圆的方程、直线和圆的位置关系(附答案)
圆的方程、直线与圆的位置关系题型归纳学生版
圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系(附答案解析)
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。
直线与圆的位置关系
直线与圆的位置关系1.直线方程的一般式:Ax+By+C=0(A,B 不同时为零)2.圆的标准方程:(x-a)2+(y-b)2=r 2(圆心为(a,b) ,半径为r.)3.圆的一般方程:22220,40.Dx Ey F F y x D E ++++=+->其中,圆心为(,22D E --)半径为224r D E F =+-. 二、直线与圆的位置关系(3种)1直线与圆相交,有两个公共点;2直线与圆相切,只有两个公共点;3直线与圆相离,没有公共点。
问题:如何用直线和圆的方程判断它们之间的位置关系?Eg :如图,已知直线l:3x+y-6和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系;如果相交,求它们的交点坐标。
分析:方法一,判断直线L 与圆的位置关系,就是看由它们的方程组成的方程有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系. 判断方法1: 通过直线方程与圆的方程所组成的方程组成的方程组,根据解的个数来判断研究:若有两组不同的实数解,即 <0则相交;若有两组相同的实数解,即 =0,则相切;若无实数解,即 <0,则相离.判断方法2:由圆心到直线的距离d 与半径r 的大小来判断:当d<r 时,直线与圆相交;当d=r 时,直线与圆相切;当d>r 时,直线与圆相离.1.判断直线4x -3y=50与圆22100x y +=位置关系.如果相交,求出交点坐标.2.已知过点M (-3,-3)的直线L 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线L 的方程。
3.已知动直线L:y=kx+5和圆C :()2211x y -+=,试问k 为何值时,直线与圆相切、相离、相交?4.若两直线y =x +2a 和y =2x +a +1的交点为P ,P 在圆x2+y2=4的内部,则a 的取值范围是5.圆221x y +=上的点到直线3x+4y-25=0的距离的最小值是。
直线与圆、圆与圆的位置关系
①,圆 C 2: x 2+ y 2+ D 2 x + E
②,若两圆相交,则有一条公共弦,由①-②,得( D 1-
D 2) x +( E 1- E 2) y + F 1- F 2=0
③,方程③表示圆 C 1与 C 2的公共弦
所在直线的方程.
2. 两圆公共弦长的求法
先求出公共弦所在直线的方程,在其中一圆中,由弦心距 d ,半弦长
若| AB |=6,则 r 的值为
5 .
设圆心(0,0)到直线 x - 3 y +8=0的距离为 d ,
则d=
|8 |
=4,
12 +(− 3)2
所以 r 2=
||
2
2
又 r >0,所以 r =5.
+ d 2=32+42=25.
方法总结
1. 求直线与圆相交弦长的常用方法
(1)几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成
所以| AB |= (−4 − 0)2 +(0 − 2)2 =2 5 ,即公共弦长为2 5 .
法二:由 x 2+ y 2-2 x +10 y -24=0,得( x -1)2+( y +5)2=50,圆 C 1的
圆心坐标为(1,-5),半径 r =5 2 ,圆心到直线 x -2 y +4=0的距离为
d=
(3)过圆 x 2+ y 2= r 2外一点 P ( x 0, y 0)作圆的两条切线,切点分别为 A ,
B ,则过 A , B 两点的直线方程为 x 0 x + y 0 y = r 2.
◉角度(二) 弦长问题
例2 (1)已知直线 y =2 x 与圆 − 2
则 =(
B )
2+
−2
2 =1交于 A , B 两点,
直线圆的位置关系1直线与圆的位置关系
返回目录
温故知新
要点探究
典例探究
法二:直线 l 的方程为 y=k(x-4),即 kx-y-4k=0.
圆心 O 到直线 l 的距离 d= | 4k | ,圆 O 的半径 r=2 2 . k2 1
(1)当 d= | 4k | <2 2 ,即-1<k<1 时,直线 l 与圆 O 相交. k2 1
(2)当 d= | 4k | =2 2 ,即 k=±1 时,直线 l 与圆 O 相切. k2 1
返回目录
温故知新
要点探究
典例探究
1.直线与圆有三种位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. 2.直线与圆的位置关系的判定方法: (1)代数法:直线与圆的方程联立消去 y(或 x)得到关于 x(或 y)的一元二次方程,此方程的判别式为 Δ,则
温故知新
要点探究
典例探究
返回目录
温故知新
要点探究
典例探究
探究要点一:直线与圆相交 1.直线与圆相交求交点坐标,只需联立两方程求解二元二次方程组即可. 2.直线与圆相交时弦长的求法 (1)求出交点坐标,利用两点间距离公式,求出弦长; (2)利用弦长公式求:
d=|x1-x2| 1 k 2 = (1 k 2 ) (x1 x2 )2 4x1x2
返回目录
温故知新
要点探究
典例探究
变式训练 1-1:已知圆 O:x2+y2=8,过 P(4,0)的直线 l 的斜率 k 在什么范围内取值时,直线 l 与圆 O: (1)相交?(2)相切?(3)相离?
