二次函数-定值问题典型例题
【中考数学压轴题专题突破01】二次函数中的定值问题
【中考压轴题专题突破】二次函数中的定值问题1.在平面直角坐标系xOy中,已知二次函数y=﹣的图象经过点A(2,0)和点B(1,),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.(1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t ≤0)的变化规律为y1=﹣2t.设点C是线段OP的中点,作DC⊥l于点D.①点P运动的过程中,是否为定值,请说明理由;②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=1﹣3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=,求t 的值.2.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B (3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.3.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.4.已知二次函数y=kx2+x+(k是常数).(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=kx2+x+都是y随x的增大而增大,求k应满足的条件及x的取值范围;(3)若抛物线y=kx2+x+与x轴交于A(x A,0)、B(x B,0)两点,且x A<x B,x A2+x B2=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于Q1(x1,y1)、Q2(x2,y2)两点,试探究是否为定值,并写出探究过程.5.如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),且抛物线的对称轴为直线x=.(1)直接写出b的值及点A的坐标;(2)∠BAC的平分线交y轴于点D,过点D的直线l与射线AC,AB分别交于点M,N.①直接写出:+=;②当直线l绕点D旋转时,+是否为定值,若是,求出这个值,若不是,说明理由.6.如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C 出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A 点时,点S停止运动.设运动时间为t秒.(1)求二次函数的解析式;(2)设△TSC的面积为S,求S关于t的函数解析式;(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.【中考压轴题专题突破】二次函数中的定值问题参考答案与试题解析1.解:(1)由题意得,解得.故二次函数解析式为y=﹣x2+1.(2)①=,理由如下,将P点纵坐标代入(1)的解析式,得:﹣2t═﹣x2+1,x=,∴点P坐标(,),∴OP中点C的坐标(,),∴CD=1﹣()=,OP==2t+,∴OP=2CD∴=.②∵圆心到直线l的距离d=|﹣(1﹣3t)|=|2t﹣|,半径r=OP=t+,EF=,又∵()2+d2=r2,∴+(2t﹣)2=(t+)2,解得t=1或,∴t=1或时,以OP为直径作⊙C,l与⊙C的交点为E、F,EF=.2.解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2+2x+3.(2)当n=0时,点D的坐标为(0,3),点E的坐标为(t,﹣t2+2t+3),点F的坐标为(4,﹣5).设直线DF的函数表达式为y=kx+a(k≠0),将D(0,3),F(4,﹣5)代入y=kx+a,得:,解得:,∴直线DF的函数表达式为y=﹣2x+3.过点E作EQ∥y轴,交直线DF于点Q,如图1所示.∵点E的坐标为(t,﹣t2+2t+3),∴点Q的坐标为(t,﹣2t+3),∴EQ=﹣t2+2t+3﹣(﹣2t+3)=﹣t2+4t,∴S=EQ•(x F﹣x D)=﹣2t2+8t=﹣2(t﹣2)2+8.∵﹣2<0,∴当t=2时,S取最大值,最大值为8.(3)当n取不同数值时,S的值不变.过点DM∥y轴,过点F作FM∥x轴,交直线DM于点M,过点E作EN⊥FM于点N,交直线DF于点G,如图2所示.当t=2时,点D的坐标为(n,﹣n2+2n+3),点E的坐标为(n+2,﹣n2﹣2n+3),点F 的坐标为(n+4,﹣n2﹣6n﹣5),∴点M的坐标为(n,﹣n2﹣6n﹣5),点N的坐标为(n+2,﹣n2﹣6n﹣5),∴DM=8n+8,EN=4n+8,MN=2,NF=2,∴S=S梯形DMNE+S△ENF﹣S△DMF,=MN•(DM+EN)+NF•EN﹣DM•MF,=12n+16+4n+8﹣16n﹣16,=8.∴当n取不同数值时,S的值永远为8.3.解:(1)y=x2﹣4x+5=(x﹣2)2+1,即顶点坐标为(2,1),当x=2时,y=﹣3x+5=﹣1≠1,故一次函数y=﹣3x+5和二次函数y=x2﹣4x+5不是“丘比特函数组”;(2)设:二次函数的顶点为:(m,m+2),将顶点坐标代入二次函数y=2x2﹣3x﹣4得:m+2=2m2﹣3m﹣4,解得:m=3或﹣1,当m=3时,函数顶点为(3,5),一次函数y=x+2与y轴的交点为:(0,2),则二次函数表达式为:y=a(x﹣3)2+5=a(x2﹣6x+9)+5,即:9a+5=2,解得:a=﹣,故:抛物线的表达式为:y=﹣x2+2x+2;同理当m=﹣1时,抛物线的表达式为:y=x2+2x+2,综上,抛物线的表达式为:y=﹣x2+2x+2或y=x2+2x+2;(3)是定值,理由:令y=x2﹣2x﹣4=0,则x=1±,故当﹣3≤x≤﹣1时,x=﹣1时函数取得最小值,即a=1+2﹣4=﹣1,设抛物线的顶点为P(m,2m+3),则“丘比特函数组”另外一个交点为Q(x,y),则抛物线的表达式为:y=a(x﹣m)2+(2m+3)=﹣(x﹣m)2+(2m+3),由题意得:﹣(x﹣m)2+(2m+3)=2x+3,整理得:x2+(2﹣2m)x+(m2﹣2m)=0,由韦达定理得:x+m=2m﹣2,解得:x=m﹣2,故点Q(m﹣2,2m﹣1),则PQ==2,为定值.4.解:(1)∵二次函数y=kx2+x+与x轴有两个不同的交点,∴,解得k<且k≠0.(2)设反比例函数解析式为y=,∵经过点(1,k),∴m=k,∵反比例函数和二次函数y=kx2+x+都是y随x的增大而增大,∴k<0,∵对称轴x=﹣=﹣,根据二次函数以及反比例函数的性质可知:当x<0或0<x<﹣时,y随x的增大而增大.(3)结论:=1.理由:令y=0,则有kx2+x+=0,∴x A+x B=﹣,x A•x B=,∵x A2+x B2=34,∴(x A+x B)2﹣2x A•x B=34,∴()2﹣﹣34=0,解得k=﹣或由(1)可知k<,∴k=﹣,∴抛物线解析式为y=﹣x2+x+,设过点P的直线为y=kx+b,把P(1,3)代入得3=k+b,∴b=3﹣k,∴过点P的直线为y=kx+3﹣k,∵过点P的直线为y=kx+3﹣k与物线交于Q1(x1,y1)、Q2(x2,y2)两点,∴y1=kx1+3﹣k,y2=kx2+3﹣k,由消去y得x2+(4k﹣2)x﹣3﹣4k=0,∴x1+x2=﹣(4k﹣2),x1x2=﹣3﹣4k,∴=====1.5.解:(1)∵抛物线的对称轴为直线x=,∴﹣=,解得b=,将点C(0,3)代入y=﹣x2+bx+c得c=3,所以,y=﹣x2+x+3,令y=0,则﹣x2+x+3=0,整理得,x2﹣2x﹣9=0,解得x1=﹣,x2=3,所以,点A的坐标为(﹣,0);(2)①∵A的坐标为(﹣,0),∴AO=,∵点C(0,3),∴OC=3,根据勾股定理得,AC===2,所以,+=+=+=;故答案为:.②+为定值.理由如下:如图,过点D作DE∥AC交x轴于E,则∠ADE=∠CAD,∵∠BAC的平分线交y轴于点D,∴∠CAD=∠OAD,∴∠OAD=∠ADE,∴DE=AE,∵DE∥AC,∴△NED∽△ANM,∴=,由图可知,EN=AN﹣AE,∴===1﹣,∴1﹣=,整理得,+=,∵tan∠BAC===,∴∠BAC=60°,∵∠BAC的平分线与y轴相交于点D,∴∠DAO=∠BAC=×60°=30°,∴DO=AO•tan∠DAO=×tan30°=×=1,∵DE∥AC,∴∠DEO=∠BAC=60°,∴DE=DO÷sin∠DEO=1÷sin60°=1÷,∴=,∴+=.6.解:(1)∵y=ax2+bx+c的顶点是(0,﹣),∴抛物线的对称轴是y轴,∴b=0,故可设抛物线的解析式是:y=ax2﹣,又∵三角形ABC是等边三角形,且有CO⊥AB,CO=∴AO=1,∴A(﹣1,0)把点A代入y=ax2﹣,得a=∴抛物线的解析式是y=x2﹣.(2)当0<t<1时,OT=1﹣t,CS=t;∴S=OT•CS=(1﹣t)t=﹣t2+t;当1<t<2时,OT=t﹣1,CS=t;∴S=OT•CS=(t﹣1)t=t2﹣t;综上,S与t的函数关系式为:S=.(3)当0<t<1,(如图1)过D作DH⊥y轴,显然有TB=TE,又∠B=60度,∴三角形TBE为等边三角形,∴BE=TB=t,∵△SDH∽△STO,设DH=a,则有,即,∴a=,∴DC=1﹣t,∴DE=CB﹣EB﹣DC=2﹣t﹣(1﹣t)=1.当1<t<2,(如图2)同理,△SDH∽△STO,即有,a=,DC=t﹣1,∴DE=DC+CE=t﹣1+(2﹣t)=1.。
二次函数——定值问题
专题九:二次函数之定值问题坐标为定值例题 1 :抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y 轴交于点C.(1)如图1,若OB=2OA=2OC①求抛物线的解析式;②若M 是第一象限抛物线上一点,若cos∠MAC=,求M 点坐标.(2)如图2,直线 E F∥x轴与抛物线相交于E、F两点,P为 E F下方抛物线上一点,且P(m,﹣2).若∠EPF=90°,则 E F所在直线的纵坐标是否为定值,请说明理由.练习1 .如图1,抛物线y=(x﹣m)2的顶点A在x轴正半轴上,交y轴于 B 点,S△OAB=1.1)求抛物线的解析式;(2)如图2,P 是第一象限内抛物线上对称轴右侧一点,过P 的直线L与抛物线有且只有一个公共点,L交抛物线对称轴于C点,连PB交对称轴于 D 点,若∠ BAO=∠ PCD,求证:AC=2AD;(3)如图3,以 A 为顶点作直角,直角边分别与抛物线交于M、N 两点,当直角∠ MAN绕A点旋转时,求证:MN 始终经过一个定点,并求出该定点的坐标.线段之和为定值例题 1 :如图,抛物线 y = x 2 + bx + c 交 x 轴于 A 、 B 两点,其中点 A 坐在抛物线上且满足 ∠PAB= 2∠ACO.求点 P 的 坐标;3)如图②,点 Q 为 x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ 、BQ 分别交抛物线的对称轴于点 M 、N .请问 DM+ DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由 .2)如图①,连接 AC ,点 P 1)求抛物线的函数表达式;C(0,-3) .练习 1 :抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x 轴下方.(1)若P(1,﹣3)、B(4,0),①求该抛物线的解析式;②若 D 是抛物线上一点,满足∠ DPO=∠POB,求点D的坐标;(2)如图,在(1)中的抛物线解析式不变的条件下,已知直线PA、PB与y 轴分别交于E、F两点,点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.面积为定值例题 1 :如图,已知抛物线交x轴于A.B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点 D 为抛物线的顶点.(1)求抛物线的解析式;(2)P 为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P 点坐标;(3)若抛物线上有且仅有三个点M 1、M2、M 3使得△ M1BC、△M2BC、△M3BC 的面积均为定值S,求出定值S及M1、M2、M3 这三个点的坐标.练习 1 . 已知关于x 的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x 轴交于不同的两点A、B,点A的坐标是(1,0)(1)求 c 的值;(2)求 a 的取值范围;(3)该二次函数的图象与直线y=1交于C、D 两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△ PCD的面积为S1,△ PAB的面积为S2,当0<a<1 时,求证:S1- S2 为常数,并求出该常数。
【中考数学压轴题专题突破01】二次函数中的定值问题
【中考压轴题专题突破】二次函数中的定值问题1.在平面直角坐标系xOy中,已知二次函数y=﹣的图象经过点A(2,0)和点B(1,),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.(1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t ≤0)的变化规律为y1=﹣2t.设点C是线段OP的中点,作DC⊥l于点D.①点P运动的过程中,是否为定值,请说明理由;②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=1﹣3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=,求t 的值.2.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B (3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.3.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.4.已知二次函数y=kx2+x+(k是常数).(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=kx2+x+都是y随x的增大而增大,求k应满足的条件及x的取值范围;(3)若抛物线y=kx2+x+与x轴交于A(x A,0)、B(x B,0)两点,且x A<x B,x A2+x B2=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于Q1(x1,y1)、Q2(x2,y2)两点,试探究是否为定值,并写出探究过程.5.如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),且抛物线的对称轴为直线x=.(1)直接写出b的值及点A的坐标;(2)∠BAC的平分线交y轴于点D,过点D的直线l与射线AC,AB分别交于点M,N.①直接写出:+=;②当直线l绕点D旋转时,+是否为定值,若是,求出这个值,若不是,说明理由.6.如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C 出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A 点时,点S停止运动.设运动时间为t秒.(1)求二次函数的解析式;(2)设△TSC的面积为S,求S关于t的函数解析式;(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.【中考压轴题专题突破】二次函数中的定值问题参考答案与试题解析1.解:(1)由题意得,解得.故二次函数解析式为y=﹣x2+1.(2)①=,理由如下,将P点纵坐标代入(1)的解析式,得:﹣2t═﹣x2+1,x=,∴点P坐标(,),∴OP中点C的坐标(,),∴CD=1﹣()=,OP==2t+,∴OP=2CD∴=.②∵圆心到直线l的距离d=|﹣(1﹣3t)|=|2t﹣|,半径r=OP=t+,EF=,又∵()2+d2=r2,∴+(2t﹣)2=(t+)2,解得t=1或,∴t=1或时,以OP为直径作⊙C,l与⊙C的交点为E、F,EF=.2.解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2+2x+3.(2)当n=0时,点D的坐标为(0,3),点E的坐标为(t,﹣t2+2t+3),点F的坐标为(4,﹣5).设直线DF的函数表达式为y=kx+a(k≠0),将D(0,3),F(4,﹣5)代入y=kx+a,得:,解得:,∴直线DF的函数表达式为y=﹣2x+3.过点E作EQ∥y轴,交直线DF于点Q,如图1所示.∵点E的坐标为(t,﹣t2+2t+3),∴点Q的坐标为(t,﹣2t+3),∴EQ=﹣t2+2t+3﹣(﹣2t+3)=﹣t2+4t,∴S=EQ•(x F﹣x D)=﹣2t2+8t=﹣2(t﹣2)2+8.∵﹣2<0,∴当t=2时,S取最大值,最大值为8.(3)当n取不同数值时,S的值不变.过点DM∥y轴,过点F作FM∥x轴,交直线DM于点M,过点E作EN⊥FM于点N,交直线DF于点G,如图2所示.当t=2时,点D的坐标为(n,﹣n2+2n+3),点E的坐标为(n+2,﹣n2﹣2n+3),点F 的坐标为(n+4,﹣n2﹣6n﹣5),∴点M的坐标为(n,﹣n2﹣6n﹣5),点N的坐标为(n+2,﹣n2﹣6n﹣5),∴DM=8n+8,EN=4n+8,MN=2,NF=2,∴S=S梯形DMNE+S△ENF﹣S△DMF,=MN•(DM+EN)+NF•EN﹣DM•MF,=12n+16+4n+8﹣16n﹣16,=8.∴当n取不同数值时,S的值永远为8.3.解:(1)y=x2﹣4x+5=(x﹣2)2+1,即顶点坐标为(2,1),当x=2时,y=﹣3x+5=﹣1≠1,故一次函数y=﹣3x+5和二次函数y=x2﹣4x+5不是“丘比特函数组”;(2)设:二次函数的顶点为:(m,m+2),将顶点坐标代入二次函数y=2x2﹣3x﹣4得:m+2=2m2﹣3m﹣4,解得:m=3或﹣1,当m=3时,函数顶点为(3,5),一次函数y=x+2与y轴的交点为:(0,2),则二次函数表达式为:y=a(x﹣3)2+5=a(x2﹣6x+9)+5,即:9a+5=2,解得:a=﹣,故:抛物线的表达式为:y=﹣x2+2x+2;同理当m=﹣1时,抛物线的表达式为:y=x2+2x+2,综上,抛物线的表达式为:y=﹣x2+2x+2或y=x2+2x+2;(3)是定值,理由:令y=x2﹣2x﹣4=0,则x=1±,故当﹣3≤x≤﹣1时,x=﹣1时函数取得最小值,即a=1+2﹣4=﹣1,设抛物线的顶点为P(m,2m+3),则“丘比特函数组”另外一个交点为Q(x,y),则抛物线的表达式为:y=a(x﹣m)2+(2m+3)=﹣(x﹣m)2+(2m+3),由题意得:﹣(x﹣m)2+(2m+3)=2x+3,整理得:x2+(2﹣2m)x+(m2﹣2m)=0,由韦达定理得:x+m=2m﹣2,解得:x=m﹣2,故点Q(m﹣2,2m﹣1),则PQ==2,为定值.4.解:(1)∵二次函数y=kx2+x+与x轴有两个不同的交点,∴,解得k<且k≠0.(2)设反比例函数解析式为y=,∵经过点(1,k),∴m=k,∵反比例函数和二次函数y=kx2+x+都是y随x的增大而增大,∴k<0,∵对称轴x=﹣=﹣,根据二次函数以及反比例函数的性质可知:当x<0或0<x<﹣时,y随x的增大而增大.(3)结论:=1.理由:令y=0,则有kx2+x+=0,∴x A+x B=﹣,x A•x B=,∵x A2+x B2=34,∴(x A+x B)2﹣2x A•x B=34,∴()2﹣﹣34=0,解得k=﹣或由(1)可知k<,∴k=﹣,∴抛物线解析式为y=﹣x2+x+,设过点P的直线为y=kx+b,把P(1,3)代入得3=k+b,∴b=3﹣k,∴过点P的直线为y=kx+3﹣k,∵过点P的直线为y=kx+3﹣k与物线交于Q1(x1,y1)、Q2(x2,y2)两点,∴y1=kx1+3﹣k,y2=kx2+3﹣k,由消去y得x2+(4k﹣2)x﹣3﹣4k=0,∴x1+x2=﹣(4k﹣2),x1x2=﹣3﹣4k,∴=====1.5.解:(1)∵抛物线的对称轴为直线x=,∴﹣=,解得b=,将点C(0,3)代入y=﹣x2+bx+c得c=3,所以,y=﹣x2+x+3,令y=0,则﹣x2+x+3=0,整理得,x2﹣2x﹣9=0,解得x1=﹣,x2=3,所以,点A的坐标为(﹣,0);(2)①∵A的坐标为(﹣,0),∴AO=,∵点C(0,3),∴OC=3,根据勾股定理得,AC===2,所以,+=+=+=;故答案为:.②+为定值.理由如下:如图,过点D作DE∥AC交x轴于E,则∠ADE=∠CAD,∵∠BAC的平分线交y轴于点D,∴∠CAD=∠OAD,∴∠OAD=∠ADE,∴DE=AE,∵DE∥AC,∴△NED∽△ANM,∴=,由图可知,EN=AN﹣AE,∴===1﹣,∴1﹣=,整理得,+=,∵tan∠BAC===,∴∠BAC=60°,∵∠BAC的平分线与y轴相交于点D,∴∠DAO=∠BAC=×60°=30°,∴DO=AO•tan∠DAO=×tan30°=×=1,∵DE∥AC,∴∠DEO=∠BAC=60°,∴DE=DO÷sin∠DEO=1÷sin60°=1÷,∴=,∴+=.6.解:(1)∵y=ax2+bx+c的顶点是(0,﹣),∴抛物线的对称轴是y轴,∴b=0,故可设抛物线的解析式是:y=ax2﹣,又∵三角形ABC是等边三角形,且有CO⊥AB,CO=∴AO=1,∴A(﹣1,0)把点A代入y=ax2﹣,得a=∴抛物线的解析式是y=x2﹣.(2)当0<t<1时,OT=1﹣t,CS=t;∴S=OT•CS=(1﹣t)t=﹣t2+t;当1<t<2时,OT=t﹣1,CS=t;∴S=OT•CS=(t﹣1)t=t2﹣t;综上,S与t的函数关系式为:S=.(3)当0<t<1,(如图1)过D作DH⊥y轴,显然有TB=TE,又∠B=60度,∴三角形TBE为等边三角形,∴BE=TB=t,∵△SDH∽△STO,设DH=a,则有,即,∴a=,∴DC=1﹣t,∴DE=CB﹣EB﹣DC=2﹣t﹣(1﹣t)=1.当1<t<2,(如图2)同理,△SDH∽△STO,即有,a=,DC=t﹣1,∴DE=DC+CE=t﹣1+(2﹣t)=1.。
二次函数-定值问题典型例题
二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:m 1 2 3由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.考点:二次函数综合题分析:猜想与证明:把P点的纵坐标分别代入C1、C2的解析式就可以AB、CD的值,就可以求出结论,从而发现规律得出对任意m(m>0)将y=m2代入两个二次函数的解析式就可以分别表示出AB与CD的值,从而得出均有=;探究与证明:(1)由条件可以得出△AOB与△CQD高相等,就可以得出面积之比等于底之比而得出结论;(2)分两种情况讨论,当△AOB为等腰直角三角形时,可以求出m的值就可以求出△AOB的面积,从而求出△CQD的面积,就可以求出其差,当△CQD为等腰直角三角形时,可以求出m的值就可以求出△CDQ的面积,进而可以求出结论;联想与拓展:由猜想与证明可以得知A、D的坐标,可以求出F、E的纵坐标,从而可以求出AE、DF的值,由三角形的面积公式分别表示出△MAE与△MDF面积,就可以求出其比值.解答:解:猜想与证明:当m=1时,1=x2,1=x2,∴x=±2,x=±3,∴AB=4,CD=6,∴;当m=2时,4=x2,4=x2,∴x=±4,x=±6,∴AB=8,CD=12,∴;当m=3时,9=x2,9=x2,∴x=±6,x=±9,∴AB=12,CD=18,∴;∴填表为m 1 2 3对任意m(m>0)均有=.理由:将y=m2(m>0)代入y=x2,得x=±2m,∴A(﹣2m,m2),B(2m,m2),∴AB=4m.将y=m2(m>0)代入y=x2,得x=±3m,∴C(﹣3m,m2),D(3m,m2),∴CD=6m.∴,∴对任意m(m>0)均有=;探究与运用:(1)∵O、Q关于直线CD对称,∴PQ=OP.∵CD∥x轴,∴∠DPQ=∠DPO=90°.∴△AOB与△CQD的高相等.∵=,∴AB=CD.∵S△AOB=AB•PO,S△CQD=CD•PQ,∴=,(2)当△AOB为等腰直角三角形时,如图3,∴PO=PB=m2,AB=2OP∴m2=m4,∴4m2=m4,∴m1=0,m2=﹣2,m3=2.∵m>0,∴m=2,∴OP=4,AB=8,∴PD=6,CD=12.∴S△AOB==16∴S△CQD==24,∴S△CQD﹣S△AOB=24﹣16=8.当△CQD是等腰直角三角形时,如图4,∴PQ=PO=PD=m2,CD=2QP∴m2=m4,∴9m2=m4,∴m1=0,m2=﹣3,m3=3.∵m>0,∴m=3,∴OP=6,AB=12,∴PQ=9,CD=18.∴S△AOB==54∴S△CQD==81,∴S△CQD﹣S△AOB=81﹣54=27;联想与拓展由猜想与证明可以得知A(﹣2m,m2),D(3m,m2),∵AE∥y轴,DF∥y轴,∴E点的横坐标为﹣2m,F点的横坐标为3m,∴y=(﹣2m)2,y=(3m)2,∴y=m2,y=m2,∴E(﹣2m,m2),F(3m,m2),∴AE=m2﹣m2=m2,DF=m2﹣m2=m2.S△AEM=×m2•2m=m3,S△DFM=m2•3m=m3.∴=.故答案为:;;.点评:本题考出了对称轴为y轴的抛物线的性质的运用,由特殊到一般的数学思想的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,轴对称的性质的运用,在解答本题时运用两个抛物线上的点的特征不变建立方程求解是关键.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.考点:二次函数综合题.专题:代数几何综合题.分析:(1)设抛物线C2,(a≠0),然后把点(0,)代入求出a的值,再化1的顶点式形式y=a(x﹣1)为一般形式即可;(2)先根据m的值求出直线AB与x轴的距离,从而得到点B、C的纵坐标,然后利用抛物线解析式求出点C的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出点A的坐标,然后根据平移的性质设出抛物线C2的解析式,再把点A的坐标代入求出h的值即可;(3)先把直线AB与x轴的距离是m2代入抛物线C1的解析式求出C的坐标,从而求出CE,再表示出点A的坐标,根据抛物线的对称性表示出ED,根据平移的性质设出抛物线C2的解析式,把点A的坐标代入求出h的值,然后表示出EF,最后根据锐角的正切值等于对边比邻边列式整理即可得证.解答:(1)解:设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),∵抛物线过点(0,),∴a(0﹣1)2=,解得a=,∴抛物线C1的解析式为y=(x﹣1)2,一般形式为y=x2﹣x+;(2)解:当m=2时,m2=4,∵BC∥x轴,∴点B、C的纵坐标为4,∴(x﹣1)2=4,解得x1=5,x2=﹣3,∴点B(﹣3,4),C(5,4),∵点A、C关于y轴对称,∴点A的坐标为(﹣5,4),设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣5﹣1)2﹣h=4,解得h=5;(3)证明:∵直线AB与x轴的距离是m2,∴点B、C的纵坐标为m2,∴(x﹣1)2=m2,解得x1=1+2m,x2=1﹣2m,∴点C的坐标为(1+2m,m2),又∵抛物线C1的对称轴为直线x=1,∴CE=1+2m﹣1=2m,∵点A、C关于y轴对称,∴点A的坐标为(﹣1﹣2m,m2),∴AE=ED=1﹣(﹣1﹣2m)=2+2m,设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣1﹣2m﹣1)2﹣h=m2,解得h=2m+1,∴EF=h+m2=m2+2m+1,∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,∴tan∠EDF﹣tan∠ECP=.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,二次函数图象与结合变换,关于y轴对称的点的坐标特征,抛物线上点的坐标特征,锐角的正切的定义,(3)用m表示出相应的线段是解题的关键,也是本题的难点.【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.3718684专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB=35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,35AB =5sin OAB ∠=5sin 3535BD AB OAB ∴=∠==. 又由勾股定理, 得2222(35)36AD AB BD =-=-=.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.y F P 3BEC D A P 2P 1O∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
二次函数-定值问题典型例题
二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.,再根据x=代入y=与抛物线的图象上;++,根据两角对应相等的两三角=,即可证明﹣(﹣)﹣(﹣,x=y=x y=)与抛物线)在反比例函数++y=kx+8=x+++++,++,OFB=90 =,=【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.出均有=x1=x4=x9==.xx,)均有==,AB==CD=,m==m==(﹣(m y=m m﹣m2=m m m =m2m==m=.故答案为:;;.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.)代入求出),a=y=y=x+;(y=(﹣(y=(﹣ECP=﹣﹣=﹣,ECP=【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.的长,然后代入+x x,然后表示出+,,x,AO=mAM=+=+x x +==,+=取何值,++是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,AB =sin OAB ∠=sin 3BD AB OAB ∴=∠==. 又由勾股定理,得6AD ===.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
二次函数专题 定值问题
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B ,D两点间的一个动点(点P不与B、D两点重合),PA,PB 与直线DE分别交于点F,G,当点P运动时,EF+EG是否 为定值?若是,试求出该定值;若不是,请说明理由.
