=-++,∴18m n +=.【点拨】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.。
专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.23反比例函数(对称性问题)(基础篇)(专项练习)反比例函数图象是中心对称图形,同时也是轴对称图形,其对称中心是坐标原点,其对称轴是y=x 和y=-x ,近些年,此知识点成了中考中的热点,更是压轴题的常考点,这些题型不仅利用双曲线的对称性,还综合了关于某直线对称和特殊四边形的对称性问题,为此,本专题精选部分有代表性的题型供师生选择使用。
一、单选题1.已知点()13A -,关于y 轴的对称点A '在反比例函数ky x=的图象上,则实数k 的值为()A .3B .13C .﹣3D .﹣132.如图,A ,B 是函数y =mx(m >0)的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则()A .S m =B .2S m =C .2m S m <<D .2S m>3.若点()32A --,关于x 轴的对称点A '恰好在反比例函数()0ky k x=≠的图象上,则k 的值为()A .6B .1-C .5-D .6-4.如图,1l 是反比例函数ky x=在第一象限内的图象,且经过点A (1,2).1l 关于x 轴对称的图象为2l ,那么2l 的函数解析式为()A .()40y x x =<B .()20y x x =<C .4(0)y x x =->D .2(0)y x x=->5.设A ,B 是反比例函数32y x=-的图象上关于原点对称的两点,AD 平行于y 轴交x 轴于D ,BC 平行于x 轴交y 轴于C ,设四边形ABCD 的面积S ,则()A .32s =B .34s =C .94s =D .6s =6.已知点()1,P a 在反比例函数3y x=的图象上,则点P 关于原点对称的点的坐标是()A .()1,3B .()1,3-C .()3,1-D .()1,3--7.如图,在平面直角坐标系中,点O 为坐标原点,点A (﹣3,0)和点B (0,2)都在坐标轴上,若反比例函数y =kx的图象经过矩形AOBC 的对称中心,则k 的值为()A .3B .﹣3C .1.5D .﹣1.58.如图,边长为8的正方形ABCD 的对称中心是坐标原点O ,AB //x 轴,BC //y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是()A .8B .16C .32D .649.如图,在平面直角坐标系中,O 为ABCD Y 的对称中心,5AD =,//AD x 轴交y 轴于点E ,点A 的坐标点为()2,2-,反比例函数ky x=的图像经过点D .将ABCD Y 沿y 轴向上平移,使点C 的对应点C '落在反比例函数的图像上,则平移过程中线段AC 扫过的面积为()A .6B .8C .24D .2010.已知一个函数中,两个变量x 与y 的部分对应值如下表:x …﹣2﹣3…﹣2+3…2﹣1…2+1…y…﹣2+3…﹣2﹣3…2+1…2﹣1…A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题11.在平面直角坐标系中,若点()1,2P a +与点()1,1Q b -关于原点对称,则经过(),a b 的反比例函数解析式是______.12.如图,点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,若反比例函数ky x=的图象经过点D ,交AC 于点M ,则点M 的坐标为______.13.已知点()112,P y 、点()22,3P x 是同一个反比例函数()22220my m x-=-≠图象上的两点.若点1P 与2P关于原点对称,则m 的值为______.14.如图,点A 、C 是反比例函数图象上的点,且关于原点对称.过点A 作AB x ⊥轴于点B ,若ABC 的面积为7,则反比例函数的表达式为__________.15.如图,点D 是矩形ABCO 的对称中心,点()6,0A ,()0,4C ,经过点D 的反比例函数的图象交AB 于点P ,则点P 的坐标为______.16.已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______.17.已知A 、B 两点分别在反比例函数2(0)m y m x=≠和611(6m y m x -=≠的图像上,若点A 与点B 关于x 轴对称,则m 的值为______.18.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数()0ky x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y =x 的对称点C '的坐标为(1,n )(n ≠1),若△OAB 的面积为3,则k 的值为_______三、解答题19.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图像与反比例函数4y x=-的图像相交于(),1A m ,()1,B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图像;(2)结合图像,请直接写出不等式4kx b x-≤+的解集;(3)点C 与点B 关于原点对称,求ABC 的面积.20.如图,反比例函数()1110,0k y k x x=>>与正比例函数22y k x =交于点A ,点A 是点B 关于y 轴的对称点,点B 的坐标为()1,2-.(1)求1k 的值;(2)若将正比例函数22y k x =的图象向下平移2个单位长度得到函数33y k x b =+,求此函数的表达式.21.如图,在平面直角坐标系中,已知点(0,4)A ,(3,0)B -,(2,0)C ,点D 为点B 关于AC 所在直线的对称点,反比例函数(k 0,x 0)ky x=≠>的图像经过点D .(1)求证:四边形ABCD 为菱形;(2)求反比例函数的表达式.22.在平面直角坐标系中,设函数:11k y x=(1k 是常数,10k >,0x >)与函数,22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .若点B 的坐标为()1,2-.(1)求1k ,2k 的值;(2)当12y y ≤时,直接写出x 的取值范围.23.如图,反比例函数4y x=与一次函数()0y ax b a =+≠交于()()4,,,2A m B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图象;(2)根据函数图象,直接写出关于x 的不等式4xax b ≤+的解集;(3)若点A 关于x 轴的对称点为点D ,求ABD △的面积.24.探究函数性质时,我们经历了列表、描点、连线画出函数图像,观察分析图像特征,概括函数性质的过程.结合已有的学习经验,请画出函数262y x =-+的图像并探究该函数的性质.x (4)-3-2-1-01234…y…13-a 1-2-b2-1-611-13-…(1)列表,写出表中a ,b 的值:=a __________,b =_________;描点、连线,在所给的平面直角坐标系中画出该函数的图像;(2)观察函数图像,判断下列关于函数性质的结论是否正确,请把正确结论的序号填在横线上.正确的结论是__________.①函数262y x =-+的图像关于y 轴对称;②当0x =时,函数262y x =-+有最小值,最小值是3-;③在自变量x 的取值范围内,函数y 的值随自变量x 的增大而增大;④函数262y x =-+与x 轴必有两个交点;(3)已知函数1533y x =--的图像如图所示,结合所画的函数图像,直接写出不等式2615233x x -<--+的解集.参考答案1.A【分析】根据对称的性质得到点()13A '--,,代入解析式即可求出k .解:∵点A '与点()13A -,关于y 轴的对称,∴点()13A '--,,∵点()13A '--,在反比例函数()0ky k x=≠的图象上,∴()()133k =-⨯-=,故选:A .【点拨】此题考查了关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,利用待定系数法求反比例函数的解析式.2.B【分析】根据A 、B 两点在曲线上可设A 、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答案.解:设点A (x ,y ),则点B (-x ,-y ),∴xy =m ,∴AC =2y ,BC =2x ,∴11222222ABC S AC BC y x xy m ==== ,故选:B .【点拨】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.3.D【分析】根据对称性求出点A '的坐标,把点A '的坐标代入反比例函数()0ky k x=≠可求出k 的值.解:∵点A '与点()32A --,关于x 轴对称,∴点()32A '-,,又∵点()32A '-,在反比例函数()0ky k x=≠的图象上,∴()326k =-⨯=-,故选:D .【点拨】本题考查轴对称的坐标变化,反比例函数图象上点的坐标特征,求出点的坐标是解决问题的关键.4.D【分析】写出点A (1,2)关于x 轴对称的点的坐标(1,-2),求出经过这点的反比例函数的解析式.解:点A (1,2)关于x 轴对称的点的坐标为(1,-2),设2l 的解析式为'k y x=,则'21k -=,'2k =-,∴2y x=-(x >0).故选D .【点拨】本题考查了关于x 轴对称点的坐标和反比例函数,熟练掌握关于x 轴对称的点的坐标特征,用待定系数法求反比例函数解析式,是解决此类问题的关键.5.C【分析】根据反比例函数y =kx中k 的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系S =12|k|即可解答.解:设点A 的坐标为(x ,y ),点A 在反比例函数解析式上,∴点B 的坐标为(-x ,-y ),k =xy =(-x )(-y )=-32,∵AD 平行于y 轴,BC 平行于x 轴,∴OD =|x |,AD =|y |,OC =|y |,BC =|x |,∴S =△ADO +S △DOC +S △BCO =12|xy |+12|xy |+12|xy |=12×32+12×32+12×32=94.故选:C .【点拨】此题主要考查反比例函数的比例系数的意义;用到的知识点为:关于原点对称的点的横坐标互为相反数,纵坐标互为相反数;在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.6.D【分析】将点的坐标代入求解,根据坐标关于原点的对称规律直接求解即可.解:将()1,P a 代入3y x=,则331a ==,那么()1,3P ,则点()1,3P 关于原点对称的点的坐标()1,3--故选:D【点拨】此题考查反比例函数上的点的坐标,解题关键是明确关于原点对称的点的坐标规律.7.D【分析】先求出矩形的中心点,然后根据待定系数法即可求得.解:∵点A (-3,0)和点B (0,2)都在坐标轴上,∴矩形AOBC的中心点为(32-,1),∵反比例函数y=kx的图象经过矩形AOBC的对称中心,∴k=33122-⨯=-,故选:D.【点拨】本题考查了待定系数法求反比例函数的解析式,求得矩形的中心点是解题的关键.8.C【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,而正方形面积为64,由此可以求出阴影部分的面积.解:根据题意:观察图形可得,图中以B、D为顶点的小阴影部分,绕点O旋转90度,正好和以A、C为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,反比例函数8yx=与8yx=-的图象均与正方形ABCD的边相交,而边长为8的正方形面积为64,所以图中的阴影部分的面积是32.故选:C.【点拨】本题主要通过橄榄形面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.9.D【分析】根据O为▱ABCD的对称中心,AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),可求点C、D的坐标,进而求出反比例函数的关系式,由平移可求出点'C的坐标,知道平移的距离,即平行四边形的底,再根据面积公式求出结果.解:∵AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),∴DE=5-2=3,OE=2,∴D(3,2),把(3,2)D代入反比例函数的关系式得,k=2×3=6,∵O为▱ABCD的对称中心,点A的坐标为(-2,2),∴点C的坐标为(2,-2),当x=2时,y=63 2=,∴点'C(2,3)∴C'C=CF+F'C=2+3=5,'CC上的高是是4,∴平行四边形AC 'C N 的面积为5420,⨯=∴平移过程中线段AC 扫过的面积为20.故选:D .【点拨】考查反比例函数的图象和性质,平行四边形的性质及面积,将点的坐标转化为线段的长是常用的方法,将AC 平移后扫过的面积就是平行四边形AC 'C N 的面积是关键.10.D【分析】根据题意可得y 与x 的函数关系式,进一步即可进行判断.解:由表格中的数据可得y 与x 的函数关系式为:1y x=,其图象是双曲线,是轴对称图形,对称轴是直线:y =x 和y =-x .故选:D.【点拨】本题考查了反比例函数的图象与性质以及函数解析式的确定,解题的关键是正确求得反比例函数的解析式、熟练掌握反比例函数的图象与性质.11.2y x =【分析】根据关于原点对称的坐标特点列式求出a 、b 的值,然后利用待定系数法求反比例函数解析式即可.解:∵点()1,2P a +与点()1,1Q b -关于原点对称,∴11a +=-,12b -=-,解得2a =-,1b =-,∴(),a b 即()2,1--,设()0k y k x=≠,∴()()212k =-⨯-=,∴反比例函数解析式是2y x=.故选:2y x =.【点拨】本题考查了关于原点对称的坐标特点和利用待定系数法求反比例函数解析式,熟练掌握关于原点对称的坐标特点和待定系数法是解题的关键.12.()2,6【分析】根据矩形的性质得到()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,求出反比例函数的解析式,再计算6y =时的x 值即可得到点M 的坐标.解:∵点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,∴()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,得4312k =⨯=,∴12y x=,当6y =时,126x =,解得2x =,∴M 的坐标为()2,6,故答案为:()2,6.【点拨】此题考查了矩形的性质,待定系数法求反比例函数的解析式,正确理解矩形的性质得到点()4,3D 的坐标是解题的关键.13.±【分析】关于原点对称的两个点,其横坐标互为相反数,纵坐标也互为相反数,由此求解.解: 11(2,)P y 与22(,3)P x 关于原点对称,∴22x =-,13y =-,∴1(2,3)P -,2(2,3)P -,点1(2,3)P -在反比例函数22m y x-=的图象上,∴22(3)2m ⨯-=-,解得m =±故答案为:±.【点拨】本题考查了待定系数法求反比例函数解析式,坐标与中心对称的性质,熟练掌握相关性质是解题的关键.14.7y x=【分析】设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,即可表示出点B 和点C 的坐标,那么ABC 的面积就可以表示为122k a a⋅⋅,即可求解.解:设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,则点C 的坐标为k a a ⎛⎫-- ⎪⎝⎭,,点B 的坐标为()0a ,,∴ABC 的面积可以表示为122k a a⋅⋅,∵ABC 的面积为7,即1272k a a⋅⋅=,解得 7k =,∴反比例函数的表达式为7y x=,故答案为:7y x =.【点拨】本题考查反比例函数的图象与性质,掌握反比例函数的中心对称性,表示出点C 的坐标,是解决本题的关键.15.()6,1【分析】先求得D 点的坐标,然后根据待定系数法求得反比例函数的解析式,把6x =代入解析式即可求得点P 的坐标.解: 点D 是矩形ABCO 的对称中心,∴点D 是矩形OABC 的对角线AC 的中点,又()6,0A ,()0,4C ,∴点D 的坐标为()3,2.反比例函数k y x=的图象经过点D ,326k ∴=⨯=,6y x∴=,把6x =代入得,616y ==,∴点P 的坐标为()6,1.故答案为:()6,1.【点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,待定系数法求反比例函数的解析式,求得点D 的坐标是解题的关键.16.y =2x-【分析】根据点A 与点A ′关于y 轴对称,得到A ′(2,m ),由点A ′在正比例函数12y x =的图象上,求得m 的值,再利用待定系数法求解即可.解:∵点A 与点A ′关于y 轴对称,且A (−2,m ),∴A ′(2,m ),∵点A ′在正比例函数12y x =的图象上,∴m =12×2,解得:m =1,∴A (−2,1),设这个反比例函数的表达式为y =k x,∵A (−2,1)在这个反比例函数的图象上,∴k =-2×1=-2,∴这个反比例函数的表达式为y =2x-,故答案为:y =2x-.【点拨】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出m 的值.17.18##0.125【分析】先设A 、B 的坐标,然后把A 、B 的坐标代入函数关系式,列出方程组,解方程组即可.解:根据题意设A (a ,b ),则B (a ,-b ),则有:261m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以261m m a+-=0,即8m -1=0,解得18m =.故答案为18.【点拨】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得261m m a+-=0,即8m -1=0是解题的关键.18.3【分析】连接OC ,由C 是线段AB 的中点,可得1322AOC OAB S S == ,然后根据比例系数k 的几何意义即可求得答案.解:如图,连接OC,∵C 是线段AB 的中点,∴1322AOC OAB S S == ,∵1322AOC k S ==△,0k >,∴3k =.故答案为:3.【点拨】本题主要反比例函数的比例系数k 的几何意义、与中线有关的三角形的面积关系,熟记反比例函数的比例系数k 的几何意义是解题的关键.19.