平面连杆机构的运动分析

合集下载

平面四杆机构的运动分析

平面四杆机构的运动分析

优秀设计平面四杆机构的运动性能研究摘要:平面四杆机构是主要的常用基本机构之一,应用十分广泛,也是其他多杆机构的基础。

由于连杆机构的性能受机构上繁多的几何参数的影响,呈复杂的非线性关系,无论从性能分析上还是性能综合上都是一个比较困难的工作,尚需作进一步深入研究。

本文基于平面四杆机构的空间模型,将机构实际尺寸转化为相对尺寸,在有限的空间内表示出无限多的机构尺寸类型,从而建立起全部机构尺寸类型和空间点位的一一对应关系,为深入研究平面四杆机构的运动性能与构件尺寸之间的关系提供了基础。

根据曲柄摇杆机构、双曲柄机构、双摇杆机构、单滑块四杆机构的不同特点,详细分析各类机构的运动性能参数与构件尺寸之间的关系,指出构件尺寸的变化对机构运动性能的影响,并绘制相关的运动性能图谱。

针对具有急回特性的Ⅰ、Ⅱ型曲柄摇杆机构,通过深入分析极位夹角与构件尺寸之间的内在关系,获得了Ⅰ型曲柄摇杆机构极位夹角分别小于、等于或大于90°的几何条件以及Ⅱ型曲柄摇杆机构极位夹角一定小于90°的结论,揭示了曲柄摇杆机构设计时作为已知条件的极位夹角和摇杆摆角之间应满足的要求。

本文得出的图谱和相关结论,为工程应用中机构性能分析和机构综合提供了理论依据。

关键词:平面四杆机构空间模型运动性能Plane four clubs institutions of Sports performance research Abstract:The planar four-bar linkages are one type of basic mechanisms, and they are applied very extensively. The performances of the linkages depend on their geometrical parameters and present the complicated non-linear relations. It is necessary to make the further research on them for analysis, synthesis and application of linkages.By using of the three-dimensional models of the planar four-bar mechanisms, the actual sizes of mechanisms are transformed relative ones, and all size types of mechanisms can be figured by spatial coordinates. It is the foundation for research on the relations between the link dimensions and kinematic capability parameters.Aimed at the different characteristics of crank-rocker mechanism, double-crank mechanism, double-rocker mechanism and single-slider mechanism, some inherent relations between the link dimensions and the kinematic capability parameters are deeply analyzed, then the relative kinematic capability diagrams are obtained.Based on deeply analysis of inherent relations between the extreme position angle and the link dimensions of typeⅠand typeⅡcrank-rocker mechanisms with quick return characteristics, the geometrical conditions are put forward in this paper, by which we can judge whether the extreme position angle of typeⅠcrank-rocker mechanisms is less than, equal to or lager than 90°. It is proved that the extreme position angle of typeⅡcrank-rocker mechanism is certainly less than 90°. The relations between the extreme position angle and the angular stroke of the rocker are brought to light, which should be satisfied during the kinematic design of crank-rocker mechanisms.The diagrams and conclusions obtained in this paper provide theoretic foundation for the capability analysis and synthesis of mechanisms.Keyword:Planar four-bar linkage Space model Sports Performance如需源程序联系扣扣 194535455目录1 序言1.1 连杆机构 (1)1.2 平面连杆机构运动学分析 (2)1.3 本论文所作的主要工作 (3)2 平面四连杆机构的类型2.1 分类概念 (3)2.2 分类 (4)3 平面四杆机构运动分析3.1.1 连杆上任意点的轨迹分析 (6)3.1.2 Non-grashof机构的运动分析 (8)3.2 速度分析 (9)3.3 加速度分析 (10)4 平面连杆机构曲线分类基准及分类4.1 曲率 (11)4.2 弧长 (12)4.3 回转数 (12)4.4 结点 (13)4.5 变曲点、曲率极大点与极小点 (19)4.6 机构数据库的建立 (20)4.7 连杆曲线的分类结果 (20)5 平面连杆机构的仿真设计5.1 初始运行界面及程序 (23)5.2 部分仿真结果 (42)结论 (49)参考文献 (51)致谢 (52)1 序言连杆机构,是由许多刚性构件通过低副联结而成,也称低副机构。

平面连杆机构运动分析及设计

平面连杆机构运动分析及设计
作者:潘存云教授
3选不同的构件为机架
3
1
4
A
2
B
C
直动滑杆机构
手摇唧筒
这种通过选择不同构件作为机架以获得不同机构的方法称为:
机构的倒置
B
C
3
2
1
4
A
导杆机构
3
1
4
A
2
B
C
曲柄滑块机构
3
1
4
A
2
B
C
摇块机构
3
1
4
A
2
B
C
A
B
C
3
2
1
4
天津工业大学专用 作者: 潘存云教授
摆转副——只能作有限角度摆动的运动副;
曲柄
连杆
摇杆
§3-2 平面四杆机构的类型和应用
1 平面四杆机构的基本型式
天津工业大学专用 作者: 潘存云教授
第三章 平面连杆机构运动分析与设计
§3-1 连杆机构及其传动特点
§3-2 平面四杆机构的类型和应用
§3-3 平面四杆机构的基本知识
§3-6 平面四杆机构的设计
§3-4 运动分析——速度瞬心法
§3-5 运动分析——矢量方程图解法
天津工业大学专用 作者: 潘存云教授
作者:潘存云教授
1 改变构件的形状和运动尺寸
偏心曲柄滑块机构
对心曲柄滑块机构
曲柄摇杆机构
曲柄滑块机构
双滑块机构
正弦机构
s
=l sin φ
↓ ∞
→∞
φ
l
2 平面四杆机构的演化型式
天津工业大学专用 作者: 潘存云教授