解:法一:设直线 l 的方程为 y=k(x-4),
y k(x 4)
直线与圆知识点及经典例题_含答案_
圆的方程、直线和圆的位置关系【知识要点】 一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程(x a)2 ( y b)2 r 2 这个方程叫做圆的标准方程。
新疆 王 新敞 学案说 明:1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x2 y2 r 2 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a, b, r 三个量确定了且 r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件新疆确定 a, b, r ,可以根据条件,利用待定系数法来解决。
王 新敞 学案(二)圆的一般方程将圆的标准方程 (x a)2 ( y b)2 r 2 ,展开可得 x 2 y 2 2ax 2by a 2 b2 r 2 0 。
可见,任何一个圆的方程都可以写成 : x2 y2 Dx Ey F 0问题:形如 x2 y2 Dx Ey F 0 的方程的曲线是不是圆?将方程x2y2DxEyF0 左边配方得:(x D )2 2(x E )2 2D2 E2 4F 2(1)当 D 2E24F>0时,方程(1)与标准方程比较,方程x2y2DxEyF0 表示以(D , 2E 2)为圆D2 E2 4F心,以2为半径的圆。
,(3)当 D2 E 2 4F <0 时,方程 x 2 y 2 Dx Ey F 0 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当 D2 E2 4F >0 时,方程 x2 y2 Dx Ey F 0 称为圆的一般方程.圆的一般方程的特点:(1) x2 和 y2 的系数相同,不等于零;(2)没有 xy 这样的二次项。
(三)直线与圆的位置关系1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径(2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当 d>r 时,直线与圆相离;当 d=r 时,直线与圆相切;当 d<r 时,直线与圆相交。
直线与圆的位置关系
精心整理直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.d<r?相交;d=r?相切;d>r?相离.(2)代数法:[知识拓展](1)(2)(3)2.设圆O圆O2[(1)4条.(2)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×)(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×)(5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离答案 B2.(2013·安徽)直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为()A.1B.2C.4D.4答案 C3.两圆交于点A(1,3)和B(m,1),两圆的圆心都在直线x-y+=0上,则m+c的值等于________.答案4.⊥BC,答案例1(1)(2)(1)若直线ax+by=1与圆x2+y2=1相交,则P(a,b)() A.在圆上B.在圆外C.在圆内D.以上都有可能(2)(2014·江苏)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为______.答案(1)B(2)题型二圆的切线问题例2(1)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为__________;(2)已知圆C:(x-1)2+(y+2)2=10,求满足下列条件的圆的切线方程.①与直线l1:x+y-4=0平行;②与直线l2:x-2y+4=0垂直;③过切点A(4,-1).(1)答案x=2或4x-3y+4=0(2013·江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.题型三圆与圆的位置关系例3(1)已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则两圆公共弦所在的直线方程是________________________.(2)两圆x2+y2-6x+6y-48=0与x2+y2+4x-8y-44=0公切线的条数是________.(3)已知⊙O的方程是x2+y2-2=0,⊙O′的方程是x2+y2-8x+10=0,若由动点P向⊙O和⊙O′所引的切线长相等,则动点P的轨迹方程是________.答案(1)x-2y+4=0(2)2(3)x=(1)圆C1:x2+y2-2y=0,C2:x2+y2-2x-6=0的位置关系为()A.外离B.外切C.相交D.内切(2)设M={(x,y)|y=,a>0},N={(x,y)|(x-1)2+(y-)2=a2,a>0},且M∩N≠?,求a的最大值和最小值.(1)答案D(2)故a的取值范围是[2-2,2+2],a的最大值为2+2,最小值为2-2.高考中与圆交汇问题的求解一、与圆有关的最值问题典例:(1)(2014·江西)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.πB.πC.(6APB =90°A.7B答案典例() A.[1B.(C.[2D.()A.C.答案1.A.答案2.(2013·福建)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y-2=0 B.x-y+2=0C.x+y-3=0 D.x-y+3=0答案 D3.