EF+EG=8
练习2:如图,已知抛物线交x轴于A,B两点,交y轴于C 点,A点坐标为(-1,0),OC=2,OB=3,点D为抛物 线的顶点. (1)求抛物线的解析式;
OE OF 2 OC
(3)直线l过点G(0,-2)且平行于x轴.若D为抛物线y=ax2 +c(a≠0)上的一个动点,点D到直线l 的距离记为d,试 判断d=DO是否恒成立,并说明理由.
d=DO 恒成立
(4)直线y=kx交抛物线于E,F两点,过E,F两点分别作 直线l∶y=-2的垂线,垂足分别为点M,N.试说明无论k 取何值, 1 1 的值都等于同一个常数.
EM FN
1 1 1 EM FN
练习:如图,在平面直角坐标系中,抛物线y=ax2+bx+ c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1, 与y轴交于C(0,3),抛物线的顶点坐标为D(-1,4). (1)求A,B两点的坐标; (2)求抛物线的解析式;
(1)A(-3,0),B(1,0)
二次函数专题
(七)+c(a≠0)经过B(2,0), C(0,-1)两点; (1)求抛物线的解析式.
y 1 x2 1 4
(2)如图2,已知P是x轴下方的抛物线上的一个动点,直线 PA,PB与y轴分别交于E,F两点.当点P运动时,O E O F是
OC
否为定值?若是,试求出该定值;若不是,请说明理由.
y2x2 4x3 33
(2)P为坐标平面内一点,以B,C,D,P为顶点的四边形 是平行四边形,求P点坐标;
二次函数——定值问题
专题九:二次函数之定值问题坐标为定值例题 1 :抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y 轴交于点C.(1)如图1,若OB=2OA=2OC①求抛物线的解析式;②若M 是第一象限抛物线上一点,若cos∠MAC=,求M 点坐标.(2)如图2,直线 E F∥x轴与抛物线相交于E、F两点,P为 E F下方抛物线上一点,且P(m,﹣2).若∠EPF=90°,则 E F所在直线的纵坐标是否为定值,请说明理由.练习1 .如图1,抛物线y=(x﹣m)2的顶点A在x轴正半轴上,交y轴于 B 点,S△OAB=1.1)求抛物线的解析式;(2)如图2,P 是第一象限内抛物线上对称轴右侧一点,过P 的直线L与抛物线有且只有一个公共点,L交抛物线对称轴于C点,连PB交对称轴于 D 点,若∠ BAO=∠ PCD,求证:AC=2AD;(3)如图3,以 A 为顶点作直角,直角边分别与抛物线交于M、N 两点,当直角∠ MAN绕A点旋转时,求证:MN 始终经过一个定点,并求出该定点的坐标.线段之和为定值例题 1 :如图,抛物线 y = x 2 + bx + c 交 x 轴于 A 、 B 两点,其中点 A 坐在抛物线上且满足 ∠PAB= 2∠ACO.求点 P 的 坐标;3)如图②,点 Q 为 x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ 、BQ 分别交抛物线的对称轴于点 M 、N .请问 DM+ DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由 .2)如图①,连接 AC ,点 P 1)求抛物线的函数表达式;C(0,-3) .练习 1 :抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x 轴下方.(1)若P(1,﹣3)、B(4,0),①求该抛物线的解析式;②若 D 是抛物线上一点,满足∠ DPO=∠POB,求点D的坐标;(2)如图,在(1)中的抛物线解析式不变的条件下,已知直线PA、PB与y 轴分别交于E、F两点,点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.面积为定值例题 1 :如图,已知抛物线交x轴于A.B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点 D 为抛物线的顶点.(1)求抛物线的解析式;(2)P 为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P 点坐标;(3)若抛物线上有且仅有三个点M 1、M2、M 3使得△ M1BC、△M2BC、△M3BC 的面积均为定值S,求出定值S及M1、M2、M3 这三个点的坐标.练习 1 . 已知关于x 的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x 轴交于不同的两点A、B,点A的坐标是(1,0)(1)求 c 的值;(2)求 a 的取值范围;(3)该二次函数的图象与直线y=1交于C、D 两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△ PCD的面积为S1,△ PAB的面积为S2,当0<a<1 时,求证:S1- S2 为常数,并求出该常数。
方法必备07二次函数中定值、定点问题(8类题型)原卷版
方法必备07二次函数中定值、定点问题(8类题型)题型一面积(面积比)定值题型二线段(线段比)定值题型三线段和差倍定值题型四线段乘积为定值题型五横(纵)坐标定值题型六其它定值问题题型七结合韦达定理求定点题型八直线过定点题型一面积(面积比)定值1.(2023•花都区二模)已知,抛物线22(22)2y x m x m m =-+++与x 轴交于A ,B 两点(A 在B 的左侧).(1)当0m =时,求点A ,B 坐标;(2)若直线y x b =-+经过点A ,且与抛物线交于另一点C ,连接AC ,BC ,试判断ABC ∆的面积是否发生变化?若不变,请求出ABC ∆的面积;若发生变化,请说明理由;(3)当5221m x m --时,若抛物线在该范围内的最高点为M ,最低点为N ,直线MN 与x 轴交于点D ,且3MD ND=,求此时抛物线的解析式.2.(2023•兴化市一模)已知抛物线2(0)y ax a =>经过第二象限的点A ,过点A 作//AB x 轴交抛物线于点B ,第一象限的点C 为直线AB 上方抛物线上的一个动点.过点C 作CE AB ⊥于E ,连接AC 、BC .(1)如图1,若点(1,1)A -,1CE =.①求a 的值;②求证:ACE CBE ∆∆∽.(2)如图2,点D 在线段AB 下方的抛物线上运动(不与A 、B 重合),过点D 作AB 的垂线,分别交AB 、AC 于点F 、G ,连接AD 、BD .若90ADB ∠=︒,求DF 的值(用含有a 的代数式表示).(3)在(2)的条件下,连接BG 、DE ,试判断BGF DBES S ∆∆的值是否随点D 的变化而变化?如果不变,求出S BGF S DBE ∆∆的值,如果变化,请说明理由.题型二线段(线段比)定值3.(2023•绵阳)如图,抛物线经过AOD ∆的三个顶点,其中O 为原点,(2,4)A ,(6,0)D ,点F 在线段AD 上运动,点G 在直线AD 上方的抛物线上,//GF AO ,GE DO ⊥于点E ,交AD 于点I ,AH 平分OAD ∠,(2,4)C --,AH CH ⊥于点H ,连接FH .(1)求抛物线的解析式及AOD ∆的面积;(2)当点F 运动至抛物线的对称轴上时,求AFH ∆的面积;(3)试探究FG GI 的值是否为定值?如果为定值,求出该定值;不为定值,请说明理由.4.(2023•金东区三模)如图,一次函数(0,0)b y x b a b a=-+>>与坐标轴交于A ,B 两点,以A 为顶点的抛物线过点B ,过点B 作y 轴的垂线交该抛物线于另一点D ,以AB ,AD 为边构造ABCD ,延长BC 交抛物线于点E .(1)若2a b ==,如图1.①求该抛物线的表达式.②求点E 的坐标.(2)如图2,请问BE AB是否为定值,若是,请求出该定值;若不是,请说明理由.5.(2023•黑龙江一模)已知,抛物线2y ax bx c =++经过(1,0)A -、(3,0)B 、(0,3)C 三点,点P 是抛物线上一点.(1)求抛物线的解析式;(2)当点P 位于第四象限时,连接AC ,BC ,PC ,若PCB ACO ∠=∠,求直线PC 的解析式;(3)如图2,当点P 位于第二象限时,过P 点作直线AP ,BP 分别交y 轴于E ,F 两点,请问CE CF的值是否为定值?若是,请求出此定值;若不是,请说明理由.题型三线段和差倍定值6.(2023•红桥区三模)已知抛物线22(y ax bx a =++,b 为常数,0)a ≠经过点(1,0)A -,(3,0)B ,与y 轴相交于点C ,其对称轴与x 轴相交于点E .(1)求该抛物线的解析式;(2)连接BC ,在该抛物线上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)Q 为x 轴上方抛物线上的动点,过点Q 作直线AQ ,BQ ,分别交抛物线的对称轴于点M ,N ,点Q 在运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.7.(2023•呼和浩特)探究函数22||4||y x x =-+的图象和性质,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x ⋯52-2-32-1-12-012132252⋯y ⋯52-032m 32032232052-⋯其中,m =.根据如表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;(2)点F 是函数22||4||y x x =-+图象上的一动点,点(2,0)A ,点(2,0)B -,当3FAB S ∆=时,请直接写出所有满足条件的点F 的坐标;(3)在图2中,当x 在一切实数范围内时,抛物线224y x x =-+交x 轴于O ,A 两点(点O 在点A 的左边),点P 是点(1,0)Q 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段OP ,AP (不含端点)于M ,N 两点.当直线l 与抛物线只有一个公共点时,PM 与PN 的和是否为定值?若是,求出此定值;若不是,请说明理由.8.(2023•平遥县一模)综合与探究.如图1,在平面直角坐标系中,已知二次函数224233y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)点P 是二次函数图象上的一个动点,请问是否存在点P 使PCB ABC ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线l ,交x 轴于点D .若点M 是二次函数图象上一动点,且点M 始终位于x 轴上方,作直线AM ,BM ,分别交l 于点E ,F ,在点M 的运动过程中,DE DF +的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.9.(2023•广元)如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)A -,(4,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.10.(2023•扬州)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点(0,0)、(0,2)、(1,1)、(1,1)-中恰有三个点在二次函数2(y ax a =为常数,且0)a ≠的图象上.①a =;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2(y ax a =为常数,且0)a >的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.11.(2023•长汀县模拟)在平面直角坐标系中,抛物线2(0)y ax bx c a =++>经过(2,0)A -,(0,2)B -两点.(1)用含a 的式子表示b ;(2)当2a =时,如图1,点C 是直线AB 下方抛物线上的一个动点,求点C 到直线AB 距离的最大值.(3)当1a =时,如图2,过点1(2P -,2)-的直线交抛物线2(0)y ax bx c a =++>于M ,N .①若//MN x 轴,计算11PM PN +=.②若MN 与x 轴不平行,请你探索11PM PN+是否定值?请说明理由.12.(2023•宿豫区三模)如图,在平面直角坐标系中,一次函数15544y x =+的图象与x 轴交于点A ,与y 轴交于点C ,对称轴为直线2x =的抛物线22(0)y ax bx c a =++≠也经过点A 、点C ,并与x 轴正半轴交于点B .(1)求抛物线22(0)y ax bx c a =++≠的函数表达式;(2)设点25(0,)12E ,点F 在抛物线22(0)y ax bx c a =++≠对称轴上,并使得AEF ∆的周长最小,过点F 任意作一条与y 轴不平行的直线交此抛物线于1(P x ,1)y ,2(Q x ,2)y 两点,试探究11FP FQ +的值是否为定值?说明理由;(3)将抛物线22(0)y ax bx c a =++≠适当平移后,得到抛物线23()(1)y a x h h =->,若当1x m <时,3y x -恒成立,求m的最大值.13.(2023•武侯区校级模拟)如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若(1,0)A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点P 是第四象限内抛物线上的一个点且位于对称轴右侧,分别连接BC 、AP 相交于点G ,当12PBG ABG S S ∆∆=时,求点P 的坐标;(3)如图2,在(2)的条件下,AP 交y 轴于点M ,过M 点的直线l 与线段AB ,AC 分别交于E ,F ,当直线l 绕点M 旋转时,m n AE AF+为定值3,请求出m 和n 的值.14.(2023•丹阳市二模)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点A 、B ,与y 轴相交于点C ,其中B 点的坐标为(3,0),点M 为抛物线上的一个动点.(1)二次函数图象的对称轴为直线1x =.①求二次函数的表达式;②若点M 与点C 关于对称轴对称,则点M 的坐标是;③在②的条件下,连接OM ,在OM 上任意取一点P ,过点P 作x 轴的平行线,与抛物线对称轴左侧的图象交于点Q ,求线段PQ 的最大值.(2)过点M 作BC 的平行线,交抛物线于点N ,设点M 、N 的横坐标为m 、n ,在点M 运动的过程中,试问m n +的值是否会发生改变?若改变,请说明理由;若不变,请求出m n +的值.题型四线段乘积为定值15.(2023•南充)如图1,抛物线23(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点(1,3)K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.题型五横(纵)坐标(坐标和)定值16.(2023•湖北)如图1,在平面直角坐标系xOy 中,已知抛物线26(0)y ax bx a =+-≠与x 轴交于点(2,0)A -,(6,0)B ,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于M ,N 两点(直线l 与BC 不重合),连接CN ,BM ,直线CN 与BM 交于点P .当//MN BC 时,点P 的横坐标是否为定值,请说明理由.17.(2023•清江浦区校级三模)如图,已知抛物线2:23(0)T y ax ax a a =-->与y 轴交于点C ,交x 轴于点A ,B ,且OB OC =.(1)求抛物线T 的解析式;(2)如图1,直线1:(0)2l y x b b =+<交x 轴于点M ,交y 轴于点N ,将MON ∆沿直线l 翻折,得到MPN ∆,点O 的对应点为点P 若点O 的对应点P 恰好落在抛物线上,求b 的值;(3)如图2,点D 是抛物线T 上一动点,连接AD ,并将直线AD 沿x 轴翻折交抛物线T 于点E .设点D 的横坐标为D x ,点E 的横坐标为E x ,试问:D E x x +是否为定值?若为定值,请求出定值;若不是定值,请说明理由.题型六其它定值问题18.(2023•宿豫区二模)阅读下列材料:在九年级下册“5.2二次函数的图象和性质”课时学习中,我们发现,函数:2()y a x k h =-+中a 的符号决定图象的开口方向,||a 决定图象的开口大小,为了进一步研究函数的图象和性质,我们作如下规定:如图1,抛物线上任意一点(A )(异于顶点)O 到对称轴的垂线段的长度(AB 的长度)叫做这个点的“勾距”,记作m ;垂足(B )到抛物线的顶点()O 的距离()BO 叫这个点的“股高”,记作h ;点(A )到顶点()O 的距离(AO 的长度)叫这个点的“弦长”,记作l ;过这个点(A )和顶点()O 的直线()AO 与对称轴()BO 相交所成的锐角叫做这个点的“偏角”,记作α.由图1可得,对于函数2(0)y ax a =≠.(1)当勾距m 为定值时,①2||h am =、22(1)l m a m =+;股高和弦长均随a 增大而增大;②1tan ||amα=;偏角随||a 增大而减小;(如:函数23y =中,当1m =时,2||3h am ==22(1)2l m a m =+=、13tan ||30)3am αα===︒(2)当偏角α为定值时,③1||tan m a α=、21||(tan )h a α=、2cos ||(sin )l a αα=,勾距、股高和弦长均随||a 增大而减小;(如:函数2y x =中,当45α=︒时,1||1tan m a α==、21||1(tan )h a α==、2cos ||2)(sin )l a αα==利用以上结论,完成下列任务:如图2:已知以A 为顶点的抛物线211(2)2y x =-与y 轴相交于点B ,若抛物线22()y a x b =-的顶点也是A ,并与直线AB 相交于点C ,与y 轴相交于点D .(1)函数22y x =中,①当1m =时,h =,②当60α=︒时,l =;(2)如图2:以(2,0)A 为顶点作抛物线:211(2)2y x =-和22()y a x b =-,1y 与y 轴相交于点B ,2y 与直线AB 相交于点C ,与y 轴相交于点D ;①当12a >时,设S AC OD =⋅,随a 的取值不同,S 的值是否发生改变,如果不变,请求出S 的值,如果发生改变,请直接写出S 的取值范围;②若点M 在抛物线1y 上,直线AM 与2y 的另一个交点为N ,记BAM ∆的面积为1S ,CAN ∆的面积为2S ,若1249S S =,请求出a 的值.19.(2023•宜都市二模)抛物线234(0)y ax ax ac a =--<与x 轴交于点(1,0)A -和点B ,与y 轴交于点C .(1)写出抛物线的对称轴,并求c 的值;(2)如图1,90ACB ∠=︒,点1(D x ,11)(0)y x <是抛物线上234y ax ax ac =--的动点,直线DO 与抛物线的另一个交点为E ;①若D ,E 关于点O 对称,求D 点坐标;②若点(0,)P m 是y 轴上一点,直线DP 的表达式为11y k x b =+,直线EP 的表达式为22y k x b =+,当12k k +的值是一个定值时,求m 的值.20.(2023•长沙)我们约定:若关于x 的二次函数21111y a x b x c =++与22222y a x b x c =++同时满足22121()||0b b c a +++-=,202312()0b b -≠,则称函数1y 与函数2y 互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数2123y x kx =++与22y mx x n =++互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点(,)P r t 与点(Q s ,)()t r s ≠始终在关于x 的函数212y x rx s =++的图象上运动,函数2y 与1y 互为“美美与共”函数.①求函数2y 的图象的对称轴;②函数2y 的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数21y ax bx c =++与它的“美美与共”函数2y 的图象顶点分别为点A ,点B ,函数1y 的图象与x 轴交于不同两点C ,D ,函数2y 的图象与x 轴交于不同两点E ,F .当CD EF =时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.题型七结合韦达定理求定点21.(2023•汉阳区校级模拟)抛物线2222y x mx m m =-+-+,(0)m >交x 轴于A ,B 两点(A 在B 的左边),C 是抛物线的顶点.(1)当2m =时,直接写出A ,B ,C 三点的坐标;(2)如图1,点D 是对称轴右侧抛物线上一点,COB OCD ∠=∠,求线段CD 长度;(3)如图2,将抛物线平移使其顶点为(0,1),点P 为直线3y x =+上的一点,过点P 的直线PE ,PF 与抛物线只有一个公共点,问直线EF 是否过定点,请说明理由.题型八直线过定点22.(2023•锦江区校级模拟)已知抛物线22y ax ax c =-+与x 轴交于(1,0)A -、B 两点,顶点为P ,与y 轴交于C 点,且ABC ∆的面积为6.(1)求抛物线的对称轴和解析式;(2)平移这条抛物线,平移后的抛物线交y 轴于E ,顶点Q 在原抛物线上,当四边形APQE 是平行四边形时,求平移后抛物线的表达式;(3)若过定点(2,1)K 的直线交抛物线于M 、N 两点(N 在M 点右侧),过N 点的直线2y x b =-+与抛物线交于点G ,求证:直线MG 必过定点.2123.(2023•洪山区校级模拟)如图,已知抛物线21:3C y ax bx =++与x 轴交于A ,B 两点,与y 轴交于C 点,3OB OC OA ==.(1)求抛物线1C 的解析式;(2)如图2,已知点P 为第一象限内抛物线1C 上的一点,点Q 的坐标为(1,0),45POC OCQ ∠+∠=︒,求点P 的坐标;(3)如图3,将抛物线1C 平移到以坐标原点为顶点,记为2C ,点(1,1)T -在抛物线2C 上,过点T 作TM TN ⊥分别交抛物线2C 于M ,N 两点,求证:直线MN过定点,并求出该定点的坐标.。
二次函数中的定值问题
二次函数中的定值问题二次函数定值问题是中考压轴题常考考点,解决二次函数中的定值问题,可以根据特殊位置,特殊点去探求定值是多少,做到心中有数;其次再证明在一般情况下这个结论也成立,在运动变化过程中,应注意分清哪些量是变量,哪些是常量,其中二次函数定值问题常与一次函数结合一起,利用韦达定理解决二次函数中的定值问题是常用的解题思路!例1.抛物线y=ax2﹣6x+c与x轴的交点分别为点A、点B(点A在点B左边),顶点为点D,△ABD为等边三角形.求ac的值例2.如图,已知二次函数y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(A 点在B点左),与y轴交于C点,连接BC,P为对称轴右侧抛物线上的动点,直线PA交y轴于E点,直线PB交y轴于点D,判断的值是否为定值,若是,求出定值,若不是请说明理由.例3.在平面直角坐标系中,抛物线y=﹣x2+(a+1)x﹣a(a>1)交x轴于A、B两点(点A在点B的左边),交y轴于点C.过点B且与抛物线仅有一个交点的直线y=kx+b交y轴于点D,求的值.例4.已知抛物线C1:y=x2﹣1与x轴于A,B两点,与y轴交于点C,点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.例5.如图,抛物线y=x2﹣2x﹣6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点D,E均在抛物线上.点F 在抛物线上,连接DF,求证:直线DF过一定点.解:联立得:,例6.Rt△ABC的三个顶点都在抛物线y=﹣x2+4上,且直角顶点C在该抛物线的顶点处,设直线AB的解析式为y=kx+b,试证明该直线必过一定点.例7.抛物线y=﹣x2+2x+3;与x轴交于点A和点B(点A在原点的左侧),与y 轴交于点C,D为对称轴GT右边抛物线上的任意一点,连接AD,BD分别交GT于M、N两点,试证明MT+NT为定值.例8.如图,抛物线y=﹣x2+3x﹣3;顶点D在x轴上,抛物线与直线l交于A、B两点.∠ADB=90°,求证:直线l经过定点,并求出定点坐标.例10.如图已知抛物线y=x2﹣2x﹣3与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.点N为y轴上一点,AN、BN交抛物线于E、F两点,求•的值.例11.在平面直角坐标系中,已知二次函数y=x2+x+2;的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ 分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.例12.已知y=x2﹣2x﹣3过点A(﹣1,0)和点C(0,﹣3).直线y=kx+k+1与此抛物线交于M、N两点,在抛物线上是否存在定点Q,使得对于任意实数k,都有∠MQN=90°,若存在,求出点Q的坐标,若不存在,请说明理由.例13.如图,抛物线y=x2+x﹣2;与x轴交于A(﹣2,0),B(1,0)两点,与y轴负半轴交于点C.经过定点P作一次函数y=kx+与抛物线交于M,N两点.试探究是否为定值?请说明理由.例14.已知抛物线C1:y=﹣x2+2x+3经过点(2,3),与x轴交于A(﹣1,0)、B两点.平移抛物线C1,使其顶点在y轴上,得到抛物线C2,过定点H(0,2)的直线交抛物线C2于M、N两点,过M、N的直线MR、NR与抛物线C2都只有唯一公共点,求证:R点在定直线上运动.例15.如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.练习1.抛物线y=x2+x﹣2与x轴交于点A、点B(1,0),与y轴交于点C,连接AC,D点为抛物线上第三象限内一动点.过点N(﹣3,0)作y轴的平行线,交AD所在直线于点E,交BD所在直线于点F,在点D的运动过程中,求4NE+NF 的值.2.抛物线与x轴交于点A、B,与y轴交于点C,直线l∥BC,直线l交抛物线于点M、N,直线AM交y轴于点P,直线AN交y轴于点Q,点P、Q的纵坐标为y P,y Q,求证:y P+y Q的值为定值.3.抛物线y=x2﹣2x+1的顶点A在x轴上,与y轴交于点B.P为抛物线对称轴上顶点下方的一点,过点P作直线交抛物线于点E,F,交x轴于点M,求的值.4.抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过点D(0,3)的直线交y=﹣2x于M点,交抛物线于E、F两点,求﹣的值.5.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点交y轴于点C.点P在第四象限的抛物线上,过A,B,P作⊙O1,作PQ⊥x轴于Q,交⊙O于点H,求HQ的值.6.已知抛物线y=x2﹣2x﹣3与x轴正半轴交于点D,M、N为y轴上的两个不同的动点,且OM=ON,射线DM、DN分别与抛物线交于P、Q两点,求的值.7.平面直角坐标系中,已知抛物线y=﹣x2+4x的顶点为A(2,4),且经过坐标原点.若直线y=kx﹣2k+5与抛物线交于M,N两点,点N关于抛物线对称轴的对称点为P,当k<0时,试说明直线MP过一定点Q,并求出点Q的坐标.8.如图,抛物线y=﹣x2+1的顶点C在y轴正半轴上,与x轴交于A、B两点(A 点在B点左边)直线AQ、BP分别交y轴于E、F两点,求OE+OF的值.9.如图,在平面直角坐标系中,抛物线y=x2﹣(m﹣1)x﹣m(其中m>0),交x轴于A、B两点(点A在点B的左侧),交y轴负半轴于点C.平面上一点E(m,2),过点E作任意一条直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.10.已知抛物线y=x2,直线y=kx+2与抛物线交于点E,F,点P是抛物线上的动点,延长PE,PF分别交直线y=﹣2于M,N两点,MN交y轴于Q点,求QM•QN的值.11.如图,过点F(0,2)的直线y=kx+b与抛物线y=x2交于M(x1,y1)和N(x2,y2)两点(M在N的左侧),证明:无论k取何实数,+为定值,并求出该值.12.抛物线y=x2﹣2x﹣3,2,直线y=kx+k+1与抛物线C2交于M、N两点,在抛物线上是否存在定点Q,使得对于任意实数k都有∠MQN=90°?若存在,求点Q的坐标;若不存在,请说明理由.13.抛物线y=﹣x2+2x+3,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,点P是线段BE上的动点(除B、E外),过点P 作x轴的垂线交抛物线于点D.直线AD,BD分别与抛物线对称轴交于M、N 两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.14.抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.15.在平面直角坐标系中,二次函数y=x2﹣x﹣4的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE 的长.16.抛物线y=﹣x2+x+1与x轴交于点A,B.与y轴交于点C.平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.17.如图,在平面直角坐标系xOy中,一次函数y=x+,抛物线y=﹣x2+ x+(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B,若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y 轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请求出结果,如果不是请说明理由.18.已知抛物线y=x2﹣2mx+m2﹣2m(m>2),顶点为点M,抛物线与x轴交于A、B点(点A在点B的左侧),与y轴交于点C.若直线CM交x轴于点N,请求的值.。