平面机构的自由度与运动分析

平面机构的自由度与运动分析

平面机构的自由度与运动分析一、平面机构的自由度平面机构是指机构中的构件只能在一个平面内运动的机构,它由多个连接杆、转动副和滑动副组成。

平面机构的自由度是指机构中能够独立变换位置的最小的连接杆数目,也可以理解为机构中独立的变量的数量。

对于平面机构,其自由度可以通过以下公式计算:自由度=3n-2j-h其中,n表示连接杆的数量,j表示驱动链的数量,h表示外部约束的数量。

根据上述公式可以看出,自由度与平面机构中连接杆的数量和驱动链和外部约束的数量有关。

连接杆的数量越多,机构的自由度就越大,可以实现更复杂的运动。

驱动链的数量越多,机构中的动力驱动器越多,自由度就越小,机构的运动变得更加确定。

外部约束的数量越多,机构中的约束条件就越多,自由度就越小,机构的运动也会变得更加确定。

二、平面机构的运动分析1.闭合链和链架分析:首先需要确定机构中的闭合链和链架,闭合链是指机构中连接杆形成一个封闭的回路,闭合链中的连接杆数目应该为n 或n-1,n是机构中的连接杆数量。

链架是指机构中的连接杆形成一个开放的链路。

通过分析闭合链和链架中的链接关系和约束条件,可以确定机构中构件的位置和运动方式。

2.位置和速度分析:根据机构的连接杆的长度和角度,可以通过几何方法或代数方法确定机构中构件的位置和速度分量。

通过分析连接杆的长度和角度的变化规律,可以推导出机构中构件的位置和速度随时间的变化关系。

3.加速度和动力学分析:根据机构中各个构件的位置和速度,可以通过几何方法或动力学方法计算构件的加速度和动力学特性。

通过分析机构中构件的加速度和动力学特性,可以确定机构中构件的运动稳定性和质量分布。

4.动力分析:对于需要携带负载或进行力学传动的机构,需要进行动力学分析,确定机构中各个构件的受力和承载能力。

通过分析机构中构件的受力情况,可以确定机构的设计参数和强度要求。

总结起来,平面机构的自由度与运动分析是确定机构中构件位置和运动状态的重要方法,通过分析机构中的闭合链和链架、构件的位置和速度、加速度和动力学特性,可以确定机构的运动方式和特性,为机构的设计和优化提供依据。

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计平面连杆机构是由连杆和连接点组成的机械结构,广泛应用于各种机械设备中。