若圆C1:x2+y2-2ax+a2-9=0(a∈R)与圆C2:x2+y2+2by+b2-1=0(b∈R)内切,则ab的最大值为() A.B.2C.4D.2答案 B4.(2013·山东)过点P(3,1)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y-3=0 B.2x-y-3=0C.4x-y-3=0 D.4x+y-3=0答案 A5.已知直线y=kx+b与圆O:x2+y2=1相交于A,B两点,当b=时,·等于()A.1B.2C.3D.4答案 A6.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是______________.答案1-2≤b≤37.(2014·上海)已知曲线C:x=-,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=0,则m答案8答案9(1)(2)(1)∴S即△(2)∴10所在的(1)(2)解(2)故l11.若直线l:y=kx+1(k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定答案 A12.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为()A.1 B.2C.3 D.4答案 B13.(2013·江西)过点(,0)引直线l与曲线y=相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.B.-C.±D.-答案 B14.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.答案15.22为等答案16(1)(2)若a解(2)即|。
专题16 直线与圆的位置关系(解析版)
专题16 直线与圆的位置关系考点一直线与圆的位置关系1.已知集合P={(x,y)|y=−√25−x2,x,y∈R},Q={(x,y)|y=x+b,x,y∈R},若P∩Q≠∅,则实数b的取值范围是()A. [-5,5]B. (-5√2,5)C. [-5√2,5]D. [-5√2,5√2]【答案】C【解析】集合P表示以原点为圆心,5为半径的圆的下半部分上的点,集合Q表示直线y=x+b上的点.因为P∩Q≠∅,所以两个曲线有交点.由图可知,当直线y=x+b经过点(-5,0)时,两曲线开始有交点,此时b=5.当b逐渐减小时,直线与曲线一直有交点,直到直线y=x+b与半圆相切,此时=5,解得b=±5√2.√2由图判断,b=-5√2.所以-5√2≤b≤5,故选C.2.若圆(x-1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,则半径R的取值范围是()A.R>1B.R<3C. 1<R<3D.R≠2【答案】C【解析】依题意可得,直线与圆可能相交,相切或相离.若直线4x+3y=11与圆(x-1)2+(y+1)2=R2相离,则圆上的点到直线的最小距离应小于1,即圆心到直线的距离d∈(R,1+R),从而有R<105<1+R,解得1<R<2.若直线4x+3y=11与圆(x-1)2+(y+1)2=R2相切,则R=105=2.若直线4x+3y=11与圆相交,则圆上的点到直线的最小距离应小于1,即圆心到直线的距离d∈(R-1,R),从而有R-1<105<R,解得2<R<3.综上可得1<R<3,故选C.3.直线y=x+b与曲线x=√1−y2有且仅有一个公共点,则b的取值范围是()A. {b|b=±√2}B. {b|-1<b≤1或b=-√2}C. {b|-1≤b≤√2}D. {b|-√2<b<1}【答案】B【解析】y=x+b是斜率为1的直线,曲线x=√1−y2是以原点为圆心、1为半径圆的右半圆,画出它们的图象如图所示,由图可以看出,直线与曲线有且仅有一个公共点有两种情况:当b=-√2时,直线与曲线相切;当-1<b≤1时,直线与曲线相交且有唯一公共点.4.若直线xa +yb=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C.1a2+1b2≤1D.1a2+1b2≥1【答案】D【解析】由于直线与单位圆有公共点,所以圆心到直线的距离d小于等于半径r,即d=√1a2+1b2≤r=1,解得1a2+1b2≥1,故选D.5.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x-y+a=0,l2:2x-y+a2+1=0和圆:x2+y2+2x-4=0相切,则实数a的取值范围是()A.a>7或a<-3B.a>√6或a<-√6C. -3≤a≤-√6或√6≤a≤7D.a≥7或a≤-3【答案】C【解析】当两平行直线和圆相交时,有{√5<√5, 2√5<√5,解得-√6<a<√6,当两平行直线和圆相离时,有{√5>√5, 2√5>√5,解得a<-3或a>7.故当两平行直线和圆相切时,把以上两种情况下求得的a的范围取并集后,再取此并集的补集,即得所求.故所求的a 的取值范围是-3≤a ≤-√6或√6≤a ≤7,故选C.6.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”,否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,和圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则b 的取值范围为( ) A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞)【答案】D【解析】圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行可得a (a +1)-6=0,解得a =2或a =-3,又当a =2时,直线l 1与l 2重合,舍去,此时两平行线方程分别为x -y -2=0和x -y +3=0.