(1)5y x =+,一次函数的图像见分析;(2)41x --≤≤或0x >;(3)15【分析】(1)将点(),1A m ,点()1,B n -代入4y x =-中得4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中得414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即可得一次函数解析式为:5y x =+;(2)观察函数图像,即可得不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)根据点C 与点B 关于原点对称得点C 的坐标为(1,4)-,根据网格和勾股定理得AB ==,AC ==BC ==222AB AC BC +=,即ABC 是直角三角形,即可得.(1)解:将点(),1A m ,点()1,B n -代入4y x=-中,4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中,414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即一次函数解析式为:5y x =+,函数图像如下:(2)解:观察函数图像,不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)解:∵点C 与点B 关于原点对称,∴点C 的坐标为(1,4)-,三角形ABC 如图所示,∵223318AB =+=,225550AC =+=222868BC =+=∴222AB AC BC +=,即ABC 是直角三角形,∴1111850325215222ABC S AB AC =⨯⨯==⨯=△.【点拨】本题考查了反比例函数,一次函数,函数与不等式,三角形的面积,勾股定理,关于原点对称,解题的关键是掌握反比例函数,一次函数,函数与不等式,勾股定理.20.(1)12k =;(2)322y x =-.【分析】(1)先求出()1,2A ,再将()1,2A 代入11k y x=,得1122k =⨯=;(2)求出正比例函数解析式为22y x =,再利用平移的规律解答即可.(1)解:∵点A 和点B 关于y 轴对称,()1,2B -,∴()1,2A ,把()1,2A 代入11k y x=,得1122k =⨯=.(2)解:把()1,2A 代入22y k x =,得22k =,∴直线的表达式为22y x =,∵33y k x b =+是由22y x =向下平移2个单位长度得到,∴322y x =-.【点拨】本题考查反比例函数和一次函数的综合,点关于y 轴对称的性质,一次函数的平移,解题的关键是掌握待定系数法求解析式,点关于y 轴对称的性质以及一次函数的平移.21.(1)证明见分析;(2)20y x=【分析】(1)根据(0,4)A ,(3,0)B -,(2,0)C 即可得5AB =,5BC =,根据D 点为B 点关于AC 所在直线的对称点得5AD AB ==,5CD CB ==,可得AB BC CD DA ===,即可得;(2)根据四边形ABCD 为菱形,得AD BC ∥,根据5AD =,(0,4)A 得(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,即可得.解:(1)证明:∵(0,4)A ,(3,0)B -,(2,0)C ,∴5AB =,5BC =,∵D 点为B 点关于AC 所在直线的对称点,∴5AD AB ==,5CD CB ==,∴AB BC CD DA ===,∴四边形ABCD 为菱形;(2)解:∵四边形ABCD 为菱形,∴AD BC ∥,又∵5AD =,(0,4)A ,∴(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,∴反比例函数的表达式为20y x=.【点拨】本题考查了勾股定理,菱形的判定与性质,反比例函数的性质,解题的关键是掌握这些知识点.22.(1)1k 的值为2,2k 的值为2;(2)1x ≥【分析】(1)求得A 的坐标,分别代入11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠),即可求得1k ,2k 的值;(2)根据图象即可求得.解:(1)∵点()1,2B -,∴点()1,2A ,把()1,2A 代入11k y x=得12k =,把()1,2A 代入22y k x =得22k =,∴1k 的值为2,2k 的值为2(2)由图象可知:1x ≥【点拨】本题考查一次函数与反比例函数的关系式,解题的关键是根据图象,求出点的坐标,进而求出关系式.23.(1)112y x =-;图象见分析;(2)20x -≤<或4x ≥;(3)6【分析】(1)利用待定系数法求出一次函数解析式,再利用两点法画出函数图象,即可求解;(2)由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥,即可;(3)根据点A 关于x 轴的对称点为点D ,可得2AD =,再由三角形的面积公式,即可求解.(1)解:∵点()()4,,,2A m B n -在反比例函数4y x=的图象上,∴414m ==,42n -=∴2n =-,∴()()4,1,2,2A B --.把A 、B 的坐标代入()0y ax b a =+≠得∶4122a b a b +=⎧⎨-+=-⎩,解得121a b ⎧=⎪⎨⎪=-⎩,∴一次函数表达式为112y x =-,在网格中画出一次函数的图象如图:(2)解:由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥;(3)解:∵()4,1A ,∴()4,1D -,∴2AD =,∴()124262ABD S ⨯=⨯+= .【点拨】本题是反比例函数与一次函数的交点问题,考查反比例函数图象上点的坐标特征以及待定系数法求函数解析式,三角形的面积,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.24.(1)611-;3-;图见分析;(2)①②;(3)<4x -或2<<1x -【分析】(1)已知解析式,代入x 的值,即可算出对应的y 值,即可得出答案;(2)结合图像即可分析函数的对称性、增减性、最值、交点问题;(3)结合图像分析不等式与函数的关系,即可得出结论.(1)函数262y x =-+,令3x =-,可得611y =-,故611a =-;令0x =,可得=3y -,故3b =-,故答案为:611-;3-.描点、连线,在画出该函数的图像如下:(2)由函数的图像可得:①函数262y x =-+的图像关于y 轴对称,①正确;②当0x =时,函数262y x =-+有最小值,最小值是3-,②正确;③自变量0x >时,函数y 的值随自变量x 的增大而增大;自变量0x <时,函数y 的值随自变量x 的增大而减小,③错误;④由于2602y x =-+<恒成立,故函数的图像与x 轴不可能有交点,④错误,故答案为:①②.(3)不等式2615233x y x --+<-表现在图像上,即函数262y x =-+的图像比函数1533y x =--的图像低,因此观察图像可得到2615233x y x --+<-的解集为:<4x -或2<<1x -.【点拨】本题考查了新函数的研究方法,在学习一次函数,反比例函数以及二次函数时的通用方法是本题解题的关键.。
反比例函数“设参求值”问题专项练习20202021学年八年级数学下册基础知识专项讲练苏科版
专题11.12 反比例函数“设参求值”问题(专项练习)反比例函数中设参求值问题是中考重要考点,多以填空和选择题形式出现在考卷中,难度相对较大,其解题的基本思路为:设参数----表示点坐标----表示线段长---找相等关系---建立方程---得值。
为了让学生掌握其解题基本方法,本次汇编了一些典型设参求值,学生通过训练,必将克服学生畏难情绪,提升学生解此类题的自信心。
一、单选题1.如图,已知双曲线()0k y x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .42.如图,过反比例函数(0)k y x x=>的图像上一点A 作AB x ^轴于点B ,连接AO ,若4AOB S =△,则k 的值为( ).A .2B .4C .6D .83.如图,在平面直角坐标系中,反比例函数k y x=(k>0,x>0)的图象上有A 、B 两点,它们的横坐标分别为2和4,∆ABC 的面积为6,则k 的值为( )A .4B .8C .10D .124.如图,已知矩形OABC 面积为1003,它的对角线OB 与双曲线k y x=相交于D 且OB :OD =5:3,则k =( )A .6B .12C .24D .365.如图,在平面直角坐标系中,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在函数(0,0)k y x k x=>>的图象上,若正方形ADEF 的面积为4,且2BF AF =,则k 的值为( )A .24B .12C .6D .36.如图,点A ,B 在反比例函数()20y x x=-<的图象上,连结OA ,AB ,以OA ,AB 为边作OABC Y ,若点C 恰好落在反比例函数()10y x x =>的图象上,此时OABC Y 的面积是( )A .3B C .D .6二、填空题7.如图,已知A 是双曲线()20=>y x x上一点,过点A 作//AB y 轴,交双曲线()10y x x=->于点B ,过点B 作BC AB ^交y 轴于点C .连接AC ,则ABC V 的面积为_______.8.如图,在四边形ABCD 中,AC ⟂BD 于点E ,BD ∥x 轴,点A ,点D 在函数12y x=(x>0)的图象上.若∆ABE 与∆CDE 的面积之比为1:2,则∆ABC 的面积为______.9.如图,AB x ^轴,反比例函数k y x=的图象经过线段AB 的中点C ,若ABO D 的面积为2,则该反比例函数的解析式为__________.10.如图,已知菱形OABC ,点C 在x 轴上,直线y x =经过点A ,菱形OABC 的面积. 若反比例函数k y x=的图象经过点B ,则此反比例函数表达式中的k 为_____.11.已点A 在反比例函数y =的图像上,点B 与点A 关于原地对称,BC ∥y 轴,与反比例函数y =-的图像交于点C ,连接AC ,则ΔABC 的面积为_____________.12.(2020·河南八年级期末)如图,矩形ABCD 的顶点()1,6A 和对称中心都在反比例函数6y x=上,则矩形的面积为___________.13.(2020·广东九年级月考)已知反比例函数8y x=和3y x =在第一象限内的图象如图所示,则AMN V 的面积为______.14.(2019·宁波市惠贞书院八年级期中)如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.15.(2019·宁波市惠贞书院八年级期中)如图,正比例函数y kx =(k>0)与反比例函数8y x=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于的B ,连接BC ,则△ABC 的面积为S=___________________.16.(2020·永州柳子中学九年级月考)如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0k y x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABO S =V ,则k 的值为______.17.(2020·深圳市福田区石厦学校九年级期中)如图,过原点的直线与反比例函数()0k y k x=>的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE ,若AC =3DC ,△ADE 的面积为6,则k 的值为_____.18.(2020·四川天府七中九年级月考)如图,矩形OABC 的面积为10,对角线OB 与双曲线k y x=()00k x >>,相交于点D ,且:5:3OB OD =,则k 的值为______.19.(2020·辽宁九年级二模)如图,双曲线()20=>y x x经过四边形OABC 的顶点A ,C ,90ABC Ð=°,OC 是OA 与x 轴正半轴的夹角的角平分线,//AB x 轴.将ABC V 沿AC 翻折后得AB C ¢V ,点B ¢落在OA 上,则四边形OABC 的面积是______.20.(2020·浙江九年级其他模拟)如图,点A 在反比例函数y =1k x (x <0,k 1<0)的图象上,点B ,C 在反比例函数y =2k x(x >0,k 2>0)的图象上,AB ∥x 轴,CD ⊥x 轴于点D ,交AB 于点E .若△ABC 与△DBC 的面积之差为3,CE DE =23,则k 1的值为_____.21.如图,已知直线y =﹣2x +5与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y =k x(x >0)经过点C ,则k 的值为__.22.如图,线段AB 的两端点分别在x 轴正半轴和y 轴负半轴上,且ABO V 的面积为6,若双曲线()0k y k x=<恰好经过线段AB 的中点M ,则k 的值为___________23.(2020·浙江)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过对角线OB 的中点D和顶点C .若菱形OABC 的面积为k =____24.(2020·福建师范大学附属中学初中部九年级其他模拟)如图,A E 为反比例函数()20=>y x x上的两点,B 、D 为反比例函数()0ky x x =>上的两点,////AB DE y 轴,连结DA 并延长交y 轴于点C 且CD x P 轴,若19ABC ADE S S D D -=,则k =__________.25.(2019·安徽九年级二模)如图,在平面直角坐标系中,直线y =13x 与双曲线y =k x (k≠0)交于点A ,过点C(0,2)作AO 的平行线交双曲线于点B ,连接AB 并延长与y 轴交于点D(0,4),则k 的值为____.26.如图,双曲线()3 0y x x=>经过四边形OABC 的顶点90A C ABC Ð=°、,,OC 平分OA 与x 轴正半轴的夹角,//AB x 轴, 将ABC V 沿AC 翻折后得AB C ¢V ,'B 点落在OA 上,则三角形ABC 的面积是________.27.(2020·杭州市十三中教育集团(总校)八年级期中)如图,反比例函数y =k x(x <0),△OAB 和△BCD 均为等腰直角三角形,点D 在反比例函数图象上,若S △OAB ﹣S △BCD =10,则k =_____.28.(2020·湖南九年级其他模拟)如图,矩形ABCD 的顶点,A B 在x 轴的正半轴上,反比例函数k y x=在第一象限内的图象经过点D ,交BC 于点E .若2AB =,2CE BE =,3tan 2AOD Ð=,则k 的值为________.参考答案一、单选题1. 【答案】A【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可.【详解】解:设点F 的坐标(m ,k m ),∵点F 是AB 的中点,∴点B 的坐标(m ,2k m),则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --n (k>0)∴2=2k-k ,∴k=2,故选:A .【点拨】本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.2.【答案】D 解:由题意可设,k A a a æöç÷èø,则有,k AB OB a a ==,∵4AOB S =△,∴11422AOB k S OB AB a a =×=´´=△,∴8k =;故选D .【点拨】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的几何意义是解题的关键.3.【答案】B【分析】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,由题意得到A(2,2k ),B(4,4k ),根据S △ABO =S △AOC +S 梯形ACDB -S △BOD =S 梯形ACDB =6,得到()1426224k k æö+-=ç÷èø,即可求解.【详解】∵反比例函数k y x =(k >0,x >0)的图象上有A 、B 两点,它们的横坐标分别为2和4,∴A(2,2k ),B(4,4k ),作AC ⊥x 轴于C ,BD ⊥x 轴于D ,∵S △ABO =S △AOC +S 梯形ACDB -S △BOD =S 梯形ACDB =6,∴()1426224k k æö+-=ç÷èø,解得8k =,故选:B .【点拨】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,根据题意得到关于k 的方程是解题的关键.4.【答案】B【分析】设D 的坐标是(3m ,3n ),则B 的坐标是(5m ,5n ),根据矩形OABC 的面积即可求得mn 的值,把D 的坐标代入函数解析式y=k x 即可求得k 的值.【详解】设D 的坐标是(3m ,3n ),则B 的坐标是(5m ,5n ).∵矩形OABC 的面积为1003,∴5m ⋅5n =1003,∴mn =43,把D 的坐标代入函数解析式得:3n =3k m ,∴k =9mn =9×43=12.故选B.【点拨】本题考查反比例函数与几何图形的结合,反比例函数系数k 的几何意义.5.【答案】C【分析】先由正方形ADEF 的面积为4,得出边长为2,BF =2AF =4,AB =AF +BF =2+4=6.再设B 点坐标为(t ,6),则E 点坐标(t +2,2),根据点B 、E 在反比例函数y =kx的图象上,利用根据反比例函数图象上点的坐标特征得k =6t =2(t +2),即可求出k =6.解:∵正方形ADEF 的面积为4,∴正方形ADEF 的边长为2,∴BF =2AF =4,AB =AF +BF =2+4=6.设B 点坐标为(t ,6),则E 点坐标(t +2,2),∵点B 、E 在反比例函数y =k x 的图象上,∴k =6t =2(t +2),解得t =1,k =6.故选:C .【点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .6.【答案】A【分析】连接AC ,BO 交于点E ,作AG ⊥x 轴,CF ⊥x 轴,设点A (a ,2a-),点C (m ,1m )(a <0,m >0),由平行四边形的性质和中点坐标公式可得点B[(a+m ),(2a -+1m )],把点B 坐标代入解析式可求a=-2m ,由面积和差关系可求解.解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,2a-),点C(m,1m)(a<0,m>0),∵四边形ABCO是平行四边形,∴AC与BO互相平分,∴点E(21,22a m a m-+ +),∵点O坐标(0,0),∴点B[(a+m),(2a-+1m)].∵点B在反比例函数y=2x-(x<0)的图象上,∴212a m a m -+=-+,∴a=-2m,a=m(不合题意舍去),∴点A(-2m,1m),∴四边形ACFG是矩形,∴S△AOC=12(1m+1m)(m+2m)-12-1=32,∴▱OABC的面积=2×S△AOC=3.