它的功能是将输入的旋转运动转化为输出的直线运动或者将输入的直线运动转化为输出的旋转运动。

本文将对平面连杆机构的分析与设计进行介绍。

首先,对平面连杆机构进行分析。

平面连杆机构的主要组成部分是连杆和连接点。

连杆是连接点之间的刚性杆件,可以是直杆、曲杆或者具有其他特殊形状的杆件。

连接点是连杆的两个端点或者连杆与其他机构的连接点,可以是支点、铰链等。

平面连杆机构的运动可以分为三种基本类型:平动、转动和复动。

平动是指连杆的一端保持固定,另一端进行直线运动;转动是指连杆的一端保持固定,另一端进行旋转运动;复动是指连杆的一端进行直线运动,另一端同时进行旋转运动。

进行平面连杆机构的设计时,需要考虑以下几个要点。

首先,确定机构的类型和功能。

根据机构的动作要求和功能要求,选择适合的连杆类型和连接点类型。

其次,进行机构的运动分析。

根据机构的运动要求,确定连杆的长度和连接点的位置,使连杆能够实现所需的运动。

然后,进行机构的力学分析。

根据机构的受力情况,确定连杆的截面尺寸和材料,保证机构的刚度和强度。

最后,进行机构的优化设计。

考虑机构的性能要求和制造要求,对机构进行优化设计,提高机构的工作效率和使用寿命。

在平面连杆机构的设计中,还需要考虑机构的动力学问题。

机构的动力学分析包括静力学分析和动力学分析两个方面。

静力学分析是指在机构静止或静力平衡状态下,对机构受力和力矩进行分析。

动力学分析是指在机构进行运动时,对机构的加速度、速度和位移进行分析。

通过对机构的动力学分析,可以确定机构的惯性力和惯性矩,从而确定机构的动态特性和振动特性。

总之,平面连杆机构的分析与设计是一项复杂而重要的工作。

在进行分析与设计时,需要考虑机构的类型和功能,进行运动分析和力学分析,优化设计和动力学分析。

通过合理的分析与设计,可以使机构具有较好的工作性能和使用寿命,满足各种工程应用的要求。

机械原理-平面连杆机构及设计

机械原理-平面连杆机构及设计

平面连杆机构的运动分析
1
位置分析
通过几何和三角学的方法,确定各个连
速度分析
2
杆和转轴的位置。
计算各个部件的速度,了解机构的运动
特性。
3
加速度分析
研究连杆的加速度,对机械系统的稳定 性和性能影响重大。
平面连杆机构的设计原则
力学平衡Biblioteka 确保各个连杆和转轴保持力学平衡,避免不必 要的应力。
优化尺寸
选择合适的尺寸和比例,以提高系统的性能和 耐久性。
机械原理-平面连杆机构及设计
探索机械原理中的平面连杆机构,深入了解其组成部分、运动分析、设计原 则、类型和应用领域。
什么是平面连杆机构
平面连杆机构是由连杆和旋转副组成的机械装置,用于转换直线运动和旋转运动。它被广泛应用在各种机械设 备和工具中。
平面连杆机构的组成部分
• 连接杆:用于连接各个部件并传递力和运动。 • 转轴:提供连杆的旋转运动。 • 摩擦面或球面:减小连杆关节的摩擦。 • 约束物:限制连杆的自由运动。
减小摩擦
使用适当的润滑和设计摩擦减小装置,提高效 率。
动态平衡
通过合理设计和调整质量分布,减少系统的振 动。
常见的平面连杆机构类型
滑块曲柄机构
由连接杆、连杆、中心轴和滑块 组成,广泛应用在汽车和机床。
钟摆式机构
采用钟摆原理,具有稳定的运动 轨迹,用于摆锤和钟表。
平行连杆机构
通过平行排列的连杆传递运动和 力,在工程和自动化领域有广泛 应用。
平面连杆机构的应用领域
1 工业生产设备
机械加工、装配线和工厂自动化。
3 家庭用具
打印机、洗衣机和电动工具。
2 交通运输工具
汽车、火车和航空器。

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。

本文将对平面连杆机构进行介绍,并探讨其设计原理。

平面连杆机构是由至少一个定点和至少三个连杆组成的机构。

定点为固定参考点,连杆是由铰链连接的刚性杆件。

连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。

平面连杆机构的运动由这些连杆的位置和相互连接方式决定。

平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。

运动类型可以是旋转、平移、摆动、滑动等。

通过运动分析,可以确定连杆的长度和相互连接的方式。

2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。

例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。

3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。

静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。

4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。

运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。

5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。

通过运动分解,可以确定每个连杆的运动规律,从而进行设计。

当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。

具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。

2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。

根据机构的运动要求和外力作用,确定连杆的长度。

3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。

4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。

5.结构设计:根据上述分析和计算结果,进行结构设计。

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案一平面连杆机构及其分析与设计一、教学目标及基本要求1掌握平面连杆机构的基本类型,掌握其演化方法。

2,掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。

4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;正确理解自锁的概念,掌握确定自锁条件的方法。

5,了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。

二、教学内容及学时分配第一节概述(2学时)第二节平面连杆机构的基本特性及运动分析(4.5学时)第三节平面连杆机构的运动学尺寸设计(3.5学时)三、教学内容的重点和难点重点:1.平面四杆机构的基本型式及其演化方法。

2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。

3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。

4.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。

难点:1.平面连杆机构运动分析的相对运动图解法求机构的加速度。

2.按给定连架杆的2~3个对应位置设计函数生成机构。

四、教学内容的深化与拓宽平面连杆机构的优化设计。

五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化一反转法等。

平面连杆机构的运动综合(毕业设计论文)

平面连杆机构的运动综合(毕业设计论文)

黄石理工学院毕业设计(论文)任务书毕业设计(论文)题目:平面连杆机构的运动综合教学院:专业班级:学生姓名:学号:指导教师:1.毕业设计(论文)的主要内容(1)查阅资料,完成毕业设计开题报告;(2)按学院要求,完成1篇与毕业设计课题相关的英文文献翻译;(3)在相关软件平台(如VB或Matlab)下,用解析法实现平面连杆机构的计算机辅助设计;(4)按要求完成毕业论文。

2.毕业设计(论文)的要求(1)了解平面机构设计综合课题的国内外发展动态及趋势;(2)在阅读相关平面机构设计综合文献的基础上,能用解析法分析和设计平面机构;(3)熟悉和掌握相关软件平台(如VB和Matlab);(4)运用相关软件平台,实现平面机构的计算机辅助设计与分析;(5)毕业设计论文要求格式规划,语句通顺,论据充分,符合学院对毕业设计论文要求。

3.进度安排序号毕业设计(论文)各阶段名称起止日期1 调研,查阅资料2 开题报告,英文文献翻译3 实现平面机构的计算机辅助设计与分析4 完成毕业设计论文初稿5 毕业设计论文修改,完成论文6 论文答辩4.其他情况说明(1)题目开始实施后,每周星期三下午3:30在K1四楼行政办公室集中,检查进度,协调相关事项,进行组内讨论,解答问题。