由直线x -y -2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22,由直线x -y +3=0与圆相切,得b =√2=√2,当两直线与圆都相离时,b <√2,所以“平行相交”时,b 满足{b ≥√2,b ≠√2,b ≠3√32,故b 的取值范围是(√2,3√22)∪(3√22,+∞).7.设集合A ={(x ,y )|m2≤(x -2)2+y 2≤m 2,x ,y ∈R },B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是( ) A.√2-2≤m ≤1 B. 0<m <2+√2C.m<2-√2或m>1D.m<12或m>2+√2【答案】D【解析】显然B≠∅.①当A=∅时,则m2>m2,解得0<m<12;②当A≠∅时,若A∩B=∅,则圆(x−2)2+y2=m2(m≠0)与直线x+y=2m或x+y=2m+1没有交点,即√2>|m|或√2>|m|,∴m<2−√22或m>2+√2.综上所述,满足条件的实数m的取值范围为m<12或m>2+√2.8.(1)已知直线l:y=x+b与曲线C:y=√1−x2有两个不同的公共点,求实数b的取值范围;(2)若关于x的不等式√1−x2>x+b解集为R,求实数b的取值范围.【答案】(1)如图(数形结合),方程y=x+b表示斜率为1,在y轴上截距为b的直线l,方程y=√1−x2表示单位圆在x轴上及其上方的半圆,当直线过B点时,它与半圆交于两点,此时b=1,直线记为l1,当直线与半圆相切时,b=√2,直线记为l2.直线l要与半圆有两个不同的公共点,必须满足l在l1与l2之间(包括l1但不包括l2),所以1≤b<√2,即所求的b的取值范围是[1,√2).(2)不等式√1−x2>x+b恒成立,即半圆y=√1−x2在直线y=x+b上方,当直线l过点(1,0)时,b=-1,所以所求的b的取值范围是(-∞,-1).考点二圆的切线问题9.由直线3x-4y+16=0上的点向圆C:x2+y2-6x+8=0引切线,则切线长的最小值为()A. 1B. 2√2C. 2√6D. 3【答案】C【解析】圆C的方程可变为(x-3)2+y2=1,圆心C(3,0),半径为1.直线3x-4y+16=0上点到圆心C的最短距离为5,根据勾股定理,最短的切线长为√52−1=2√6.10.在平面直角坐标系中,过动点P分别作圆C1:x2+y2-4x-6y+9=0与圆C2:x2+y2+2x+2y+1=0的切线PA与PB(A,B为切点),若|PA|=|PB|,O为原点,则|OP|的最小值为()A. 2B.45C.35D.√5【答案】B【解析】圆C1的标准方程为(x-2)2+(y-3)2=4,圆C2的标准方程为(x+1)2+(y+1)2=1,|PA|2=|PC1|2-4,|PB|2=|PC2|2-1,由题意|PC1|2-4=|PC2|2-1,设P(x,y),则(x-2)2+(y-3)2-4=(x+1)2+(y+1)2-1,化简为3x+4y-4=0,|OP|的最小值为d=√32+42=45.故选B.11.若圆C的半径长为1,圆心在第一象限,与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A. (x-2)2+(y-1)2=1B. (x-2)2+(y+1)2=1C. (x+2)2+(y-1)2=1D. (x-3)2+(y-1)2=1【答案】A【解析】由题意可设圆心坐标为(a,b)且a>0,b>0.因为圆的半径长为1且圆与x 轴相切,所以b=1,又圆与直线4x-3y=0相切,则有(=1,得a=2或a=-12(舍去).故圆的标准方程为(x-2)2+(y-1)2=1.12.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A. 2x+y+5=0或2x+y-5=0B. 2x+y+√5=0或2x+y-√5=0C. 2x-y+5=0或2x-y-5=0D. 2x-y+√5=0或2x-y-√5=0【答案】A【解析】设所求直线的方程为2x +y +c =0(c ≠1),则√22+12=√5,所以c =±5,故所求直线的方程为2x +y +5=0或2x +y -5=0.13.过点P (3,1)向圆x 2+y 2-2x -2y +1=0作一条切线,切点为A ,则切线段PA 的长为______. 【答案】√3【解析】x 2+y 2-2x -2y +1=0,∴ (x -1)2+(y -1)2=1,圆心为(1,1),半径为1,∴|PA |=(=√3.(14.从直线x -y +3=0上的点向圆x 2+y 2-4x -4y +7=0引切线,则切线长的最小值为________.【答案】√142【解析】把圆的方程化为标准式后,找出圆心坐标和圆的半径,利用图形可知,当圆心A 与直线x -y +3=0垂直时,过垂足C 作圆的切线,切线长最短,切点为B ,连接AB ,根据圆的切线垂直于过切点的直径可得△ABC 为直角三角形,利用点到直线的距离公式求出圆心到直线x -y +3=0的距离即为|AC |的长,然后根据半径和|AC |的长,利用勾股定理即可求出此时的切线长.由于圆心(2,2),半径为1,那么可知圆心到直线的距离d =√2=3√22,那么利用勾股定理可知切线长的最小值为√142. 15.已知⊙O :x 2+y 2=1和定点A (2,1),由⊙O 外一点P (a ,b )向⊙O 引切线PQ ,切点为Q ,满足|PQ |=|PA |. (1)求实数a ,b 间满足的等量关系; (2)求线段PQ 的最小值. 【答案】(1)连接OP ,∵Q 为切点,∴PQ ⊥OQ ,由勾股定理有|PQ |2=|OP |2-|OQ |2. 又∵|PQ |=|PA |, ∴|PQ |2=|PA |2,即a 2+b 2-1=(a -2)2+(b -1)2, 整理,得2a +b -3=0.