中考压轴题二次函数中的最(定)值问题
二次函数中的最(定)值问题【典例1】(2019•宜宾)如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2﹣2x +c 与直线y =kx +b 都经过A (0,﹣3)、B (3,0)两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【点拨】(1)将A (0,﹣3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE =2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),可由S △PAB =12PG ⋅OB ,得到m 的表达式,利用二次函数求最值问题配方即可.【解答】解:(1)∵抛物线y =ax 2﹣2x +c 经过A (0,﹣3)、B (3,0)两点, ∴{9a −6+c =0c =−3, ∴{a =1c =−3, ∴抛物线的解析式为y =x 2﹣2x ﹣3,∵直线y =kx +b 经过A (0,﹣3)、B (3,0)两点, ∴{3k +b =0b =−3,解得:{k =1b =−3, ∴直线AB 的解析式为y =x ﹣3, (2)∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点C 的坐标为(1,﹣4), ∵CE ∥y 轴, ∴E (1,﹣2), ∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN , 设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a ﹣3﹣(a 2﹣2a ﹣3)=﹣a 2+3a ,∴﹣a 2+3a =2,解得:a =2,a =1(舍去), ∴M (2,﹣1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a 2﹣2a ﹣3﹣(a ﹣3)=a 2﹣3a ,∴a 2﹣3a =2, 解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,﹣1)或(3+√172,−3+√172). (3)如图,作PG ∥y 轴交直线AB 于点G , 设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),∴PG =m ﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+3m ,∴S △P AB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =−32(m −32)2+278, ∴当m =32时,△P AB 面积的最大值是278,此时P 点坐标为(32,−154).【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.【典例2】(2019•绵阳)在平面直角坐标系中,将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),OA =1,经过点A 的一次函数y =kx +b (k ≠0)的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,△ABD 的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标; (3)若点P 为x 轴上任意一点,在(2)的结论下,求PE +35P A 的最小值.【点拨】(1)先写出平移后的抛物线解析式,经过点A (﹣1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式; (2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME ﹣S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,则∠BAE =∠HAP =∠HFE ,利用锐角三角函数的定义可得出EP +35AP =FP +HP ,此时FH 最小,求出最小值即可.【解答】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x ﹣1)2﹣2, ∵OA =1,∴点A 的坐标为(﹣1,0),代入抛物线的解析式得,4a ﹣2=0, ∴a =12,∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=﹣1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=﹣2,x 2=4, ∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2, ∴S △ACE =S △AME ﹣S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516,∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,∵E (32,−158),OA =1,∴AG =1+32=52,EG =158,∴AG EG=52158=43,∵∠AGE =∠AHP =90° ∴sin ∠EAG =PHAP =EGAE =35, ∴PH =35AP , ∵E 、F 关于x 轴对称, ∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小, ∵EF =158×2=154,∠AEG =∠HEF , ∴sin∠AEG =sin∠HEF =AGAE =FHEF =45, ∴FH =45×154=3. ∴PE +35P A 的最小值是3.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.【精练1】(2019秋•河北区期末)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一动点,过点P 作y 轴的平行线,交抛物线于点D ,是否存在这样的P 点,使线段PD 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是直线EF 上一动点,M (m ,0)是x 轴一个动点,请直接写出CN +MN +12MB 的最小值以及此时点M 、N 的坐标,直接写出结果不必说明理由.【点拨】(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.【解答】解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=32时,PD最大值为:94;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH表达式中的k值为√33,则直线CH的表达式为:y=−√3x+3,当x=1时,y=3−√3,当y=0时,x=√3,故点N、M的坐标分别为:(1,3−√3)、(√3,0),CN+MN+12MB的最小值=CH=CM+FH=3+3√32.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、点的对称性等,其中(3),本题提供对的采取的用点的对称轴确定线段和的方法,是此类题目的一般方法.【精练2】(2020•郑州模拟)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=−12x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求PDOD的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【点拨】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段PDOD =PFOB,则PF取最大值时,求得PDOD的最大值;(3)(i)点F在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 【解答】解:(1)直线y =x +4与坐标轴交于A 、B 两点, 当x =0时,y =4,x =﹣4时,y =0, ∴A (﹣4,0),B (0,4),把A ,B 两点的坐标代入解析式得,{−4b +c =8c =4,解得,{b =−1c =4,∴抛物线的解析式为y =−12x 2−x +4; (2)如图1,作PF ∥BO 交AB 于点F , ∴△PFD ∽△OBD , ∴PD OD=PF OB,∵OB 为定值, ∴当PF 取最大值时,PD OD有最大值,设P (x ,−12x 2−x +4),其中﹣4<x <0,则F (x ,x +4), ∴PF =y P −y F =−12x 2−x +4−(x +4)=−12x 2−2x , ∵−12<0且对称轴是直线x =﹣2, ∴当x =﹣2时,PF 有最大值, 此时PF =2,PD OD=PF OB=12;(3)∵点C (2,0), ∴CO =2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,{∠HPC=∠OCF ∠PHC=∠COF PC=CF,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴P1(−1+√5,2),P2(−1−√5,2),(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴−12x2−x+4=−x,解得x=2√2(舍去),x=﹣2√2,∴P3(−2√2,2√2),如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴−12x2−x+4=x,解得x=−2+2√3,x=−2−2√3(舍去),∴P4(−2+2√3,−2+2√3),综合以上可得P点坐标为(−2+2√3,−2+2√3),(−2√2,2√2),(−1+√5,2),(−1−√5,2).【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,解题的关键是正确进行分类讨论.【精练3】(2020•武汉模拟)如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则EGHF的值是否为定值,证明你的结论.【点拨】(1)先将抛物线M1:y=﹣x2+4x化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;(2)分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;(3)设将直线OB向下平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作y轴的平行线,过E,F作x轴的平行线,构造相似三角形△GEM与△HFN,可通过相似三角形的性质求出EGHF的值为1.【解答】解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=﹣(x﹣5)2+7=﹣x2+10x﹣18;(2)∵抛物线M1与M2交于点B,∴﹣x2+4x=﹣x2+10x﹣18,解得,x=3,∴B(3,3),将点B(3,3)代入y=kx,得,k=1,∴y OB=x,∵抛物线M2与直线OB交于点C,∴x=﹣x2+10x﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,∴S△PQC=12(6m﹣18)(6﹣m)=﹣3m2+27m﹣54,=﹣3(m−92)2+274,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m−92)2+274中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)GEHF的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1=3+√9+4k2,x2=3−√9+4k2,∴x F=3+√9+4k2,x E=3−√9+4k2,令x﹣k=﹣x2+10x﹣18,解得,x1=9+√9+4k2,x2=9−√9+4k2,∴x H=9+√9+4k2,x G=9−√9+4k2,∴ME=x G﹣x E=9−√9+4k2−3−√9+4k2=3,FN=x H﹣x F=9+√9+4k2−3+√9+4k2=3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN=∠GEM,∠HNF=∠GME=90°,∴△GEM∽△HFN,∴GEHF =EMFN,∴GEHF =EMFN=33=1,∴GEHF的值是定值1.【点睛】本题考查了二次函数的图象平移规律,二次函数的图象及性质,相似三角形的判定与性质等,解题关键是掌握用函数的思想求极值等.【精练4】(2019秋•南岗区期末)如图,抛物线y=ax2﹣11ax+24a交x轴于C,D两点,交y轴于点B(0,449),过抛物线的顶点A作x轴的垂线AE,垂足为点E,作直线BE.(1)求直线BE的解析式;(2)点H为第一象限内直线AE上的一点,连接CH,取CH的中点K,作射线DK交抛物线于点P,设线段EH的长为m,点P的横坐标为n,求n与m之间的函数关系式.(不要求写出自变量m的取值范围);(3)在(2)的条件下,在线段BE上有一点Q,连接QH,QC,线段QH交线段PD于点F,若∠HFD=2∠FDO,∠HQC=90°+12∠FDO,求n的值.【点拨】(1)根据抛物线可得对称轴,可知点E的坐标,利用待定系数法可得一次函数BE的解析式;(2)如图1,作辅助线,构建直角三角形,根据抛物线过点B (0,449),可得a 的值,计算y =0时,x的值可得C 和D 两点的坐标,从而知CD 的值,根据P 的横坐标可表示其纵坐标,根据tan ∠PDM =PMDM=1154(n−3)(n−8)8−n=1154(3−n),tan ∠KDN =KN DN =m2154=2m 15,相等列方程为1154(3−n)=2m 15,可得结论;(3)如图2,延长HF 交x 轴于T ,先根据已知得∠FDO =∠FTO ,由等角的三角函数相等和(2)中的结论得:tan ∠FDO =tan ∠FTO ,则m ET=2m 15,可得ET 和CT 的长,令∠FDO =∠FTO =2α,表示角可得∠TCQ =∠TQC ,则TQ =CT =5, 设Q 的坐标为(t ,−89t +449),根据定理列方程可得:TS 2+QS 2=TQ 2,(2+t )2+(−89t +449)2=52,解得t 1=4729,t 2=1;根据两个t 的值分别求n 的值即可. 【解答】解:(1)∵抛物线y =ax 2﹣11ax +24a , ∴对称轴是:x =−−11a2a =112, ∴E (112,0),∵B (0,449),设直线BE 的解析式为:y =kx +b ,则{112k +b =0b =449,解得:{k =−89b =449, ∴直线BE 的解析式为:y =−89x +449;(2)如图1,过K 作KN ⊥x 轴于N ,过P 作PM ⊥x 轴于M ,∵抛物线y =ax 2﹣11ax +24a 交y 轴于点B (0,449),∴24a =449, ∴a =1154, ∴y =1154x 2−12154x +449=1154(x ﹣3)(x ﹣8), ∴当y =0时,1154(x ﹣3)(x ﹣8)=0,解得:x =3或8, ∴C (3,0),D (8,0), ∴OC =3,OD =8, ∴CD =5,CE =DE =52, ∴P 点在抛物线上, ∴P [n ,1154(n ﹣3)(n ﹣8)],∴PM =1154(n ﹣3)(n ﹣8),DM =8﹣n ,∴tan ∠PDM =PM DM =1154(n−3)(n−8)8−n =1154(3−n),∵AE ⊥x 轴,∴∠KNC =∠HEC =90°, ∴KN ∥EH , ∴CN EN=CK KH=1,∴CN =EN =12CE =54,∴KN =12HE =12m ,ND =154,在△KDN 中,tan ∠KDN 中,tan ∠KDN =KN DN =m2154=2m 15,∴1154(3−n)=2m 15,n =−3655m +3;(3)如图2,延长HF 交x 轴于T ,∵∠HFD =2∠FDO ,∠HFD =∠FDO +∠FTO , ∴∠FDO =∠FTO , ∴tan ∠FDO =tan ∠FTO , 在Rt △HTE 中,tan ∠FTO =EHET , ∴m ET=2m 15,∴ET =152, ∴CT =5,令∠FDO =∠FTO =2α,∴∠HQC =90°+12∠FDO =90°+α,∴∠TQC =180°﹣∠HQC =90°﹣α,∠TCQ =180°﹣∠HTC ﹣∠TQC =90°﹣α, ∴∠TCQ =∠TQC , ∴TQ =CT =5,∵点Q 在直线y =−89x +449上,∴可设Q 的坐标为(t ,−89t +449), 过Q 作QS ⊥x 轴于S ,则QS =−89t +449,TS =2+t , 在Rt △TQS 中,TS 2+QS 2=TQ 2, ∴(2+t )2+(−89t +449)2=52, 解得t 1=4729,t 2=1;①当t =4729时,QS =10029,TS =10529, 在Rt △QTH 中,tan ∠QTS =1002910529=2021,∴2m 15=2021,m =507, ∴n =−3655×507+3=−12977, ②当t =1时,QS =4,TS =3, 在Rt △QTH 中,tan ∠QTS =QS TS =43, ∴2m 15=43,m =10, ∴n =−3655×10+3=−3911. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角函数、平行线分线段成比例定理、解直角三角形等,其中(3),运用方程的思想,求解t 的值,难度很大.【精练5】(2019秋•大东区期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,2√3),连接BC ,位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E ,连接AC ,BC ,P A ,PB ,PC . (1)求抛物线的表达式;(2)如图1,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 点的横坐标; (3)如图1,当直线1运动时,求△PCB 面积的最大值;(4)如图2,抛物线的对称轴交x 轴于点Q ,过点B 作BG ∥AC 交y 轴于点G .点H 、K 分别在对称轴和y 轴上运动,连接PH 、HK ,当△PCB 的面积最大时,请直接写出PH +HK +√32KG 的最小值.【点拨】(1)根据A和B的坐标设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入可得:a=−√34,即可求解;(2)只有当∠P AE=∠ACO时,△PEA△∽AOC,可得方程,解方程可得P的横坐标;(3)如图1,先确定△PCB的面积最大时,PD最大,设P(x,−√34x2+√32x+2√3),D(x,−√32x+2√3),表示PD的长,根据二次函数的最值可得PD的最大值,最后利用三角形面积公式可得结论;(4)由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,求出PM即可解决问题.【解答】解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入得:a=−√3 4,故抛物线的表达式为:y=−√34(x+2)(x﹣4)=−√34x2+√32x+2√3;(2)设P(x,−√34x2+√32x+2√3),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2√3),∴OA=2,OC=2√3,∵l⊥x轴,∴∠PEA =∠AOC =90°, ∵∠P AE ≠∠CAO ,∴只有当∠P AE =∠ACO 时,△PEA ∽△AOC ,此时PEAE=AO OC,即−√34x 2+√32x+2√3x+2=2√3,3x 2﹣2x ﹣16=0, (x +2)(3x ﹣8)=0, x =﹣2(舍)或83,则点P 的横坐标为83;(3)如图1,△PCB 的面积=12⋅PD ⋅OB ,∵OB =4是定值,∴当PD 的值最大时,△PCB 的面积最大, ∵B (4,0),C (0,2√3), 设直线BC 的解析式为:y =kx +b , 则{4k +b =0b =2√3, 解得:{k =−√32b =2√3,∴直线BC 的解析式为:y =−√32x +2√3,设P (x ,−√34x 2+√32x +2√3),D (x ,−√32x +2√3),∴PD =(−√34x 2+√32x +2√3)﹣(−√32x +2√3)=−√34x 2+√3x =−√34(x ﹣2)2+√3,∵−√34<0,∴当x=2时,PD有最大值是√3,此时△PCB的面积=12⋅PD⋅OB=12×√3×4=2√3;(4)如图2中,△AOC中,OA=2,OC=2√3,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4√3,由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,∵P(2,2√3),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4√3,MG=2√3,∴OM=6,可得PM=10,∴PH+HK+√32KG的最小值为10.【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.【精练6】(2016秋•集宁区期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【点拨】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y =x 2+2x ﹣3,当x =0时,y =﹣3,所以点C (0,﹣3),OC =3,令y =0,解得:x =﹣3,或x =1,∴点B (1,0),OB =1,设点P (m ,m 2+2m ﹣3),此时S △POC =12×OC ×|m |=32|m |, S △BOC =12×OB ×OC =32, 由S △POC =4S △BOC 得32|m |=6,解得:m =4或m =﹣4,m 2+2m ﹣3=21,或m 2+2m ﹣3=5,所以点P 的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC 的解析式为:y =kx +b ,把A (﹣3,0),C (0,﹣3)代入得:{0=−3k +b −3=b,解得:{k =−1b =−3, 所以直线AC :y =﹣x ﹣3,设点Q (n ,﹣n ﹣3),点D (n ,n 2+2n ﹣3)所以:DQ =﹣n ﹣3﹣(n 2+2n ﹣3)=﹣n 2﹣3n =﹣(n +32)2+94,所以当n =−32时,DQ 有最大值94. 【点睛】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.【精练7】(2019秋•农安县期末)定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.【点拨】(1)直接根据黄金抛物线的定义写一个解析式即可;(2)①根据平移的知识直接写出新抛物线的解析式;②设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E ,若四边形POP ′C 是菱形,则有PC =PO ,连结PP ′则PE ⊥CO 于E ,P 点的横坐标为﹣1,进而解方程求出x 的值;③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),先求出BC 的直线解析式,进而设Q 点的坐标为(x ,x ﹣2),根据S 四边形OBPC =S △OBC +S △BPQ +S △CPQ 列出x 的二次函数解析式,根据二次函数的性质求出满足条件的P 点坐标以及面积最大值.【解答】解:(1)不唯一,例如:y =x 2+x +1;(2)①:y =x 2﹣x ﹣2;②存在点P ,如图1,使四边形POP ′C 为菱形.设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E若四边形POP ′C 是菱形,则有PC =PO .连结PP ′则PE ⊥CO 于E ,∴OE =EC =1,∴y =﹣1,∴x 2﹣x ﹣2=﹣1解得x 1=1+√52,x 2=1−√52(不合题意,舍去) ∴P 点的坐标为(1+√52,﹣1); ③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),易得,直线BC 的解析式:y =x ﹣2则Q 点的坐标为(x ,x ﹣2).S 四边形OBPC =S △OBC +S △BPQ +S △CPQ=12OB •OC +12QP •OF +12QP •FB =12×2×2+12(−x 2+2x)×2=﹣(x ﹣1)2+3,当x =1时,四边形OBPC 的面积最大此时P 点的坐标为(1,﹣2),四边形OBPC 的面积最大值是3.【点睛】本题主要考查了二次函数的综合题,此题涉及黄金抛物线新定义、菱形的判定与性质、四边形面积的求法等知识,解答此题要掌握黄金抛物线的定义,解答(2)问需要掌握菱形的性质以及分割法求四边形的面积,此题难度不大.。