故选:A.【点拨】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.二、填空题7.【答案】3 2【分析】设点2,A a a æöç÷èø,则有1,B a a æö-ç÷èø,然后可得3AB a =,BC a =,进而根据三角形的面积公式可求解.解:∵//AB y 轴,∴点A 与点B 的横坐标相等,∵A 是双曲线()20=>y x x 上一点,点B 是双曲线()10y x x =->上的一点,∴设点2,A a a æöç÷èø,则有1,B a a æö-ç÷èø,∴3AB a =,BC a =,∴1133222ABC S AB BC a a =×=´´=V ;故答案为32.【点拨】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的性质及几何意义是解题的关键.8.【答案】3【分析】根据题意设1212,,,,D a A b BE c a b æöæö=ç÷ç÷èøèø,然后把△ABE 与△CDE 的面积表示出来,然后利用整体思想进行求解△ABC 的面积即可.解:由AC ⊥BD ,BD ∥x 轴,点A ,点D 在函数12y x=(x>0)的图象上,可设1212,,,,D a A b BE c a b æöæö=ç÷ç÷èøèø,则有:()11212112,22ABE CDE S c S a b b a aæö=-×=-×ç÷èøV V ,∵△ABE 与△CDE 的面积之比为1:2,∴()12121122c a b b a a æö-×=-×ç÷èø,解得:12c b =,∴11216322ABC S c b =´×=´=V ;故答案为3.【点拨】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数的性质是解题的关键.9. 【答案】2y x=【解析】设点A 的坐标为(),,m n 根据若ABO D 的面积为2,求得m n ×的值,表示出点C 的坐标,用待定系数法求解即可.详解:设点A 的坐标为(),,m n 则:,.OB m OA n ==ABO D 的面积为2,1 2.2mn = 则 4.m n ×=C 是线段AB 的中点,则,.2n C m æöç÷èø代入反比例函数k y x =,得1 2.2k m n =×=即反比例函数的解析式为:2.y x =故答案为2.y x=点拨:考查用待定系数法求反比例函数解析式,解题的关键是设出点A 的坐标.10.1+【分析】作AH ⊥x 轴于H ,如图,利用一次函数图象上点的坐标特征,设A (t ,t ),利用菱形面积公式得到,则可表示出B (,t ),然后利用反比例函数函数图象上点的坐标特征可计算出k 的值.【详解】解:作AH ⊥x 轴于H ,如图,设A (t ,t ),由题意,菱形OABC ,∴,∴,∴菱形OABC 中∴根据勾股定理:222t t += ,解得:21t = 又∵四边形OABC 为菱形,∴,AB ∥x 轴,∴B (,t ),而B (,t )在反比例函数函数k y x =的图象上,∴k=()+1.+1.【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=kx 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了菱形的性质.11.【答案】5【解析】设点A 的坐标为(m ,3m ),则B (-m ,-3m ),C (-m ,2m),∴S △ABC =12BC•(x A -x B )=12(y C -y B )•(x A -x B )=12 [2m -(-3m )]•[m-(-m )]= 12×5m ×2m=5.【点拨】本题考查了反比例函数图象上点的坐标特征以及三角形的面积,解题的关键是设出点A 的坐标,用其表示出点B 、C 的坐标.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征表示出三角形的顶点坐标是关键.12.【答案】12【分析】设点C 的坐标为(,0)(0)C a a >,从而可得对称中心的坐标,再将其代入反比例函数的解析式可得a 的值,然后根据点A 、C 的坐标可得AB 、BC 的长,最后利用矩形的面积公式即可得.【详解】设点C 的坐标为(,0)(0)C a a >,则OC a =,Q 矩形ABCD 的对称中心为AC 的中点,且()1,6A ,\对称中心的坐标为106(,22a ++,即1(,3)2a +,由题意,将1(,3)2a +代入6y x =得:1362a +´=,解得3a =,3OC \=,又()1,6A Q ,1,6OB AB \==,2BC OC OB \=-=,则矩形ABCD 的面积为6212AB BC ×=´=,故答案为:12.【点拨】本题考查了反比例函数与几何综合、矩形的性质等知识点,正确求出矩形的对称中心的坐标是解题关键.13.【答案】2516【分析】设出N 的坐标,依次表示A 、M 的坐标,按公式计算即可.【详解】设3,N a a æöç÷èø,则点A 的纵坐标为3a ,代入8y x =,得83a x =,即83,3a A a æöç÷èø,则点M 的横坐标为83a ,代入3y x =,得98y a =,即89,38a M a æöç÷èø,53a AN \=,158AM a=,1151525223816AMN a S AM AN a \==´´=g △,故答案为:2516.【点拨】本题考查了反比例函数的基本性质,能够掌握反比函数的性质并通过设点求解是解决本题的关键.14.【答案】3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E Q 、均在反比例函数图象上,2COE AOF k S S \==△△,COE AOF OABC OEBF S S S S =--Q △△矩形四边形,2OABC S OA AB ab==g 矩形3222k k k \=--,解得3k =,故答案为:3.【点拨】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.15.【答案】8【分析】由题意可得点A 、C 关于原点对称,进而可得△ABC 的面积等于△AOB 的面积2倍,然后可求解.【详解】∵正比例函数y kx =(k>0)与反比例函数8y x =的图象相交于A 、C 两点,∴点A 、C 关于原点对称,∵AB ⊥x 轴,∴设点A 8,a a æöç÷èø,∴8,OB a AB a ==,∴182282ABC BOC AOB AOB S S S S a a=+==´´´=V V V V ,故答案为8.【点拨】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的几何意义是解题的关键.16. 【答案】32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a =,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =,132ABC S OB AB =×=V Q ,32a AB \×=,解得6AB a=,6(,A a a\,Q 点C 是OA 的中点,600(,22a a C ++\,即3(,2a C a,又Q 点3(,)2a C a 在双曲线上,3322a k a \=×=,故答案为:32.【点拨】本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键.17. 【答案】92【分析】连接OE ,在Rt △ABE 中,点O 是AB 的中点,得到OE=12AB=OA ,根据角平分线的定义得到∠OAE=∠DAE ,得到∠OEA=∠DAE ,过A 作AM ⊥x 轴于M ,过D 作DN ⊥x 轴于N ,易得S 梯形AMND =S △AOD ,△CAM ∽△CDN ,得到S 梯形AMND =S △AOD =S △ADE =6,求得S △AOC =9,延长CA 交y 轴于P ,易得△CAM ∽△CPO ,设DN=a ,则AM=3a ,推出S △CAM :S △AOM =3:1,于是得到结论.【详解】解:连接OE ,在Rt △ABE 中,点O 是AB 的中点,∴OE =12AB =OA ,∴∠OAE =∠OEA ,∵AE 是∠BAC 的角平分线,∴∠OAE =∠DAE ,∴∠OEA =∠DAE ,∴AD ∥OE ,∴S △ADE =S △AOD ,过A 作AM ⊥x 轴于M ,过D 作DN ⊥x 轴于N ,易得S 梯形AMND =S △AOD ,△CAM ∽△CDN ,∵CD :CA =1:3,S 梯形AMND =S △AOD =S △ADE =6,∴S △AOC =9,延长CA 交y 轴于P ,易得△CAM ∽△CPO ,设DN =a ,则AM =3a ,∴ON =k a,OM =3k a ,∴MN =23k a ,CN =3k a ,∴CM :OM =3:1,∴S △CAM :S △AOM =3:1,∴S △AOM =94,∴k =92.故答案为92.【点拨】本题考查反比例函数k 的意义;借助直角三角形和角平分线,将△ACE 的面积转化为△AOC 的面积是解题的关键.18. 【答案】185【分析】由OB:OD=5:3,可知它们的坐标之比也为5:3,设出D 、B 相关的坐标,利用矩形面积求点B ,再利用点D 求k 即可.【详解】∵OB:OD=5:3,∴x B :x D =5:3,y B :y D =5:3,设D 的坐标是()3,3m n ,则B 的坐标是()5,5m n ,Q 矩形OABC 的面积为10,5510m n \×=,102255mn \==,把D 的坐标代入函数解析式得33k n m =,2189955k mn \==´=,k \的值为185.故答案为:185.【点拨】本题考查求反比例函数,关键是掌握比例的性质,会用比例设点的坐标,利用矩形面积解决点B ,D 坐标,会利用点D 求解析式.19.【答案】2【分析】延长BC ,交x 轴于点D ,延长BA ,交y 轴于点E ,设点C (x ,y ),AB=a ,由翻折的性质得,BC=B′C,∠AB′C=∠ABC=90°,由AB ∥x 轴,得出BD ⊥x 轴,BA ⊥y 轴,继而得四边形ODBE 是矩形,由角平分线的性质得,CD=CB′,即可得BC=B′C=CD ,从而得B (x ,2y ),根据切割法和反比例函数系数k 的几何意义从而得出四边形OABC 的面积.解:延长BC ,交x 轴于点D , 设点C (x ,y ),AB=a ,由翻折的性质得,BC=B′C ,∠AB′C=∠ABC=90°,∵AB ∥x 轴,∴BD ⊥x 轴,BA ⊥y 轴,∴四边形ODBE 是矩形,∵OC 是OA 与x 轴正半轴的夹角的角平分线,由角平分线的性质可知,∴CD=CB′,∴BC=B′C=CD,∴B (x ,2y ),∵xy=2∴S 四边形OABC =S 四边形ODBE -S △AOE -S △COD =2xy -12×2-12×2=4-1-1=2.故答案为:2【点拨】本题考查反比例函数的系数k 的几何意义,反比例函数图象上点的坐标特征,翻折的性质以及角平分线的性质,表示出B 的坐标和熟练运用割补法是解题的关键.20.【答案】﹣9【分析】依题意分别设出CE ,DE 的长,表示出C ,B ,A 三点坐标,用表示出的点表示出两三角形面积代入求值即可.解:设CE =2t ,则DE =3t ,∵点B ,C 在反比例函数y =2k x (x >0,k 2>0)的图象上,AB ∥x 轴,CD ⊥x 轴,∴C (25k t ,5t ),B (23k t,3t ),∴A (13k t,3t ),∵△ABC 与△DBC 的面积之差为3,∴212211253233235k k k k t t t t t t æöæö-´-´-=ç÷ç÷èøèø,∴k 1=﹣9.故答案为﹣9.【点拨】本题考查了反比例函数反比例系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.21.【答案】8【分析】作CD ⊥y 轴于D ,CE ⊥x 轴于E ,在Rt △BCD 中和Rt △ACE 中利用勾股定理计算即可;解:作CD ⊥y 轴于D ,CE ⊥x 轴于E ,如图,设C (a ,b ),当x =0时,y =﹣2x +5=5,则B (0,5),当y =0时,﹣2x +5=0,解得x =52,则A (52,0),∵△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,∴BC =BO =5,AC =AO =52,在Rt △BCD 中,a 2+(5﹣b )2=52,①在Rt △ACE 中,(a ﹣52)2+b 2=(52)2,②①﹣②得a =2b ,把a =2b 代入①得b 2﹣2b =0,解得b =2,∴a =4,∴C (4,2),∴k =4×2=8.故答案为8.【点拨】本题主要考查了反比例函数与一次函数的结合,准确计算是解题的关键.22.【答案】-3【分析】设点A(a ,0),点B(0,b),由三角形面积公式可求ab=-12,由中点坐标公式可求点M(2a ,2b ),代入解析式可求k 的值.【详解】设点A(a ,0),点B(0,b),∴OA=a ,OB=-b ,∵△ABO 的面积为6,∴12a •(-b)=6,∴ab=-12,∵点M 是AB 中点,∴点M(2a ,2b ),∵点M 在双曲线()0k y k x =<上,∴k=2a •2b =-3,故答案为:-3.【点拨】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,掌握点在图象上,点的坐标满足图象解析式是本题的关键.23.【答案】【分析】根据题意,可以设出点C 和点A 的坐标,然后利用反比例函数的性质和菱形的性质即可求得k 的值,本题得以解决.解:设点A 的坐标为(a ,0),点C 的坐标为(c ,k c ),则a•k c=D 的坐标为(,22a c k c+),∴•22k a c k k a c c ìïïí=ï+ïî=解得,k=故答案为:【点拨】本题考查反比例函数系数k 的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.24. 【答案】94【分析】设点A 2a a æöç÷èø,,根据反比例函数及其图像的特点依次表示出B 、C 、D 的坐标,再根据19ABC ADE S S D D -=即可得出结果.解:∵点A 在反比例函数()20=>y x x 上,设点A 2a a æöç÷èø,,∵////AB DE y 轴,∴B 点的横坐标为a ,C 、D 点纵坐标为2a ,∴B k a a æöç÷èø,,C 20a æöç÷èø,,D 22ak a æöç÷èø,,∴E 点的横坐标为2ak ,∵点E 在反比例函数()20=>y x x 上,∴E 42ak ak æöç÷èø,,∵19ABC ADE S S D D -=,∴111229AC AB AD DE ××-×=,∴1212412229k ak k a a a a ak ak æöæöæö´´--´-´-=ç÷ç÷ç÷èøèøèø,∴94k =.故答案为:94.【点拨】本题主要考查的是反比例函数与几何综合,解题的关键是根据题意写出各点坐标.25. 【答案】163.【分析】根据“直线y =13x 与双曲线y =k x (k ≠0)交于点A ,过点C (0,2)作AO 的平行线交双曲线于点B ”,得到BC 的解析式,根据“OD =4,OC =2,BC ∥AO ”,得到△BCD ~△AOD ,结合点A 和点B 的坐标,根据点A 和点B 都在双曲线上,得到关于m 的方程,解之,得到点A 的坐标,即可得到k 的值.【详解】∵OA 的解析式为:y =1x 3,又∵AO ∥BC ,点C 的坐标为:(0,2),∴BC 的解析式为:y =1x+23,设点B 的坐标为:(m ,13m +2),∵OD =4,OC =2,BC ∥AO ,∴△BCD ~△AOD ,∴点A 的坐标为:(2m ,23m ),∵点A 和点B 都在y =k x上,∴m (1m+23)=2m •23m ,解得:m =2,即点A 的坐标为:(4, 43),k =4×43=163,故答案为163.【点拨】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.26. 【答案】34【分析】延长BC ,交x 轴于点D ,设点C (x ,y ),AB=a ,由翻折的性质得,,90,BC B C AB C ABC ¢¢=Ð=Ð=°由AB ∥x 轴,得出BD ⊥y 轴,由角平分线的性质得,CD CB ¢=,即可得出,BC B C CD ¢==从而得到点A (x-a ,2y ),根据反比例函数系数k 的几何意义从而得出三角形ABC 的面积.解:延长BC ,交x 轴于点D , 设点C (x ,y ),AB=a ,由翻折的性质得,,90,BC B C AB C ABC ¢¢=Ð=Ð=°∵AB ∥x 轴,∴BD ⊥y 轴,∵OC 平分OA 与x 轴正半轴的夹角,∴CD CB ¢=,∴,BC B C CD ¢==∴B (x ,2y ),∴点A (x-a ,2y ),∴2y (x-a )=3,∵xy=3 ∴3,2ay =∴11133.22224ABC S AB BC ay ===´=V g故答案为3.4【点评】本题考查反比例函数的系数k 的几何意义,反比例函数图象上点的坐标特征,翻折的性质以及角平分线的性质,表示出A 的坐标是解题的关键.27.【答案】﹣20【分析】根据题意列式表示出D 点的坐标,然后在根据k 的几何意义即可求出答案.解:设AO =a ,CD =b ,∵△OAB 和△BCD 均为等腰直角三角形,∴AO =AB =a ,BO a ,CD =BC =b ,DB b ,∴D (﹣a ﹣b ,a ﹣b ),∵点D 在反比例函数图象上,∴(﹣a ﹣b )(a ﹣b )=k ,即b 2﹣a 2=k ,又∵S △OAB ﹣S △BCD =10,即221022a b -=,∴﹣k =20,∴k=﹣20故答案为:-20.【点拨】此题考查的是反比例函数与几何图形的综合题,掌握反比例函数中比例系数的几何意义是解决此题的关键.28.【答案】3 2【分析】设AD=3a、OA=2a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,求得a的值即可得出答案.解:∵32 ADAO=,∴可设AD=3a、OA=2a,则BC=AD=3a,点D坐标为(2a,3a),∵CE=2BE,∴BE=13BC=a,∵AB=2,∴点E(2+2a,a),∵反比例函数y=kx经过点D、E,∴k=2a•3a=(2+2a)a,解得:a=12或a=0(舍),则k=6´1 4=32,故答案为:32.【点拨】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.。
专题11.1 反比例函数(知识讲解)-2020-2021学年八年级数学下册基础知识专项讲练(苏科版)