(2)要求有统一的毕业设计笔记本,记录资料查阅、问题及解决方案等。

每周集中时间进行检查。

(3)独立完成毕业论文。

5.主要参考文献[1] 孙桓,陈作模主编,《机械原理》(第五版),高等教育出版社,2006[2] 韩建友编,高等机构学,机械工业出版社,2004[3] 王宏磊,平面连杆机构综合研究与软件开发,硕士论文,万方数据库,2005[4] 熊滨生,现代连杆机构设计,化学工业出版社,2006.[5] 于红英,王知行,李建生,刚体导引机构一种综合方法的研究;机械设计,2001[6] [苏]ИИ阿尔托包列夫斯基,等. 孙可宗,陈兆雄,张世民,译. 平面机构综合[M]. 人民教育出版社,1982.摘要机构分析与仿真是机构设计的重要内容,其中对连杆机构的研究较多。

第9章平面连杆机构的动力分析与平衡

第9章平面连杆机构的动力分析与平衡

第9章平面连杆机构的动力分析与平衡平面连杆机构是由若干个连杆组成的机械系统,常用于研究机械系统的动力学性质。

对于平面连杆机构的动力分析与平衡,主要是研究其运动学和动力学方程,并进行相应的力和动量平衡计算。

以下将从运动学和动力学两个方面进行详细介绍。

1、运动学分析平面连杆机构的运动学分析是研究机构的位置、速度和加速度的关系。

其中,位置分析主要是根据连杆的几何性质,通过连杆的长度、夹角和初始位置等参数,确定连杆机构的位置关系。

速度分析主要是研究各连杆的线速度和角速度之间的关系,通过运用位移法和速度图解法,可以求解各连杆关节处的速度。

加速度分析主要是研究各连杆的线加速度和角加速度之间的关系,可以通过速度分析的基础上运用动图解法求解。

2、动力学分析平面连杆机构的动力学分析是研究机构中各连杆所受力和动量的关系,进而分析机构的运动特性。

动力学分析主要包括力分析和动量平衡两个方面。

力分析主要是研究在给定外部载荷下,各连杆之间的约束力和连接力,分析力的大小、方向和位置。

动量平衡主要是研究机构质点的动量矩等于零,根据牛顿第二定律和冲量动量定理,可以建立平面连杆机构的运动方程,进而求解各连杆的加速度和力。

平面连杆机构的平衡主要涉及到静平衡和动平衡两个方面。

静平衡要求在机构基准位置时,机构中各连杆和连接处的力矩之和等于零,可以通过力分析和力矩平衡方程求解。

动平衡要求机构中各连杆的质心加速度等于零,在给定外部载荷和给定输入力矩的情况下,可以通过动量平衡方程求解。

总结来说,平面连杆机构的动力分析与平衡需要进行运动学和动力学的分析,通过建立力分析和动量平衡方程,求解各连杆的加速度和力,进而研究机构的运动特性和平衡性。

对于平面连杆机构的动力分析与平衡研究,可以为机械设计和动力学性能优化提供理论依据。

机械原理第三章平面机构的运动分析

机械原理第三章平面机构的运动分析

2 判定方法
通过违法副法、副移法或 推动法等方法进行判定。
3 应用举例
四连杆机构中的连杆2-连 杆3副是约束运动副。
运动副的数目
1
最大副数
运动副的最大数目取决于机构的自由度。
2
自由度
机构能够独立运动的最少块数。
3
计算方法
自由度 = 3 * (连杆总数 - 框架连杆数 - 3)
极迹法
极迹法是一种利用链接件的相对位置和运动方向进行运动分析的方法,通过 绘制链接件的轨迹,可以分析机构的运动特性。
机械原理第三章平面机构 的运动分析
平面机构是指运动发生在一个平面内的机械装置。本章将详细介绍平面机构 的分类、链接件运动、运动副的命名和判定以及优化设计等内容。
什么是平面机构
平面机构是运动发生在一个平面内的机械装置。它由链接件和运动副组成,可实现各种不同的运动效果。
平面机构的分类
四连杆机构
由四个连杆组成,可实现平面运动和转动。
由滑块和滑道组成的运动副。
键副
通过键配对组成的运动副。
独立运动副的判定
1 定义
独立运动副是能够单独实 现运动的副。
2 判定方法
通过遮挡法、违法副法或 推动法等方法进行判定。
3 应用举例
曲柄滑块机构中的曲柄-连 杆副是独立运动副。
约束运动副的判定
1 定义
约束运动副是通过其他副 的约束实现运动的副。
自由度的计算
自由度是机构能够独立运动的最少块数。通过计算机构的链接件数目和约束数目,可以确定机构的自由度。
平面机构的静力学分析
静力学分析是研究机构在静力平衡条件下的受力分布和力矩平衡的方法。通过分析机构的关节受力和连杆力矩, 可以确定机构的静力学特性。