二次函数常见压轴题目类型
二次函数常见压轴题题目类型 一:定值问题1.如图,直线1y x =+与抛物线222y x mx m m =-++交于A,B 两点(点A 在点B 的左边)。
求证:无论m 为何值,AB 的长总为定值。
2.如图,抛物线243y x x =-+与x 轴交于A,B 两点,与y 轴交于点C,将直线BC 沿y 轴向上平移交抛物线于点M,N ,交y 轴于点P ,求PM PN -的值。
3.如图,已知直线()90y kx k k =-<与抛物线223y x x =--交于A,B 两点,与x 轴交于点P ,过点A 作AC ⊥x 轴于点C,过点B 作BD ⊥x 于点D ,求证:PD PC ⋅为定值。
4.如图,抛物线的顶点坐标为C (0,8),并且经过A (8,0),点P 是抛物线上点A,C 间的一个动点(含端点),过点P 作直线8y =的垂线,垂足为点F,点D ,E 的坐标分别为(0,6),(4,0),连接PD,PE,DE 。
(1)求抛物线的解析式(2)猜想并探究:对于任意一点P ,PD 与PF 的差是否为固定值,如果是,请求出此定值,如果不是,请说明理由。
二.二次函数与角度问题1.如图,抛物线232y x x =-+-与x 交于A,B 两点,与y 轴交于点C ,点P 在抛物线上,∠ACB=∠BCP ,求点P 的坐标物线,且DM 平分∠OME,求点E 的坐标。
3.抛物线2y ax c =+与x 轴交于A 、B 两点,顶点为C,点P 在抛物线上,且位于x 轴的下方。
(1)如图1,若点P (1,3-),B (4,0),①求该抛物线的解析式;②若D 是抛物线上的一点,满足∠DPO=∠POB ,求点D 的坐标(2)如图2,在(1)中的抛物线解析式不变的条件下,已知直线PA 、PB 与y 轴分别交于E 、F 两点,点P 运动时,OE+OF 是否为定值?若是,试求出改定值;若不是,请说明理由。
物线第四象限上一点,∠PCB=∠ACO ,求点P 的坐标5.如图,过点(1,4-)的抛物线与x 轴交于点()10,(30)A B -,,,与y 轴交于点C 。
中考复习压轴题之二次函数压轴之定值问题与定点问题-含详细参考答案
二次函数压轴之定值、定点问题1.如图,抛物线y=x2+bx+c与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3OA.(1)求该抛物线的函数表达式;(2)如图2,∠BAC的角平分线交y轴于点M,过M点的直线l与射线AB,AC分别于E,F,已知当直线l绕点M旋转时,11AF AE为定值,请直接写出该定值.2.如图,平面直角坐标系中,抛物线y=﹣x2+nx+4过点A(﹣4,0),与y轴交于点N,与x轴正半轴交于点B.直线l过定点A.(1)求抛物线解析式;(2)过点T(t,﹣1)的任意直线EF(不与y轴平行)与抛物线交于点E、F,直线BE、BF分别交y轴于点P、Q,是否存在t的值使得OP与OQ的积为定值?若存在,求t的值,若不存在,请说明理由.3.如图1,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线MN ∥TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH ﹣OG4.如图1,已知抛物线的解析式为21362y x =--,直线y =kx ﹣4k 与x 轴交于M ,与抛物线相交于点A ,B (A 在B 的左侧).(1)当k =1时,直接写出A ,B ,M 三点的横坐标:x A =,x B =,x M =;(2)作AP ⊥x 轴于P ,BQ ⊥x 轴于Q ,当k 变化时,MP •MQ 的值是否发生变化?若变化,求出其变化范围;若不变,求出其值;5.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE 的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)如图1,若抛物线恰好经过点B,求此时点D的坐标;(2)如图2,AC与BE交于点F.请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;6.已知顶点为A的抛物线y=a(x﹣2)2(a≠0)交y轴于点B(0,2),且与直线l交于不同的两点M、N(M、N不与点A重合).(1)求抛物线的解析式;(2)若∠MAN=90°,试说明:直线l必过定点;7.如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q(1,3)的直线l:y=kx﹣k+3与二次函数的图象相交于M,N两点.证明:无论k为何值,△PMN恒为直角三角形.8.已知,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P是抛物线上一点.(1)求抛物线的解析式;(2)如图2,当点P位于第二象限时,过P点作直线AP,BP分别交y轴于E,F两点,请问CECF的值是否为定值?若是,请求出此定值;若不是,请说明理由.9.已知点P(0,﹣4)为平面直角坐标系内一点,直线l绕原点O旋转,交经过点(0,﹣2)的抛物线y=14x2+c于M、N两点.(1)请求出该抛物线的解析式;(2)在直线l绕原点O旋转的过程中,请你研究一下(PM+MO)(PN﹣NO)是否定值?若是,请求出这个定值;若不是,请说明理由.10.如图,抛物线C:y=ax2+bx+c(a≠0)的对称轴为直线x=﹣12,且抛物线经过A、B两点,交x轴于另一点C,A(﹣2,0),B(0,2);(1)求抛物线的解析式;(2)在(1)的条件下,设对称轴直线x=﹣12与x轴交于M,点P为抛物线上对称轴左侧一点,直线PM交抛物线于另一点Q,点P关于抛物线对称轴对称点H,直线HQ交抛物线对称轴于G点,在点P运动过程中GM长是否为一定值,若为定值,请求出其值,若不为定值,请求出其变化范围.11.如图,在平面直角坐标系中,已知抛物线的顶点D为(1,﹣1),且经过点B(3,3).(1)求这个抛物线相应的函数表达式;(2)如图1,过点D且平行于x轴的直线l,与直线OB相交于点A,过点B作直线l 的垂线,垂足为C.若点Q是抛物线上BD之间的动点(不与B、D重合),连接DQ并延长交BC于点E.如图2,连接BQ并延长交CD于点F,在点Q运动的过程中,FC(AC+EC)的值是否发生变化?若不变求出该定值,若变化说明理由.12.如图,抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)与坐标轴分别交于点A(﹣3,0),B(1,0)和点C.(1)求出a与c的数量关系式;(2)如图,若抛物线y=-x2-2x+3与直线y=(2k1﹣2)x交于E,F两点,与直线y=(2k2﹣2)x交于M,N两点,且k1k2=﹣1,点P,Q分别是EF、MN的中点,求证:直线PQ必定经过一个定点,并求出该定点坐标.13.已知抛物线y=ax2+bx+5(a≠0)经过点(4,5).(1)若a+b=﹣3,求抛物线y=ax2+bx+5的解析式;(2)在(1)的条件下,经过点A(2,54)的任意直线y=mx+n(m≠0)与(1)中的抛物线交于B,C两点,那么11AB AC的值是定值吗?如果是定值,请求出这个定值,如果不是定值,请说明理由.14.如图1,抛物线C:y=ax2+bx﹣3与x轴的正半轴交于点B,与y轴交于点C,OB=OC,其对称轴为直线x=1.(1)直接写出抛物线C的解析式;(2)如图2,将抛物线C平移得到抛物线C1,使C1的顶点在原点,过点P(t,﹣1)的两条直线PM,PN,它们与y轴不平行,都与抛物线C1只有一个公共点分别为点M和点N,求证:直线MN必过定点.参考答案1.解:(1)OB=OC,C(0,c)则B(-c,0),代入抛物线解析式得c 2-bc+c=0,c-b+1=0,即当x=-1时,y =1-b+c=0,故抛物线过点(-1,0),故A(-1,0),B(3,0),C(0,-3)抛物线的解析式为y =x 2-2x -3(2)过点M 作MG||x 轴交AC 于点G ,作FP||x 轴交AM 于点P ,作CQ||x 轴,易知∆COA~∆CMG ,∆ACQ~∆AGM ,GM CG OA AC =GM AG CQ AC =,GM GM CG AG 1OA CQ AC AC+=+=即得111OA CQ GM+=,而AM 平分∠BAC ,故AC=CQ ,故111OA AC GM +=;同时CG AC GM AE =,AF GM AC CQ=即可得111AE AF GM +=,OA=1,AC=10,故11101AE AF 10+=+2.解:(1)y =-x 2-3x +4(2)存在t 的值使得OP 与OQ 的积为定值,t=-4设E(m ,-m 2-3m+4),F(n,-n 2-3n+4),设BE 的解析式为y =k (x -1),将E 点坐标代入得k =-m -4,同理k =-n -4,则OP=m+4,OQ=-n-4,故OP ∙OQ=(m+4)(-n-4)=-mn-4(m+n)-16,直线CE 的解析式为y =k 1(x-t )-1,与抛物线y =-x 2-3x +4联立得x 2+(k 1+3)x-k 1t -5=0,m+n=-k 1-3,mn =-k 1t -5,OP ∙OQ=k 1t+4k 1+1=4k 1(t+4)+1,当t=-4时,OP ∙OQ 为定值,故当t=-4时,OP ∙OQ=13.解:(1)y =x 2-2x-3(3)易知T(2,-3),设直线TS 的解析式为y=m(x-2)-3,与抛物线y =x 2-2x-3联立得x 2-(m +2)x +2m =0,有两个相等实根,m 2+4m+4-8m=0,故m=2,即TS 解析式为y =2x -7,设MN 的解析式为y =2x+h ,与抛物线联立得x 17+h ,x 27+h 故7+h ,7+h ),N(2-7+h 7+h ),直线AM 解析式为y 1=k 1x+b 1,得b 1737hh +++737hh +++,同理可得773hh ++-,OH-OG=24.解:6,6,4;(2)MP ∙MQ 的值不变.y =21362x -与y =kx -4k 联立得x 2+6kx +9-24k =0,x A +x B =6k ,x A ∙x B =9-24k ,M(4,0),MP ∙MQ=(4-x P )(4-x Q )=16-4(x A +x B )+x A x B =16+24k+9-24k=255.解:(1)易得抛物线的解析式为y =12x 2-x ,圆的直径为BE ,故∠BDE=90°,且∠BED=∠BAD=45°,作MN ⟂OA 交BC 、OA 于点M 、N ,易知∆BDM ≅∆DEN ,设DM=NE=m ,则CM=ON=m ,而OE=2,故m=1,此时D(1,3)(2)不变,CF ∙AD=16,∠DBF=∠BAD=45°,故∆ADB~∆CBF ,故CF ∙AD=AB ∙CB=166.解:(1)y =12(x -2)2(2)设直线MN 的解析式为y=kx+b ,与抛物线联立得x 2-(4+2k )x +4-2b=0,x M +x N =4+2k,x M ∙x N =4-2b ,作ME 、NF 垂直于x 轴,易知∆AME~∆NAF ,AE ME NF AF =,即有AE ∙AF=ME ∙NF ,ME=kx 1+b ,NF=kx 2+b ,AE=2-x 1,AF=x 2-2,(2-x 1)(x 2-2)=(kx 1+b)(kx 2+b),即有4+2(x 1+x 2)-x 1x 2=k 2x 1x 2+kb (x 1+x 2)+b 2,整理得2k+b =0或2k +b -2=0,即当x =2时,y =2,所以直线l 必过定点(2,2)7.解:(1)y =-x 2+2x +3,P(1,4)(2)联立y=kx-k +3和抛物线y =-x 2+2x +3得x 2+(k-2)x-k=0,x 1+x 2=k-2,x 1x 2=-k,过点M 、N 作对称轴的垂线ME 、NF ,tan ∠PME=PE ME =221111114(23)(1)111x x x x x x --++-==---,同理tan ∠PFN=211x -,(1-x)(x2-1)=1,故tan ∠PME=tan ∠FPN,∠PME=∠FPN ,故∠MPN=90°,所以无论k 为何值,∆PMN 恒为直角三角形.8.解:(1)y =-x 2+2x +3(2)CE CF 的值为定值13,设P(t,-t 2+2t+3),直线AP 的解析式为y =(3-t)x +3-t ,直线BP 的解析式为y =(-t-1)x +3t+3,故CE=-t ,CF=-3t ,故CE CF =139.(1)y =2124x -(2)(PM+MO)(PN-ON)为定值,设直线l 的解析式为y=kx ,与抛物线联立得x 2-4kx -8=0,设M(x 1,y 1),N(x 2,y 2)则有x 1x 2=-8,,y 1=kx 1,故PM=|x 1OM=|x 1,同理PN=|x 2,ON=|x 2,故+|x 1)(|x 2-|x 2)=16,故(PM+MO)(PN-ON)为定值16.10.解:(1)y=-x 2-x +2(2)连接MH ,易知AMP=CMH ,设PQ 的解析式为y=kx+b 1,MH 的解析式为y=-kx+b 2,分别代入(-12,0)得b 1=12k ,b 2=12-k ,故PM 的解析式为y=kx+12k ,MH 的解析式为y=-kx-12k 与抛物线联立得x=(1)92k -+±,所以Q((1)92k -++,292k -±),同理可得H(192k -,292k --),易知QH 的解析式为y=-x +992-当x=-12时,y=92,所以G(-12,92),所以点P 运动过程中GM 长为定值9211.解:(1)y =x 2-2x(2)FC(AC+EC)为定值,设Q(m ,m 2-2m ),易得BF 的解析式为y=(m -1)x -3m ,故点F(311m m -+,-1),D(1,-1),DE 的解析式为y=(m-1)x-m ,E(3,2m-3),FC=3-311m m -+=41m +,AC+EC=4+2m-3+1=2m+2,所以FC(AC+EC)=41m +(2m+2)=812.解:(1)c =-3a (2)联立y =-x 2-2x +3与y =(2k 1﹣2)x 得x 2+2k 1x -3=0所以x 1+x 2=-2k 1,y 1+y 2=-4k 12+4k 1,故P(-k 1,-2k 12+2k 1),同理可得Q(-k 2,-2k 22+2k 2),设直线PQ 的解析式为y=kx+b,将P 、Q 两点代入得y =(2k 1+2k 2-2)x -2,所以直线PQ 过定点(0,-2)13.解:(1)y=x 2-4x +5(3)将坐标系向右平移2个单位,向上平移1个单位,此时抛物线的解析式为y=x2,点A(0,14),设B(m,m 2),C(n,n 2),则AB=m 2+14,AC=n 2+14,故11AB AC +=AB AC AB AC +⋅=22221211()()416m n mn m n +++++,同时BC 的解析式y=kx +14,与抛物线联立得x 2-kx -14=0,m+n=k,mn =-14,故11AB AC +=414.解:(1)y =x 2-2x -3(2)平移后的抛物线的解析式为y =x 2,设M(m,m 2),N(n,n 2),直线PM 的解析式设为y=k 1(x-m)+m 2,PN 的解析式为y=k 2(x-n)+n 2,与抛物线联立得x2-k1x+k1m-m2=0,此时∆=0,即有k 1=2m ,PM 的解析式为y=2m(x-m)+m 2=2mx-m 2同理可得PN 的解析式为y=2n(x-n)+n 2=2nx-n 2,可得P(2m n +,mn ),mn =-1,MN 的解析式为y=(m+n)x +1,故MN 过定点(0,1)。
二次函数中的定值、定点问题(解析版)(北师大版)
专题07二次函数中的定值、定点问题类型一、定值问题(1)求抛物线的解析式(2)P 是直线BC 下方抛物线上的一点,连接PB 、PC 、PO ,PO 交BC 于坐标.(3)如图2,若动直线l 与抛物线交于M ,N 两点(直线l 与BC 不重合),连接于点Q .当MN BC ∥时,点Q 的横坐标是否为定值,请说明理由.【答案】(1)2=23y x x --(2)()1,2D -∥,∴DE CO∵到直线BC 的解析式为:3BC y x =-∵MN BC ∥,∴可设直线MN 的解析式为:MN y x =将MN y x t =+代入2=23y x x --,得2330x x t ---=.∴3m n +=.∴点N 的坐标可以表示为(23,N m m -设直线CN 的解析式为:y k x b =+,(1)求抛物线的解析式.(2)P 是抛物线上一个动点(不与A 重合),PO 与抛物线的另一个交点为接DE ,求证:DE y ∥轴.(3)过点C 的动直线交抛物线于M 、N 两点,,MB NB 【答案】(1)2122y x x =-++;(2)见解析;(3)见解析【分析】(1)用待定系数法求解即可;(1)求二次函数的解析式;(2)若抛物线上B、C两点之间有一点N,且BCN△的面积为(3)抛物线的对称轴交x轴于M,P为抛物线上一动点,直线称轴的对称点为P',直线QP'交对称轴于G点,试探究:在变化吗?若不变,请求其长度.13设PQ的解析式为:y kx=把3(,0)2M代入得:32k+33()22y kx k k x∴=-=-,(1)求顶点A 的坐标;(2)在对称轴左侧的抛物线上存在一点P ,使得PAB 45∠=︒,求点P 坐标;(3)如图(2),将原抛物线沿射线OA 方向进行平移得到新的抛物线,新抛物线与射线请问:在抛物线平移的过程中,线段CD 的长度是否为定值?若是,请求出这个定值;【答案】(1)()1,1(2)()2,8--(3)2,过程见解析【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标;(2)根据全等三角形的判定与性质可得点Q 的坐标,根据待定系数法求出直线立求出点P 的坐标即可;(3)根据平移规律,可得新抛物线,根据联立抛物线与OA 的解析式,可得C 、D 点的横坐标,根据勾股定理,可得答案.【详解】(1)解:把()33B -,代入22y x mx m =-++-得:3329m m -=-++-,解得2m =,∴()22211y x x x =-+=--+,∴顶点A 的坐标是()1,1;(2)过点B 的BQ BA ⊥交AP 于点Q ,过点B 作GH y ∥轴,分别过点A,Q 作AG GH ⊥于点G ,QH GH ⊥于点H ,则90AGB ABQ BHQ ∠=∠=∠=︒,∵90ABG QBH ABG BAG ∠+∠=∠+∠=︒,∴QBH BAG ∠=∠,∵45BAP ∠=︒,∴ABQ 是等腰直角三角形,∴AB BQ =,在Rt ABG △和Rt BQH 中,AGB BHQ ABG BQH BA BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABG BQH ≌,∴()312,134AG BH BG QH ==-===--=,∴点Q 的坐标是()1,5--,设直线AP 的解析式为y kx b =+,把点A ()1,1,Q ()1,5--代入得,51k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴直线AP 的解析式为32y x =-,把直线AP 的解析式与22y x x =-+联立得,2232x x x -+=-,解得122,1x x =-=(不合题意,舍去),当2x =-时,328y x =-=-,∴点P 的坐标是()2,8--;(3)在抛物线平移的过程中,线段CD 的长度是定值,设直线OA 的解析式为y kx =,把点A 的坐标()1,1代入得,1k =,∴直线OA 的解析式为y x =,∴可设新的抛物线解析式为()2y x a a =--+,联立()2y x a a y x ⎧=--+⎪⎨=⎪⎩,∴()2x a a x --+=,∴121x a x a ==-,,∴()1211x x a a -=--=,∴1122,1y x a y x a ====-,∴121y y -=,即C 、D 两点的横坐标的差是1,C 、D 两点间的纵坐标的差为1,(1)①求该抛物线所对应的函数解析式;②求四边形ACFQ的面积;(2)如图2,直线EF垂直于x轴于点E,点P是线段BE上的动点(除B、E外)过点物线于点D,连接DA、DQ.是直角三角形时,求出所有满足条件的D点的横坐标.①当AQD+②如图3,直线AD,BD分别与抛物线对称轴交于M、N两点.试问:EM EN∵抛物线2122y x x =-∴(2,2)B -,(2,0)H ,令0y =,则2122x x -=240x x -=,(4)0x x -=,联立方程得,212y kx y x =-⎧⎪⎨=-⎪⎩解得,212212x k k y k k k ⎧=+++⎪⎨=++⎪⎩∴22(24,C k k k ++++类型二、定点问题例.已知抛物线21:2C y ax ax c =-+经过点(2,3)C ,与x 轴交于(1,0)A -,B 两点,与y 轴交于D 点(1)求抛物线1C 的解析式;(2)如图1,P 为直线AC 上方抛物线1C 上的动点,过P 点作PE AC ⊥于点E ,若3AE PE =,求P 点坐标;设直线AC的解析式为y=得:0 23 k dk d-+=⎧⎨+=⎩,解得:11 kd=⎧⎨=⎩,∴直线AC的解析式为y=设2(,4)M m m -+,2(,N n n -+则直线MN 的解析式为y = 直线MN 经过定点(0.5,1)F 11()42m n mn ∴=-+++,26m n mn ∴+=+,直线y x b =-+经过点(M m(1)求该抛物线的解析式;由215222y x x =-+,当1x =时,215112022y =⨯-⨯+=,故当OAC ACD ∽△△时,则OA OC CA AD =,即24AD AC ==同理可得()5,2D 由215222y x x =-+,当5x =时,215552222y =´-´+=,故综上满足要求的点为()5,2D (3)如图(3)所示,设215,222P a a a ⎛⎫-+ ⎪⎝⎭,21,2Q b b ⎛- ⎝所以QN b =,21522NC b b =-;PM a =,25122CM a a =-∵AMC CNQ∽△△∴AM MC CN NQ=,∴22512215a a a b b b -=-,【变式训练3】.如图1,抛物线1L :23y ax bx =+-与x 轴的正半轴交点B ,与y 轴交于点C ,OB OC =,其对称轴为直线1x =.(1)直接写出抛物线1L 的解析式;(2)若点D 是抛物线对称轴上的动点,点G 是抛物线上的动点,是否存在以点B 、C 、D 、G 为顶点的四边形是平行四边形.若存在,求出点G 的坐标;若不存在,试说明理由.(3)如图2,作抛物线1L 关于原点O 中心对称的抛物线2L ,若抛物线2L 与直线()122y k x =-交于E ,F 两点,与直线()222y k x =-交于M ,N 两点,且121k k =-,点P ,Q 分别是EF 、MN 的中点,求证:直线PQ 必定经过一个定点,并求出该定点坐标.【答案】(1)2=23y x x --(2)存在,G 点坐标存在,为()2,3-或()4,5或()2,5-(3)直线PQ 过定点()0,2-,证明见解析【分析】(1)由OB OC =得出()3,0B ,根据对称轴为直线1x =和()3,0B 代入即可解得;(2)设D 点坐标为()1,t ,G 点坐标为()2,23m m m --,分三种情况①当DG 为对角线时,②当DB 为对角线时,③当DC 为对角线时,进行讨论即可;(3)联立223y x x =--+与()122y k x =-,解得21230x k x +-=,根据韦达定理得出1122x x k +=-,2121144y y k k +=-+,得出P 和Q 点的坐标,表示出直线PQ 的解析式即可判断;【详解】(1) 对称轴为直线1x =,(1)求证:点P在直线l上;(2)已知直线l与抛物线的另一个交点为Q,当以O、P、Q为顶点的三角形是等腰三角形时,求(3)如图2,当m=时,抛物线交x轴于A、B两点,M、N在抛物线上,满足MA AN ⊥ ,90MAE NAF ∠∠∴+=︒,∠AME NAF ∠∠∴=,∴MAE ANF ∽,ME AE。
二次函数与定点定值问题(教师版)