(2)由2a +b -3=0,得b =-2a +3, ∴|PQ |=√a 2+b 2−1=( =√5a 2−12a +8=(, ∴当a =65时,|PQ |min =2√55,即线段PQ 的最小值为2√55. 16.已知⊙O :x 2+y 2=1和定点A (2,1),由⊙O 外一点P (x ,y )向⊙O 引切线PQ ,切点为Q ,且满足|PQ |=2|PA |. (1)求动点P 的轨迹方程C ; (2)求线段PQ 长的最小值;(3)若以⊙P 为圆心所做的⊙P 与⊙O 有公共点,试求P 半径取最小值时的P 点坐标. 【答案】(1)|PQ |=2|PA |⇒√x 2+y 2−1 =2(⇒3(2+3y 2-16x -8y +21=0.(2)∵|PQ |=2|PA |,∴|PQ |min =2|PA |min , 而轨迹C 的方程(x -83)2+(y -43)2=179,圆心设为C (83,43),半径r =√173,而|PA |min =r -|AC |=√173-(=(,因此|PQ |min =(.(3)依题意若以P 为圆心所作的⊙P 与⊙O 有公共点,⊙P 半径取最小值时的P 点坐标即线段OC 与⊙C 的交点.即OC :y =12x (0≤x ≤83)与⊙C 的交点, {y =12x,3x 2+3y 2−16x −8y +21=0⇔154x 2-20x +21=0⇔ x =40−2√8515⇒y =20−√8515,即P (40−2√8515,20−√8515).17.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程. 【答案】如图所示,已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.设l 的方程为y -3=k (x +3), 即kx -y +3+3k =0. 则√1+k 2=1,即12k 2+25k +12=0.∴k 1=-43,k 2=-34.则l的方程为4x+3y+3=0或3x+4y-3=0.考点三圆的弦长问题18.已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,√2),则四边形ABCD的面积的最大值为()A. 4B. 4√2C. 5D. 5√2【答案】C【解析】设圆心O到AC、BD的距离分别为d1、d2,则d21+d22=OM2=3.|AC|·|BD|四边形ABCD的面积为S=12=2(≤(-(d21+d22)=5,当且仅当d21=d22时取等号,故选C.19.若关于x的方程√4−x2=kx+2只有一个实数根,则k的值为()A.k=0B.k=0或k>1C.k>1或k<-1D.k=0或k>1或k<-1【答案】D【解析】方程√4−x2=kx+2的根的个数即为y=√4−x2与y=kx+2的交点的个数,由图可知,当k=0或k>1或k<-1时,方程√4−x2=kx+2只有一个实数根.20.已知圆的方程为x2+y2-6x-8y=0,设该圆过点P(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A. 10√6B. 20√6C. 30√6D. 40√6【答案】B【解析】如图所示,设圆的圆心为M,则M(3,4),半径r=5.当过点P的直线过圆心M时,对应的弦AC是最长的,此时,|AC|=2r=10;当过点P 的直线与MP垂直时,对应的弦BD最小,此时在Rt△MPD中,|MD|=r=5,|MP|=1,故|BD|=2√|MD|2−|MP|2=4√6.此时四边形ABCD的面积为S=1|AC|·|BD|=20√6,故选B.221.已知圆C:x2+(y-3)2=4,过A(-1,0)的直线l与圆C相交于P,Q两点,若|PQ|=2√3,则直线l的方程为()A.x=-1或4x+3y-4=0B.x=-1或4x-3y+4=0C.x=1或4x-3y+4=0D.x=1或4x+3y-4=0【答案】B【解析】当直线l与x轴垂直时,易知x=-1符合题意;当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),过圆C作CM⊥PQ,垂足为M,由于|PQ|=2√3,可求得|CM|=1.由|CM|=√k2+1=1,解得k=43,此时直线l的方程为y=43(x+1).故所求直线l的方程为x=-1或4x-3y+4=0.故选B.22.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为2√3时,a等于()A.√2B. 2-√2C.√2-1D.√2+1【答案】C【解析】圆心C(a,2)到直线l的距离d=√2=√2,所以(√2)2+(2√32)2=4,解得a=-1-√2(舍去)或a=√2-1.故选C.23.已知P点为圆O1与圆O2的公共点,圆O1:(x-a)2+(y-b)2=b2+1,圆O2:(x-c)2+(y-d)2=d2+1,若ac=8,ab =cd,则点P与直线l:3x-4y-25=0上任意一点M 之间的距离的最小值为________________. 【答案】2【解析】设P (m ,n ),则(m -a )2+(n -b )2=b 2+1⇒a 2-2ma +m 2+n 2-1-2bn =0,令ab =cd =1t ,则a 2-(2m +2tn )a +m 2+n 2-1=0,同理可得c 2-(2m +2tn )c +m 2+n 2-1=0,因此a ,c 为方程x 2-(2m +2tn )x +m 2+n 2-1=0的两根,由根与系数的关系得ac =m 2+n 2-1=8,m 2+n 2=9,从而点P 与直线l :3x -4y -25=0上任意一点M 之间的距离的最小值为d -r =255-3=2. 24.已知⊙O :x 2+y 2=1和点M (4,2).