平面机构的运动分析

平面机构的运动分析

平面机构的运动分析平面机构是由若干个连杆组成的机械结构,在运动分析中,我们需要研究机构中各个连杆的运动规律,以及机构整体的运动情况。

平面机构常见的类型有四杆机构、曲柄滑块机构、双曲柄滑块机构等。

在运动分析中,我们通常要确定机构的约束条件、求解连杆的角度、速度和加速度等。

首先,我们需要确定机构的约束条件。

约束条件是指机构中各个连杆之间的几何关系,包括定位约束和连杆长度约束。

定位约束是指机构中一些点的位置关系,可以通过坐标方程等方法求解。

连杆长度约束是指连杆的长度是固定的,可以通过连杆长度的几何关系来确定。

然后,我们可以通过运动分析的方法来求解连杆的角度、速度和加速度等。

在运动分析中,可以使用几何法和代数法等不同的方法来求解。

几何法中常用的方法有图解法和模型法。

图解法是通过绘制连杆的运动图来解决问题,可以直观地表示出机构的运动情况。

模型法是将机构模型化为几何图形,然后通过几何关系求解。

这些方法通常适用于简单的机构。

代数法中常用的方法有位置矩阵法和速度矩阵法。

位置矩阵法是通过建立连杆的位移方程来求解连杆的角度。

速度矩阵法是通过建立速度传递关系求解连杆的速度和加速度。

此外,还可以通过数值模拟的方法来进行运动分析。

数值模拟是利用计算机软件对机构进行建模,并进行数值计算得到机构的运动参数。

这种方法可以应用于复杂的机构,但计算量比较大。

总之,平面机构的运动分析是解决机构运动问题的基础,通过确定约束条件和求解连杆的角度、速度和加速度等参数,可以研究机构的运动规律,为机构的设计和优化提供理论依据。

机械原理-平面连杆机构的运动分析和设计

机械原理-平面连杆机构的运动分析和设计

平面连杆机构的设计流程和方法
在这个部分中,我们将深入探讨平面连杆机构的设计,介绍流程和方法,提供实际案例分析,帮助您了解如何设 计成功的机械。
1.
需求分析
将客户的需求转化为机械设计
目标。
2.
构思和设计
基于机械原理构思和设计机械
装备支撑结构,并采用 CAD 软
件实施初始的草图或模型。
3.
材料选择
选择合适的材料和工艺,确保
结构和类型
平面连杆机构通常由零件精细制 造而成,以满足工业和商业目的 的要求。
工程应用
机械工程师们可以使用平面连杆 机构来完成各种复杂的任务,如 发动机和自动化流水线等。
日常应用
平面连杆机构可以进一步应用在 日常用品中,如钟表、洗衣机和 自动售货机等。
平面连杆机构的运动分析方法
在这个部分中,我们将探索平面连杆机构的运动学和动力学,介绍运动方程和速度方程,以及如何用数学 公式计算不同零件的运动和速度。
1 平衡条件
平衡是指物理系统中所有力和运动之间所需达到的状态,这是机械工程师需要考虑的重 要问题。
2 稳定性
稳定性是一个重要的物理学概念,涉及动量、速度和质量,能够帮助工程师在设计平面 连杆机构时考虑不同零件的状态和取向。
3 应用场景
平面连杆机构无处不在,具有开发良好设计的潜力,是自动化流水线的核心,也是钟表、 汽车和机器人的重要部分。
1
运动学
运动学研究物体运动的规律和运动参数,如位移、速度、加速度等。
2
动力学
动力学研究物体的运动状态和运动参数之间的关系,如动量、力和功等。
3
数值模拟
数字计算能够预测机械零件的运动,利用计算机模拟机械过程,提高设计效率。

机械设计基础-平面连杆机构

机械设计基础-平面连杆机构

平面连杆机构的运动分析
运动分析是设计平面连杆机构中的重要步骤,通过分析各部件的运动规律和 约束关系,可以确定机构的性能和工作范围。
实例与案例分析
案例一
设计一个机械手臂,使其能够在不同位置和角度进 行精确定位。
案例二
设计一个车门开闭机构,使其能够平稳地打开和关 闭。
机械设计基础-平面连杆机构
这个幻灯片将介绍平面连杆机构的基本知识,包括组成、作用、种类、设计 要点、运动分析以及实例与案例分析。
平面连杆机构简介
平面连杆机构是一种常见而重要的机械传动机构,它由连杆、铰链和机构连接件组成,用于将旋转运动转化为 直线运动或相反。
平面连杆机构的组成
连杆
起支撑作用,将旋转运动转化为直线运动。
由滑块和曲杆组成,常用于发动 机的活塞连杆传动。
四连杆机构
由四个连杆组成,常见于机械手 臂和门的开闭机构。
平面伸缩杆机构
通过类似电车接触网的结构实现 伸缩变形。
平面连杆机构的设计要点
1
连杆比例设计
确定连杆的比例关系以实现所需的运动。
铰链选型
2
选择合适的铰链类型和尺寸以满足设计
要求。
3
机构连接方式
选择适当的机构连接件和连接方式以保 证机构的稳定性。
铰链
连接连杆和机构连接件,使其能够相对运动。
机构连接件
固定在机构上,用于连接铰链和机构化为直线运动或相反。
2 传递力量
通过连杆将动力从一个地方传递到另一个地方。
3 控制位置
通过调整连杆的长度和角度来控制机构的位置。
平面连杆机构的种类
滑块曲杆机构