二次函数与定点、定值问题【方法归纳】已知抛物线和满足一定条件的直线在平面直角坐标系中,直线上的线段满足一定几何条件,图中可能产生一些定点,定量关系.通常要运用几何量的关系转换成线段关系和坐标关系求解. 思路:结合二次函数,将几何向代数转化,构建方程或方程组,并归纳解题一致性.例1.已知抛物线:y =ax 2+bx +c ,顶点坐标为原点,且过(4,8),如图,若A 、B 两点在抛物线上,且OA ⊥OB ,AB 交y 轴于H 点,求H 点的坐标.易求a =21,b =0,c =0,∴y =12x 2,设A (m ,21m 2),B (n ,12n 2),设AB 的解析式y =kx +b ,联立⎪⎩⎪⎨⎧+==b kx y xy 221得x 2-2kx -2b =0,m +n =2k ,mn =-2b ,又∵OA ⊥OB ,过A 点作AC 丄x 轴,BD ⊥y 轴,垂足分别为C 、D 两点,易证△AOC ∽△OBD ,∴OC AC =BD OD ,∴A A x y =B B y x -,∴m m221=221n n -,41mn =-1,∴mn=-4,∴b =2,∴H (0,2).(2013年武汉中考压轴题的关键一步)方法总结:_________________________________________________ _________________________________________________ _________________________________________________【练1】抛物线y =21(x -1)2,顶点为M ,直线AB 交抛物线于A 、B 两点,且MA ⊥MB ,求证:直线AB 过定点.设A (x 1,y 1),B (x 2,y 2),易求M (1,0),作AE ⊥x 轴,BF ⊥x 轴,△AEM ∽△BFM ,易得EM AE =FBMF,即111x y -=221y x -,1211)1(21x x --=222)1(211--x x ,∴-21(x 1-1)2=)1(2112-x ,∴-41[x 1x 2-(x 1+x 2)+1]=1,联立⎪⎩⎪⎨⎧+=-=b kx y x y 2)1(21得,21(x -1)2=kx +b ,x 2-2x +1=2kx +2b ,x 2-(2+2k )x +1-2b =0,x 1·x 2=1-2b ,x 1+x 2=2k +2,∴(1-2b )-(2k +2)+1=-4,k +b =2,∴y =kx +b =kx +2-k =k (x -1)+2,∴AB 过定点(1,2).例2.已知抛物线y =41x 2,以M (-2,1)为直角顶点作该抛物线的内接直角三角形MAB (即M ,A ,B 均在抛物线上),求证:直线AB 过定点,并求出该定点坐标.过M 作PQ ∥x 轴,AP ⊥PQ 于P ,BQ ⊥PQ 于Q ,设AB :y =kx +b , 由⎪⎩⎪⎨⎧+==bkx y xy 241得41x 2-kx -b =0,x A +x B =4k ,x A ·x B =-4b , 由△APM ∽△MQB 得AP ·BQ =PM ·MQ ,即(y A -1)(41x B 2-1)=-(x A +2)(x B +2), ∴161(x A -2)(x B -2)=-1,x A ·x B -2(x A +x B )+4=-16, ∴-4b -8k +4=-16,b =5-2k ,∴AB :y =kx +5-2k =k (x -2)+5,过定点(2,5).【练2】(2014武汉中考)如图,已知直线AB :y =kx +2k +4于抛物线y =21x 2交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.(1)C (-2,4)(2)设A (x 1,21x 12),B (x 2,21x 22),D (m ,21m 2),由⎪⎩⎪⎨⎧++==42212k kx y xy 得x 2-2kx -4k -8=0,x 1+x 2=2k ,x 1·x 2=-4k -8,过D 作EF ∥x 轴,AE ⊥EF 于E ,BF ⊥EF 于F ,由△AED ∽△DFB 得AE ·BF =DE ·DF ,即(21x 12-21m 2)(21x 22-21m 2)=(m -x 1)(x 2-m ),化简x 1x 2+m (x 1+x 2)+m 2=4,∴2k (m -2)+m 2-4=0,当m -2=0,即m =2时,点D 的坐标与k 无关,∴D (2,2),又∵C (-2,4),∴CD =25,作DM ⊥AB 于M ,则DM ≤CD =25,∴当CD ⊥AB 时,点D 到直线AB 的距离最大,最大距离为25.例3.如图,抛物线y =x 2+3顶点为P ,直线l 交抛物线于A 、B 两点,交y 轴于C 点,∠AOC =∠BOC ,求证:直线AB 过定点.设A (m ,m 2+3),B (n ,n 2+3),设直线AB 的解析式为y =kx +b ,⎩⎨⎧+=+=32x y bkx y ,∴kx +b =x 2+3,x 2-kx +3-b =0,∴mn =3-b ,∵∠AOC =∠BOC ,∴tan ∠AOC =tan ∠BOC ,∴32+m m =32+-n n,∴mn 2+3m =-m 2n -3n ,∴mn =-3,∴b =6,∴C (0,6).【练3】抛物线y =x 2-4x +5,对称轴交x 轴于P 点,直线EF 交抛物线于E 、F ,交对称轴于H ,且∠EPH =∠FPH ,求证:EF 恒过定点.E (x 1,y 1),F (x 2,y 2),⎩⎨⎧+-=+=542x x y bkx y ,∴x 2-(4+k )x +5-b =0,x 1+x 2=4+k ,x 1x 2=5-b ,tan ∠EPH =tan ∠FPH ,∴112y x -=222y x -,∴(kx 1+b)(x 2-2)=(kx 2+b )(2-x 1),∴b +2k =2,y =kx +b ,∴直线过(2,2).例4.如图,抛物线y =x 2-1交x 轴于A 、B 两点,直线y =a (a >0)交抛物线于M 、N ,点C 在抛物线上,且∠MCN =90°,点C 到MN 的距离是否为定值?若是,求出这个定值.作CH ⊥MN 于H .则∠MCH =∠CNH ,Rt △MCH ∽Rt △CNH ,CH 2=MH ·HN ,令C (x C ,t ),M (m ,m 2-1),则N (-m ,m 2-1),CH =m 2-1-t ,MH ·HN =(x C -x M )(x N -x C )=-x C 2+m 2,y C =x C 2-1=t ,故x C 2=t +1,-x C 2=-t -1,即MH ·HN =m 2-1-t ,又CH 2=MH ·HN ,∴(m 2-1-t )2=m 2-1-t ,∴m 2-1-t =0(舍去)或m 2-1-t =1,即CH =m 2-1-t =1,点C 到MN 的距离是定值,这个值为1.【练4】(2015永州改)如图,抛物线:y =41(x -1)2,R (1,1)是对称轴l 上一点,点P 为抛物线上一个动点,PM 垂直于直线y =-1于M ,求PRPM的值.设P (t ,41(t -1)2),连PR ,作PM ⊥直线y =-1于点M ,PM =41(t -1)2+1, PR =222]1)1(41[)1(--+-t t =41(t -1)2+1,∴PM =PR ,∴PRPM=1.【课后反馈】1.如图,抛物线y =x 2-1交x 轴正半轴于A (1,0),M 、N 在抛物线上,且MA ⊥NA ,试说明MN 恒过一定点,求此定点的坐标.作MP ⊥x 轴于P ,NQ ⊥x 轴于Q ,设MN :y =mx +n ,由21y mx ny x =+⎧⎪⎨=-⎪⎩得x 2-mx -n -1=0,x M +x N =m ,x M ·x N =-1-n ,tan ∠MAP =PA MP =211M M x x --=-x M -1,tan ∠ANQ =AQ NQ =211N N x x --=11Nx +.由∠MAP =∠ANQ 得-x M -1=11Nx +,即-x M ·x N -(x M +x N )-1=1,1+n -m -1=1,n =m +1,MN :y =mx +m+1=m (x +1)+1,故MN 过定点(-1,1).2.如图,抛物线y =41(x -4)2-4的顶点为P ,M ,N 均在对称轴上,且PM =PN ,延长OM 交抛物线于点A .求证:∠ANM =∠ONM .易求P (4,-4),设A (m ,41m 2-2m ),可求OA :y =(41m -2)x ,点M 在OA 上,x =4时,y =m -8,∴M (4,m -8),故N (4,-m ),tan ∠ONM =N N x y -=4m ,tan ∠ANM =4A A N x y y --=2412()4m m m m ----=41(4)4m m m --=4m ,故∠ANM =∠ONM .3.(2016六初九下2月考T24)已知抛物线y =41x 2+m 与x 轴交于A 、B 两点,与y 轴交于C 点,且OA =2OC ,直线y =kx -2k +4(k ≠0)与抛物线交于D 、E 两点. (1)求m 值及A 点坐标;(2)当k 取何值时,△ADE 的面积最小,并求面积的最小值;(3)若M 、N 为抛物线上两点,其以MN 为直径的圆始终经过A 点,求直线MN 经过的定点P 的坐标.(1)令x =0时,y =m ,∴OC =-m ,令y =0时,x =m -±2,∴OA =m -2, ∵OA =2OC ,∴m -2=2(-m ),m =-1,∴A (2,0);(2)直线y =kx -2k +4过定点(2,4),过点A 作AF ∥y 轴交DE 于F ,∴F (2,4), 设D (x 1,y 1)、E (x 2,y 2),∴S △ADE =21×4×(x 1-x 2)=2(x 1-x 2), 联立⎪⎩⎪⎨⎧-=+-=141422x y k kx y ,整理得41x 2-kx +2k -5=0,∴x 1+x 2=4k ,x 1x 2=8k -15 ∴S △ADE =2212142)(x x x x -+=84)1(2+-k ,当k =1时,S △ADE 有最小值,最小值为16; (3)设M (x 1,y 1)、N (x 2,y 2), ∵∠MAN =90°,过点M 作ME ⊥x 轴于E ,过点N 作NF ⊥x 轴于F ,∴△MEA ∽△AFN ,∴212122y x x y -=-,y 1y 2=(x 2-2)(2-x 1), 即)141)(141(2121--x x )=(x 2-2)(2-x 1),x 1x 2+2(x 1+x 2)+20=0,设直线MN 的解析式为y =kx +b ,联立⎪⎩⎪⎨⎧-=+=1412x y bkx y ,整理得x 2-4kx -4-4b =0, ∴x 1+x 2=4k ,x 1x 2=-4-4b ,∴-4-4b +2×4k +20=0,2k -b =-4, 当x =-2时,-2k +b =4,∴直线MN 必过顶点(-2,4).。
二次函数与线段最值定值问题(八大类型)-2023年中考数学压轴题专项训练(教师版)
二次函数与线段最值定值问题(八大类型)考向分析题型一二次函数与单线段最值问题1.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于A (5,0),B (-1,0)两点,与y 轴交于点C 0,52.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得△ACP 是以点A 为直角顶点的直角三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;(3)点G 为抛物线上的一动点,过点G 作GE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线,垂足为点F ,连接EF ,当线段EF 的长度最短时,求出点G 的坐标.【分析】(1)运用待定系数法就可求出抛物线的解析式;(2)以A 为直角顶点,根据点P 的纵、横坐标之间的关系建立等量关系,就可求出点P 的坐标;(3)连接OD ,易得四边形OFDE 是矩形,则OD =EF ,根据垂线段最短可得当OD ⊥AC 时,OD (即EF )最短,然后只需求出点D 的纵坐标,就可得到点P 的纵坐标,就可求出点P 的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 与x 轴交于A (5,0),B (-1,0)两点,与y 轴交于点C 0,52,∴设抛物线的解析式是y =a (x -5)(x +1)1),则52=a ×(-5)×1,解得a =-12.则抛物线的解析式是y =-12(x -5)(x +1)=-12x 2+2x +52;(2)存在.当点A 为直角顶点时,过A 作AP ⊥AC 交抛物线于点P ,交y 轴于点H ,如图.∵AC ⊥AP ,OC ⊥OA ,∴△OAC ∽△OHA ,∴OA OH =OC OA,∴OA 2=OC •OH ,∵OA =5,OC =52,∴OH =10,∴H(0,-10),A(5,0),∴直线AP的解析式为y=2x-10,联立y=2x-10y=-12x2+2x+52 ,∴P的坐标是(-5,-20).(3)∵DF⊥x轴,DE⊥y轴,∴四边形OFDE为矩形,∴EF=OD,∴EF长度的最小值为OD长度的最小值,当OD⊥AC时,OD长度最小,此时S△AOC=12AC•OD=12OA•OC,∵A(5,0),C0,52,∴AC=552,∴OD=5,∵DE⊥y轴,OD⊥AC,∴△ODE∽△OCD,∴OD OE =CO OD,∴OD2=OE•CO,∵CO=52,OD=5,∴OE=2,∴点G的纵坐标为2,∴y=-12x2+2x+52=2,解得x1=2-5,x2=2+5,∴点G的坐标为(2-5,2)或(2+5,2).【点评】本题主要考查了用待定系数法求抛物线的解析式、抛物线上点的坐标特征、等腰三角形的性质、矩形的性质、解一元二次方程、勾股定理等知识,有一定的综合性,根据矩形的性质将EF转化为OD,然后利用垂线段最短是解决第(3)小题的关键.题型二二次函数与将军饮马型问题2.如图1,抛物线y=ax2+2x+c与x轴交于A(-4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM +MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.【解答】解:(1)把A (-4,0),B (1,0)代入y =ax 2+2x +c ,得16a -8+c =0a +2+c =0 ,解得:a =23c =-83 ,∴抛物线解析式为:y =23x 2+2x -83,∵过点B 的直线y =kx +23,∴代入(1,0),得:k =-23,∴BD 解析式为y =-23x +23;(2)由y =23x 2+2x -83y =-23x +23得交点坐标为D (-5,4),如图1,过D 作DE ⊥x 轴于点E ,作DF ⊥y 轴于点F ,当P 1D ⊥P 1C 时,△P 1DC 为直角三角形,则△DEP 1∽△P 1OC ,∴DE PO =PE OC ,即4t =5-t 23,解得t =15±1296,当P 2D ⊥DC 于点D 时,△P 2DC 为直角三角形由△P 2DB ∽△DEB 得DB EB =P 2B DB,即526=t +152,解得:t =233;当P 3C ⊥DC 时,△DFC ∽△COP 3,∴DF OC =CF P 3O ,即523=103t ,解得:t =49,∴t 的值为49、15±1296、233.(3)由已知直线EF 解析式为:y =-23x -103,在抛物线上取点D 的对称点D ′,过点D ′作D ′N ⊥EF 于点N ,交抛物线对称轴于点M过点N 作NH ⊥DD ′于点H ,此时,DM +MN =D ′N 最小.则△EOF ∽△NHD ′设点N 坐标为a ,-23a -103,∴OE NH =OF HD ',即54--23a -103 =1032-a ,解得:a =-2,则N 点坐标为(-2,-2),求得直线ND ′的解析式为y =32x +1,当x =-32时,y =-54,∴M 点坐标为-32,-54,此时,DM +MN 的值最小为D 'H 2+NH 2=42+62=213.【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.题型三二次函数与胡不归型线段最值问题3.已知抛物线y =-12x 2+bx +c (b ,c 为常数)的图象与x 轴交于A (1,0),B 两点(点A 在点B 左侧).与y 轴相交于点C ,顶点为D .(Ⅰ)当b =2时,求抛物线的顶点坐标;(Ⅱ)若点P 是y 轴上一点,连接BP ,当PB =PC ,OP =2时,求b 的值;(Ⅲ)若抛物线与x 轴另一个交点B 的坐标为(4,0),对称轴交x 轴于点E ,点Q 是线段DE 上一点,点N 为线段AB 上一点,且AN =2BN ,连接NQ ,求DQ +54NQ 的最小值.【分析】(Ⅰ)求出函数的解析式即可求解;(Ⅱ)由题意可求P (0,2)或(0,-2),将A 点代入抛物线解析式可得c =12-b ,在求出B (2b -1,0),C 0,12-b ,由PB =PC ,(2b -1)2+4=12-b -2 2或(2b -1)2+4=12-b +2 2,再由2b -1>1,求出b 即可;(Ⅲ)先求出抛物线的解析式y =-12x 2+52x -2,设Q 52,t过点N 作AD 的垂线交于点M ,交对称轴于点Q ,利用直角三角形可得MQ =45DQ ,当M 、Q 、N 三点共线时,DQ +54NQ 有最小值54MN ,在Rt △AMN 中,AN =2,求出MN =65,可求DQ +54NQ 的最小值为32.【解答】解:(Ⅰ)当b =2时,y =-12x 2+2x +c ,将点A (1,0)代入y =-12x 2+2x +c ,∴c =-32,∴y =-12x 2+2x -32=-12(x -2)2+12,∴抛物线的顶点为2,12 ;(Ⅱ)∵点P 是y 轴上一点,OP =2,∴P (0,2)或(0,-2),将A 代入y =-12x 2+bx +c ,∴-12+b +c =0,∴c =12-b ,∵-12x 2+bx +12-b =0,∴1+x 1=2b ,∴x 1=2b -1,∴B (2b -1,0),令x =0,则y =2b -1,∴C 0,12-b ,∵PB =PC ,∴(2b -1)2+4=12-b -2 2或(2b -1)2+4=12-b +2 2,解得b =12或b =116或b =12或b =-56,∵A 点在B 点左侧,∴2b -1>1,∴b >1,∴b =116;(Ⅲ)将点A 、B 代入y =-12x 2+bx +c ,∴-12+b +c =0-8+4b +c =0 ,b =52c =-2,∴y =-12x 2+52x -2,∴抛物线的对称轴为直线x =52,∴E 52,0,∵y =-12x 2+52x -2=-12x -52 2+98,∴顶点D 52,98,∵A (1,0),B (4,0),∴AB =3,∵AN =2BN ,∴AN =2,BN =1,∴N (3,0),设Q 52,t,过点N 作AD 的垂线交于点M ,交对称轴于点Q ,∵AE =32,DE =98,∴tan ∠DAE =34,∴∠EQN =∠DAE ,∴∠DAN =∠MQD ,∴tan ∠MQD =34,∴sin ∠MQD =45,∴MQ =45DQ ,∵DQ +54NQ =5445DQ +NQ =54(MQ +NQ ),∴当M 、Q 、N 三点共线时,DQ +54NQ 有最小值54MN ,在Rt △AMN 中,AN =2,∴sin ∠MAN =35,∴MN =35×2=65,∴DQ +54NQ =54×MN =32,∴DQ +54NQ 的最小值为32.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,利用一元二次方程求最值是解题的关键.二次函数与三线段和最值问题4.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【分析】(1)把A(-3,0),B(0,3)代入抛物线y=-x2+bx+c即可解决问题.(2)首先求出A、C、D坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M.(3)①欲证明PG=QR,只要证明△QAR≌△GAP即可.②当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,由sin∠ACM=AMAC=NQQC求出AM,CM,利用等边三角形性质求出AP、PM、PC,由此即可解决问题.【解答】解:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(-3,0),B(0,3),∵抛物线y=-x2+bx+c过A、B两点,∴c=3-9-3b+c=0解得b=-2c=3,∴b=-2,c=3.(2),对于抛物线y=-x2-2x+3,令y=0,则-x2-2x+3=0,解得x=-3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(-1,0),∵BE=2ED,∴点E坐标-23,1,设直线CE 为y =kx +b ,把E 、C 代入得到-23k +b =1k +b =0 解得k =-35b =35 ,∴直线CE 为y =-35x +35,由y =-35x +35y =-x 2-2x +3解得x =1y =0 或x =-125y =5125 ,∴点M 坐标-125,5125.(3)①∵△AGQ ,△APR 是等边三角形,∴AP =AR ,AQ =AG ,∠QAC =∠RAP =60°,∴∠QAR =∠GAP ,在△QAR 和△GAP 中,AQ =AG ∠QAR =∠GAP AR =AP,∴△QAR ≌△GAP ,∴QR =PG .②如图3中,∵PA +PG +PC =QR +PR +PC =QC ,∴当Q 、R 、P 、C 共线时,PA +PG +PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO =60°,AO =3,∴AG =QG =AQ =6,∠AGO =30°,∵∠QGA =60°,∴∠QGO =90°,∴点Q 坐标(-6,33),在RT △QCN 中,QN =33,CN =7,∠QNC =90°,∴QC =QN 2+NC 2=219,∵sin ∠ACM =AM AC=NQ QC ,∴AM =65719,∵△APR 是等边三角形,∴∠APM =60°,∵PM =PR ,cos30°=AM AP,∴AP =121919,PM =RM =61919∴MC =AC 2-AM 2=141919,∴PC =CM -PM =81919,∵PK QN =CP CQ =CK CN ,∴CK =2819,PK =12319,∴OK =CK -CO =919,∴点P 坐标-919,12319 .∴PA +PC +PG 的最小值为219,此时点P 的坐标-919,12319.【点评】本题考查二次函数综合题、等边三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是理解Q 、R 、P 、C 共线时,PA +PG +PC 最小,学会添加常用辅助线,属于中考压轴题.题型五二次函数与线段倍分关系最值问题5.抛物线y =-x 2+4ax +b (a >0)与x 轴相交于O 、A 两点(其中O 为坐标原点),过点P (2,2a )作直线PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (其中B 、C 不重合),连接AP 交y 轴于点N ,连接BC 和PC .(1)a =32时,求抛物线的解析式和BC 的长;(2)如图a >1时,若AP ⊥PC ,求a 的值;(3)是否存在实数a ,使AP PN=12若存在,求出a 的值,如不存在,请说明理由.【分析】(1)根据抛物线经过原点b =0,把a =32、b =0代入抛物线解析式,即可求出抛物线解析式,再求出B 、C 坐标,即可求出BC 长.(2)利用△PCB ∽△APM ,得PB AM=BC PM ,列出方程即可解决问题.【解答】解:(1)∵抛物线y =-x 2+4ax +b (a >0)经过原点O ,∴b =0,∵a =32,∴抛物线解析式为y =-x 2+6x ,∵x =2时,y =8,∴点B 坐标(2,8),∵对称轴x =3,B 、C 关于对称轴对称,∴点C 坐标(4,8),∴BC =2.(2)∵AP ⊥PC ,∴∠APC =90°,∵∠CPB +∠APM =90°,∠APM +∠PAM =90°,∴∠CPB =∠PAM ,∵∠PBC =∠PMA =90°,∴△PCB ∽△APM ,∴PB AM =BC PM ,∴6a -44a -2=4a -42a,整理得a 2-4a +2=0,解得a =2±2,∵a >1,∴a =2+2.(3)当点P 在等A 的左侧时,∵△APM ∽△ANO ,∴AP PN =AM MO=12,∵AM =4a -2,OM =2,∴4a -22=12,∴a =34.当点P 在D 点A 的右侧时,同法可得OA =AM ,4a =2-4a ,∴a =14,综上所述,满足条件的a 的值为34或14.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.题型六二次函数与线段乘积问题6.已知直线y =12x +2分别交x 轴、y 轴于A 、B 两点,抛物线y =12x 2+mx -2经过点A ,和x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图1,点D 是抛物线上的动点,且在第三象限,求△ABD 面积的最大值;(3)如图2,经过点M (-4,1)的直线交抛物线于点P 、Q ,连接CP 、CQ 分别交y 轴于点E 、F ,求OE •OF 的值.备注:抛物线顶点坐标公式-b 2a ,4ac -b 24a【分析】(1)先求得点A 的坐标,然后将点A 的坐标代入抛物线的解析式求得m 的值即可;(2)过点D 作DH ∥y 轴,交AB 于点H ,设D n ,12n 2+32n -2 ,H n ,12n +2 ,然后用含n 的式子表示DH 的长,接下来,利用配方法求得DH 的最大值,从而可求得△ABD 面积最大值;(3)先求得点C 的坐标,然后设直线CQ 的解析式为y =ax -a ,CP 的解析式为y =bx -b ,接下来求得点Q 和点P 的横坐标,然后设直线PQ 的解析式为y =x +d ,把M (-4,1)代入得:y =kx +4k +1,将PQ 的解析式为与抛物线解析式联立得到关于x 的一元二次方程,然后依据一元二次方程根与系数的关系可求得ab =-12,最后,由ab 的值可得到OE •OF 的值.【解答】解:(1)把y =0代入y =12x +2得:0=12x +2,解得:x =-4,∴A (-4,0).把点A 的坐标代入y =12x 2+mx -2得:m =32,∴抛物线的解析式为y =12x 2+32x -2.(2)过点D 作DH ∥y 轴,交AB 于点H ,设D n ,12n 2+32n -2 ,H n ,12n +2 .∴DH =12n +2 -12n 2+32n -2 =-12(n +1)2+92.∴当n =-1时,DH 最大,最大值为92,此时△ABD 面积最大,最大值为12×92×4=9.(3)把y =0代入y =12x 2+32x -2,得:x 2+3x -4=0,解得:x =1或x =-4,∴C (1,0).设直线CQ 的解析式为y =ax -a ,CP 的解析式为y =bx -b .∴y =ax -a y =12x 2+32x -2,解得:x =1或x =2a -4.∴x Q =2a -4.同理:x P =2b -4.设直线PQ 的解析式为y =kx +b ,把M (-4,1)代入得:y =kx +4k +1.∴y =kx +4k +1y =12x 2+32x -2.∴x 2+(3-2k )x -8k -6=0,∴x Q +x P =2a -4+2b -4=2k -3,x Q •x P =(2a -4)(2b -4)=-8k -6,解得:ab =-12.又∵OE =-b ,OF =a ,∴OE •OF =-ab =12.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、一元二次方程根与系数的关系,建立关于a 、b 的方程组求得ab 的值是解题的关键.题型七二次函数与线段比值问题7.抛物线y =ax 2+c 与x 轴交于A ,B 两点,顶点为C ,点P 为抛物线上一点,且位于x 轴下方.(1)如图1,若P (1,-3),B (4,0).①求该抛物线的解析式;②若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;(2)如图2,已知直线PA ,PB 与y 轴分别交于E 、F 两点.当点P 运动时,OE +OF OC是否为定值?若是,试求出该定值;若不是,请说明理由.【分析】(1)①根据待定系数法求函数解析式,可得答案;②根据平行线的判定,可得PD ∥OB ,根据函数值相等两点关于对称轴对称,可得D 点坐标;(2)根据待定系数法,可得E 、F 点的坐标,根据分式的性质,可得答案.【解答】解:(1)①将P (1,-3),B (4,0)代入y =ax 2+c ,得16a +c =0a +c =-3 ,解得a =15c =-165 ,抛物线的解析式为y =15x 2-165;②如图1,当点D 在OP 左侧时,由∠DPO =∠POB ,得DP ∥OB ,D 与P 关于y 轴对称,P (1,-3),得D (-1,-3);当点D 在OP 右侧时,延长PD 交x 轴于点G .作PH ⊥OB 于点H ,则OH =1,PH =3.∵∠DPO =∠POB ,∴PG =OG .设OG =x ,则PG =x ,HG =x -1.在Rt △PGH 中,由x 2=(x -1)2+32,得x =5.∴点G (5,0).