(1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心且被直线y =2x -1截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.【答案】(1)若直线l 的斜率不存在,显然不合题意; 设切线l 方程为y -2=k (x -4),易得√k 2+1=1,解得k =8±√1915. ∴切线l 方程为y -2=8±√1915(x -4).(2)圆心到直线y =2x -1的距离为√5,设圆的半径为r ,则r 2=22+(√5)2=9, ∴⊙M 的方程为(x -4)2+(y -2)2=9.(3)假设存在这样的点R (a ,b ),点P 的坐标为(x ,y ),相应的定值为λ, 根据题意可得PQ =√x 2+y 2−1,∴(=λ,即x 2+y 2-1=λ2(x 2+y (-2ax -2by +a 2+b 2),(*)又点P 在圆M 上,∴(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11,代入(*)式得:8x +4y -12=λ2[(8-2a )x +(4-2b )y +(a 2+b 2-11)] 若系数对应相等,则等式恒成立, ∴{λ2(8−2a )=8,λ2(4−2b )=4,λ2(a 2+b 2−11)=−12,解得a =2,b =1,λ=√2或a =25,b =15,λ=√103.∴可以找到这样的定点R ,使得PQPR为定值.如点R 的坐标为(2,1)时,比值为√2;点R 的坐标为(25,15)时,比值为√103.25.已知圆心为C (-2,6)的圆经过点M (0,6-2√3). (1)求圆C 的标准方程;(2)若直线l 过点P (0,5)且被圆C 截得的线段长为4√3,求直线l 的方程; (3)是否存在斜率是1的直线l ′,使得以l ′被圆C 所截得的弦EF 为直径的圆经过原点?若存在,试求出直线l ′的方程;若不存在,请说明理由. 【答案】(1)圆C 的半径为|CM |=(=4( ∴圆C 的标准方程为(x +2)2+(y -6)2=16.(2)方法一 如图所示,设直线l 与圆C 交于A ,B 两点且D 是AB 的中点,则|AB |=4√3,|AD |=2√3且CD ⊥AB .∵圆C 的半径为4,即|AC |=4,∴在Rt △ACD 中,可得|CD |=√|AC|2−|AD |2=2, 即点C 到直线l 的距离为2.(i )当所求直线l 的斜率存在时,设所求直线的方程为y =kx +5,即kx -y +5=0. 由点到直线的距离公式得(=2, 解得k =34.∴此时直线l 的方程为3x -4y +20=0.(ii )当直线l 的斜率不存在时,直线l 的方程为x =0.将x =0代入(x +2)2+(y -6)2=16,得(y -6)2=16-4=12,y -6=±2√3, ∴y 1=6+2√3,y 2=6-2√3,|y 1-y 2|=4√3, ∴方程为x =0的直线也满足题意,∴所求直线l 的方程为3x -4y +20=0或x =0.方法二 当所求直线l 的斜率存在时,设所求直线的方程为y =kx +5,即kx -y +5=0. 联立直线与圆C 的方程{y =kx +5,x 2+y 2+4x −12y +24=0,消去y 得(1+k 2)x 2+(4-2k )x -11=0,① 设方程①的两根为x 1,x 2,由根与系数的关系得{x 1+x 2=2k−41+k 2,x 1x 2=−111+k 2,② 由弦长公式得√1+k 2|x 1-x 2|=√(1+k2)[(x1+x2)2−4x1x2]=4√3,③将②式代入③,并解得k=34,此时直线l的方程为3x-4y+20=0.当直线l的斜率不存在时,直线l的方程为x=0,仿方法一验算得方程为x=0的直线也满足题意.∴所求直线l的方程为3x-4y+20=0或x=0.(3)方法一假设存在直线l′满足题设条件,设l′的方程为y=x+m,则EF的中点N是两直线y=x+m与y-6=-(x+2)的交点,即N(4−m2,m+42),∴|CN|=(=(.∵以EF为直径的圆经过原点,∴OE⊥OF,∴|EN|=|ON|=√(4−m2)2+(m+42)2,又∵CN⊥EF,|CE|2=|CN|2+|EN|2,∴(4−m2)2+(m+42)2+(√2)2=16,化简得m2-8m+24=0.∵方程m2-8m+24=0没有实数解,∴不存在满足题设条件的直线l′.方法二假设存在直线l′满足题设条件,并设l′的方程为y=x+m,点E(x3,y3),点F(x4,y4),联立直线与圆C的方程{y=x+m,x2+y2+4x−12y+24=0,消去y得2x2+2(m-4)x+m2-12m+24=0.由根与系数的关系得{x3+x4=4−m,x3x4=m2−12m+242.④∵以EF 为直径的圆经过原点,∴OE ⊥OF .若E 、F 中有一点在y 轴上,则另一点必在x 轴上,而在圆C 的方程中令y =0可得x 无实数解,故本情况不会出现. ∴y 3−0x3−0·y 4−0x4−0=-1,即x 3x 4+y 3y 4=0,∴x 3x 4+(x 3+m )(x 4+m )=0, 化简得2x 3x 4+(x 3+x 4)m +m 2=0, 以④代入并化简得m 2-8m +24=0. ∵方程m 2-8m +24=0没有实数解, ∴不存在满足题设条件的直线l ′.。
直线与圆的位置关系(含答案)
【知识清单】:
1.直线与圆的位置关系(半径r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆与圆的位置关系(两圆半径r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
3.(2015·大连双基测试)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析:法一:将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得k∈(- , ).