平面连杆机构设计分析及运动分析综合实验

平面连杆机构设计分析及运动分析综合实验

实验二平面连杆机构设计分析及运动分析综合实验一、实验目的:1、掌握机构运动参数测试的原理和方法。

了解利用测试结果,重新调整、设计机构的原理。

2、体验机构的结构参数及几何参数对机构运动性能的影响,进一步了解机构运动学和机构的真实运动规律。

3、熟悉计算机多媒体的交互式设计方法,实验台操作及虚拟仿真。

独立自主地进行实验内容的选择,学会综合分析能力及独立解决工程实际问题的能力,了解现代实验设备和现代测试手段。

二、实验内容1、曲柄滑块机构及曲柄摇杆机构类型的选取。

2、机构设计,既各杆长度的选取。

(包括数据的填写和调整好与“填写的数据”相对应的试验台上的杆机构的各杆长度。

)3、动分析(包括动态仿真和实际测试)。

4、分析动态仿真和实测的结果,重新调整数据最后完成设计。

三、实验设备:平面机构动态分析和设计分析综合实验台,包括:曲柄滑块机构实验台、曲柄摇杆机构实验台,测试控制箱,配套的测试分析及运动仿真软件,计算机。

四、实验原理和内容:1、曲柄摇杆机构综合试验台①曲柄摇杆机构动态参数测试分析:该机构活动构件杆长可调、平衡质量及位置可调。

该机构的动态参数测试包括:用角速度传感器采集曲柄及摇杆的运动参数,用加速度传感器采集整机振动参数,并通过A/D板进行数据处理和传输,最后输入计算机绘制各实测动态参数曲线。

可清楚地了解该机构的结构参数及几何参数对机构运动及动力性能的影响。

②曲柄摇杆机构真实运动仿真分析:本试验台配置的计算机软件,通过建模可对该机构进行运动模拟,对曲柄摇杆及整机进行运动仿真,并做出相应的动态参数曲线,可与实测曲线进行比较分析,同时得出速度波动调节的飞轮转动惯量及平衡质量,从而使学生对机械运动学和动力学,机构真实运动规律,速度波动调节有一个完整的认识。

③曲柄摇杆机构的设计分析:本试验台配置的计算机软件,还可用三种不同的设计方法,根据基本要求,设计符合预定运动性能和动力性能要求的曲柄摇杆机构。

另外还提供了连杆运动轨迹仿真,可做出不同杆长,连杆上不同点的运动轨迹,为平面连杆机构按运动轨迹设计提供了方便快捷的虚拟实验方法。

第三章 连杆机构设计和分析

第三章  连杆机构设计和分析

第三章连杆机构设计和分析本章重点:平面四杆机构设计的几何法、解析法,及平面连杆机构运动分析的几何方法、解析法,机构动态静力分析的特点本章难点:1. 绘制速度多边形和加速度多边形时,不仅要和机构简图中的位置多边形相似,而且字母顺序也必须一致。

2.相对速度和加速度的方向,及角速度和角加速度的转向。

3.用解析法对平面机构进行运动分析,随着计算机的普及,已越来越显得重要,并且将在运动分析中取代图解法而占主要地位。

其中难点在于用什么样的教学工具来建立位移方程,并解此方程。

因为位移方程往往是非线性方程。

基本要求:了解平面连杆机构的基本型式及其演化;对平面四杆机构的一些基本知识(包括曲柄存在的条件、急回运动及行程速比系数、传动角及死点、运动的连续性等)有明确的概念;能按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆机构。

§3-1 平面四杆机构的特点和基本形式一、平面连杆机构的特点能够实现多种运动轨迹曲线和运动规律,低副不易磨损而又易于加工。

由本身几何形状保持接触。

因此广泛应用于各种机械及仪表中。

不足之处:作变速运动的构件惯性力及惯性力矩难以完全平衡;较难准确实现任意预期的运动规律,设计方法较复杂。

连杆机构中应用最广泛的是平面四杆机构。

二、平面四杆机构的基本型式三种:曲柄摇杆机构双曲柄机构双摇杆机构三、平面四杆机构的演变1.转动副转化为移动副2.取不同构件为机架:3.变换构件的形态4.扩大转动副尺寸。

§3-2 平面连杆机构设计中的一些共性一、平面四杆机构有曲柄的条件上一节中,已经讲过平面四铰链机构中有三种基本形式:曲柄摇杆机构(一个曲柄);双曲柄机构(二个曲柄);双摇杆机构(没有曲柄)。

可见有没有曲柄,有几个曲柄是基本形式的主要特征。

因此,曲柄存在条件在杆机构中具有十分重要的地位。

下面分析曲柄存在条件:在铰链四杆机构中,有四个转动副和四个杆,为什么连架杆能作整周旋转(曲柄),有时就不能作整周旋转(摇杆)呢?这主要是因为四杆的相对杆长能约束连架杆是否能整周旋转或只作摆动的缘故。