专题11.1 反比例函数(知识讲解)【学习目标】1. 理解并掌握反比例函数的定义,判断一个函数是否为反比例函数;2. 能够根据反比例函数的表达式确定参数值;3. 能根据问题的反比例关系确定函数解析式. 【知识点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为ky x=,其中k 是不等于零的常数. 一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.特别说明: (1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变 量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点. (2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:ky x=(0k ≠); (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式ky x= 中. 【典型例题】类型一、反比例函数的定义1、(2021·湖南怀化市·九年级期末)下式中表示y 是x 的反比例函数的是( ) A .4y x =--B .2yx C .21y x=D .53y x=【答案】D【分析】根据反比例函数的概念:形如y=k x(k 为常数,k≠0)的函数称为反比例函数.其中x 是自变量,y 是函数进行分析即可.解:A 、4y x =--是一次函数,错误;B 、2y x 是二次函数,错误;C 、21y x =中,y 是x2的反比例函数,错误; D 、53y x=表示y 是x 的反比例函数,故此选项正确.故选:D .【点拨】本题主要考查了反比例函数定义,关键是掌握反比例函数的形式. 举一反三:【变式1】 (2020·河北九年级月考)下列函数中,y 是x 的反比例函数的是( )A .32y x=B .32y x =C .23xy =D .232y x=【答案】A 【分析】根据反比例函数的定义,可得答案. 【详解】 解:A 、32y x =是反比例函数,故A 符合题意; B 、32y x =是正比例函数,故B 不符合题意;C 、23xy =是正比例函数,故B 不符合题意;D 、232y x =不符合反比例函数的定义,故D 不符合题意; 故选:A .【点拨】本题考查了反比例函数,形如y=k x(k 是不等于零的常数)是反比例函数. 【变式2】 (2020·合肥市庐阳中学九年级月考)在下列函数表达式中,表示y 是x 的反比例函数是( )A .3x y =B .31y x -=+ C .y =D .12x y =- 【答案】C【分析】根据反比例函数的定义对每个选项一一判断即可. 解:3xy =是正比例函数,故A 选项错误; 31y x -=+不是反比例函数,故B 选项错误;y =是反比例函数,故C 选项正确; 12xy =-是一次函数,故D 选项错误. 故选:C .【点拨】本题主要考查反比例函数的定义,熟记反比例函数的定义是解题关键. 类型二、反比例函数的数量关系2、 (2018·全国九年级课时练习)某厂有煤1500吨,求得这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系为________________. 【答案】1500(0)y x x=> 【解析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,煤的总吨数为1500,平均每天烧煤的吨数为x ,∴这些煤能烧的天数为1500y (x 0)x=>, 故答案为1500y (x 0)x=> 举一反三:【变式1】 (2019·山东九年级单元测试)已知y 1y =时,4x =,则当2x =时,y =_________.【解析】设yk≠0), 将x=4,y=1代入,得k=2,所以y 与.将x=2代入上式,得. 【变式2】 (2020·云南曲靖市·九年级一模)如图所示,点A 是反比例函数12y x=-图象上一点,过点A 作AB ∴x 轴于点B ,若5OA =,则AOB 的周长为__________.【答案】12【分析】设(),A a b -,则12ab =,在直角AOB 中利用勾股定理即可得22a b +的值,再利用完全平方公式即可求得+a b 的值,即AOB 的两条直角边的和,则周长可求. 解:设(),A a b -,则12ab =, 5OA =,2225a b ∴+=,()2222252449a b a b ab ∴+=++=+=,0a b +>, 7a b ∴+=,AOB ∴的周长是:7512+=,故答案为:12.【点拨】本题考查了反比例函数以及完全平方公式,正确利用完全平方式的变形是关键.类型三、根据定义描述反比例函数3、(2019·全国九年级单元测试)下列各式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)x=-25y;(2)-xy-2=0.【答案】(1) 是,k=-25;(2) 是,k=-2【分析】利用反比例函数的定义判定即可.解:(1)x=-2 5yy = -25x,是反比例函数,k = -25;(2)-x y-2=0,则y=-2x,是反比例函数,k=-2.【点拨】本题主要考查了反比例函数的定义,解题的关键是熟记反比例函数的定义.举一反三:【变式1】(2019·全国九年级单元测试)下列函数中,哪些表示y是x的反比例函数:(1)y=3x4;(2) y=12x;(3) xy=6 ;(4) 3x+y=0;(5) x-2y=1;(6) 3xy+2=0.【答案】(2)(3)(6)【分析】先将各函数关系式变形,凡形式上符合y= kx(k≠0)的,则是反比例函数.解:(1)、y= 34x不是反比例函数;(2)、∴y= 111,222xy yxx∴=⋯=,是反比例函数;(3)、∴xy=6,∴y=,是反比例函数;(4)、∴3x+y=0,∴y=-3x,不是反比例函数.(5)、∴x -2y=1,∴2y=x -1.∴y= 12x -1,不是反比例函数. (6)、∴3xy+2=0,∴xy=- 2233y x-∴=,是反比例函数. 【点拨】考点:反比例函数的定义.【变式2】 (2019·全国九年级课时练习)下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? (1)4y x=(2)32y x =- (3)1y x =- (4)xy=1 (5) x y 24-= 【答案】(1)是,4k =;(2)是,32k =-,;(3)否;(4)是,1k =(可化为1y x =);(5)是,24k =-.【分析】此题应根据反比例函数的定义,解析式符合y=kx(k≠0)的形式为反比例函数.解:(1)是,k=4;(2)是,y =−32,(3)否,(4)是,k=1,(可化为y=1x);∴是,k=24-.【点拨】本题考查了反比例函数的定义,反比例函数解析式的一般式y=kx(k≠0). 类型四、根据反比例函数求值4、 (2019·全国八年级课时练习)已知12y y y =+,1y 是x 的反比例函数,2y 是x 的正比例函数,当2x =时,6y =-;当1x =时,3y =. (1)求y 与x 的函数关系式; (2)当4x =-时,求y 的值.【答案】(1)85y x x=-;(2)18. 【分析】(1)首先根据正比例与反比例函数的定义分别设出函数解析式,用待定系数法 求出y 与x 的函数关系式,然后再代入求值.(2)将4x =-,代入解析式即可. 解:(1)设11k y x=,22y k x =,则121226,23.k k k k ⎧+=-⎪⎨⎪+=⎩ 解得128,5.k k =⎧⎨=-⎩ 故85y x x=-. (3)当4x =-时,()854184y =-⨯-=- 【点拨】此题考查正比例函数的定义,反比例函数的定义,解题关键在于利用待定系数法求解. 举一反三:【变式1】 (2019·江西)如图所示,在平面直角坐标系中,等边三角形OAB 的一条边OB 在x 轴的正半轴上,点A 在双曲线y =kx(k≠0)上,其中点B 为(2,0). (1)求k 的值及点A 的坐标(2)∴OAB 沿直线OA 平移,当点B 恰好在双曲线上时,求平移后点A 的对应点A’的坐标.【答案】(1)A (1);k(2)点A′)).【分析】(1)解直角三角形即可求得A 点的坐标,根据反比例函数系数k 的几何意义,即可求得k ;(2)求得直线OA 的解析式,然后求得BB′解析式,联立方程解方程即可 得B′的坐标,进而求得A′的坐标. 解:(1)过A 点作AC∴OB 于C ,∴∴OAB 是等边三角形,点B 为(2,0), ∴OA =AB =OB =2, ∴OC =1,AC∴A (1, ∴k =(2)∴A (1, ∴直线OA 为y∴∴OAB 沿直线OA 平移,∴BB′∴OA ,设直线BB′解析式为y, 把B (2,0)代入得,0=+b , ∴b =﹣,∴直线BB′解析式为y﹣解方程组y y ⎧=-⎪⎨=⎪⎩得1x y ⎧=+⎪⎨=⎪⎩1x y ⎧=-⎪⎨=⎪⎩ ∴平移后的点A′).【点拨】本题考查了反比例函数的性质,图形的平移问题,如何求一次函数和反比例函数的交点.【变式2】 (2019·澧县九澧实验中学九年级月考)已知函数y = y 1 +y 2,y 1与x 成反比例,y 2与x -2成正比例,且当x =1时,y = -1,当x = 3时,y = 3. 求y 关于x 的函数解析式. 【答案】35522y x x =+-【分析】 据题意设出y1=1k x ,y2=k2(x -2),(k1≠0,k2≠0),再表示出函数解析式y=1k x+k2(x -2),然后利用待定系数法把当x=1时,y=-1;x=3时,y=3代入,计算出k1,k2的值,进而得到解析式; 【详解】解:∴y=y1+y2,其中y1与x 成反比例,y2与(x -2)成正比例, ∴设出y1=1k x ,y2=k2(x -2),(k1≠0,k2≠0),则y=1k x+k2(x -2), 把当x=1时,y=-1;x=3时,y=3代入得:1212133k k k k -=-⎧⎪⎨+=⎪⎩ 解得:123252k k ⎧=⎪⎪⎨⎪=⎪⎩1235352(2)(2)5222k y k x x x x x x ∴=+-=+-=+-. 【点拨】本题考查待定系数法求函数解析式,关键是掌握待定系数法求函数解析式的方法. 类型五、求反比例函数解析5、 (2020·北京亦庄实验中学九年级二模)在平面直角坐标系xOy 中,直线y=kx (k≠0)与双曲线()80y x x=>交于点A(2,n) (1)求n 及k 的值;(2)点B 是x 轴正半轴上一点,且OAB 是等腰三角形,请直接写出所有符合条件的点B 坐标.【答案】(1)n=4,k=2;(2)(4,0),(0),(5,0). 【分析】(1)由点A 的横坐标利用反比例函数图象上点的坐标特征可求出n 值,进而可得出点A 的坐标,由点A 的坐标利用待定系数法可求出k 值;(2)分分AB=AO ,OA=OB ,BO=BA 三种情况,分别求解即可. 【详解】解:(1)∴点A (2,n )在双曲线()80y x x=>上, ∴n=82=4, ∴点A 的坐标为(2,4). 将A (2,4)代入y=kx ,得:4=2k , 解得:k=2;(2)分三种情况考虑,过点A 作AC∴x 轴于点C ,如图所示. ∴当AB=AO 时,OC=2, ∴OC=B1C=2,∴点B1的坐标为(4,0);∴当OA=OB 时,∴点A 的坐标为(2,4),∴OB2=∴点B2的坐标为(0),∴当BO=BA 时,设OB3=m ,则CB3=m -2,AB3=m , 在Rt∴ACB3中,AB32=CB32+AC2,即m2=(m -2)2+42, 解得:m=5,∴点B3的坐标为(5,0),综上所述:点B 的坐标为:(4,0),(0),(5,0).【点拨】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、等腰三角形的性质、勾股定理以及解一元一次方程,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A 的坐标;(2)分AB=AO ,OA=OB ,BO=BA 三种情况,利用等腰三角形的性质求出点B 的坐标.举一反三:【变式1】 (2020·江西上饶市·)已知y =y 1+y 2,y 1与x +1成正比例,y 2与x +1成反比例,当x =0时,y =﹣5;当x =2时,y =﹣7.(1)求y 与x 的函数关系式;(2)当x =5时,求y 的值.【答案】(1)32(1)1y x x =-+-+;(2)1122-. 【分析】(1)设y1=a (x+1)(a≠0),y2= 1b x +(b≠0),得到y=a (x+1)+ 1b x +,把(0,-5),(2,-7)代入得到方程组,求出方程组的解即可;(2)把x=5代入解析式求出即可.【详解】(1)∴y1与x+1成正比例,y2与x+1成反比例,设y1=a(x+1)(a≠0),y2=1b x + (b≠0). ∴y=y1+y2,∴y=a(x+1)+ 1b x +, 把(0,﹣5),(2,﹣7)代入得:51373a b a b +=-⎧⎪⎨+=-⎪⎩, 解得:23a b =-⎧⎨=-⎩,∴y=﹣2(x+1)﹣31x +, 答:y 与x 的函数关系式是y=﹣2(x+1)﹣31x +. (2)当x=5时,y=﹣2(x+1)﹣31x +=﹣2×(5+1)﹣351+=﹣12 12, 答:当x=5时,y 的值是﹣1212. 【点拨】本题主要考查对解二元一次方程组,用待定系数法求函数的解析式,求代数式的值等知识点的理解和掌握,能正确求出函数的解析式是解此题的关键.【变式2】 (2020·全国九年级单元测试)已知121,y y y y =-与2x 成正比例,2y 与1x -成反比例,当1x =-时,3y =;当2x =时,3y =-.(1)求y 关于x 的函数解析式;(2)当2x =-时,求y 的值.【答案】(1)21521y x x =--;(2)y 的值为113. 【分析】(1)根据题意分别设出212(0),(0)1b y ax a y b x =≠=≠-,代入y=y 1-y 2,表示出y 与x 的解析式,将已知两对值代入求出a 与b 的值,确定出解析式; (2)将x=-2代入计算即可求出值.解:(1)设212(0),(0)1b y ax a y b x =≠=≠-, 由题意:2121b y y y ax x =-=--, 把1,3,2,3x y x y =-===-分别代入, 得13243a b a b ⎧+=⎪⎨⎪-=-⎩ 解得125a b ⎧=⎪⎨⎪=⎩所以y 关于x 的函数解析式为21521y x x =--; (2)当2x =-时,221515511(2)2+=2122133y x x =-=⨯--=---. 【点拨】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.。
苏教版八年级数学反比例函数专题讲练
苏教版八年级数学反比率函数专题讲练第一课时·反比率函数的基本知识【学习目标】1、理解反比率函数的定义;2、用待定系数法确立反比率函数的表达式;3、反比率函数的图象画法,反比率函数的性质;【要点难点】1、用待定系数法确立反比率函数的表达式;2、反比率函数的图象画法,反比率函数的性质;【生活链接】学校课外生物小组的同学准备自己着手,用围栏建一个面积为 24m2的矩形饲养场(如右图所示),设它的一边长为 x(m),求另一边长 y(m)与 x(m)之间的函数关系式 .【问题研究】这个函数有什么特色?自变量的取值有什么限制? 知识点 1反比率函数的定义一般地 ,形如y k(k为常数,k≠0)的函数称为反比率函数,此中x x是自变量 ,y 是函数 ,自变量 x 的取值范围是不等于 0 的一确实数 ,y 的取值范围也是不等于 0 的一确实数 ,k 叫做比率系数 ,此外 ,反比率函数的关系式也可写成y=kx-1的形式 .y 是 x 的反比率函数kyx(k ≠0) xy=k(k≠0)变量y与x 成反比率 ,比率系数为 k.拓展k(1)在反比率函数yx(k ≠0)的左边是函数y,右边是分母为自变量 x 的分式 ,也就是说 ,分母不可以是多项式,只好是 x 的一次单项式,如y 1, y3等都是反比率函数 ,但y 2 就不是对于 x 的反比x 1 x x 12例函数 .(2)反比率函数能够理解为两个变量的乘积是一个不为0 的常数 , 所以能够写成 y=kx-1或 xy=k 的形式 .(3)反比率函数中 ,两个变量成反比率关系 .知识点 2用待定系数法确立反比率函数的表达式因为反比率函数y k中只有一个待定系数,所以只需有一对对x应的 x,y 值,或已知其图象上一点坐标,即可求出 k,从而确立反比率函数的表达式 .其一般步骤 :(1) 设反比率函数关系式kyx(k ≠0).(2)把已知条件 (自变量和函数的对应值 )代入关系式 ,得出对于k 的方程 .(3)解方程 ,求出待定系数 k 的值 .(4)将待定系数 k 的值代回所设的关系式 ,即得所求的反比率函数关系式 .知识点 3反比率函数图象的画法反比率函数图象的画法是描点法,其步骤以下 :(1)列表 :自变量的限值应以0 为中心点 ,沿 0 的两边取三对 (或三对以上 )相反数 ,分别计算 y 的值 .(2)描点 :先描出一侧 ,另一侧可依据中心对称的性质去找 .(3)连线 :按从左到右的次序用光滑的曲线连结各点,双曲线的两个分支是断开的 ,延长部分有渐渐凑近坐标轴的趋向,但永久不可以与坐标轴订交 .说明 :在图象上注明函数的关系式 .拓展(1)反比率函数的图象是双曲线 ,它有两个分支 ,它的两个分支是断开的 .(2)当 k >0 时,两个分支位于第一、三象限;当 k ﹤0 时,两个分支位于第二、四象限 .k (3)反比率函数 yx(k ≠0)的图象的两个分支对于原点对称 .(4)反比率函数的图象与 x 轴、 y 轴都没有交点,即双曲线的两个分支无穷凑近坐标轴, 但永久不与坐标轴订交, 这是因为 x ≠0,y ≠0.知识点 4反比率函数 yk(k≠ 的性质x 0)(1)以下图,反比率函数的图象是双曲线, 反比率函数 yk的x图象是由两支曲线构成的 .当 k >0 时,两支曲线分别位于第一、三象限内;当 k <0 时,两支曲线分别位于第二、四象限内。
【精选】苏教版八级数学反比例函数专题讲练
() B. 8
3
C. 3
8. 如图,在平面直角坐标系中,直线 y 3x 3 与 x 轴、 y 轴分别交
于 A 、 B 两点 ,以 AB 为边在第一象限作正方形 ABCD ,点 D 在双曲 线 y k ( k 0) 上.将正方形沿 x 轴负方向平移 a 个单位长度后,点 C
x
恰好落在该双曲线上,则 a的值是
(-3,4),顶点 C 在 x 轴的负半轴上, 函数 y
k (x
0) 的图像经过顶
x
点 B ,则 k 的值为
()
A. 一 12
B. 一 27
C. 一 32
D.一 36 5. (2015 ·三明 )如图, A 是双曲线 y 2 在第一象限的分支上的一个动
x
点,连接 AO 并延长交另一分支于点 B ,过点 A 作 y 轴的垂线,过
对以上 )相反数 ,分别计算 y 的值 . (2)描点 :先描出一侧 ,另一侧可根据中心对称的性质去找 . (3)连线 :按从左到右的顺序用平滑的曲线连接各点 ,双曲线的两
个分支是断开的 ,延伸部分有逐渐靠近坐标轴的趋势 ,但永远不能与坐 标轴相交 .
说明 :在图象上注明函数的关系式 . 拓展 (1)反比例函数的图象是双曲线 ,它有两个分支 ,它的两个分 支是断开的 . (2)当 k>0 时,两个分支位于第一、三象限;当 k﹤0 时,两个分 支位于第二、四象限 . (3)反比例函数 y k (k ≠0的) 图象的两个分支关于原点对称 .