法二:圆心(0,0)到直线y=kx+2的距离d= ,直线与圆没有公共点的充要条件是d>1,
即 >1,
解得k∈(- , ).
答案:k∈(- , )
[谨记通法]:判断直线与圆的位置关系的2大策略
(1)若两方程已知或圆心到直线的距离易表达,则用几何法.
(2)若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.
1.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A.x-y+5=0B.x+y-1=0
C.x-y-5=0D.2x+y+1=0
解析:选A由题意得圆的标准方程为(x+1)2+(y-2)2=5,则圆心C(-1,2).过圆心与点(-2,3)的直线l1的斜率为k= =-1.当直线l与l1垂直时,|AB|取得最小值,故直线l的斜率为1,所以直线l的方程为y-3=x-(-2),即x-y+5=0.
考点4 直线与圆、圆与圆的位置关系(解析版)
2010-2015年高考真题汇编 专题9 直线与圆的方程考点4 直线与圆、圆与圆的位置关系1.(2015年重庆8,5分)已知直线:10()l x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =A.2B.C.6D.【答案】C【解析】将圆化为标准方程得4)1()2(22=-+-y x ,圆心)1,2(C ,2=r 。
∵直线l 是圆C 的对称轴,∴直线l 过圆心C ,012=-+∴a ,1-=∴a ,)1,4(--∴A ,∵AB 为切线,AB BC ⊥∴,222AB BC AC +=∴,又40)11()24(222=--+--=AC ,2==r BC ,644022=-=-=∴BC AC AB 。
2.(2014江西,5分)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A. 45π B. 34πC .(6-25)π D. 54π【答案】A【解析】选A 法一:设A (a,0),B (0,b ),圆C 的圆心坐标为⎝ ⎛⎭⎪⎫a 2,b2,2r =a 2+b 2,由题知圆心到直线2x +y -4=0的距离d =⎪⎪⎪⎪⎪⎪a +b 2-45=r ,即|2a +b -8|=25r ,2a +b =8±25r ,由(2a +b )2≤5(a 2+b 2),得8±25r ≤25r ⇒r ≥25,即圆C 的面积S =π r 2≥45π.法二:由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线2x +y -4=0相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线2x +y -4=0的距离,此时2r =45,得r =25,圆C 的面积的最小值为S=πr 2=45π.3.(2014新课标全国卷Ⅱ,5分)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1]【解析】由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].4.(2014江苏,5分)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 【答案】2555【解析】因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y-3=0被圆截得的弦长为24-95=2555. 5.(2014重庆,5分)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.【答案】4±15【解析】依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15.6.(2014湖北,5分)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________. 【答案】2【解析】由题意得,直线l 1截圆所得的劣弧长为π2,则圆心到直线l 1的距离为22,即|a |2=22⇒a 2=1,同理可得b 2=1,则a 2+b 2=2. 7.(2014江苏,16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0,60),C (170,0),直线BC 的斜率k BC = -tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ), 则k BC =b -0a -170=-43,k AB =b -60a -0=34. 解得a =80,b =120. 所以BC =-2+-2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m ,OM =d m(0≤d ≤60). 由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即r =|3d -680|42+32=680-3d 5. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r --d ,即⎩⎪⎨⎪⎧680-3d5-d ≥80,680-3d 5--d解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆面积最大.所以当OM =10 m 时,圆形保护区的面积最大. 法二:(1)如图,延长OA ,CB 交于点F .因为tan ∠FCO =43,所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170, 所以OF =OC tan ∠FCO =6803,CF =OCcos ∠FCO =8503.从而AF =OF -OA =5003.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45.又因为AB ⊥BC ,所以BF =AF cos ∠AFB =4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO . 故由(1)知sin ∠CFO =MD MF =MD OF -OM =r6803-d=35,所以r =680-3d 5. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r --d ,即⎩⎪⎨⎪⎧680-3d5-d ≥80,680-3d 5--d解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆面积最大.所以当OM =10 m 时,圆形保护区的面积最大.8.(2013江西,5分)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33 B .-33C .±33D .- 3【答案】B【解析】本题考查圆的标准方程、直线与圆的位置关系,意在考查考生的数形结合的数学思想及运算能力.由y = 1-x 2得x 2+y 2=1(y ≥0),即该曲线表示圆心在原点,半径为1的半圆,如图所示.故S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB .所以当sin ∠AOB =1,即OA ⊥OB 时,S △AOB 取得最大值,此时点O 到直线l 的距离d =|OA |·sin 45°=22.设此时直线l 的斜率为k ,则方程为y =k (x -2),即kx -y -2k =0,则有22=|0-0-2k | k 2+1,解得k =±33,由图可知直线l 的倾斜角为钝角,故取k =-33. 9.(2013山东,4分)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 【答案】2 2【解析】本题主要考查直线与圆的位置关系,考查数形结合思想和运算能力.