平面连杆机构的运动分析和设计实用教案

平面连杆机构的运动分析和设计实用教案
其 中 Lmin :最短杆长度 L m ax :最长杆长度
P, Q: 其余两杆的长度
Grashof机构(jīgòu) : 满足条件 Lmin + Lmax ≤ P +Q的机构(jīgòu)。
第15页/共57页
第十六页,共57页。
平面(píngmiàn)四杆机构存在曲柄的条 件
Lmin + Lmax ≤ P +Q 最短杆为机架或连架杆
动画链接(liàn jiē)
第23页/共57页
第二十四页,共57页。
讨论:机构(jīgòu)的初始装配状态与
可行域
在 机构的运动过程中是不会发生变化的原因
第24页/共57页
第二十五页,共57页。
急回运动
当曲柄等速回转的情况下,通常 (tōngcháng)把从动件往复运动速度快慢 不同的运动称为急回运动。
a21x1 a22 x2 ...... a2n xn b2
...........
an1x1 an2 x2 ...... ann xn bn
x , x ,..... x 其中
为 待求变量。
12
n
方 程组可以简写为
( 5---5´)
Ax b
则 方程组的解为
(5---6)
x A1b
第38页/共57页
c (d a) b
acd b
两 两相加
动画演示
ac ab ad
最短杆与最长杆之和小于等于其它两杆长度之和
a最短
第14页/共57页
第十五页,共57页。
补充:Grashof曲柄存在(cúnzài)条

Lmin + Lmax ≤ P +Q 则最短杆两端的转动(zhuàn dòng)副均为周转副;其余转 动(zhuàn dòng)副为摆转副。

机械原理 第3版 第3章 平面连杆机构的运动分析

机械原理 第3版 第3章 平面连杆机构的运动分析
9
3、瞬心位置的确定
2)两个构件之间没有用运动副连接时,可
用三心定理求出的瞬心位置
Kennedy Theorem
Aronhold-Kenndy Theorem
1)两个构件之间用运动副连接时,可直接
判断出的瞬心位置
primary center
10
1. 选择一个适当的比例尺画出机构运动简图;
2. 找出机构的全部瞬心并标注在机构简图上;
17
已知机构尺寸和主动件角速度1,求2和3
1、利用Vp12求2
18
2、利用Vp13求3
求3的思路
19
P12
P23
1、利用瞬心P12,求V2
已知凸轮角速度1,求推杆速度V2
P13
P23
20101011-04-2-08
速度瞬心法 相对运动图解法
复数法 矩阵法 矢量法
二、运动分析的方法
6
1、瞬心概念:作平面相对运动的两构件,以 看成是围绕一个瞬时重合点作相 对转动,该重合点称为瞬时速度 中心,简称瞬心。
24
第三节 用相对运动图解法对机构进行运动分析
一、相对运动图解法的基本原理
理论力学知识1、同一构件上两点之间的速度、加速度的关系2、两构件重合点处的速度与加速度关系
25
速度关系
加速度关系
1、同一构件上两点之间的速度、加速度的关系
牵连运动是移动,相对运动是转动。
26
2.两构件重合点处的速度和加速度矢量关系
第三章 平面机构的运动分析
2010.10.13 第5次课
21
复 习
1.平面机构的结构分析把一个机构分解为原动件和杆组的过程。机构结构分析的一般步骤 a计算自由度确定原动件 b高副低代,去掉局部自由度和虚约束 c开始拆杆组注意:拆去杆组后,剩余部分仍然是机构 同一个机构选用不同构件作原动件时,其机构的级别可能不同