点 B 作 x 轴的垂线,两垂线交于点 C ,随着点 A 的运动,点 C 的位
置也随之变化 .设点 C 的坐标为 (m, n) ,则 m 、 n满足的表达式为
()
A. n 2m D. n 4
专题. 反比例函数(中考真题专练)(培优篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.37反比例函数(中考真题专练)(培优篇)(专项练习)一、单选题1.(2018·四川乐山·中考真题)如图,曲线C 2是双曲线C 1:y=6x(x >0)绕原点O 逆时针旋转45°得到的图形,P 是曲线C 2上任意一点,点A 在直线l :y=x 上,且PA=PO ,则△POA 的面积等于()A B .6C .3D .122.(2020·广西·统考中考真题)如图,点,A B 是直线y x =上的两点,过,A B 两点分别作x 轴的平行线交双曲线()10y x x=>于点,C D .若AC =,则223OD OC -的值为()A .5B .C .4D .3.(2020·江苏常州·中考真题)如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,135,2ABD BD ADB S =∠=︒= .若反比例函数()0k y x x=>的图像经过A 、D 两点,则k 的值是()A .B .4C .D .64.(2019·山东济宁·统考中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是()A .9B .12C .15D .185.(2018·广东深圳·统考中考真题)如图,A 、B 是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是()①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④6.(2021·江苏南通·统考中考真题)平面直角坐标系xOy 中,直线2y x =与双曲线()2k y k x =>相交于A ,B 两点,其中点A 在第一象限.设(),2M m 为双曲线()2k y k x=>上一点,直线AM ,BM 分别交y 轴于C ,D 两点,则OC OD -的值为()A .2B .4C .6D .87.(2019·重庆·统考中考真题)如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为()A .16B .20C .32D .408.(2021·重庆·统考中考真题)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0k y x x =>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOF S = ,则k 的值为()A .73B .214C .7D .2129.(2020·湖北鄂州·中考真题)如图,点123,,A A A 在反比例函数1(0)y x x =>的图象上,点123,,n B B B B 在y 轴上,且11212323B OA B B A B B A ∠=∠=∠= ,直线y x =与双曲线1y x=交于点111122123322,,A B A OA B A B A B A B A ⊥⊥⊥ ,,则n B (n 为正整数)的坐标是()A .(2nB .12)n +C .2(1))n n +D .n 10.(2013·重庆·中考真题)如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A .C 分别在x 轴、y 轴上,反比例函数()k y k 0x 0x=≠>,的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN .下列结论:①△OCN ≌△OAM ;②ON=MN ;③四边形DAMN 与△MON 面积相等;④若∠MON=450,MN=2,则点C 的坐标为()01.其中正确的个数是【】A .1B .2C .3D .4二、填空题11.(2019·江苏南通·统考中考真题)如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,∠ABC=90°,AB=CB ,曲线0k y x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为________.12.(2018·湖北孝感·统考中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(1,1)-,点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作//CE x 轴交双曲线于点E ,连接BE ,则BCE ∆的面积为__________.13.(2021·四川阿坝·统考中考真题)如图,在平面直角坐标系xOy 中,一次函数1y x =+的图象与反比例函数2y x=的图象交于A ,B 两点,若点P 是第一象限内反比例函数图象上一点,且ABP 的面积是AOB 的面积的2倍,则点P 的横坐标...为________.14.(2020·浙江衢州·统考中考真题)如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =k x(x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =83,则k =_____.15.(2018·广东·统考中考真题)如图,已知等边△OA1B1,顶点A1在双曲线y=3x x >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.16.(2019·四川眉山·统考中考真题)如图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为______.17.(2019·浙江湖州·中考真题)如图,已知在平面直角坐标系xOy 中,直线112y x =-分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()1k y k x x =>0,>0,()220k y x x =<的图象于点C 和点D ,过点C 作CE x ⊥轴于点E ,连结,OC OD .若COE ∆的面积与DOB ∆的面积相等,则k 的值是_____.18.(2021·山东潍坊·统考中考真题)如图,在直角坐标系中,O 为坐标原点a y x =与b y x =(a >b >0)在第一象限的图象分别为曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB =_______.(结果用a ,b 表示)19.(2021·浙江宁波·统考中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫ ⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC △的面积为_________.三、解答题20.(2020·湖南株洲·中考真题)如图所示,OAB 的顶点A 在反比例函数(0)k y k x =>的图像上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且1AE =.(1)若点E 为线段OC 的中点,求k 的值;(2)若OAB 为等腰直角三角形,90AOB ∠=︒,其面积小于3.①求证:OAE BOF ≌△△;②把1212x x y y -+-称为()11,M x y ,()22,N x y 两点间的“ZJ 距离”,记为,()d M N ,求(,)(,)d A C d A B +的值.21.(2021·湖南株洲·统考中考真题)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0k y k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l 于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE V 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值.22.(2020·四川广元·统考中考真题)如图所示,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(3,4), (,-1)A B n .(1)求反比例函数和一次函数的解析式;(2)在x 轴上存在一点C ,使AOC 为等腰三角形,求此时点C 的坐标;(3)根据图象直接写出使一次函数的值大于反比例函数的值的x 的取值范围.23.(2022·四川绵阳·统考中考真题)如图,一次函数1y k x b =+与反比例函数2k y x =在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN 面积的最小值.24.(2022·江苏徐州·统考中考真题)如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图像上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当PE PB -最大时,求点P 的坐标.25.(2022·山东济南·统考中考真题)如图,一次函数112y x =+的图象与反比例函数()0k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接C B.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.参考答案1.B【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y轴上,应用反比例函数比例系数k的性质解答问题.解:如图,将C 2及直线y=x 绕点O 逆时针旋转45°,则得到双曲线C 3,直线l 与y 轴重合.双曲线C 3,的解析式为y=-6x,过点P 作PB ⊥y 轴于点B ,∵PA=PO ,∴B 为OA 中点.∴S △PAB =S △POB ,由反比例函数比例系数k 的性质,S △POB =3,∴△POA 的面积是6.故选B .【点拨】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k 的几何意义.2.C【分析】设点A 的坐标为(a ,a ),则点C 的坐标为(1a,a ),设点B 的坐标为(b ,b ),则点D 的坐标为(1b,b ),根据即可得到a ,b 的关系,然后利用勾股定理,即可用a ,b 表示出所求的式子从而求解.解:∵点A 、B 在直线y x =上,点C 、D 在双曲线1y x=上,∴设点A 的坐标为(a ,a ),则点C 的坐标为(1a,a ),设点B 的坐标为(b ,b ),则点D 的坐标为(1b,b ),∴BD=1b b -,AC=1a a-,∵,∴11 a b a b ⎫-=-⎪⎭,两边同时平方,得22113a b a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,整理得:222211232a b a b ⎛⎫+-=-- ⎪⎝⎭,由勾股定理知:2221OC a a =+,2221OD b b=+,∴()22232OC OD -=-,∴2234OD OC -=.故选:C .【点拨】本题考查了反比例函数与勾股定理的综合应用,正确利用得到a b ,的关系是解题的关键.3.D【分析】作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F ,计算出AE 长度,证明BCD AOF ≅△△,得出AF 长度,设出点A 的坐标,表示出点D 的坐标,使用D D A A x y x y =,可计算出k 值.解:作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F ∵135ADB ︒∠=∴45ADE ︒∠=∴ADE V 为等腰直角三角形∵2BD S ABD ==△∴122ABD S BD AE =⋅=△,即AE =∴DE=AE=∵BC=AO ,且//BC AO ,//CD OF ∴BCD AOF ∠=∠∴BCD AOF ≅△△∴AF BD ==∴D y =设点A (m ,(D m -∴2(22)32m m =-⋅解得:32m =∴3226k =⨯=故选:D .【点拨】本题考查了反比例函数与几何图形的综合,利用点A和点D表示出k的计算是解题的关键.4.C【分析】作'A H y ⊥轴于.H 证明AOB ≌()'BHA AAS ,推出OA BH =,'OB A H =,求出点'A 坐标,再利用中点坐标公式求出点D 坐标即可解决问题.解:作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS ' ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数ky x=的图象经过点D ,∴15k =.故选C .【点拨】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.5.B【分析】①显然AO 与BO 不一定相等,由此可判断①错误;②延长BP ,交x 轴于点E ,延长AP ,交y 轴于点F ,根据矩形的性质以及反比例函数的性质判断②正确;③过P 作PM ⊥BO ,垂足为M ,过P 作PN ⊥AO ,垂足为N ,由已知可推导得出PM=PN ,继而可判断③正确;④设P (a ,b ),则B (a ,12a),A (12b ,b ),根据S △BOP =4,可得ab=4,继而可判断④错误.解:①显然AO 与BO 不一定相等,故△AOP 与△BOP 不一定全等,故①错误;②延长BP ,交x 轴于点E ,延长AP ,交y 轴于点F ,∵AP//x 轴,BP//y 轴,∴四边形OEPF 是矩形,S △EOP =S △FOP ,∵S △BOE =S △AOF =12k=6,∴S △AOP =S △BOP ,故②正确;③过P 作PM ⊥BO ,垂足为M ,过P 作PN ⊥AO ,垂足为N ,∵S △AOP =12OA•PN ,S △BOP =12BO•PM ,S △AOP =S △BOP ,AO=BO ,∴PM=PN ,∴PO 平分∠AOB ,即OP 为∠AOB 的平分线,故③正确;④设P (a ,b ),则B (a ,12a),A (12b ,b ),∵S △BOP =12BP•EO=112·2b a a ⎛⎫⨯- ⎪⎝⎭=4,∴ab=4,∴S △ABP =12AP•BP=11212·2b a a b ⎛⎫⎛⎫⨯-- ⎪ ⎪⎝⎭⎝⎭=8,故④错误,综上,正确的为②③,故选B .【点拨】本题考查了反比例函数的综合题,正确添加辅助线、熟知反比例函数k 的几何意义是解题的关键.6.B【分析】根据直线2y x =与双曲线()2ky k x=>相交于A ,B 两点,其中点A 在第一象限求得2A ⎛ ⎝,,2B ⎛- ⎝,再根据(),2M m 为双曲线()2k y k x =>上一点求得,22k M ⎛⎫ ⎪⎝⎭;根据点A 与点M 的坐标求得直线AM 解析式为y x =+进而求得OC =B 与点M 的坐标求得直线BM 解析式为y x =+OD =OC OD -即可.解:∵直线2y x =与双曲线()2ky k x=>相交于A ,B 两点,∴联立可得:2,,y x ky x =⎧⎪⎨=⎪⎩解得:11x y ⎧⎪⎨⎪⎩或22x y ⎧=⎪⎨⎪=⎩∵点A 在第一象限,∴2A ⎛ ⎝,,2B ⎛- ⎝.∵(),2M m 为双曲线()2ky k x=>上一点,∴2km=.解得:2k m =.∴,22k M ⎛⎫ ⎪⎝⎭.设直线AM 的解析式为11y k x b =+,将点2A ⎛ ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:1111·,22·,2k b k k b =⎨⎪=+⎪⎩解得:11k b ⎧=⎪⎪⎨⎪⎪⎩∴直线AM的解析式为y x =.∵直线AM 与y 轴交于C 点,∴0C x =.∴0C y =+.∴C ⎛ ⎝.∵2k >,∴OC ==设直线BM 的解析式为22y k x b =+,将点,2B ⎛- ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:2222·,22·,2k b k k b ⎧⎛=-+⎪ ⎪⎝⎭⎨⎪=+⎪⎩解得:22k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线BM的解析式为y x =.∵直线BM 与y 轴交于D 点,∴0D x =.∴0D y =.∴D ⎛ ⎝.∵2k >,∴OD ==∴OC OD -=2kkk==22842k k k k -=-()22422k k k k -=-=4.故选:B.【点拨】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.7.B【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4)利用矩形的性质得出E为BD中点,∠DAB=90°,根据线段中点坐标公式得出E(12x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x-2)2+42=x2,求出x,得到E点坐标,代入kyx =,利用待定系数法求出k.解:∵BD//x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,.∴E为BD中点,∠DAB=90°.∴E(12x,4)∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x-2)2+42=x2,解得x=10,∴E(5,4).又∵反比例函数kyx=(k>0,x>0)的图象经过点E,∴k=5×4=20;故选B.【点拨】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.8.A【分析】延长EA交x轴于点G,过点F作x轴的垂线,垂足分别为H,则可得△DEA≌△AGO,从而可得DE=AG,AE=OG,若设CE=a,则DE=AG=4a,AD=DC=DE+CE=5a,由勾股定理得AE=OG=3a,故可得点E、A的坐标,由AB与x轴平行,从而也可得点F的坐标,根据EOF EOG FOH EGHF S S S S =+- 梯形,即可求得a 的值,从而可求得k 的值.解:如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB ∵AB ∥x 轴,AE ⊥CD∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD∴∠DAE +∠GAO =90゜∴∠GAO =∠D ∵OA =OD∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a 在Rt △AED 中,由勾股定理得:AE =3a ∴OG =AE =3a ,GE =AG +AE =7a ∴A (3a ,4a ),E (3a ,7a )∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形∴FH =AG =3a ,AF =GH∵E 点在双曲线()0k y x x=>上∴221k a =即221a y x=∵F 点在双曲线221a y x=上,且F 点的纵坐标为4a ∴214ax =即214aOH =∴94aGH OH OG =-=∵EOF EOG FOHEGHF S S S S =+- 梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯=解得:219a =∴217212193k a ==⨯=故选:A .【点拨】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.9.D【分析】先求出1A 的坐标,由题意容易得到11OA B ∆为等腰直角三角形,即可得到1OB ,然后过2A 作22A H OB ⊥交y 轴于H ,21A H B H x ==,通过反比例函数解析式可求出x ,从而能够得到2OB ,再同样求出3OB ,即可发现规律.解:联立1y x y x =⎧⎪⎨=⎪⎩,解得1x =,∴1(1,1)A,1OA ,由题意可知11=45A OB ︒∠,∵111B A OA ⊥,∴11OA B ∆为等腰直角三角形,∴112OB ==,过2A 作22A H OB ⊥交y 轴于H ,则容易得到21A H B H =,设21A H B H x ==,则2(,2)A x x +,∴()21x x +=,解得11x =,21x =(舍),∴211A H B H ==,12122B B B H ==,∴222OB =-+=用同样方法可得到3OB =,因此可得到n OB =(0,n B 故选:D .【点拨】本题考查了反比例函数的性质,属于规律问题,求出n OB =10.C【分析】设正方形OABC 的边长为a ,通过△OCN ≌△OAM (SAS )判定结论①正确,求出ON 和MN 不一定相等判定结论②错误,而MON ODN OAM DAMN DAMNS S S S S ∆∆∆=+-=四边形四边形可得结论③正确,列式求出C 点的坐标为()01+可知结论④正确.解:设正方形OABC 的边长为a ,则A (a ,0),B (a ,a ),C (0,a ),M (a ,k a ),N (k a ,a ).∵CN=AM=k a,OC=OA=a ,∠OCN=∠OAM=900,∴△OCN ≌△OAM (SAS ).