∴直线PG 的解析式为y =34x -154解方程组y =34x -154y =15x 2-165 得x 1=1y 1=-3 ,x 2=114y 2=-2716 .∵P (1,-3),∴D 114,-2716.∴点D 的坐标为(-1,-3)或114,-2716.(2)点P 运动时,OE +OF OC是定值,定值为2,理由如下:作PQ ⊥AB 于Q 点,设P (m ,am 2+c ),A (-t ,0),B (t ,0),则at 2+c =0,c =-at 2.∵PQ ∥OF ,∴PQ OF =BQ BO,∴OF =PQ ⋅BO BQ=-(am 2+c )t t -m =(am 2-at 2)t m -t =amt +at 2.同理OE =-amt +at 2.∴OE +OF =2at 2=-2c =2OC .∴OE +OF OC=2.【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D 点坐标是解题关键;(2)利用待定系数法求出E 、F 点坐标是解题关键.题型八二次函数与倒数和定值问题8.如图,已知抛物线y =ax 2+bx +c 与x 轴分别交于A (-1,0)、B (3,0)两点,与y 轴交于点C ,且OB =OC .(1)求抛物线的函数表达式;(2)如图1,点D 是抛物线顶点,点P (m ,n )是在第二象限抛物线上的一点,分别连接BD 、BC 、BP ,若∠CBD =∠ABP ,求m 的值;(3)如图1,过B 、C 、O 三点的圆上有一点Q ,并且点Q 在第四象限,连接QO 、QB 、QC ,试猜想线段QO 、QB 、QC 之间的数量关系,并证明你的猜想;(4)如图2,若∠BAC 的角平分线交y 轴于点G ,过点G 的直线分别交射线AB 、AC 于点E 、F (不与点A 重合),则1AE +1AF的值是否变化?若变化,请说明理由;若不变,请求出它的值.【分析】(1)利用待定系数法求解二次函数的解析式即可:(2)如图,过P作PK⊥AB于K,连接CD,先求解顶点D(1.-4),证明∠BCD=90°,tan∠DBC=CD BC =232=13,则tan∠CBD=tan∠ABP=13,再列方程求解即可;(3)如图,作O关于BC的对称点N,证明四边形OBNC为正方形,连接QB,QC,QO,QN,再分两种情况讨论:当Q在B,N之间时,当Q在C、N之间时,从而可得答案;(4)过G作MG∥x轴交AC于M,过F作FT∥x轴交AG于T,过C作CQ∥x轴交AG于Q,如图:证明ACOA~ACGM,AACQ~AMG,可得1OA+1AC=1GM,同理可得:理可得:1AE+1AF=1GM,从而可得答案.【解答】解:(1)∵抛物线y=ax2+bx+c与轴分别交于A(-1,0)、B(3.0)两点,设抛物线为:y=a(x+1)(x-3),∵OB=OC,∴C(0,-3),∴-3a=-3.解得:a=1,所以抛物线为:y=a(x+1)(x-3)=x2-2x-3;(2)如图,过P作PK⊥AB于K,连接CD,∵y=x2-2x-3=(x-1)2-4,∴顶点D(1,-4),∴CD2=(1-0)2+(-4+3)2=2,BC2=32+32=18,∴CD2+BC2=BD2,∴∠BCD=90°,tan∠DBC=CDBC =232=13,∵∠CBD=∠ABP,∴tan∠CBD=tan∠ABP=13,∵P(m,n),m<0,n>0,∴AB=3-m,PA-n=m2-2m-3,∴m2-2m-33-m =13,∴m=-43,经检验符合题意;(3)如图,作O关于BC的对称点N,而OB=OC-3,0B⊥OC,∴四边形OBNC为正方形,连接QB,QC,QO,ON,∴CN=BN=OC=CN=3,BC⊥ON,BC,ON为圆的直径,当Q在B,N之间时(与B不重合),在QC上截取CK=BQ,∵∠NBQ=∠NCQ,∴ΔΝCΚ≌ΔΝBQ(SAS),∴∠CNK=∠BNO,∴∠BNO+∠BNK=∠BNK+∠CNK=∠CNB-90°,∵BC⊥ON,∴∠KQN=12x90°=45°=∠QKN,∴QK2=2QN2,∴(QC-QB)2=2QN2,∵ON为直径,则∠OQN=90°,∴QN2=ON2-QO2=BC2-QO2=18-QO2,∴(QC-QB)2=2(18-QO2),而同理可得:QC2+QB2=18,整理得:QO2-QC•QB=9,当Q在C,N之间时(与C不重合),如图,同理可得:QO2-QC•QB=9;(4)过G作MG∥x轴交AC于M,过F作FT∥x轴交AG于T,过C作CQ∥x轴交AG于Q,如图:∵MG∥x轴,FT∥x轴,CQ∥x轴,∴MG∥FT∥CQ∥OA,∴△COA∽△CGM,△ACQ∽△AMG,∴GMOA =CMAC,GMCQ=AMAC,∴GMOA +GMCQ=CMAC+AMAC=1,∴1 OA +1CQ=1GM,∵AG平分∠BAC,∴∠CAG=∠BAG=∠AQC,∴AC=CQ,∴1 OA +1AC=1GM,同理可得:1AE +1AF=1GM,由(1)可知:A(-1,0),C(0,-3),∴AC=12+32=10,∴1 AE +1AF=1GM=1OA+1AC=1+1010=10+1010,∴1 AE +1AF的值不变,为10+1010.【点评】本题考查了利用待定系数法求解二次函数的解析式,锐角三角函数的应用,勾股定理及其逆定理的应用,相似三角形的判定与性质,正方形的性质,圆周角定理的应用,正确作出辅助线是解题的关键.压轴题速练一、解答题1.如图,已知二次函数的图象与x 轴交于A 、B 两点,D 为顶点,其中点B 的坐标为(5,0),点D 的坐标为(1,3).(1)求该二次函数的表达式;(2)试问在该二次函数图象上是否存在点G ,使得△ADG 的面积是△BDG 的面积的35若存在,求出点G 的坐标;若不存在,请说明理由.【答案】(1)y =-316x -1 2+3(2)存在,G 的坐标为0,4516或-15,-45 .【分析】(1)依题意,利用二次函数的顶点式即可求.(2)先求线段AD 所在的直线解析式,求利用点到直线的公式d =Ax +By +C A 2+B 2,即可求△ADG 与△BDG 的高,利用三角形面积公式即可求.【详解】(1)依题意,设二次函数的解析式为y =a x -1 2+3将点B 代入得0=a 5-1 2+3,得a =-316∴二次函数的表达式为:y =-316x -1 2+3(2)存在点G ,当点G 在x 轴的上方时,设直线DG 交x 轴于P ,设P (t ,0),作AE ⊥DG 于E ,BF ⊥DG 于F .由题意:AE :BF =3:5,∵AE ∥BF ,∴AP :BP =AE :BF =3:5,∴-3-t :5-t =3:5,解得t =-15,∴直线DG 的解析式为y =316x +4516,由y =316x +4516y =316x -12+3 ,解得x =0y =4516 或x =1y =3,∴G 0,4516.当点G 在x 轴下方时,如图2所示,∵AO :OB =3:5∴当点G 在DO 的延长线上时,存在点G 使得S ADG :S BDG =3:5,此时,DG 的直线经过原点,设直线DG 的解析式为y =kx ,将点D 代入得k =3,故y =3x ,则有y =3x y =316x -1 2+3 整理得,x -1 x +15 =0,得x 1=1(舍去),x 2=-15当x =-15时,y =-45,故点G 为-15,-45 .综上所述,点G 的坐标为0,4516或-15,-45 .【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力,二次函数的图象与性质,相似三角形的判定与性质,勾股定理,要学会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2.在平面直角坐标系中,抛物线y =-x 2-4x +c 与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为(-5,0).(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求点P 到直线AC 距离的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)(0,5)(2)2528(3)存在,(-3,8)或(3,-16)或(-7,-16)【分析】(1)把点A的坐标代入y=-x2-4x+c,求出c的值即可;(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,证明△PHE是等腰直角三角形,得PE=PH2,当PH最大时,PE最大,运用待定系数法求直线AC解析式为y=x+5,设P(m,-m2 -4m+5),(-5<m<0),则H(m,m+5),求得PH,再根据二次函数的性质求解即可;(3)分三种情况讨论:①当AC为平行四边形的对角线时,②当AM为平行四边形的对角线时,③当AN为平行四边形的对角线时分别求解即可.【详解】(1)∵点A(-5,0)在抛物线y=-x2-4x+c的图象上,∴0=-52-4×(-5)+c∴c=5,∴点C的坐标为(0,5);(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:∵A(-5,0),C(0,5)∴OA=OC,∴△AOC是等腰直角三角形,∴∠CAO=45°,∵PF⊥x轴,∴∠AHF=45°=∠PHE,∴△PHE是等腰直角三角形,∴PE=PH2,∴当PH最大时,PE最大,设直线AC解析式为y=kx+5,将A(-5,0)代入得0=-5k+5,∴k=1,∴直线AC解析式为y=x+5,设P(m,-m2-4m+5),(-5<m<0),则H(m,m+5),∴PH=(-m2-4m+5)-(m+5)=-m2-5m=-m+522+254,∵a=-1<0,∴当m=-52时,PH最大为25 4,∴此时PE最大为2528,即点P到直线AC的距离值最大;(3)存在,理由如下:∵y=-x2-4x+5=-(x+2)2+9,∴抛物线的对称轴为直线x=-2,设点N的坐标为(-2,m),点M的坐标为(x,-x2-4x+5),分三种情况:①当AC为平行四边形对角线时,-5=x-25=m-x2-4x+5,解得x =-3m =-3,∴点M 的坐标为(-3,8);②当AM 为平行四边形对角线时,x -5=-2-x 2-4x +5=5+m ,解得x =3m =-21,∴点M 的坐标为(3,-16);③当AN 为平行四边形对角线时,-5-2=x m =5-x 2-4x +5 ,解得x =-7m =-11,∴点M 的坐标为(-7,-16);综上,点M 的坐标为:(-3,8)或(3,-16)或(-7,-16).【点睛】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.3.如图,已知抛物线y =ax 2-32x +c 与x 轴交于点点A (-4,0),B (1,0),与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q 使QB +QC 最小?若存在,请求出Q 点坐标;若不存在,请说明理由;(3)点P 为AC 上方抛物线上的动点,过点P 作PD ⊥AC ,垂足为点D ,连接PC ,当△PCD 与△ACO 相似时,求点P 的坐标.【答案】(1)y =-12x 2-32x +2(2)存在,Q -32,54 (3)点P 的坐标为(-3,2)或-32,258【分析】(1)由待定系数法求解即可;(2)找到点B 关于对称轴对称的点A ,连接AC 交对称轴于一点即为Q ,求AC 所在直线解析式,即可求解;(3)当△PCD 与△ACO 相似时,则△PCD ∽△CAO 或△PCD ∽△ACO ,故分分类讨论即可:①若△PCD ∽△CAO ,则∠PCD =∠CAO ,可推出点P 的纵坐标与点C 的纵坐标相同,由点P 为AC 上方抛物线上的动点,得关于x 的一元二次方程,求解并作出取舍则可得答案;②若△PCD ∽△ACO ,则∠PCD =∠ACO ,PD AO=CD CO ,过点A 作AC 的垂线,交CP 的延长线于点G ,过点G 作GH ⊥x 轴于点H ,判定△GAC ∽△PDC ,△GHA ∽△AOC ,由相似三角形的性质得比例式,解得点G 的坐标,从而可得直线CG 的解析式,求得直线CG 与抛物线的交点横坐标,再代入直线CG 的解析式求得其纵坐标,即为此时点P 的坐标.【详解】(1)解:∵抛物线y =ax 2-32x +c 与x 轴交于点A (-4,0),B (1,0),∴16a -32×(-4)+c =0a -32+c =0,解得a =-12c =2 ,∴抛物线的解析式为y =-12x 2-32x +2;(2)存在,如图:∵A ,B 关于对称轴对称,∴QA =QB ,∴QB +QC =QA +QC ,∴QB +QC 的最小值为AC ,∴AC 与对称轴的交点即为所求:由(1)可知,对称轴为:x =-b 2a =--322×-12 =-32,C (0,2),∵A (-4,0),C (0,2),∴AC 所在直线解析式为:y =12x +2,令x =-32,y =12×-32 +2=54,∴Q -32,54;(3)∵点A (-4,0),B (1,0),∴OA =4,OB =1,在抛物线y =-12x 2-32x +2中,当x =0时,y =2,∴C (0,2),∴OC =2,∴AC =OA 2+OC 2=42+22=25.∵PD ⊥AC ,∴∠PDC =90°=∠AOC ,∴当ΔPCD 与ΔACO 相似时,则△PCD ∽△CAO 或△PCD ∽△ACO ,①若△PCD ∽△CAO ,则∠PCD =∠CAO ,∴CP ∥AO ,∵C (0,2),∴点P 的纵坐标为2,∵点P 为AC 上方抛物线上的动点,∴2=-12x 2-32x +2,解得:x 1=0(不合题意,舍去),x 2=-3,∴此时点P 的坐标为(-3,2);②若△PCD ∽△ACO ,则∠PCD =∠ACO ,PD AO =CD CO ,∴PD CD =AO CO=42=2,过点A 作AC 的垂线,交CP 的延长线于点G ,过点G 作GH ⊥x 轴于点H ,如图:∵PD ⊥AC ,GA ⊥AC ,∴GA ∥PD ,∴△GAC ∽△PDC ,∴GA PD =AC CD ,∴GA AC=PD CD =2,∵GA ⊥AC ,GH ⊥x 轴,∴∠GAC =∠GHA =90°,∴∠AGH +∠GAH =90°,∠GAH +∠CAO =90°,∴∠AGH =∠CAO ,∵∠GHA =∠AOC =90°,∴△GHA ∽△AOC ,∴GH AO =AH CO =GA AC ,即GH 4=AH 2=2,∴GH =8,AH =4,∴HO =AH +OA =8,∴G (-8,8),设直线CG 的解析式为y =-34x +2,令-34x +2=-12x 2-32x +2,解得:x 1=0(不合题意,舍去),x 2=-32,把x =-32代入y =-34x +2得:y =-34x +2=-34×-32 +2=258,∴此时点P 的坐标为-32,258 ,综上所述,符合条件的点P 的坐标为(-3,2)或-32,258.【点睛】本题考查二次函数的综合应用,掌握待定系数法求函数的解析式、一线三直角模型及相似三角形的判定与性质等知识点是解题的关键.4.如图,抛物线y =-12x 2+bx +c 过点A 3,2 ,且与直线y =-x +72交于B 、C 两点,点B 的坐标为4,m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE ⊥x 轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD +PA 的最小值.【答案】(1)y =-12x 2+x +72(2)325【分析】(1)将点B 的坐标为(4,m )代入y =-x +72,m =-4+72=-12,B 的坐标为4,-12 ,将A (3,2),B 4,-12 代入y =-12x 2+bx +c ,解得b =1,c =72,因此抛物线的解析式y =-12x 2+x +72;(2)设D m ,-12m 2+m +72 ,则E m ,-m +72 ,DE =-12m 2+m +72 --m +72 =-12m 2+2m =-12(m -2)2+2,当m =2时,DE 有最大值为2,此时D 2,72,作点A 关于对称轴的对称点A ,连接A D ,与对称轴交于点P .PD +PA =PD +PA =A D ,此时PD +PA 最小;【详解】(1)将点B 的坐标为(4,m )代入y =-x +72,m =-4+72=-12,∴B 的坐标为4,-12 ,将A (3,2),B 4,-12 代入y =-12x 2+bx +c ,-12×32+3b +c =2-12×42+4b +c =-12 解得b =1,c =72,∴抛物线的解析式y =-12x 2+x +72;(2)设D m ,-12m 2+m +72 ,则E m ,-m +72 ,DE=-12m2+m+72--m+72=-12m2+2m=-12(m-2)2+2,∴当m=2时,DE有最大值为2,此时D2,7 2,作点A关于对称轴的对称点A ,连接A D,与对称轴交于点P.PD+PA=PD+PA =A D,此时PD+PA最小,∵A(3,2),∴A (-1,2),A D=(-1-2)2+2-722=325,即PD+PA的最小值为325;【点睛】本题考查了二次函数,熟练运用二次函数的图象的性质与一次函数的性质以及圆周角定理是解题的关键.5.抛物线y=ax2+bx-3(a,b为常数,a≠0)交x轴于A-3,0,B4,0两点.(1)求该抛物线的解析式;(2)点C0,4,D是线段AC上的动点(点D不与点A,C重合).①点D关于x轴的对称点为D ,当点D 在该抛物线上时,求点D的坐标;②E是线段AB上的动点(点E不与点A,B重合),且CD=AE,连接CE,BD,当CE+BD取得最小值时,求点D的坐标.【答案】(1)y=14x2-14x-3(2)①-43,20 9;②-54,73【分析】(1)用待定系数法可得抛物线的解析式为y=14x2-14x-3;(2)①由A(-3,0),C(0,4)得直线AC解析式为y=43x+4,设D m,43m+4,可得Dm,-43m-4,代入y=14x2-14x-3解得m=-3(与A重合,舍去)或m=-43,故D-43,209;②过C在y轴左侧作CK∥x轴,且CK=AC,连接DK,证明△DCK≌△ECA(SAS),有DK=CE,故CE+BD最小时,DK+BD最小,此时K,D,B共线,求出K(-5,4),可得直线BK解析式为y=-4 9x+169,解y=-49x+169y=43x+4即得D的坐标为-54,73.【详解】(1)解:把A(-3,0),B(4,0)代入y=ax2+bx-3得:9a-3b-3=016a+4b-3=0,解得a=14b=-14 ,∴抛物线的解析式为y=14x2-14x-3;(2)解:①如图:由A (-3,0),C (0,4)得直线AC 解析式为y =43x +4,设D m ,43m +4 ,∵点D 关于x 轴的对称点为D ,∴D m ,-43m -4 ,把D m ,-43m -4 代入y =14x 2-14x -3得:-43m -4=14m 2-14m -3,解得m =-3(与A 重合,舍去)或m =-43,∴D -43,209;②过C 在y 轴左侧作CK ∥x 轴,且CK =AC ,连接DK ,如图:∴∠KCD =∠CAE ,∵CD =AE ,CK =AC ,∴△DCK ≌△ECA (SAS ),∴DK =CE ,∴CE +BD 最小时,DK +BD 最小,此时K ,D ,B 共线,∵A (-3,0),C (0,4),∴AC =5=CK ,∴K (-5,4),由K (-5,4),B (4,0)得直线BK 解析式为y =-49x +169,解y =-49x +169y =43x +4 得x =-54y =73,∴D 的坐标为-54,73.【点睛】本题考查二次函数的综合应用,涉及待定系数法,对称变换,三角形全等的判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题是(2)的关键.6.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +2a ≠0 与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式;(2)点P 为直线BC 上方的抛物线上一点,过点P 作y 轴的垂线交线段BC 于M ,过点P 作x 轴的垂线交线段BC 于N ,求△PMN 的周长的最大值.(3)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)y =-23x 2+43x +2;(2)10+2133(3)点M 的坐标为2,2 或4,-103 或-2,-103.【分析】(1)将点A -1,0 、B 3,0 代入y =ax 2+bx +2a ≠0 即可;(2)求出BC 的解析式,设P t ,-23t 2+43t +2 ,根据题意得2≤t <3,易得PN =-23t -32 2+32,求得其最大值,易证△BOC ∽△MPN ,可得PM =32PN ,MN =132PN ,进而得△PMN 的周长为PN +PM +MN =PN +32PN +132PN =5+132PN ,则当PN 最大时,△PMN 的周长有最大值,代入PN 最大值即可求解;(3)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,分两类考虑,以BC 为对角线,以BC 为边利用平行四边形对边平行且相等求点M 的坐标,和构造直角三角形求点M 的横坐标.【详解】(1)解:(1)∵抛物线y =ax 2+bx +2a ≠0 过A -1,0 ,B 3,0 两点,∴a -b +2=09a +3b +2=0 ,解得a =-23b =43 ,∴抛物线的解析式为y =-23x 2+43x +2;(2)当x =0时,y =2,即:C 0,2 ,则OC =2,OB =3,BC =13,设BC 的解析式为:y =kx +b 1,将B 3,0 ,C 0,2 代入可得:b 1=23k +b 1=0 ,解得:k =-23b 1=2,∴BC 的解析式为:y =-23x +2,设P t ,-23t 2+43t +2 ,∵点P 为直线BC 上方的抛物线上一点,过点P 作y 轴的垂线交线段BC 于M ,过点P 作x 轴的垂线交线段BC 于N ,∴t >0t <3-23t 2+43t +2≤2,则2≤t <3,当x =t 时,点N 的纵坐标为:y =-23t +2,则PN =-23t 2+43t +2--23t +2 =-23t 2+2t =-23t -32 2+322≤t <3 ,∴当t =2时,PN 有最大值为:-23×2-32 2+32=43,由题意可知,∠BOC =∠P =90°,PN ∥y 轴,则∠PNM =∠OCB ,∴△BOC ∽△MPN ,则OC PN =OB PM =BC MN,则PM =32PN ,MN =132PN ,△PMN 的周长为PN +PM +MN =PN +32PN +132PN =5+132PN ,则当PN 最大时,△PMN 的周长有最大值,即:△PMN 的周长的最大值为5+132×43=10+2133;(3)存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形,①以BC 为对角线,过C 作CM ∥x 轴交抛物线与M ,点N 在x 轴上,NB =2=MC ,M 2,2 ;②以BC 为边,过M 作MG 垂直抛物线对称轴于G ,当MG =OB =3,且OC =GN 时,四边形CNMB为平行四边形,M 点横坐标x =3+1=4,纵坐标y =-23×42+43×4+2=-103,M 4,-103;③过N作NH∥x轴,与过M作MH∥y轴交于H,当MH=CO=2,NH=BO=3时,四边形CMNB为平行四边形,M点横坐标为x=1-3=-2,纵坐标y=-23×-22+43×-2+2=-103,M-2,-103 ;综上所述:点M的坐标为2,2或4,-10 3或-2,-103.【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图像及性质,相似三角形的判定及性质,平行四边形的判定与性质,及分类讨论的数学思想,熟练掌握二次函数的性质、相似三角形的判定及性质,平行四边形的性质是解题的关键.7.如图,二次函数y=-14x2+12m-1x+m(m是常数,且m>0)的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,动点P在对称轴l上,连接AC、BC、PA、PC.(1)求点A、B、C的坐标(用数字或含m的式子表示);(2)当PA +PC 的最小值等于45时,求m 的值及此时点P 的坐标;(3)当m 取(2)中的值时,若∠APC =2∠ABC ,请直接写出点P 的坐标.【答案】(1)A -2,0 ,B 2m ,0 ,C 0,m(2)m =4,P 3,52 (3)P 点坐标为3,0 或3,52 【分析】(1)将x =0,y =0,分别代入y =-14x 2+12m -1 x +m ,计算求解即可;(2)如图1,连接PB ,由题意知,PA =PB ,则PA +PC =PB +PC ,可知当C ,P ,B 三点共线时,PA +PC 值最小,在Rt △BOC 中,由勾股定理得BC =5m ,由PA +PC 的最小值等于45,可得5m =45,计算m 的值,然后得出B ,C 的点坐标,待定系数法求直线BC 的解析式,根据P 是直线BC 与直线l 的交点,计算求解即可;(3)由(2)知m =4,则B 8,0 ,C 0,4 ,抛物线的对称轴为直线x =3,勾股定理逆定理判断△ABC 是直角三角形,且∠ACB =90°,记D 为直线l 与x 轴的交点,如图2,连接CD ,由直角三角形斜边的中线等于斜边的一半可得CD =BD =AD ,由等边对等角可得∠DCB =∠ABC ,由三角形外角的性质可得∠ADC =∠DCB +∠ABC =2∠ABC ,进而可得∠ADC =∠APC ,即P 与D 重合,求此时的P 点坐标;过A ,C ,D 三点作⊙O ,如图2,由同弧所对的圆周角相等可知⊙O 与直线l =3交点即为P ,设P 3,a ,由题意知,圆心O 在直线x =12上,设圆心坐标为12,n ,则AO 2=CO 2=PO 2,根据AO 2=CO 2,可求n 值,根据AO 2=PO 2,可求a 值,进而可得此时的P 点坐标.【详解】(1)解:当x =0时,y =m ,当y =0时,-14x 2+12m -1 x +m =0,整理得x 2-2m -1 x -4m =0,即x -2m x +2 =0,解得x 1=2m ,x 2=-2,∴A -2,0 ,B 2m ,0 ,C 0,m ,(2)解:如图1,连接PB ,由题意知,PA =PB ,∴PA +PC =PB +PC ,∴当C ,P ,B 三点共线时,PA +PC 值最小,在Rt △BOC 中,由勾股定理得BC =OB 2+OC 2=4m 2+m 2=5m ,∵PA +PC 的最小值等于45,∴5m =45,解得m =4,∴B 8,0 ,C 0,4 ,∴抛物线的对称轴为直线x =3,设直线BC 的解析式为y =kx +b ,将B 8,0 ,C 0,4 代入得,0=8k +b 4=b,解得k =-12b =4 ,∴直线BC 的解析式为y =-12x +4,。
中考数学知识点方法必备07二次函数中定值、定点问题(8类题型)解析版