机械原理大作业平面连杆机构的运动分析

机械原理大作业平面连杆机构的运动分析

机械原理大作业1报告名称平面连杆机构的运动分析学院机电学院专业机械设计制造及其自动化班级 05021001学号 2010301173姓名覃福铁同组人员勾阳采用数据第一组(1-A)平面六杆机构1.题目要求2.题目分析(1)建立封闭图形: L 1 + L 2= L 3+ L 4L 1 + L 2= L 5+ L 6+AG(2) 机构运动分析 a 、角位移分析由图形封闭性得:⎪⎪⎩⎪⎪⎨⎧⋅-⋅+=+-⋅-⋅+⋅⋅-⋅+=+-⋅-⋅+⋅⋅=⋅+⋅+⋅=⋅+⋅55662'2221155662'222113322114332211sin sin )sin(sin sin cos cos )cos(cos cos sin sin sin cos cos cos θθθαπθθθθθαπθθθθθθθθL L y L L L L L x L L L L L L L L L L G G 将上式化简可得:⎪⎪⎩⎪⎪⎨⎧=⋅-⋅+-⋅+⋅-=⋅-⋅+-⋅+⋅⋅-=⋅-⋅⋅-=⋅-⋅G G y L L L L L x L L L L L L L L L L L 66552'233466552'2331133221143322sin sin )sin(sin cos cos )cos(cos sin sin sin cos cos cos θθαθθθθαθθθθθθθθb 、角速度分析上式对时间求一阶导数,可得速度方程:⎪⎪⎩⎪⎪⎨⎧=⋅⋅-⋅⋅+⋅-⋅+⋅⋅=⋅⋅+⋅⋅-⋅-⋅-⋅⋅-⋅⋅-=⋅⋅-⋅⋅⋅⋅=⋅⋅+⋅⋅-0cos cos )cos(cos 0sin sin )sin(sin cos cos cos sin sin sin 66655522'233366655522'2333111333222111333222ωθωθωαθωθωθωθωαθωθωθωθωθωθωθωθL L L L L L L L L L L L L L 化为矩阵形式为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-⋅⋅=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-⋅⋅-⋅⋅⋅-⋅--⋅-⋅-⋅⋅⋅-00cos sin cos cos cos )cos(sin sin sin )sin(00cos cos 00sin sin 1111165326655332'26655332'233223322θθωωωωωθθθαθθθθαθθθθθL L L L L L L L L L L L L L c 、角加速度分析:矩阵对时间求一阶导数,可得加速度矩阵为:2233222333'223355665'22335566622332233'22sin sin 0cos cos 00sin()sin sin sin cos()cos cos cos cos cos 00sin sin 00cos(L L L L L L L L L L L L L L L L L θθεθθεθαθθθεθαθθθεθθθθθα-⋅⋅⎡⎤⎡⎤⎢⎥⎢⎥⋅-⋅⎢⎥⎢⎥⋅=⎢⎥⎢⎥-⋅--⋅-⋅⋅⎢⎥⎢⎥⋅-⋅⋅-⋅⎣⎦⎣⎦-⋅⋅-⋅⋅⋅-211221123123355665'2223355666cos sin )cos cos cos 0sin()sin sin sin 0L L L L L L L L L θωθωωθθθωθαθθθω⎡⎤⋅⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⋅⎢⎥⎢⎥⎢⎥⋅+⋅⎢⎥⎢⎥⎢⎥⋅⋅-⋅⎢⎥⎢⎥⎢⎥⋅-⋅⋅-⋅⎢⎥⎣⎦⎣⎦⎣⎦d 、E 点的运动状态位移:⎩⎨⎧⋅-⋅+=⋅-⋅+=55665566sin sin cos cos θθθθL L y y L L x x G EG E速度:⎪⎩⎪⎨⎧⋅⋅-⋅⋅=⋅⋅+⋅⋅-=555666555666cos cos sin sin ωθωθωθωθL L v L L v yx E E 加速度:⎪⎩⎪⎨⎧⋅⋅-⋅⋅+⋅⋅+⋅⋅-=⋅⋅+⋅⋅+⋅⋅-⋅⋅-=5552555666266655525556662666cos sin cos sin sin cos sin cos εθωθεθωθεθωθεθωθL L L L a L L L L a y x E E3.用solideworks 开发4.装备体动画截图5.计算结果 (1):各杆角位移(2):各杆角速度(3)各杆角加速度(4)E点位移(5)E点速度(6)E点加速度(7)E点轨迹6.本次大作业的心得体会:作为一名机械设计制造专业的学生,学好机械原理是非常重要的,而这次通过做机械原理大作业使我受益匪浅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面连杆机构的运动分析
以典型平面连杆机构(牛头刨床机构)为研究对象,首先进行机构的运动分析,并列出相应方程,然后采用计算机C语言编程的方法,计算出机构中选定点的位移、速度,并绘出相关数据图像。

标签:
连杆机构;位移;速度;计算机编程
TB
1 前言
平面连杆机构是现代机械中应用的最为广泛的一种典型机构。

平面连杆机构的典型应用包括牛头刨床机构、缝纫机、颚式破碎机等。

在研究平面连杆机构的过程中对机构上某个特定点的研究是必不可少的。

然而在传统的研究方法中,手工计算不仅计算量大,而且极易出错。

随着计算机技术的广泛普及,计算机逐渐成为分析研究典型机械结构的有力工具。

因此本文力求通过C语言编程技术来对牛头刨床机构来进行简单运动分析。

2 牛头刨床机构运动分析
图1所示的为一牛头刨床。

假设已知各构件的尺寸如表1所示,原动件1以匀角速度ω1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度的变化情况。

角速度变化较为平缓,保证刨头慢速、稳定工作;在220°~340°之间为回程阶段,角速度变化较快,以提高效率;4杆有4个角速度为0点,即4杆的速度方向改变了四次。

C点的位移、速度分析:在0°~200°范围内,C点位移曲线斜率的绝对值变化较小,说明此时C点速度及加速度的变化量不大,且保持在较小值。

200°~260°范围内C点的速度变化量明显增大,由速度图像可以推知加速度在220°左右达到最大值后快速减小,并使其速度在260°左右达到最大,而后加速度反向缓慢增大,速度持续减小到零以后又开始反向增大。

①工作行程为θ1:0°~220°,回程为θ1:220°~340 °;工作行程角度大于回程角度,工作效率较高;
②工作行程阶段,刨头C点位移的变化较为平稳,速度可以近似看为匀速,
而加速度变化不大,刨头受力比较稳定,满足可靠性要求;
③回程阶段不带负载,刨头C点位移的变化较快但平稳,允许较大的速度变化值,可以推知没有刚性冲击,也没有柔性冲击,受力方向及大小改变较大的位置为回程的初始部分,这也体现了牛头刨床急回慢进的特点。

参考文献
[1]陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2013.
[2]濮良贵,纪名刚、陈国定.机械设计[M].北京:高等教育出版社,2013.
[3]王淑仁.机械原理课程设计[M].北京:科学出版社,2009.
[4]姜果清,刘君瑞.C++程序设计[M].北京:清华大学出版社,2010.。

相关文档
最新文档