结论①正确.根据勾股定理,ON ===,,∴ON 和MN 不一定相等.结论②错误.∵ODN OAM S S ∆∆=,∴MON ODN OAM DAMN DAMN S S S S S ∆∆∆=+-=四边形四边形.结论③正确.如图,过点O 作OH ⊥MN 于点H ,则∵△OCN ≌△OAM ,∴ON=OM ,∠CON=∠AOM .∵∠MON=450,MN=2,∴NH=HM=1,∠CON=∠NOH=∠HOM=∠AOM=22.50.∴△OCN ≌△OHN (ASA ).∴CN=HN=1.∴k 1k a a=⇒=.由2MN k =-得,()222222a 4a 2a a a 2a 10=-⇒=-⇒--=.解得:2a 12±==∴点C 的坐标为()01+.结论④正确.∴结论正确的为①③④3个.故选C .【点拨】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算.11.4【分析】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N .将C(3,4)代入2y x b =+可得b=-2,然后求得A 点坐标为(1,0),证明△ABN ≌△BCM ,可得AN=BM=3,CM=BN=1,可求出B(4,1),即可求出k=4,由A 点向上平移后落在4y x=上,即可求得a 的值.解:分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N ,则∠M=∠ANB=90°,把C(3,4)代入2y x b =+,得4=6+b ,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1,所以A(1,0),∵∠ABC=90°,∴∠CBM+∠ABN=90°,∵∠ANB=90°,∴∠BAN+∠ABN=90°,∴∠CBM=∠BAN ,又∵∠M=∠ANB=90°,AB=BC ,∴△ABN ≌△BCM ,∴AN=BM ,BN=CM ,∵C(3,4),∴设AN=m ,CM=n ,则有413m n m n +=⎧⎨+-=⎩,解得31m n =⎧⎨=⎩,∴ON=3+1=4,BN=1,∴B(4,1),∵曲线0k y x x=>()过点B ,∴k=4,∴4y x=,∵将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,此时点A 移动后对应点的坐标为(1,a),∴a=4,故答案为4.【点拨】本题考查了反比例函数与几何图形的综合,涉及了待定系数法,全等三角形的判定与性质,点的平移等知识,正确添加辅助线,利用数形结合思想灵活运用相关知识是解题的关键.12.7解:分析:作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B 作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.详解:如图,过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6 x),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-6x=-1-x-6x,x=-2,∴D(-2,-3),CH=DG=BM=1-62=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-3 2,∴E(-32,-4),∴EH=2-32=12,∴CE=CH-HE=4-12=72,∴S△CEB=12CE•BM=12×72×4=7.故答案为7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.13.2.【分析】分两种情况讨论,(1)当点P在AB下方时,作//l AB,使点O到直线AB 和到直线l的距离相等;(2)当点P在AB上方时,作//l AB,使点O到直线AB的距离的2倍,是到点O到直线l的距离,再分别求得直线AB与x轴的交点坐标为(1,0)-,从而得到直线l与x轴的交点坐标C,再分别求出直线l的解析式,联立直线l的解析式与反比例函数2yx=,转化为解二元一次方程组,即可得到交点P的坐标从而解题.解:分两种情况讨论:(1)当点P在AB下方时,作//l AB,使点O到直线AB和到直线l的距离相等,则ABP的面积是AOB的面积的2倍,对于y=x+1,当x=0时,y=1;当y=0时,x=-1;即直线AB 与x 轴的交点坐标为(1,0)-,直线l 与x 轴的交点坐标为(1,0)C ,设直线l 的表达式为:y x b =+,将点(1,0)C 代入得,1b =-∴直线l 的表达式为:1y =x -联立方程组12y x y x =-⎧⎪⎨=⎪⎩解得,1112x y =-⎧⎨=-⎩(舍去),2221x y =⎧⎨=⎩,此时点()21P ,;(2)当点P 在AB上方时,如图,作//l AB ,使点O 到直线AB 的距离的2倍,是到点O 到直线l 的距离,直线AB 与x 轴的交点坐标为(1,0)-,直线l 与x 轴的交点坐标为()3,0C -,设直线l 的表达式为:y x b =+,将点()3,0C -代入得,3b =∴直线l 的表达式为:+3y x =联立方程组+32y x y x =⎧⎪⎨=⎪⎩解得,1132x y ⎧-+=⎪⎪⎨⎪=⎪⎩,2232x y ⎧-=⎪⎪⎨⎪=⎪⎩(舍去),此时点P 横坐标为32-+∴点P 的横坐标为:2.故答案为:2.【点拨】本题主要考查了反比例函数与一次函数的交点问题,涉及解二元一次方程组、分类讨论、数形结合等数学思想,正确作出辅助图形、掌握相关知识是解题的关键.14.【分析】通过作辅助线,构造直角三角形,求出MN ,FN ,进而求出AN 、MB ,表示出点F 、点M 的坐标,利用反比例函数k 的意义,确定点F 的坐标,进而确定k 的值即可.解:过点M 作MN ⊥AD ,垂足为N ,则MN =AD =3,在Rt △FMN 中,∠MFN =30°,∴FN ∴AN =MB 设OA =x ,则OB =x +3,∴F (x ,M (x +3,∴=(x +3)解得,x =5,∴F (5,∴k故答案为:【点拨】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.15.(,0).解:【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.解:如图,作A2C⊥x轴于点C,设B1C=a,则A2,OC=OB1+B1C=2+a,A2(2+a).∵点A2在双曲线(x>0)上,∴(2+a)解得1,或a=1(舍去),∴OB2=OB1+2B1﹣∴点B2的坐标为(0);作A3D⊥x轴于点D,设B2D=b,则A3,OD=OB2+B2,A2(+b).(x>0)上,∵点A3在双曲线y=x∴()解得b=b=∴OB3=OB2+2B2∴点B3的坐标为(0);同理可得点B4的坐标为(0)即(4,0);…,∴点Bn的坐标为(,0),∴点B6的坐标为(0),故答案为(,0).【点拨】本题考查了规律题,反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B 2、B 3、B 4的坐标进而得出点B n 的规律是解题的关键.16.4【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出OCE ∆、OAD ∆、OABC X 的面积与k 的关系,列出等式求出k 值.解:∵E 、M 、D 位于反比例函数图象上,∴12OCE S k ∆=,12OAD S k ∆=,过点M 作MG y ⊥轴于点G ,作MN x ⊥轴于点N ,∴四边形ONMG 是矩形,∴ONMG S k =矩形,∵M 为矩形ABCO 对角线的交点,∴44ABCO ONMG S S k ==矩形矩形,∵函数图象在第一象限,∴0k >,∴ABCO S =矩形OCE S ∆+OAD S ∆+S 四边形ODBE =12422k k k ++=,解得:4k =.故答案为4【点拨】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.17.2.【分析】过点D 作DF y ⊥轴于F .根据k 的几何意义,结合三角形面积之间的关系,求出交点D 的坐标,代入()220k y x x=<即可求得k 的值.解:如图,过点D 作DF y ⊥轴于F .把y=0代入112y x =-得:x=2,故OA=2由反比例函数比例系数的几何意义,可得12COE k S ∆=,DOF S k ∆=.∵12DOB COE S S k ∆∆==,∴12DBF DOF DOB DOB S S S k S ∆∆∆∆=-==,∴OB FB =.易证DBF ABO ∆∆≌,从而2DF AO ==,即D 的横坐标为2-,而D 在直线AC 上,∴()2,2D --∴()(22)122k ⨯=⨯--=.故答案为2【点拨】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k 的方程.18.12a 22b a-【分析】设B (m ,b m ),A (b n ,n ),则P (m ,n ),阴影部分的面积S △AOB =矩形的面积﹣三个直角三角形的面积可得结论.解:设B (m ,b m ),A (b n,n ),则P (m ,n ),∵点P 为曲线C 1上的任意一点,∴mn =a ,∴阴影部分的面积S △AOB =mn 12-b 12-b 12-(m b n-)(n b m -)=mn ﹣b 12-(mn ﹣b ﹣b 2b mn+)=mn ﹣b 12-mn +b 22b mn -12=a 22b a-.故答案为:12a 22b a-.【点拨】本题考查了反比例函数的系数k 的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn =a 可解决问题.19.14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC △的面积即可.解:根据题意,∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上;∵点A 在函数()20=>y x x的图像上,设点A 为2(,x x ,则点B 为1(,)2x x ,∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同,即22x x =,解得:2x =,经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC △的面积为:133122S =⨯⨯=;②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x=,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6,∴OBC △的面积为:1113264S =⨯⨯=;故答案为:14或32.【点拨】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.20.(1)52;(2)①见分析;②8.【分析】(1)由点E 为线段OC 的中点,可得E 点坐标为50,2⎛⎫ ⎪⎝⎭,进而可知A 点坐标为:51,2A ⎛⎫ ⎪⎝⎭,代入解析式即可求出k ;(2)①由OAB 为等腰直角三角形,可得AO OB =,再根据同角的余角相等可证AOE FBO ∠=∠,由AAS 即可证明OAE BOF ≌△△;②由“ZJ 距离”的定义可知,()d M N 为MN 两点的水平距离与垂直距离之和,故(,)(,)d A C d A B BF CF +=+,即只需求出B 点坐标即可,设点(1,)A m ,由OAE BOF ≌△△可得(,1)B m -,进而代入直线AB 解析式求出k 值即可解答.解:(1)∵点E 为线段OC 的中点,OC=5,∴1522OE OC ==,即:E 点坐标为50,2⎛⎫ ⎪⎝⎭,又∵AE ⊥y 轴,AE=1,∴51,2A ⎛⎫ ⎪⎝⎭,∴55122k =⨯=.(2)①在OAB 为等腰直角三角形中,AO OB =,90AOB ∠=︒,∴90AOE FOB ∠+∠=︒,又∵BF ⊥y 轴,∴90FBO FOB ∠+∠=︒,∴AOE FBO∠=∠在OAE △和BOF 中90AEO OFB AOE FBO AO OB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()OAE BOF AAS ≌△△,②解:设点A 坐标为(1,)m ,∵OAE BOF≌△△∴BF OE m ==,1OF AE ==,∴(,1)B m -,设直线AB 解析式为::5AB l y kx =+,将AB 两点代入得:则551k m km +=⎧⎨+=-⎩.解得1132k m =-⎧⎨=⎩,2223k m =-⎧⎨=⎩.当2m =时,2OE =,OA =532AOB S =<△,符合;∴(,)(,)()()d A C d A B AE CE BF AE OE OF +=++-++111CE OE OE =++-++12CE OE=++1CO OE=++152=++8=,当3m =时,3OE =,OA =53AOB S =>△,不符,舍去;综上所述:(,)(,)8d A C d A B +=.【点拨】此题属于代几综合题,涉及的知识有:反比例函数、一次函数的性质及求法、三角形全等的判定及性质、等腰直角三角形性质等,熟练掌握三角形全等的性质和判定和数形结合的思想是解本题的关键.21.(1)=2k ,D 点横坐标为2t ;(2)54【分析】(1)先求出A 点坐标,再利用待定系数法即可求出k 的值,利用OC =t 和D 点在直线l 上即可得到D 点横坐标;(2)分别用含t 的式子表示出1S 、2S ,得到U 关于t 的二次函数,求函数的最大值即可.解:(1)∵1AB =,∴A 点横坐标为1,∵A 点在一次函数2y x =的图像上,∴21=2⨯,∴()1,2A ,∵A 点也在反比例函数图像上,∴=21=2k ⨯,∴反比例函数解析式为:2y x =,∵OC t =,直线1//l x 轴,∴D 点纵坐标为t ,∵D 点在直线l 上,∴D 点横坐标为2t ,综上可得:=2k ,D 点横坐标为2t .(2)直线1//l x 轴,交l 于点D ,交图像Γ于点E ,∴E 点纵坐标为t ,将纵坐标t 代入反比例函数解析式中得到E 点坐标为2,t t ⎛⎫ ⎪⎝⎭,∴22t DE t =-,A 点到DE 的距离为2t -,∴()22122212242t t t t t S t ⎛⎫=⨯--=+-- ⎪⎝⎭,∵AB y ⊥轴于点B ,∴2OB =,∴11122222OB E S C t t=⨯=⨯⨯=,∴2221222115114242224t t t t U S S t t t ⎛⎫⎛⎫=-=-+=-++=--+ ⎪ ⎪⎝⎭⎝⎭,∴当1t =时,U 最大=54;∴U 的最大值为54.【点拨】本题综合考查了反比例函数和一次函数,涉及到了用待定系数法求函数解析式、用点的坐标表示线段的长、平面直角坐标系中三角形的面积表示、平行于x 轴的直线上的点的坐标特征等内容,本题综合性较强,要求学生对概念的理解和掌握应做到深刻与扎实,本题蕴含了数形结合的思想方法等.22.(1)12y x =,133y x =+;(2)()60,,()50,,2506⎛⎫ ⎪⎝⎭,()50-,;(3)-12<x<0或x>3【分析】(1)因为反比例函数过A 、B 两点,所以可求其解析式和n 的值,从而知B 点坐标,进而求一次函数解析式;(2)分三种情况:OA=OC ,AO=AC ,CA=CO ,分别求解即可;(3)根据图像得出一次函数图像在反比例函数图像上方时x 的取值范围即可.解:(1)把A (3,4)代入m y x =,∴m =12,∴反比例函数是12y x=;把B (n ,-1)代入12y x =得n =−12.把A (3,4)、B (-12,−1)分别代入y =kx +b 中:得34121k b k b +=⎧⎨-+=-⎩,解得133k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为133y x =+;(2)∵A (3,4),△AOC 为等腰三角形,5=,分三种情况:①当OA=OC 时,OC=5,此时点C 的坐标为()50,,()50-,;②当AO=AC 时,∵A (3,4),点C 和点O 关于过A 点且垂直于x 轴的直线对称,此时点C 的坐标为()60,;③当CA=CO 时,点C 在线段OA 的垂直平分线上,过A 作AD ⊥x 轴,垂足为D ,由题意可得:OD=3,AD=4,AO=5,设OC=x ,则AC=x ,在△ACD 中,()22243x x +-=,解得:x=256,此时点C 的坐标为2506⎛⎫ ⎪⎝⎭;综上:点C 的坐标为:()60,,()50,,2506⎛⎫ ⎪⎝⎭,,()50-,;(3)由图得:当一次函数图像在反比例函数图像上方时,-12<x<0或x>3,即使一次函数的值大于反比例函数的值的x 的取值范围是:-12<x<0或x>3.【点拨】本题考查了反比例函数与一次函数的交点,待定系数法求函数解析式,等腰三角形的性质,利用了数形结合及分类讨论的思想.23.(1)16y x=,10y x =-+;(2)(4,4)P --,=54PMN S △.【分析】(1)利用待定系数法即可求出反比例函数解析式,再利用四边形OANM 的面积为38.求出()8,2N ,进一步利用待定系数法即可求出一次函数解析式;(2)平移一次函数与16y x=在第三象限有唯一交点P ,此时P 到MN 的距离最短,PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x =,解得:=8-a ,进一步求出:=4x -,即(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,根据PMN PMC PNB MCBN S S S S 四边形=+-△△△以及点的坐标即可求出PMN 的面积.(1)解:∵(2,8)M 在2k y x=上,∴216k =,即反比例函数解析式为:16y x =,设16(,)N n n,∵四边形OANM 的面积为38.∴()111628823822⎛⎫⨯⨯++⨯-= ⎪⎝⎭n n ,整理得:221580--=n n ,解得:1=2-n (舍去),=8n ,∴()8,2N ,将()8,2N 和(2,8)M 代入1y k x b =+可得:112882k b k b +=⎧⎨+=⎩解得:1110k b =-⎧⎨=⎩,∴一次函数解析式为:10y x =-+.(2)解:平移一次函数10y x =-+到第三象限,与16y x=在第三象限有唯一交点P ,此时P 到MN 的距离最短,PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x =可得:16-+=x a x ,整理得:216=0-+x ax ,∵有唯一交点P ,∴2=416=01∆-⨯⨯a ,解得:=8-a 或=8a (舍去),将=8-a 代入216=0-+x ax 得:2168=0-+x x ,解得:=4x -经检验:=4x -是分式方程16-+=x a x的根,∴(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,则:PMN PMC PNB MCBN S S S S 四边形=+-△△△,∵(4,4)P --,()8,2N ,(2,8)M ,∴()()1=4284=362⨯+⨯+PMC S △,()1=6126=542MCBN S 四边形⨯+⨯,()()1=2484=362⨯+⨯+PNB S △,∴=365436=54PMN PMC PNB MCBN S S S S 四边形=+-+-△△△.【点拨】本题考查一次函数和反比例函数的综合,难度较大,解题的关键是掌握待定系数法求函数解析式,掌握平行线之间的距离,解分式方程,解一元二次方程知识点.24.(1)点E 在这个反比例函数的图像上,理由见分析;(2)①1k =,2b =;②点P 的坐标为(0,2)-【分析】(1)设点A 的坐标为8(,)m m,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD =,设点A 的坐标为8(,m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB -=-,则点P 即为符合条件的点,求得直线DE 的解析式为。