方法必备07二次函数中定值、定点问题(8类题型)1.(2023•花都区二模)已知,抛物线22(22)2y x m x m m =-+++与x 轴交于A ,B 两点(A 在B 的左侧).(1)当0m =时,求点A ,B 坐标;(2)若直线y x b =-+经过点A ,且与抛物线交于另一点C ,连接AC ,BC ,试判断ABC D 的面积是否发生变化?若不变,请求出ABC D 的面积;若发生变化,请说明理由;(3)当5221m x m --……时,若抛物线在该范围内的最高点为M ,最低点为N ,直线MN 与x 轴交于点D ,且3MDND=,求此时抛物线的解析式.【分析】(1)将0m =代入可得22y x x =-,令0y =,解方程即可求解.(2)令0y =,有22(22)20x m x m m -+++=,解方程得出A 点,B 点坐标,则2AB =,由直线y x b =-+经过点(,0)A m ,可得y x m =-+,联立求解方程组得到C 点坐标,即可求解.(3)求出32m >,由题可知对称轴为1x m =+,则对称轴512x m =+…,求得5122x m =+>…,即抛物线的对称轴在直线2x =的右侧,分情况讨论:①若211m m -+…,2m …,即322m <…时,证明MDH NDG D D ∽,利用相似三角形的性质即可求解;②若2121m m <+<-,即2m >,由||3||M N y y =,得2924153m m -+=,求解即可.【解答】解:(1)当0m =时,22y x x =-,当0y =时,有220x x -=,解得10x =,22x =,A Q 在B 的左侧,\点A 坐标为(0,0),点B 坐标为(2,0).(2)ABC D 的面积不变.对于抛物线22(22)2y x m x m m =-+++,当0y =时,有22(22)20x m x m m -+++=,解得:1x m =,22x m =+.A Q 在B 的左侧,\点A 坐标为(,0)m ,点B 坐标为(2,0)m +,2AB \=,Q 直线y x b =-+经过点(,0)A m ,0m b \=-+,b m \=,y x m \=-+,联立22(22)2y x m y x m x m m =-+ìí=-+++î解得1x m =,21x m =+,Q 点C 在y x m =-+上,当21x m =+时,1C y =-,C \点坐标为(1,1)m +-.11||21122ABC C S AB y D \=´´=´´=,ABC \D 的面积不发生变化,1ABC S D =.(3)5221m x m --Q ……,5221m m \-<-,32m \>.由题可知对称轴为1x m =+,则对称轴512x m =+…,Q522122m m -+-=,即范围5221m x m --……的中点为2x =,\5122x m =+>…,即抛物线的对称轴在直线2x =的右侧.①若211m m -+…,2m …,即322m <…时,Q 抛物线开口向上,当5221m x m --……时,y 随x 的增大而减小,如图,当52x m =-时,取最高点2(52,92415)M m m m --+,当21x m =-时,取最低点2(21,43)N m m m --+,分别过点M ,N 作x 轴的垂线交于点H ,G ,则MDH NDG D D ∽,\3MH MDNG ND ==,即||3||M N y y =,\22|92415|3|43|m m m m -+=-+,解得1m =(舍)或2m =,\当2m =时,抛物线的解析式为268y x x =-+.②若2121m m <+<-,即2m >,\最低点在顶点处取得,(1,1)N m \+-,当52x m =-时,取最高点2(52,92415)M m m m --+,由||3||M N y y =,得2924153m m -+=,解得1222,3m m ==,2m >Q ,1m \与2m 不符合题意,舍去,综上所述,抛物线的解析式为268y x x =-+.【点评】本题考查了二次函数综合,二次函数的图象与性质,相似三角形的性质与判定等知识,熟练掌握二次函数的图象和性质是解题的关键.2.(2023•兴化市一模)已知抛物线2(0)y ax a =>经过第二象限的点A ,过点A 作//AB x 轴交抛物线于点B ,第一象限的点C 为直线AB 上方抛物线上的一个动点.过点C 作CE AB ^于E ,连接AC 、BC .(1)如图1,若点(1,1)A -,1CE =.①求a 的值;②求证:ACE CBE D D ∽.(2)如图2,点D 在线段AB 下方的抛物线上运动(不与A 、B 重合),过点D 作AB 的垂线,分别交AB 、AC 于点F 、G ,连接AD 、BD .若90ADB Ð=°,求DF 的值(用含有a 的代数式表示).(3)在(2)的条件下,连接BG 、DE ,试判断BGF DBE S S D D 的值是否随点D 的变化而变化?如果不变,求出S BGFS DBED D 的值,如果变化,请说明理由.【分析】(1)①待定系数法求a 值,②用两边对应成比例夹角相等判定相似.(2)(3)先设点坐标,依题意代数运算,分别用所设值表示DF 长,BGF D 与DBE D 面积,即可.【解答】(1)①(1,1)A -Q 在抛物线上,2(1)1a \-=,解得:1a =.②B Q 在抛物线上,且//AB x 轴,B \与A 关于2y x =的对称轴y 轴对称.(1,1)B \.1CE =Q ,C \的纵坐标2.令2y =,即:22x =,解得:x =),x =.C \,2),又CE AB ^Q ,E \,1),1AE \=+,1BE =-,\AE CECE BE=,又90AEC CEB Ð=Ð=°Q ,ACE CBE \D D ∽.(2)设:2(,)A n an -,2(,)B n an ,2(,)D m am ,则22DF an am =-.若90ADB Ð=°,则ABD D 为Rt △,根据勾股定理可得:222AD DB AB +=.即:222222222()()()()(2)m n an am an am n m n ++-+-+-=.整理得:221an am a -=,即:1DF a=.(3)依题意设:2(,)A n an -,2(,)B n an ,2(,)C p ap ,2(,)D m am ,2(,)E p an .DG AB ^Q ,CE AB ^,//FG EC \,AFG AEC \D D ∽,\FG AF m n CE AE p n+==+,\22()()()m nFG ap an a m n p n p n+=-=+-+.\22111()()()()()222BGF S BF FG n m a m n p n a p n n m D =××=-×+-=--.2211()()22DBE S BE DF a p n n m D =××=--.\1BGFDBES S D D =.即:BGFDBES S D D 的值不随D 的变化而变化,其值为1.【点评】本题考查了二次函数的性质,相似三角形的判定等知识,先设后求再验证的思路体系,在本题中有充分体现;同时对运算能力要求较高.3.(2023•绵阳)如图,抛物线经过AOD D 的三个顶点,其中O 为原点,(2,4)A ,(6,0)D ,点F 在线段AD 上运动,点G 在直线AD 上方的抛物线上,//GF AO ,GE DO ^于点E ,交AD 于点I ,AH 平分OAD Ð,(2,4)C --,AH CH ^于点H ,连接FH .(1)求抛物线的解析式及AOD D 的面积;(2)当点F 运动至抛物线的对称轴上时,求AFH D 的面积;(3)试探究FGGI的值是否为定值?如果为定值,求出该定值;不为定值,请说明理由.【分析】(1)运用待定系数法可得2132y x x =-+.设点O 到AD 的距离为d ,点A 的纵坐标为A y ,根据三角形面积公式即可求得12AOD S D =;(2)当点F 运动至对称轴上时,点F 的横坐标为3,可得14AF AD =.连接OC 、OH ,由点A 与点C 关于原点O 对称,可得点A 、O 、C 三点共线,且O 为AC 的中点.推出//HO AD ,可得点H 到AD 的距离为d .再根据三角形面积公式即可求得答案;(3)过点A 作AL OD ^于点L ,过点F作FK GE ^于点K.运用勾股定理可得OA ==FIK D 为等腰直角三角形.设FK m =,则KI m=,再运用解直角三角形可求得2GK m =,FG =,即可求得答案.【解答】解:(1)设抛物线的解析式为2(0)y ax bx a =+¹.将(2,4)A ,(6,0)D 代入,得4243660a b a b +=ìí+=î,解得:123a b ì=-ïíï=î,2132y x x \=-+.设点O 到AD 的距离为d ,点A 的纵坐标为A y ,1116412222AOD A S AD d OD y D \=×=×=´´=.(2)221193(3)222y x x x =-+=--+Q ,\抛物线的对称轴为直线3x =.当点F 运动至对称轴上时,点F 的横坐标为3,则321624AF AD -==-,即14AF AD =.如图,连接OC 、OH ,由点(2,4)C -,得点A 与点C 关于原点O 对称,\点A 、O 、C 三点共线,且O 为AC 的中点.AH CH ^Q ,12OH AC OA \==,OAH AHO \Ð=Ð.AH Q 平分CAD Ð,OAH DAH \Ð=Ð,AHO DAH \Ð=Ð,//HO AD \,HO \与AD 间的距离为d ,\点H 到AD 的距离为d .12AFH S AF d D =´´Q ,1122AOD S AD d D =´´=,111111()123224424AFH S AF d AD d AD d D \=´´=´´=´´´=´=.\当点F 运动至抛物线的对称轴上时,AFH D 的面积为3;(3)如图,过点A 作AL OD ^于点L ,过点F 作FK GE ^于点K .由题意得4AL =,2OL =,OA \===.624DL OD OL \=-=-=,在Rt ADL D 中,AL DL =,45ADL \Ð=°,GE DO ^Q ,45FIK \Ð=°,即FIK D 为等腰直角三角形.设FK m =,则KI m =,在Rt AOL D 和Rt GFK D 中,//GF AO Q ,AOL GFK \Ð=Ð,tan tan AOL GFK \Ð=Ð,\AL GKOL FK =,即42GKm=,2GK m \=,23GI GK KI m m m \=+=+=.又sin sin AOL GFK Ð=ÐQ ,\AL GKAO FG =,2m FG =,FG \=,\FG GI ==.\FGGI【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,等腰直角三角形的判定和性质,图形的面积计算,相似三角形判定和性质,解直角三角形等,添加辅助线构造直角三角形是解题关键.4.(2023•金东区三模)如图,一次函数(0,0)by x b a b a=-+>>与坐标轴交于A ,B 两点,以A 为顶点的抛物线过点B ,过点B 作y 轴的垂线交该抛物线于另一点D ,以AB ,AD 为边构造ABCD Y ,延长BC 交抛物线于点E .(1)若2a b ==,如图1.①求该抛物线的表达式.②求点E 的坐标.(2)如图2,请问BEAB是否为定值,若是,请求出该定值;若不是,请说明理由.【分析】(1)①将a ,b 的值代入一次函数解析式,可求出点A ,B 的坐标,利用待定系数法可得出结论;②由抛物线的对称性可得点D 的坐标,根据平行四边形的性质可求出点C 的坐标,进而求出直线BE 的表达式,联立直线和抛物线的解析式即可得出结论;(2)根据待定系数法可求出A ,B 的坐标,进而可表达AB 的根据对称性可得出点D 的坐标,根据菱形的性质可得出点C 的坐标,进而求出直线BE 的解析式,联立可求出点E 的坐标,进而求出BE 的长度,求比值即可得出结论.【解答】解:(1)当2a b ==时,一次函数为2y x =-+,令0x =,则2y =;令0y =,则2x =,(2,0)A \,(0,2)B ,\设抛物线的表达式为:2(2)y m x =-,将(0,2)B 代入可得,42m =,解得12m =;\抛物线的解析式为:21(2)2y x =-;②由抛物线的对称性可得,(4,2)D ,由平行四边形的性质可知,(2,4)C ,\直线BE 的解析式为:2y x =+,令21(2)22y x x =-=+,解得0x =(舍)或6x =,(6,8)E \;(2)是定值,理由如下:对于(0,0)by x b a b a=-+>>,令0x =,则y b =;令0y =,则x a =,(,0)A a \,(0,)B b ,\设抛物线的表达式为:2()y m x a =-,AB =将(0,)B b 代入可得,2a m b =,解得2b m a =;\抛物线的解析式为:22()by x a a=-;由抛物线的对称性可得,(2,)D a b ,由平行四边形的性质可知,(,2)C a b ,\直线BE 的解析式为:by x b a=+,令22()b b y x a x b a a=-=+,解得0x =(舍)或3x a =,(3,4)E a b \;BE \==,\3BE AB ==.【点评】本题属于二次函数综合题,主要考查待定系数法求函数解析式,平行四边形的性质,抛物线的对称性,二次函数图象与一次函数图象交点问题等相关知识,表达出点C 的坐标是解题关键.5.(2023•黑龙江一模)已知,抛物线2y ax bx c =++经过(1,0)A -、(3,0)B 、(0,3)C 三点,点P 是抛物线上一点.(1)求抛物线的解析式;(2)当点P 位于第四象限时,连接AC ,BC ,PC ,若PCB ACO Ð=Ð,求直线PC 的解析式;(3)如图2,当点P 位于第二象限时,过P 点作直线AP ,BP 分别交y 轴于E ,F 两点,请问CECF的值是否为定值?若是,请求出此定值;若不是,请说明理由.【分析】(1)将(1,0)A -、(3,0)B 、(0,3)C 代入2y ax bx c =++,即可求解;(2)过点B 作MB CB ^交于点M ,过点M 作MN x ^轴交于点N ,由题意可得1tan 3BMBCM BCÐ==,求出BM =,再由45NBM Ð=°,求出点(2,1)M -,求直线CM 的解析式即为所求;(3)设2(,23)P t t t -++,分别由待定系数法求出直线AP 的解析式,直线BP 的解析式,就能求出CE 和CF 的长,即可求解.【解答】解:(1)将(1,0)A -、(3,0)B 、(0,3)C 代入2y ax bx c =++,\09303a b c a b c c -+=ìï++=íï=î,\123a b c =-ìï=íï=î,223y x x \=-++;(2)过点B 作MB CB ^交于点M ,过点M 作MN x ^轴交于点N ,(1,0)A -Q 、(0,3)C ,(3,0)B ,1OA \=,3OC =,BC =,1tan 3ACO \Ð=,PCB ACO Ð=ÐQ ,1tan 3BMBCM BC\Ð==,BM \=OB OC =Q ,45CBO \Ð=°,45NBM \Ð=°,1MN NB \==,(2,1)M \-,设直线CM 的解析式为y kx b =+,\321b k b =ìí+=-î,\23k b =-ìí=î,\直线PC 的解析式为23y x =-+;(3)CE CF 的值是为定值13.,理由如下:设2(,23)P t t t -++,设直线AP 的解析式为11y k x b =+,\2111123tk b t t k b ì+=-++ïí-+=ïî,\1133k tb t =-ìí=-î,(3)(3)y t x t \=-+-,(0,3)E t \-,CE t \=-,设直线BP 的解析式为22y k x b =+,\222222330k t b t t k b ì+=-++ïí+=ïî,\22133k t b t =--ìí=+î,(1)33y t x t \=--++,(0,33)F t \+,3CF t \=-,\13CE CF =,\CE CF 的值是为定值13.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,用待定系数法求函数解析式的方法是解题的关键.6.(2023•红桥区三模)已知抛物线22(y ax bx a =++,b 为常数,0)a ¹经过点(1,0)A -,(3,0)B ,与y 轴相交于点C ,其对称轴与x 轴相交于点E .(1)求该抛物线的解析式;(2)连接BC ,在该抛物线上是否存在点P ,使PCB ABC Ð=Ð?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)Q 为x 轴上方抛物线上的动点,过点Q 作直线AQ ,BQ ,分别交抛物线的对称轴于点M ,N ,点Q 在运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把A 、B 两点坐标代入22y ax bx =++,求出a ,b 的值即可.(2)点P 的位置要分类讨论,P 在BC 上方时,P 和C 是对称点,已知C 的坐标,可求P .P 在BC 下方时,利用等边对等角,勾股定理求出D 的坐标,求出CD 的表达式,再求直线CD 和抛物线的交点坐标,可得P 的坐标.(3)添加辅助线QF x ^轴,得平行线,找出成比例线段,用坐标表示线段,求出EM EN +的值.【解答】解:(1)抛物线22(y ax bx a =++,b 为常数,0)a ¹经过点(1,0)A -,(3,0)B ,209320a b a b -+=ìí++=î,解得2343a b ì=-ïïíï=ïî.224233y x x \=-++.,(2)224233y x x =-++.\点C 坐标(0,2),①P 点在BC 的上方,PCB ABC Ð=Ð,//PC x \轴,\点C 、P 是一对对称点,对称轴是直线12bx a=-=.P \点坐标为(2,2).②P 在BC 下方,PCB ABC Ð=Ð,DC DB \=,设D 的坐标为(,0)d ,3BD CD d \==-,根据勾股定理得,224(3)d d +=-,56d \=,D \的坐标5(6,0).设直线CD 的表达式为y kx b =+,5062k bb ì=+ïíï=î,解得:1252k b ì=-ïíï=î,1225y x \=-+.当2241222335x x x -++=-+时,解得10x =(不合题意,舍去),2285x =.285x \=,122828625525y =-´+=-.P \的坐标28(5,286)25-.,(3)作QM x ^轴于F .MN x ^Q 轴于E ,//MN QF \,\,AE EM EN EBAF FQ FQ FB ==,\EM EN AE EBFQ AF FB+=+,设Q 点坐标为(,)x y,2AE \=,1AF x =+,2BE =,3BF x =-,224233FQ y x x ==-++.22224((2)1333EM EN x x x x \+=+´-+++-2222()()(23)133x x x x =+´-´--+-222()((3)(1)313x x x x =-+´-++-4(31)3x x =-´--+163=.EM EN \+的值为定值,163EM EN +=.【点评】此题考查了待定系数法,二次函数的性质,等角对等边,勾股定理,比例线段等知识点,以及数形结合的数学思想,难度较大,得分率较低.7.(2023•呼和浩特)探究函数22||4||y x x =-+的图象和性质,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x¼52-2-32-1-12-012132252¼y¼52-32m323223252-¼其中,m =2.根据如表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;(2)点F 是函数22||4||y x x =-+图象上的一动点,点(2,0)A ,点(2,0)B -,当3FAB S D =时,请直接写出所有满足条件的点F 的坐标;(3)在图2中,当x 在一切实数范围内时,抛物线224y x x =-+交x 轴于O ,A 两点(点O 在点A 的左边),点P 是点(1,0)Q 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段OP ,AP (不含端点)于M ,N 两点.当直线l 与抛物线只有一个公共点时,PM 与PN 的和是否为定值?若是,求出此定值;若不是,请说明理由.【分析】(1)把1x =-代入22||4||y x x =-+即可求得2m =,运用描点法画出22||4||(0)y x x x =-+<部分的图象,观察图象描述性质即可;(2)当0x <时,224y x x =--,当0x …时,224y x x =-+,根据3FAB S D =,可求得点F 的纵坐标,代入解析式解方程即可;(3)利用待定系数法可得:直线OP 的表达式为4y x =①,直线AP 的表达式为48y x =-+②,由直线l 与抛物线只有一个公共点,可得直线l 的表达式为21(4)8y tx t =+-③,联立方程组可求得:1(4)8M x t =--,1(12)8N x t =--,再运用解直角三角形即可求得答案.【解答】解:(1)当1x =-时,22(1)4|1|2y =-´-+´-=,2m \=,函数图象如图所示:由图象可得该函数的性质:该函数关于y 轴对称;当1x <-或01x <…时,y 随x 的增大而增大;当10x -<…或1x …时,y 随x 的增大而减小;故答案为:2;(2)当0x <时,224y x x =--,当0x …时,224y x x =-+,(2,0)A Q ,(2,0)B -,4AB \=,3FAB S D =Q ,\14||32F y ´=,32F y \=±,当32F y =时,若0x <,则23242x x --=,解得:32x =-或12-,若0x …,则23242x x -+=,解得:32x =或12,3(2F \-,32或1(2-,3)2或3(2,3)2或1(2,3)2;当32F y =-时,若0x <,则23242x x --=-,解得:1x =-或1x =-+(舍去),若0x …,则23242x x -+=-,解得:12x =-(舍去)或12x =+,(1F \-+,32-或(1--32-或(1-3)2-或(1+3)2-;综上所述,所有满足条件的点F 的坐标为3(2-,32或1(2-,3)2或3(2,32或1(2,3)2或(1--32-或(1+3)2-;(3)PM 与PN 的和是定值;如图2,连接直线PQ ,Q 抛物线224y x x =-+交x 轴于O ,A 两点,(0,0)O \,(2,0)A ,22242(1)2y x x x =-+=--+Q ,\抛物线224y x x =-+的顶点为(1,2),Q 点P 是点(1,0)Q 关于抛物线顶点(1,2)的对称点,故点P 的坐标为(1,4),由点P 、O 的坐标得,直线OP 的表达式为4y x =①,同理可得,直线AP 的表达式为48y x =-+②,设直线l 的表达式为y tx n =+,联立y tx n =+和224y x x =-+并整理得:22(4)0x t x n +-+=,Q 直线l 与抛物线只有一个公共点,故△2(4)80t n =--=,解得21(4)8n t =-,故直线l 的表达式为21(4)8y tx t =+-③,联立①③并解得1(4)8M x t =--,同理可得,1(12)8N x t =--,Q 射线PO 、PA 关于直线:1PQ x =对称,则APQ OPQ Ð=Ð,设APQ OPQ a Ð=Ð=,则sin sin sin OQ APQ OPQ OP a Ð=Ð====,11)sin sin N M N M x x PM PN x x a a--\+=+=-=【点评】本题主要考查了二次函数的图象与性质,一次函数的图象与性质,抛物线上的点的坐标的特征,一次函数图象上点的坐标的特征,待定系数法确定函数的解析式,抛物线的平移的性质,利用点的坐标表示出相应线段的长度是解题的关键.8.(2023•平遥县一模)综合与探究.如图1,在平面直角坐标系中,已知二次函数224233y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)点P 是二次函数图象上的一个动点,请问是否存在点P 使PCB ABC Ð=Ð?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线l ,交x 轴于点D .若点M 是二次函数图象上一动点,且点M 始终位于x 轴上方,作直线AM ,BM ,分别交l 于点E ,F ,在点M 的运动过程中,DE DF +的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.【分析】(1)先根据二次函数的性质求出A ,B ,C 的坐标,再利用待定系数法求一次函数解析式;(2)分两种情况讨论,当点P 在BC 上方时,当点P 在BC 下方时,再利用勾股定理和待定系数法进行求解即可;(3)由(2)得抛物线的对称轴为直线1x =,求出点D 的坐标,设224(,2)33M t t t -++且13t -<<,分别求出直线AM 的解析式和直线BM 的解析式,进而表示出4444,333DE t DF t =-+=+,即可求解.【解答】解:(1)当0y =时,即2242033x x -++=,解得:11x =-,23x =.\图象与x 轴交于点(1,0)A -,(3,0)B ,当0x =时,2y =,\图象与y 轴交于点(0,2)C ,\直线BC 的函数表达式为223BC y x =-+;(2)存在,理由如下:当点P 在BC 上方时,PCB ABC Ð=ÐQ ,//CP AB \,即//CP x 轴,\点P 与点C 关于抛物线的对称轴对称,Q 224233y x x =-++,\抛物线的对称轴为直线43122()3x =-=´-;(0,2)C Q ,(2,2)P \;当点P 在BC 下方时,设CP 交x 轴于点(,0)K m ,则OK m =,3KB m =-.PCB ABC Ð=ÐQ ,3CK BK m \==-.在Rt COK D 中,222OC OK CK +=,2222(3)m m \+=-,解得:56m =,\5(,0)6K ,设直线CK 的解析式为y kx d =+,562k d d ì+=ïíï=î,解得:1252k d ì=-ïíï=î,\直线CK 的解析式为1225y x =-+,联立,得2122524233y x y x x ì=-+ïïíï=-++ïî,解得:1102x y =ìí=î(舍去),2228528625x y ì=ïïíï=-ïî,\28286(,525P -.综上所述,点P 的坐标为(2,2)或28286(,)525-;(3)存在,DE DF +的值为定值163,理由如下:由(2)得抛物线的对称轴为直线1x =,(1,0)D \,设224(,2)33M t t t -++且13t -<<,设直线AM 的解析式为11y k x b =+,将(1,0)A -和点M 的坐标代入得:11211024233k b tk b t t -+ìïí+=-++ïî,解得:11223223k t b t ì=-+ïïíï=-+ïî,\直线AM 的解析式为22(2)233y t x t =-+-+,当1x =时,443y t =-+,\4(1,4)3E t -+,同理,直线BM 的解析式为:22(2233y t x t =--++,当1x =时,4433y t =+,\44(1,33F t +,\4444,333DE t DF t =-+=+,\44416(4)3333DE DF t t +=++-+=,DE DF \+的值是定值,163DE DF +=.【点评】本题考查了二次函数的综合题目,涉及待定系数法求一次函数解析式,二次函数解析式,二次函数的图象和性质,熟练掌握知识点是解题的关键.9.(2023•广元)如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)A -,(4,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE Ð=°,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)待定系数法求解析式即可;(2)求出抛物线的对称轴为直线1x =,设对称轴l 与x 轴交于点G ,过点E 作ED l ^于点D ,证明DFG GBF D @D ,设(1,)F m ,进而得出E 点的坐标,代入抛物线解析式,求得m 的值,当E 点与A 点重合时,可得(1,3)F -或(1,3)F ;(3)设(,)P s t ,直线AP 的解析式为y dx f =+,BP 的解析式为y gx h =+,求得解析式,可得OM ,ON ,即可求解.【解答】解:(1)将点(2,0)A -,(4,0)B ,代入24y ax bx =++得:424016440a b a b -+=ìí++=î,解得:121a b ì=-ïíï=î,\抛物线解析式为2142y x x =-++;(2)Q 点(2,0)A -,(4,0)B ,\抛物线的对称轴为直线2412l x -+==,设直线l 与x 轴交于点G ,过点E 作ED l ^于点D ,当F 在x 轴上方时,如图:Q 以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE Ð=°,EF BF \=,90DFE BFG GBF Ð=°-Ð=ÐQ ,90EDF BGF Ð=Ð=°,()DFE GBF AAS \D @D ,GF DE \=,GB FD =,设(1,)F m ,则DE m =,3DG DF FG GB FG m =+=+=+,(1,3)E m m \++,E Q 点在抛物线2142y x x =-++上,\213(1)(1)42m m m +=-++++,解得:3m =-(舍去)或1m =,(1,1)F \;当F 在x 轴下方时,如图:同理可得()DFE GBF AAS D @D ,GF DE =,GB FD =,设(1,)F n ,则(1,3)E n n --,把(1,3)E n n --代入2142y x x =-++得:213(1)(1)42n n n -=--+-+,解得3n =(舍去)或5n =-,(1,5)F \-;当E 点与A 点重合时,如图所示,6AB =Q ,ABF D 是等腰直角三角形,且90BFE Ð=°,\132GF AB ==,此时(1,3)F -,由对称性可得,点(1,3)F ¢也满足条件,综上所述,(1,1)F 或(1,5)-或(1,3)-或(1,3);(3)12OM ON +为定值6,理由如下:设(,)P s t ,直线AP 的解析式为y dx f =+,BP 的解析式为y gx h =+,Q 点(2,0)A -,(4,0)B ,(,)P s t ,\20d f s d f t -+=ìí+=î,40g h s g h t +=ìí+=î,解得:222t d s t f s ì=ïï+íï=ï+î,444t g s t h s ì=ïï-íï=ï-î,\直线AP 的解析式为222t t y x s s =+++,BP 的解析式为444t ty x s s =+--,在222t t y x s s =+++中,令0x =得22ty s =+,\2(0,)2tM s +,在444t t y x s s =+--中,令0x =得44ty s =-,4(0,)4tN s\-,(,)P s t Q 在抛物线上,2114(4)(2)22t s s s s \=-++=--+,21214126(4)(2)6222428(4)(2)t t t s s OM ON s s s s s s --+\+=+´===+--++--+,12OM ON \+为定值6.【点评】本题考查二次函数的综合应用,涉及待定系数法,等腰直角三角形等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.10.(2023•扬州)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点(0,0)、(0,2)、(1,1)、(1,1)-中恰有三个点在二次函数2(y ax a =为常数,且0)a ¹的图象上.①a = ;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ^轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2(y ax a =为常数,且0)a >的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.【分析】(1)①在2y ax =中,令0x =得0y =,即知(0,2)不在二次函数2(y ax a =为常数,且0)a ¹的图象上,用待定系数法可得1a =;②设BC 交y 轴于E ,设菱形的边长为2t ,可得2(,)B t t -,故AE ==,2(2,)C t t +,代入2y x =得224t t +=,可解得t =③过B 作BF y ^轴于F ,过D 作DE y ^轴于E ,由点B 、D 的横坐标分别为m 、n ,可得BF m =,2OF m =,DE n =,2OE n =,证明()ABF DAE AAS D @D ,有BF AE =,AF DE =,故22m n AF m =--,AF n =,即可得1n m -=;(2)过B 作BF y ^轴于F ,过D 作DE y ^轴于E ,由点B 、D 的横坐标分别为m 、n ,知2(,)B m am ,2(,)D n an ,分三种情况:①当B ,D 在y 轴左侧时,由()ABF DAE AAS D @D ,可得22m am AF an -=--,AF n =-,故1n m a-=;②当B 在y 轴左侧,D 在y 轴右侧时,由()ABF DAE AAS D @D ,有22m am AF an -=+-,AF n =,知0m n +=或1n m a -=;③当B ,D 在y 轴右侧时,22m an AF am =--,AF n =,可得1n m a-=.【解答】解:(1)①在2y ax =中,令0x =得0y =,(0,0)\在二次函数2(y ax a =为常数,且0)a ¹的图象上,(0,2)不在二次函数2(y ax a =为常数,且0)a ¹的图象上,Q 四个点(0,0)、(0,2)、(1,1)、(1,1)-中恰有三个点在二次函数2(y ax a =为常数,且0)a ¹的图象上,\二次函数2(y ax a =为常数,且0)a ¹的图象上的三个点是(0,0),(1,1),(1,1)-,把(1,1)代入2y ax =得:1a =,故答案为:1;②设BC 交y 轴于E ,如图:设菱形的边长为2t ,则2AB BC CD AD t ====,B Q ,C 关于y 轴对称,BE CE t \==,2(,)B t t \-,2OE t \=,AE ==Q ,2OA OE AE t \=+=,2(2,)D t t \+,把2(2,)D t t +代入2y x =得:224t t =,解得t =或0t =(舍去),\③n m -是为定值,理由如下:过B 作BF y ^轴于F ,过D 作DE y ^轴于E ,如图:Q 点B 、D 的横坐标分别为m 、n ,2(,)B m m \,2(,)D n n ,BF m \=,2OF m =,DE n =,2OE n =,Q 四边形ABCD 是正方形,90DAB \Ð=°,AD AB =,90FAB EAD EDA \Ð=°-Ð=Ð,90AFB DEA Ð=Ð=°Q ,()ABF DAE AAS \D @D ,BF AE \=,AF DE =,22m n AF m \=--,AF n =,22m n n m \=--,()()m n n m n m \+=-+,Q 点B 、D 在y 轴的同侧,0m n \+¹,1n m \-=;(2)过B 作BF y ^轴于F ,过D 作DE y ^轴于E ,Q 点B 、D 的横坐标分别为m 、n ,2(,)B m am \,2(,)D n an ,①当B ,D 在y 轴左侧时,如图:BF m \=-,2OF am =,DE n =-,2OE an =,同理可得()ABF DAE AAS D @D ,BF AE \=,AF DE =,22m am AF an \-=--,AF n =-,22m am n an \-=+-,()()m n a n m n m \+=-+,n m a\-=;②当B 在y 轴左侧,D 在y 轴右侧时,如图:BF m \=-,2OF am =,DE n =,2OE an =,同理可得()ABF DAE AAS D @D ,BF AE \=,AF DE =,22m am AF an \-=+-,AF n =,22m am n an \-=+-,()()m n a n m n m \+=+-,0m n \+=或1n m a-=;③当B ,D 在y 轴右侧时,如图:BF m \=,2OF am =,DE n =,2OE an =,同理可得()ABF DAE AAS D @D ,BF AE \=,AF DE =,22m an AF am \=--,AF n =,22m an n am \=--,()()m n a n m n m \+=+-,n m a\-=;综上所述,m 、n 满足的等量关系式为0m n +=或1n m a-=.【点评】本题考查二次函数的应用,涉及待定系数法,三角形全等的判定与性质,解题的关键是分类讨论思想的应用.11.(2023•长汀县模拟)在平面直角坐标系中,抛物线2(0)y ax bx c a =++>经过(2,0)A -,(0,2)B -两点.(1)用含a 的式子表示b ;(2)当2a =时,如图1,点C 是直线AB 下方抛物线上的一个动点,求点C 到直线AB 距离的最大值.(3)当1a =时,如图2,过点1(2P -,2)-的直线交抛物线2(0)y ax bx c a =++>于M ,N .①若//MN x 轴,计算11PM PN+=4 .②若MN 与x 轴不平行,请你探索11PM PN+是否定值?请说明理由.【分析】(1)将(2,0)A -,(0,2)B -代入抛物线解析式,利用待定系数法求解即可;(2)求出抛物线的解析式,进而求出点A ,B 的坐标,可得AOB D 是等腰直角三角形;过点C 作CF x ^轴于F ,交AB 于E ,则ECD D 是等腰直角三角形,设点C 的横坐标为m ,则2(,232)C m m m +-,则(,2)E m m --,可得22(1)2CE m =-++,所以21)CD m ==+,利用二次函数的性质可得结论;(3)①令2y =-,求出x 的值可得出M ,N 的坐标,分别表达PM ,PN 的长度,代入可得结论;②设直线MN 的解析式为22k y kx =+-,1(M x ,1)y ,2(N x ,2)y ,令2222kkx x x +-=+-,整理得2(1)02kx k x +--=,所以121x x k +=-,122k x x =-,分别表达PM ,PN 和MN 的长度,代入可得结论.【解答】解:(1)将(2,0)A -,(0,2)B -代入抛物线2y ax bx c =++,得4202a b c c -+=ìí=-î,21b a \=-;(2)当2a =时,212213b a =-=´-=,2232y x x \=+-,(2,0)A -Q ,(0,2)B -,OA OB \=,AOB \D 是等腰直角三角形,45OAB \Ð=°,如图1,过点C 作CF x ^轴于F ,交AB 于E ,则ECD D 是等腰直角三角形,\直线AB 的解析式为2y x =--,设2(,232)C m m m +-,则(,2)E m m --,2(2)(232)CE m m m \=---+-224m m=--22(1)2m =-++,21)2CD m \==++,0<Q ,20m -<<,\当1m =-时,CD 当1m =-时,2323y =--=-,综上,点C 的坐标为(1,3)--时,CD\点C 到直线AB ;(3)①当1a =时,抛物线的解析式为22y x x =+-,令2y =-,即222x x +-=-,解得0x =或1x =-,(1,2)M \--,(0,2)N -,12PM PN \==,\111141122PM PN +=+=,故答案为:4;②11PM PN+是定值.理由如下:Q 过点1(2P -,2)-的直线交抛物线22y x x =+-于M ,N ,设直线MN 的解析式为22ky kx =+-,1(M x ,1)y ,2(N x ,2)y ,令2222k kx x x +-=+-,整理得2(1)02kx k x +--=,121x x k \+=-,122kx x =-,1122ky kx =+-Q ,2222k y kx =+-,1212()y y k x x \-=-,2221212()()MN x x y y \=-+-2212(1)()k x x =+-221212(1)[()4]k x x x x =++-22(1)[(1)4()]2kk k =+--´-22(1)k =+,21MN k \=+,1(2P -Q ,2)-,======21(1)4k =+14MN =,\11414PM PN MN PM PN PM PN MN ++===×,\11PM PN+是定值.【点评】本题主要考查二次函数与一次函数的综合运用,掌握二次函数图象的性质,函数图象平移的性质,一次函数与二次函数交点的计算方法是解题的关键.12.(2023•宿豫区三模)如图,在平面直角坐标系中,一次函数15544y x =+的图象与x 轴交于点A ,与y 轴交于点C ,对称轴为直线2x =的抛物线22(0)yax bx c a =++¹也经过点A 、点C ,并与x 轴正半轴交于点B .(1)求抛物线22(0)y ax bx c a =++¹的函数表达式;(2)设点25(0,)12E ,点F 在抛物线22(0)y ax bx c a =++¹对称轴上,并使得AEF D 的周长最小,过点F 任意作一条与y 轴不平行的直线交此抛物线于1(P x ,1)y ,2(Q x ,2)y 两点,试探究11FP FQ+的值是否为定值?说明理由;(3)将抛物线22(0)y ax bx c a =++¹适当平移后,得到抛物线23()(1)y a x h h =->,若当1x m <…时,3y x -…恒成立,求m 的最大值.【分析】(1)根据一次函数图象与坐标轴的交点分别解出点A ,C 的坐标,根据抛物线的对称轴解出点C 的坐标,根据待定系数法即可求解抛物线的解析式;(2)根据轴对称求线段的最小值,图形结合分析,计算出点BE 的解析式,再解出点F 的坐标,用点P ,Q 分别表示出直线PQ 的解析式,根据勾股定理分别PQ ,PF ,QF 的值,由此即可求解;(3)根据抛物线的平移确定平移为左右平移,由此确定3y 的二次项系数,画出图形,根据二次函数与直线4y x =-的交点的情况判断34y y >的取值,由此即可求解.【解答】解:(1)一次函数15544y x =+的图象与x 轴交于点A ,与y 轴交于点C ,令0x =,则154y =,令10y =,则1x =-,(1,0)A \-,5(0,4C ,Q 抛物线22(0)y ax bx c a =++¹的对称轴为直线2x =,且抛物线过点(1,0)A -,5(0,)4C ,且抛物线与x 轴正半轴交于点B ,(5,0)B \,设函数表达式为2(1)(5)y a x x =+-,将点5(0,4C 代入解析式得,5(01)(05)4a +-=,解得14a =-,\抛物线的解析式为22115(1)(5)444y x x x x =-+-=-++;(2)11FP FQ+的值是定值,理由如下:AEF D Q 的周长为AE AF EF ++,由AEF D 的周长最小,AE 的长是定值,AF EF \+最小,连接BE 交对称轴于点F ,设BE 所在直线的解析式为BE y mx n =+,且(5,0)B ,25(0,12E ,\502512m n n +=ìïí=ïî,解得,5122512m n ì=-ïïíï=ïî,\直线BE 的解析式为5251212BE y x =-+,Q 点F 在抛物线的对称轴2x =的直线上,\点5(2,)4F ;Q 过点5(2,)4F 任意作一条与y 轴不平行的直线交此抛物线于1(P x ,1)y ,2(Q x ,2)y 两点,如图所示,过点P 作y 的平行线,过点Q 作x 轴的平行线,交于点K ,\设PQ y px q =+,把点5(2,)4F 代入得,\524p q =+,524q p \=-,\直线PQ 的解析为524PQ y px p =+-,令25152444px p x x +-=-++,整理得:2(44)80x p x p ---=,\根据韦达定理得,1244x x p +=-,128x x p =-,Q 点1(P x ,1)y ,2(Q x ,2)y 在直线PQ 上,在Rt PQK D 中,12PK y y =-,12QK x x =-,11524y px p \=+-,22524y px p =+-,1212()y y p x x \-=-,222PQ QK PK \=+221212()()x x y y =-+-2212(1)()p x x =+-221212(1)[()4]p x x x x =++-22(1)[(44)4(8)]p p p =+---2216(1)p =+,24(1)PQ p \=+,同理:PF =,QF =,\11FP FQ FP FQ FP FQ ++=×PQ FP FQ=×=224(1)4(1)p p +=+1=,\11FP FQ+的值是定值.(3)3y x -Q …,设4y x =-,34y y \…,设新的抛物线与直线3y x =-的相交的横坐标分别设为3x ,4x ,如图所示,Q 将抛物线221544y x x =-++适当平移后,得到抛物线23()(1)y a x h h =->,\抛物线是左右平移,则14a =-,231()4y x h \=--,由抛物线221544y x x =-++左右平移得到,观察图象,随着图象向右平移,3x ,4x 的值不断增大,若当1x m <…时,3y x -…恒成立,即231()4y x h x =---…,则m 的最大值在4x 处,\当31x =时,对应的4x 为最大值,21(1)14h \--=-,13h \=,21h =-(舍),231(4)4y x \=--,令21(3)4x x --=-,解得,31x =,49x =,m \的最大值为9.【点评】本题主要考查二次函数与一次函数的综合运用,掌握二次函数图象的性质,函数图象平移的性质,一次函数与二次函数交点的计算方法,数形结合分析是解题的关键.13 .(2023•武侯区校级模拟)如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若(1,0)A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点P 是第四象限内抛物线上的一个点且位于对称轴右侧,分别连接BC 、AP 相交于点G ,当12PBG ABG S S D D =时,求点P 的坐标;(3)如图2,在(2)的条件下,AP 交y 轴于点M ,过M 点的直线l 与线段AB ,AC 分别交于E ,F ,当直线l 绕点M 旋转时,m nAE AF+为定值3,请求出m 和n 的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过P 点作//PD y 轴交BC 于点D ,过点A 作//AK y 轴交BC 于点K ,则PD PG AK AG =,由12PBG ABG S S D D =,可得12PD AK =,设2(,23)P t t t --,(13)t <<,分别求出(,3)D t t -,(1,4)K --,根据12PD AK =,建立方程求出t 的值即可求P 点坐标;(3)过M 点作//MH x 轴交AC 于点H ,过点F 作//FT x 轴交AP 于点T ,连接CP ,则////HM FT CP ,根据平行线的性质可得HM CH AO AC =,HM AH CP AC =,HM HF AE AF =,HM AHFT AF=,化简得1HM HM AO CP +=,1HM HM AE FT +=,再由1HM HM AO CP +=,求出23HM =,再由1HM HM AE FT +=,得到1132AE FT +=,根据平行得到FT AFCP AC =,求出5FT AF =,则1132AE AF +=,因为3m n AE AF +=,则112()3AE AF=,即可求2m =,n =.【解答】解:(1)(1,0)A -Q ,1OA \=,3OC OA =Q ,3OC \=,(0,3)C \-,将(1,0)A -、(0,3)C -代入2y x bx c =++,\103b c c -+=ìí=-î,解得23b c =-ìí=-î,\抛物线的解析式为223y x x =--;(2)2223(1)4y x x x =--=--Q ,\抛物线的对称轴为直线1x =,设2(,23)P t t t --,(13)t <<,当0y =时,2230x x --=,解得3x =或1x =-,(3,0)B \,设直线BC 的解析式为3y kx =-,330k \-=,解得1k =,\直线BC 的解析式为3y x =-,过P 点作//PD y 轴交BC 于点D ,过点A 作//AK y 轴交BC 于点K ,//PD AK \,\PD PGAK AG =,Q 12PBG ABG S S D D =,\12PD AK =,(,3)D t t -Q ,(1,4)K --,223(23)3PD t t t t t \=----=-+,4AK =,232t t \-+=,解得1t =(舍)或2t =,(2,3)P \-;(3)过M 点作//MH x 轴交AC 于点H ,过点F 作//FT x 轴交AP 于点T ,连接CP ,(0,3)C -Q ,(2,3)P -,//CP x \轴,////HM FT CP \,\HM CH AO AC =,HM AH CP AC =,HM HF AE AF =,HM AHFT AF =,\1HM HM AO CP +=,1HM HMAE FT+=,设直线AP 的解析式为y k x b ¢¢=+,\023k b k b ¢¢-+=ìí¢¢+=-î,解得11k b ¢=-ìí¢=-î,\直线AP 的解析式为1y x =--,(0,1)M \-,1OA =Q ,3OC =,AC \=,Q1HM HM AO CP+=,112HM HM \+=,23HM \=,Q 1HM HMAE FT +=,\1132AE FT +=,QFT AFCP AC=,FT AF \=,\1132AE AF =,Q3m nAE AF +=,112()3AE AF \+=,\=,n=.m2【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行线的性质,灵活的对分式进行变形处理是解题的关键.14.(2023•丹阳市二模)如图,在平面直角坐标系中,二次函数2=++的图象与x轴相交于点A、B,与yy x bx c轴相交于点C,其中B点的坐标为(3,0),点M为抛物线上的一个动点.(1)二次函数图象的对称轴为直线1x=.①求二次函数的表达式;②若点M与点C关于对称轴对称,则点M的坐标是 ;③在②的条件下,连接OM,在OM上任意取一点P,过点P作x轴的平行线,与抛物线对称轴左侧的图象交于点Q,求线段PQ的最大值.+(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n,在点M运动的过程中,试问m n+的值.的值是否会发生改变?若改变,请说明理由;若不变,请求出m n【分析】(1)①利用对称轴公式求出2b=-,再将点B代入函数解析式确定c的值即可;。
中考数学专题复习:二次函数与定值问题
中考数学专题复习:二次函数与定值问题1.如图,直线y=−32x+6分别交x轴、y轴于A、B两点,抛物线y=−18x2+8,与y轴交于点D,点P是抛物线在第一象限部分上的一动点,过点P作PC⊥x 轴于点C.(1)点A的坐标为__________,点D的坐标为__________;(2)试判断:对于任意一点P,PB+PC的值是否为定值?并说明理由。
第1题图第2题图2.如图,已知直线y=kx﹣9k(k<0)与抛物线y=x2﹣2x﹣3交于A,B两点,与x轴交于点P.过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,求证:PD•PC为定值.3.如下图,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A,B两点,与y轴交于点C.(1)填空:A点坐标是__________,B点的坐标是__________;(2)当a=1时,如图,将直线BC沿y轴向上平移交抛物线于M,N,交y 轴于点P,求证:PM﹣PN是定值.4.已知直线y=kx+2与抛物线y=ax2(a>0)交于A、B两点,AM⊥y轴于M,BN⊥y轴于N,求OM•ON的值.5.已知关于x的二次函数y=x2﹣2mx+m2+m的图象与直线y=kx+1.(1)若k=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.6.如图,抛物线C1:y=ax2+bx+c经过A(﹣1,0)、C(0,54)两点,与x轴正半轴交于点B,对称轴为直线x=2.(1)求抛物线C1的函数表达式;(2)设点D(0,2512),若F是抛物线C1:y=ax2+bx+c的对称轴上使得△ADF 的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1)、M2(x2,y2)两点,试探究11+12是否为定值,请说明理由。
第6题图第7题图7.如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.参考答案1.(1)y=−32x+6当y=0时,x=4,即A(4,0),y=−18x2+8当x=0时,y=8,即D点坐标(0,8),故答案为:(4,0),(0,8);(2)是,理由如下:过点P作PQ⊥y轴于点Q,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.,再根据x=代入y=与抛物线的图象上;++,根据两角对应相等的两三角=,即可证明﹣(﹣)﹣(﹣,x=y=x y=)与抛物线)在反比例函数++y=kx+8=x+++++,++,OFB=90 =,=【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.出均有=x1=x4=x9==.xx,)均有==,AB==CD=,m==m==(﹣(m y=m m﹣m2=m m m =m2m==m=.故答案为:;;.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.)代入求出),a=y=y=x+;(y=(﹣(y=(﹣ECP=﹣﹣=﹣,ECP=【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.的长,然后代入+x x,然后表示出+,,x,AO=mAM=+=+x x +==,+=取何值,++是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,AB =sin OAB ∠=sin 3BD AB OAB ∴=∠==. 又由勾股定理,得6AD ===.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。