专题. 反比例函数(中考真题专练)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.36反比例函数(中考真题专练)(巩固篇)(专项练习)一、单选题1.(2017·辽宁沈阳·中考真题)点在反比例函数的图象上,则的值是()A .10B .5C .D .2.(2022·海南·统考中考真题)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是()A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)3.(2021·山东德州·中考真题)已知点11(,)A x y ,22(,)B x y ,33(,)C x y 都在反比例函数21a y x+=(a 是常数)的图象上,且1230y y y <<<,则1x ,2x ,3x 的大小关系为()A .213x x x >>B .123x x x >>C .321x x x >>D .312x x x >>4.(2022·西藏·统考中考真题)在同一平面直角坐标系中,函数y =ax +b 与=by ax(其中a ,b 是常数,ab ≠0)的大致图象是()A .B .C .D .5.(2022·山东日照·统考中考真题)如图,矩形OABC 与反比例函数11k y x=(k 1是非零常数,x >0)的图象交于点M ,N ,与反比例函数22k y x=(k 2是非零常数,x >0)的图象交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1-k 2=()A .3B .-3C .32D .32-6.(2022·内蒙古通辽·统考中考真题)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y轴平行,BD ,120BDC ∠=︒,BCD S △()0ky x x =<的图像经过C ,D 两点,则k 的值是()A .-B .6-C .-D .12-7.(2022·湖北十堰·统考中考真题)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=()A .36B .18C .12D .98.(2021·辽宁丹东·统考中考真题)如图,点A 在曲线到12(0)y x x=>上,点B 在双曲线2(0)ky x x=<上,//AB x 轴,点C 是x 轴上一点,连接AC 、BC ,若ABC 的面积是6,则k 的值()A .6-B .8-C .10-D .12-9.(2022·山东枣庄·统考中考真题)如图,正方形ABCD 的边长为5,点A 的坐标为(4,0),点B 在y 轴上,若反比例函数y =kx(k ≠0)的图像过点C ,则k 的值为()A .4B .﹣4C .﹣3D .310.(2013·浙江绍兴·中考真题)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的A .7:20B .7:30C .7:45D .7:50二、填空题11.(2022·内蒙古呼和浩特·统考中考真题)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.12.(2022·江苏南通·统考中考真题)平面直角坐标系xOy 中,已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点.若2ABC S =△,则k 的值为___________.13.(2022·广西桂林·统考中考真题)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ⊥y 轴于点B ,若 AOB 的面积是3,则k 的值是_____.14.(2022·广西梧州·统考中考真题)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.15.(2022·内蒙古鄂尔多斯·统考中考真题)如图,正方形OABC 的顶点A 、C 分别在x 轴和y 轴上,E 、F 分别是边AB 、OA 上的点,且∠ECF =45°,将△ECF 沿着CF 翻折,点E 落在x 轴上的点D 处.已知反比例函数y 1=1k x 和y 2=2k x分别经过点B 、点E ,若S △COD =5,则k 1﹣k 2=_____.16.(2022·贵州铜仁·统考中考真题)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 的面积为6,12AD AC =,则k 的值为_______.17.(2022·浙江绍兴·统考中考真题)如图,在平面直角坐标系xOy 中,点A (0,4),B (3,4),将ABO 向右平移到CDE 位置,A 的对应点是C ,O 的对应点是E ,函数(0)ky k x=≠的图像经过点C 和DE 的中点F ,则k 的值是______.18.(2022·广西玉林·统考中考真题)如图,点A 在双曲线(0,0)k y k x x=>>上,点B 在直线2(0,0)y mx b m b =->>上,A 与B 关于x 轴对称,直线l 与y 轴交于点C ,当四边形AOCB 是菱形时,有以下结论:①(3)A b b ②当2b =时,43k =③33m =④22AOCB S b=四边形则所有正确结论的序号是_____________.三、解答题19.(2022·山东淄博·统考中考真题)如图,直线y =kx +b 与双曲线y =mx相交于A (1,2),B 两点,与x 轴相交于点C (4,0).(1)分别求直线AC 和双曲线对应的函数表达式;(2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x >0时,关于x 的不等式kx +b >mx的解集.20.(2022·青海西宁·统考中考真题)如图,正比例函数4y x =与反比例函数()0ky x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.21.(2022·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,一次函数2y x =+的图象与反比例函数()0ky x x=>的图象交于点()1,A m ,与x 轴交于点C .(1)求点A 的坐标和反比例函数的解析式;(2)点B 是反比例函数图象上一点且纵坐标是1,连接AB ,CB ,求ACB △的面积.22.(2022·贵州安顺·统考中考真题)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为()4,0,()4,m ,直线CD :()0y ax b a =+≠与反比例函数()0ky k x=≠的图象交于C ,()8,2P --两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.23.(2022·山东聊城·统考中考真题)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.24.(2022·内蒙古呼和浩特·统考中考真题)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE 上一点,且AC =.(1)求一次函数与反比例函数的解析式;(2)根据图象,请直接写出不等式0mkx b x+-<的解集.25.(2022·湖北襄阳·统考中考真题)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有经验,请画出函数6||||y x x =-的图象,并探究该函数性质.(1)绘制函数图象①列表:下列是x 与y 的几组对应值,其中a =.x ……﹣5﹣4﹣3﹣2﹣112345……y……﹣3.8﹣2.5﹣1155a﹣1﹣2.5﹣3.8……②描点:根据表中的数值描点(x ,y ),请补充描出点(2,a );③连线:请用平滑的曲线顺次连接各点,画出函数图象;(3)探究函数性质,请写出函数y =6||x -|x |的一条性质:;(4)运用函数图象及性质①写出方程6||x -|x |=5的解;②写出不等式6||x -|x |≤1的解集.参考答案1.D解:已知点在反比例函数的图象上,可得k=-2×5=-10,故选D.考点:反比例函数图象上点的特征.2.C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.解:∵反比例函数(0)ky k x=≠的图象经过点(2,3)-,∴k =2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .【点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数(0)ky k x=≠的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .熟练掌握反比例函数的性质是解题的关键.3.D【分析】根据210a +>,判断反比例函数的图象所在位置,结合图象分析函数增减性,利用函数增减性比较自变量的大小.解:∵210a +>,∴反比例函数21a y x+=(a 是常数)的图象在一、三象限,如图所示:当1230y y y <<<时,3120x x x >>>,故选:D .【点拨】本题考查反比例函数的自变量大小的比较,解题的关键是结合图象,根据反比例函数的增减性分析自变量的大小.4.A【分析】根据a ,b 的取值分类讨论即可.解:若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数=b y ax (ab ≠0)位于一、三象限,故A 选项符合题意;若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数=b y ax (ab ≠0)位于二、四象限,故B 选项不符合题意;若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数=b y ax (ab ≠0)位于一、三象限,故C 选项不符合题意;若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数=b y ax(ab ≠0)位于二、四象限,故D 选项不符合题意.故选:A .【点拨】此题考查的是反比例函数和一次函数的图像及性质,掌握系数a ,b 与反比例函数和一次函数的图像的关系是解决此题的关键.5.B【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论.解:∵点M 、N 均是反比例函数11k y x =(k 1是非零常数,x >0)的图象上,∴112OAM OCN S S k == ,∵矩形OABC 的顶点B 在反比例函数22k y x =(k 2是非零常数,x >0)的图象上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC -S △OAM -S △OCN =3,∴k 2-k 1=3,∴k 1-k 2=-3,故选:B .【点拨】本题考查了矩形的性质,反比例函数系数k 的几何意义:在反比例函数k y x =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.6.C【分析】过点C 作CE ⊥y 轴于点E ,延长BD 交CE 于点F ,可证明△COE ≌△ABE (AAS ),则OE =BD由S △BDC =12•BD •CF 可得CF =9,由∠BDC =120°,可知∠CDF =60°,所以DF所以点D 的纵坐标为设C (m ,D (m +9,,则k (m +9),求出m 的值即可求出k 的值.解:过点C 作CE ⊥y 轴于点E ,延长BD 交CE 于点F ,∵四边形OABC 为平行四边形,∴AB ∥OC ,AB =OC ,∴∠COE =∠ABD ,∵BD ∥y 轴,∴∠ADB =90°,∴△COE ≌△ABD (AAS ),∴OE =BD∵S △BDC =12•BD •CF ,∴CF =9,∵∠BDC =120°,∴∠CDF =60°,∴DF∴点D 的纵坐标为设C (mD (m +9,∵反比例函数y =k x (x <0)的图像经过C 、D 两点,∴km +9),∴m =-12,∴k故选:C .【点拨】本题主要考查反比例函数与几何的综合问题,坐标与图形,全等三角形的判定与性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键.7.B【分析】设PA =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论.解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0).∴点D 的坐标为(3,23k ),∴点C 的坐标为(3-t ,23k +t ).∵点C 在反比例函数y =2k x 的图象上,∴(3-t )(23k +t )=k2,化简得:t =3-23k ,∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k ,∴点B 的坐标为(3,6-23k ),∴3×(6-23k )=1k ,整理,得:1k +2k =18.故选:B .【点拨】本题考查了反比例函数图象上点的坐标特征、正方形的性质,解题的关键是利用反比例函数图象上点的坐标特征,找出1k ,2k 之间的关系.8.C【分析】根据//AB x 轴可以得到6ABC AOB S S == ,转换成反比例函数面积问题即可解题.解:连接OA 、OB ,设AB 与y 轴交点为M ,∵//AB x 轴∴AB ⊥y 轴,6ABC AOB S S == ∴12BOM S k = ,1212AOM S =⨯= ∵6ABC AOB BOM AOM S S S S ==+= ∴1162k +=解得10k =±∵点B 在双曲线2(0)k y x x=<上,且B 在第二象限∴0k <∴10k =-故选C【点拨】本题考查反比例函数问题,熟记反比例函数面积与k 的关系是解题的关键.9.C【分析】过点C 作CE ⊥y 轴于E ,根据正方形的性质可得AB =BC ,∠ABC =90°,再根据同角的余角相等求出∠OAB =∠CBE ,然后利用“角角边”证明△ABO 和△BCE 全等,根据全等三角形对应边相等可得OA =BE =4,CE =OB =3,再求出OE ,然后写出点C 的坐标,再把点C 的坐标代入反比例函数解析式计算即可求出k 的值.解:如图,过点C 作CE ⊥y 轴于E ,在正方形ABCD 中,AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°,∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE ,∵点A 的坐标为(4,0),∴OA =4,∵AB =5,∴OB=3,在△ABO 和△BCE 中,OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(﹣3,1),∵反比例函数y=kx(k≠0)的图像过点C,∴k=xy=﹣3×1=﹣3,故选:C.【点拨】此题考查的是反比例函数与几何综合,涉及到正方形的性质,全等三角形的判定与性质,勾股定理,作辅助线构造出全等三角形并求出点C的坐标是解题的关键.10.A解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟.设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30.∴y=10x+30(0≤x≤7).令y=50,解得x=2;设反比例函数关系式为:k yx =,将(7,100)代入kyx=得k=700,∴700yx=.将y=30代入700yx=,解得70x3=.∴700yx=(7≤x≤703).令y=50,解得x=14.∴饮水机的一个循环周期为703分钟.每一个循环周期内,在0≤x≤2及14≤x≤703时间段内,水温不超过50℃.逐一分析如下:选项A :7:20至8:45之间有85分钟.85﹣703×3=15,位于14≤x≤703时间段内,故可行;选项B :7:30至8:45之间有75分钟.75﹣703×3=5,不在0≤x≤2及14≤x≤703时间段内,故不可行;选项C :7:45至8:45之间有60分钟.60﹣703×2=403≈13.3,不在0≤x≤2及14≤x≤703时间段内,故不可行;选项D :7:50至8:45之间有55分钟.55﹣703×2=253≈8.3,不在0≤x≤2及14≤x≤703时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选A .11.1a >【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于120y y <<,得到021a a <-<,从而得到a 的取值范围.解:∵在反比例函数y =k x中,k >0,∴在同一象限内y 随x 的增大而减小,∵120y y <<,∴这两个点在同一象限,∴021a a <<-,解得:1a >,故答案为:1a >.【点拨】此题考查了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k >0,在每一象限内y 随x 的增大而减小;当k <0,在每一象限内y 随x 的增大而增大.12.34##0.75【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值.解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)k y k x =≠图象上的三点,∴260k m =>,6k mn =,∴m =n ,∴(3,2)B m m ,(3,2)C m m --,∴点B 、C 关于原点对称,∴设直线BC 的解析式为()0y kx k =≠,代入(3,2)B m m 得:23m mk =,解得:23k =,∴直线BC 的解析式为23y x =,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,把x =m 代入23y x =得:23y m =,∴D (m ,23m ),∴AD =216633m m m -=,∴()11633223ABC S m m m =⨯⋅+= ,∴218m =,∴2136684k m ==⨯=,而当m <0时,同样可得34k =,故答案为:34.【点拨】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.13.﹣6【分析】根据题意和反比例函数的性质,可以得到k 的值.解:设点A 的坐标为(a ,k a),由图可知点A 在第二象限,∴a <0,0k a >,∴k <0,∵△AOB 的面积是3,∴32k a a ⋅=,解得k =-6,故答案为:-6.【点拨】本题考查反比例函数系数k 的几何意义、反比例函数图像上点的坐标特征,解题的关键是找出k 与三角形面积的关系.14.-2<x <0或x >4【分析】先求出n 的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.解:∵反比例函数2m y x=的图象经过A (-2,2),∴m =-2×2=-4,∴4y x=-,又反比例函数4y x=-的图象经过B (n ,-1),∴n =4,∴B (4,-1),观察图象可知:当12y y <时,图中一次函数的函数值小于反比例函数的函数值,则x 的取值范围为:-2<x <0或x >4.故答案为:-2<x <0或x >4.【点拨】本题考查反比例函数与一次函数的交点问题,正确求出n 的值是解题的关键.15.10【分析】作EH ⊥y 轴于点F ,则四边形BCHE 、AEHO 都为矩形,利用折叠的性质得∠DCH =∠BCE,证明△BCE ≌△OCD ,则面积相等,根据反比例函数系数k 的几何意义得k 1﹣k 2的值.解:作EH ⊥y 轴于点H ,则四边形BCHE 、AEHO 都为矩形,∵∠ECF=45°,△ECF 翻折得到CDF ∆,∴∠BCE +∠OCF=45°,∵∠DOC +∠OCF =45°,∴∠BCE =∠OCD ,∵BC =OC ,∠B =∠COD ,∴△BCE ≌△OCD (ASA ),∴S △BCE =S △COD =5,∴S △CEH =5,S 矩形BCHE =10,∴根据反比例函数系数k 的几何意义得:k 1﹣k 2=S 矩形BCHE =10,故答案为:10.【点拨】本题考查了反比例函数系数k 的几何意义,折叠的性质,正方形的性质和全等三角形的判定和性质,利用折叠和全等进行转化是关键.16.3【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,可得AD a =,k OD a =,从而得到CD =3a ,再由BC AC ⊥.可得点B 3,3⎛⎫ ⎪⎝⎭k a a ,从而得到23k BC a =,然后根据AOD AOBC OBCD S S S =+ 四边形梯形,即可求解.解:解∶设点,k A a a ⎛⎫ ⎪⎝⎭,∵AC y ⊥轴,∴AD a =,k OD a=,∵12AD AC =,∴AC 2a =,∴CD =3a ,∵BC AC ⊥.AC y ⊥轴,∴BC ∥y 轴,∴点B 3,3⎛⎫ ⎪⎝⎭k a a ,∴233k k k BC a a a=-=,∵AOD AOBC OBCD S S S =+ 四边形梯形,四边形AOBC 间面积为6,∴12136232k k a k a a ⎛⎫+⨯=+ ⎪⎝⎭,解得:3k =.故答案为:3.【点拨】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.17.6【分析】作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,设AC=EO=BD =a ,表示出四边形ACEO 的面积,再根据三角形中位线的性质得出FG ,EG ,即可表示出四边形HFGO 的面积,然后根据k 的几何意义得出方程,求出a ,可得答案.解:过点F 作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,根据题意,得AC=EO=BD ,设AC=EO=BD =a ,∴四边形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 是△EDQ 的中位线,∴122FG DQ ==,1322EG EQ ==,∴四边形HFGO 的面积为32()2a +,∴342(2k a a ==+,解得32a =,∴k=6.故答案为:6.【点拨】本题主要考查了反比例函数中k 的几何意义,正确的作出辅助线构造矩形是解题的关键.18.②③【分析】根据一次函数图象上的点的坐标特征、菱形的性质及勾股定理即可求出,)A b ,即可判断①错误;根据反比例函图象上的点的特征即可求出2k =,当2b =时,即可求出k 的值,即可判断②正确;将点,)B b 代入直线2(0,0)y mx b m b =->>,即可求出m 的值,即可判断③正确;再根据底乘高即可计算AOCB S 四边形,继而判断④错误.解: 直线2(0,0)y mx b m b =->>,∴当0x =时,2y b =-,(0,2)C b ∴-,2OC b ∴=,四边形AOCB 是菱形,2OC OA AB b ∴===,A 与B 关于x 轴对称,设AB 交x 轴于点D ,AD BD b∴==∴在Rt AOD △中,OD ==,,)A b ∴,故①错误;,)A b 在双曲线(0,0)ky k x x=>>上,b ∴=2k ∴,当2b =时,k =,故②正确;,OD BD b == ,,)B b ∴,点B 在直线2(0,0)y mx b m b =->>上,2b b -=-,b =,3m ∴=,故③正确;22AOCB S AB OD b =⋅=⋅=四边形,故④错误;综上,正确结论的序号是②③,故答案为:②③.【点拨】本题考查了一次函数图象上的点的坐标特征、反比例函数图象上的点的坐标特征、菱形的性质及勾股定理,熟练掌握知识点是解题的关键.19.(1)y =23-x +83,y =2x;(2)△AOB 的面积为83;(3)1<x <3【分析】(1)将点A (1,2)代入y =m x ,求得m =2,再利用待定系数法求得直线的表达式即可;(2)解方程组求得点B 的坐标,根据AOB AOC BOC S S S ∆∆∆=-,利用三角形面积公式即可求解;(3)观察图象,写出直线的图象在反比例函数图象的上方的自变量的取值范围即可.(1)解:将点A (1,2)代入y =m x ,得m =2,∴双曲线的表达式为:y =2x,把A (1,2)和C (4,0)代入y =kx +b 得:y =240k b k b +=⎧⎨+=⎩,解得:2383k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线的表达式为:y =23-x +83;(2)解:联立22833y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得12x y =⎧⎨=⎩,或323x y =⎧⎪⎨=⎪⎩,∵点A 的坐标为(1,2),∴点B 的坐标为(3,23),∵11||||22AOB AOC BOC A B S S S OC y OC y ∆∆∆=-=⋅-⋅112424223=⨯⨯-⨯⨯=83,∴△AOB 的面积为83;(3)解:观察图象可知:不等式kx +b >m x的解集是1<x <3.【点拨】本题考查反比例函数与一次函数图象的交点问题,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用方程组求两个函数的交点坐标,学会利用分割法求三角形面积.20.(1)4y x=;(2)()1,2或()1,6【分析】(1)先将(),4A a 代入4y x =求出()1,4A ,再将()1,4A 代入反比例函数k y x =即可求出k ;(2)以A ,B ,C ,D 为顶点的四边形是平行四边形,需分类讨论:当AB 为一条对角线时,当AC 为一条对角线时,当AD 为一条对角线时,根据中点坐标公式分别求出D 点坐标,另还需考虑D 在第一象限.(1)解:∵正比例函数4y x =与反比例函数()0k y x x =>的图象交于点A把(),4A a 代入4y x =得44a =∴1a =∴()1,4A 把()1,4A 代入反比例函数k y x =得41k =∴4k =∴反比例函数的解析式是4y x=;(2)由(1)知A (1,4),C (2,0),反比例函数解析式为4y x =,∵BC x ⊥,B 在反比例函数4y x=图象上,∴B (2,2),令D (m ,n ),以A ,B ,C ,D 为顶点的四边形是平行四边形,当AB 为一条对角线时,则21222m ++=,04222n ++=解得m =1,n =6,∴D (1,6)当AC 为一条对角线时,则21222m ++=,24022n ++=解得m =1,n =2,∴D (1,2)当AD 为一条对角线时,则12222m ++=,42022n ++=解得m =3,n =-2,∴D (3,-2)(舍去)综上所述,点D 的坐标是()1,2或()1,6.【点拨】本题考查反比例函数与一次函数相交问题以及平行四边形存在性问题,解题关键是由题中的条件分别求出A ,B ,C 的坐标,再分类讨论求出平行四边形的第四个顶点坐标.21.(1)3y x =;(2)6【分析】(1)由一次函数的解析式求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)作BD x 轴,交直线AC 于点D ,则D 点的纵坐标为1,利用函数解析式求得B 、D 的坐标,然后根据三角形面积公式即可求得.(1)解:∵一次函数y =x +2的图象过点A (1,m ),∴m =1+2=3,∴A (1,3),∵点A 在反比例函数k y x=(x >0)的图象上,∴k =1×3=3,∴反比例函数的解析式为3y x =;(2)∵点B 是反比例函数图象上一点且纵坐标是1,∴B (3,1),作BD x 轴,交直线AC 于点D ,则D 点的纵坐标为1,代入y =x +2得,1=x +2,解得x =−1,∴D (−1,1),∴BD =3+1=4,∴14362ABC S =⨯⨯=△.【点拨】本题是一次函数与反比例函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,三角形的面积,注意数形结合思想的运用.22.(1)16y x=,4m =;(2)点B 在该反比例函数的图象上,理由见解答【分析】(1)因为点(8,2)P --在双曲线k y x =上,所以代入P 点坐标即可求出双曲线k y x =的函数关系式,又因为点(4,)C m 在k y x=双曲线上,代入即可求出m 的值;(2)先求出点B 的坐标,判断即可得出结论.(1)解:将点(8,2)P --代入k y x=中,得8(2)16k =-⨯-=,∴反比例函数的解析式为16y x =,将点(4,)C m 代入16y x=中,得4416m ==;(2)解:因为四边形ABCD 是菱形,(4,0)A ,(4,4)C ,4m ∴=,1(8,)2B m ,(8,2)B ∴,由(1)知双曲线的解析式为16y x=;2816⨯= ,∴点B 在双曲线上.【点拨】此题是反比例函数综合题,主要考查了待定系数法,菱形的性质,解题的关键是用m 表示出点D 的坐标.23.(1)8k =,12p =;(2)点C 的坐标为(4,2)【分析】(1)先求出点B 的坐标,得到3OB =,结合点A 的横坐标为2,求出AOB 的面积,再利用:3:4AOB COD S S =△△求出4COD S = ,设,k C m m ⎛⎫ ⎪⎝⎭,代入面积中求出k ,得到反比例函数解析式,再将点A 横坐标代入出点A 纵坐标,最后将点A 坐标代入直线()30y px p =+≠即可求解;(2)根据(1)中点C 的坐标得到点E 的坐标,结合OE 将四边形BOCE 分成两个面积相等的三角形,列出关于m 的方程,解方程即可求解.(1)解:∵直线3y px =+与y 轴交点为B ,∴()0,3B ,即3OB =.∵点A 的横坐标为2,∴13232AOB S =⨯⨯= .∵:3:4AOB COD S S =△△,∴4COD S = ,设,k C m m ⎛⎫ ⎪⎝⎭,∴142k m m⋅=,解得8k =.∵点()2,A q 在双曲线8y x=上,∴4q =,把点()2,4A 代入3y px =+,得12p =,∴8k =,12p =;(2)解:由(1)得,k C m m ⎛⎫ ⎪⎝⎭,∴1,32E m m ⎛⎫+ ⎪⎝⎭.∵OE 将四边形BOCE 分成两个面积相等的三角形,∴BOE COE S S =△△,∵32BOE S π=△,13422COE m S m ⎛⎫=+- ⎪⎝⎭△,∴3134222m m m ⎛⎫=+- ⎪⎝⎭,解得4m =或4m =-(不符合题意,舍去),∴点C 的坐标为(4,2).【点拨】本题主要考查反比例函数的图形和性质,一次函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质及待定系数法求函数解析式是解题的关键.24.(1)11322y x =+,22y x =;(2)<4x -或01x <<【分析】(1)根据点C 的坐标及点A 点的横坐标,可求得CD 的长和点B 的纵坐标,进而可求得AC 的长,利用勾股定理即可求得AD ,进而点A 的坐标,进而可求得反比例函数的解析式,进而可求得点B 的坐标,再利用待定系数法即可求得一次函数解析式.(2)变形不等式为m kx b x+<,即12y y <,根据数形结合,找出反比例函数图象在一次函数图象上方的部分即可求解.(1)解:∵71,22⎛⎫- ⎪⎝⎭C ,且A 点的横坐标为1,∴75122C A CD x x =-=-=,且12B y =-,2AC ∴=,在Rt ADC 中,52AD ∴===,51222A y ∴=-=,∴点A 的坐标为(1,2),且点A 在反比例函数2m y x =的图象上,21m ∴=,解得2m =,∴反比例函数的解析式为:22y x=,当12y =-时,122x-=,解得4x =-,∴点B 的坐标为1(4,)2--,将(1,2)A 和1(4,)2B --代入一次函数1y kx b =+得,2142k b k b =+⎧⎪⎨-=-+⎪⎩,解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:11322y x =+.(2)由题意得,0m kx b x+-<,即m kx b x +<,即12y y <,只需反比例函数图象在一次函数图象上方即可,由图可得当<4x -或01x <<时,12y y <,∴不等式的解集为:<4x -或01x <<.【点拨】本题考查了一次函数与反比例函数的综合应用,考查了待定系数法求函数解析式及根据图象及性质解决问题、求不等式的解集,熟练掌握待定系数法求函数的解析式,巧妙借助数形结合思想解决问题是解题的关键.25.(1)①1;②见分析,③见分析;(2)6||||y x x =-的图象关于y 轴对称轴(答案不唯一);(3)①1x =或=1x -;②2x ≤-或2x ≥【分析】(1)①把x =2代入解析式即可得a 的值;②③按要求描点,连线即可;(2)观察函数图象,可得函数性质;(3)①由函数图象可得答案;②观察函数图象即得答案.解:(1)①列表:当x =2时,6|2|1|2|a =-=,故答案为:1;②描点,③连线如下:(2)观察函数图象可得:6||||y x x =-的图象关于y 轴对称,故答案为:6||||y x x =-的图象关于y 轴对称;(3)①观察函数图象可得:当y =5时,x =1或x =-1,65x x-=的解是x =1或x =-1,故答案为:x =1或x =-1,②观察函数图象可得,当x ≤-2或x ≥2时,y ≤1,∴6||1||x x -≤的解集是x ≤-2或x ≥2,故答案为:x ≤-2或x ≥2.【点拨】本题考查了列表描点画函数图象,根据函数图象获取信息,画出函数图象,从函数图象获取信息是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版八年级数学反比例函数专题讲练第一课时·反比例函数的基本知识【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?知识点1 反比例函数的定义一般地,形如k=(k为常数,k≠0)的函数称为反比例函数,其中xyx是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔k=(k≠0) ⇔xy=k(k≠0) ⇔变量y与xyx成反比例,比例系数为k.拓展 (1)在反比例函数k y x=(k≠0)的左边是函数y ,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如1y x=,312y x =等都是反比例函数,但21y x =+就不是关于x 的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y =kx -1或xy =k 的形式. (3)反比例函数中,两个变量成反比例关系. 知识点2 用待定系数法确定反比例函数的表达式由于反比例函数k y x=中只有一个待定系数,因此只要有一对对应的x ,y 值,或已知其图象上一点坐标,即可求出k ,从而确定反比例函数的表达式.其一般步骤:(1) 设反比例函数关系式k y x=(k≠0).(2) 把已知条件(自变量和函数的对应值)代入关系式,得出关于k 的方程.(3) 解方程,求出待定系数k 的值.(4) 将待定系数k 的值代回所设的关系式,即得所求的反比例函数关系式.知识点3 反比例函数图象的画法反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数ky=(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.(1)如图所示,反比例函数的图象是双曲线,反比例函数k=的yx图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
它们关于原点对称,限图象是以坐标原点为对称中心的中心对称图形.(2)由反比例函数k=的图象可知,当k>0时,在每一象限内,yxy值随x的增大而减小;当k<0时,在每一象限内,y值随x的增大而增大.(3)因为x≠0,所以图象与y轴不可能有交点,国此,不论x取值何值时,y的值永不为0,同理,图象与x轴也不可能有交点.拓展(1)反比例函数图象的位置和函数的增减性都是由比例系数k的符号决定的,反过来,由双曲线所在的位置或函数的增减性,也可以判断出k的符号.(2)反比例函数的增减性,只能在每个象限内讨论,当k>0时,在每一象限(第一、三象限)y随着x的增大而减小,但不能笼统地说:当k>0,y随着x的增大而减小.同样当k<0时,也不能笼统地说:y 随x的增大而增大.(3)正比例函数与反比例函数的区别与联系.函数正比例函数反比例函数关系式y=kx(k≠0)kyx(k≠0)图象过原点的直线与坐标轴没有交点的双曲线自变量的取值范围全体实数x≠0的全体实数图象位当k>0时,图象经过第一、当k>0时,图象在第一、三置三象限当k<0时,图象经过第二、四象限象限当k<0时,图象在第二、四象限性质当k>0时,y随x的增大而增大当k<0时,y随x的增大而减小当k>0时,在每一象限内,y随x的增大而减小当k<0时,在每一象限内,y随x的增大而增大知识点5 反比例函数表达式中k的几何意义如图所示,过双曲线kyx=上的任意一点P(x,y)作x轴、y轴的垂线PM,PN,垂足分别为M,N,所得矩形PMON的面积S=PM·PN=|y|·|x|=|xy|.因为kyx=,所以xy=k,所以S=|xy|=|k|.即过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积为|k|.已知反比例函数可求矩形面积,反之,已知矩形面积可求反比例函数.【解题方法小结】1)求反比例函数解析式的一般方法是待定系数法.由于解析式中只有一个系数k,故只需给出一对x,y的对应值或一个点的坐标即可.(2)从函数kyx=(k≠0)的图象上任意一点向x轴、y轴作垂线,与与两坐标轴构成的矩形的面积均为|k|,一条垂线段与坐标轴及该点与原点的连线构成的直角三角形的面积为1||.k2第二课时·反比例函数的实际应用【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1.用待定系数法确定反比例函数的表达式;2.反比例函数的图象画法,反比例函数的性质;【生活链接】在压力不变的情况下,某物体承受的压强p(Pa)是受力面积S(m2)的反比例函数,其图象如右图所示.【问题探究】这个反比例函数应如何表示?【教材精析】(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设出反比例函数关系式为ky=(k≠0),然后求出k的值即可.x(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y)和自变量(x)的二元一次方程,进而解出函数,便得到函数关系式.生活中有许许多多成反比例关系的实例.如当路程s一定时,时间t与速度v成反比例关系,可以写成s=(s是常数);当矩形面积Stv一定时,长a与宽b成反比例关系,写成S=(S的常数);当面积ab是常数S时,三角形的底边长y与这一底上的高x成反比例关系,写成2Sy=(S是常数).x练习: 一、选择题1. 反比例函数21m y x--=(m 为常数)的图像在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2. 某物质的密度ρ(kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V之间的函数表达式是( ) A. ρ=12V B. ρ=2V C. ρ=6VD. V ρ=3第2题 第4题 第5题 第7题第8题3. 在同一平面直角坐标系中,正比例函数2y x =的图像与反比例函数42ky x-=的图像没有交点,则实数k 的取值范围在数轴上可表示为 ( )A B CD4. (2015·连云港)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图像经过顶点B ,则k 的值为 ( )A.一12B.一27C.一32D.一365. (2015·三明)如图,A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(,)m n ,则m 、n 满足的表达式为( )A.2n m =-B.2n m =- C.4n m =- D.4n m=-6. (2015·龙岩)已知(,)P a b 是反比例函数1y x=图像上异于点(一1,-1)的一个动点,则1111a b+++的值为( )A. 2B. 1C. 32D. 127. (2015·眉山) 如图,A 、B 是双曲线ky x=上的两点,过点A 作AC x ⊥轴,交OB 于点D ,垂足为C .若ADO ∆的面积为1,D 为OB 的中点,则k 的值为 ( ) A.43 B.83C. 3D. 48. 如图,在平面直角坐标系中,直线33y x =-+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(0)k y k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a的值是( )A. 1B. 2C. 3D. 4 二、填空题9. 在ABC ∆的三个顶点(2,3)A -、(4,5)B --、(3,2)C -中,可能在反比例函数(k y k x =>0) 的图像上的是点 . 10. 已知函数23k y x -=,当x <0时,y 随x 的增大减小,则k 的取值范围是 .11. 已知直线2y x =与双曲线ky x=的一个交点是(2,)A m ,则点A 的坐标是 ,双曲线 y = .12. 在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)之间成反比例函数关系,其图像如图所示,且点(5,1)P在其图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 m.第12题 第13题 第14题13. (2015·济南)如图,等边三角形AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数(0)ky x x=<的图像上,则k = . 14. 如图, A 是反比例函数图像上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,若ABCD 的面积为8,则此反比例函数的表达式为 .15. 如图,一次函数y kx b =+的图像经过点(3,2)P ,与反比例函数2(0)y x x=>的图像交于点(,)Q m n .当一次函数y 的值随x 值的增大而增大时,m 的取值范围是.第l5题 第17题 第18题16. (2015·泰州)点1(1,)a y -、2(1,)a y +在反比例函数(k y k x=>0)的图像上,若12y y <,则a 的取值范围是 .17. 如图, A 是y 轴正半轴上的一点,过点A 作x 轴的平行线,交反比例函数4y x=-的图像于点B ,交反比例函数k y x =的图像于点C .若:3:2AB AC =,则k 的值是 .18. 如图,直线26,3y x y x ==分别与双曲线k y x=在第一象限内交于点A 、B ,若8OAB S ∆=,则k = .三、解答题19.我们学过反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数表达式可以写成S a b= (S 为常数,0S ≠).请你仿照上例另举出一个在日常生活、生产或学习中具有反比例函数关系的实例,并写出它的函数表达式.20. (2015·甘孜改编)如图,一次函数5y x =-+的图像与反比例函数(0)ky k x=≠在第一象限内的图像交于(1,)A n 和(4,)B m 两点. (1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数(0)ky k x=≠的值时,写出自变量x 的取值范围.第20题21.如图,在方格纸中(小正方形的边长为1 ), 反比例函数k y x=的图像与直线的交点A 、B 均在格点上,根据所给的平面直角坐标系(O 是坐标原点).解答下面的问题:(1)分别写出点A 、B 的坐标后,把直线AB 向右平移5个单位长度。