最短弦为过点(3,1),且垂直于点(3,1)与圆心的连线的弦,易知弦心矩d =-2+-2=2,所以最短弦长为2r 2-d 2=222-22=2 2.10.(2013重庆,5分)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x-3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17【答案】A【解析】本题考查与圆有关的最值问题,意在考查考生数形结合的能力.两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),则(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4. 11.(2013江苏,14分)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.【解析】本题考查直线与圆的方程,两直线交点和直线与直线、直线与圆、圆与圆的位置关系,意在考查学生用待定系数法处理问题的能力和用代数法处理几何性质的能力.(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+y -2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+a -2≤3.由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为0,125.12.(2012天津,5分)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞) 【答案】D 【解析】由题意可得|m +n |m +2+n +2=1,化简得mn =m +n +1≤m +n24,解得m+n ≤2-22或m +n ≥2+2 2.13.(2012陕西,5分)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能【答案】A【解析】把点(3,0)代入圆的方程的左侧得32+0-4×3=-3<0,故点(3,0)在圆的内部,所以过点(3,0)的直线l 与圆C 相交.14.(2011江西,5分)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A .(-33,33) B .(-33,0)∪(0,33) C .[-33,33] D .(-∞,-33)∪(33,+∞) 【答案】B【解析】整理曲线C 1方程得,(x -1)2+y 2=1,知曲线C 1为以点C 1(1,0)为圆心,以1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,知直线l 与x 轴相交,故有圆心C 1到直线l 的距离d =|m+-0|m 2+1<r =1,解得m ∈(-33,33),又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 15.(2012江苏,5分)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 【答案】43【解析】设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max=43.。
直线与圆及圆与圆的位置关系
直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。
三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。
法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。
法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。
分析:作出图形后进⾏观察,以找到解决问题的思路。
分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。
解:因P点在圆上,故可求切线L的⽅程为x+2y=5。
专题07 直线与圆的位置关系(知识梳理+专题过关)(解析版)
专题07直线与圆的位置关系【知识梳理】1、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2、直线与圆的位置关系的判定:(1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点.有两组实数解时,直线l 与圆C 相交;有一组实数解时,直线l 与圆C 相切;无实数解时,直线l 与圆C 相离.(2)几何法:由圆C 的圆心到直线l 的距离d 与圆的半径r 的关系判断:当d r <时,直线l 与圆C 相交;当d r =时,直线l 与圆C 相切;当d r >时,直线l 与圆C 相离.3、圆的切线方程的求法(1)点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1OM l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .(2)点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.4、求直线被圆截得的弦长的方法(1)应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.(2)利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.(3)利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12||l x x =-.【专题过关】【考点目录】考点1:直线与圆的位置关系考点2:直线与圆相交的性质——韦达定理及应用考点3:切线问题考点4:切点弦问题考点5:弦长问题考点6:面积问题考点7:直线与圆中的定点定值问题【典型例题】考点1:直线与圆的位置关系1.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B2.(2020·四川·泸州老窖天府中学高二期中(理))已知点(,)P a b 在圆221x y +=上,则直线10ax by +-=与圆的位置关系是()A .相交B .相切C .相离D .无法判断【答案】B【解析】由题意得221a b +=,又1d r ===,即直线与圆相切故选:B3.(2021·黑龙江·牡丹江一中高二期中)直线:(1)(1)20()l a x a y a a R ++-+=∈与圆222270C x y x y +-+-=:的位置关系是()A .相切B .相交C .相离D .相交或相切【答案】B【解析】圆222270x y x y +-+-=,即22(1)(1)9x y -++=,表示以(1,1)-为圆心、半径等于3的圆.圆心到直线的距离d =再根据2222248474799221a a a a d a a ++-+-=-=++,而27470a a -+=的判别式∆161961800=-=-<,故有29d >,即3d <,故直线和圆相交,故选:B .4.(2022·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =恰有两个不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y 为以(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B5.(2021·浙江台州·高二期中)直线0x m +=与圆221x y +=有两个不同的交点,则实数m 的取值范围是()A .22m -≤≤B .22m -<<C .2m <-或2m >D .2m ≤-或2m ≥【答案】B【解析】因为直线0x m +=与圆221x y +=有两个不同的交点所以圆心到直线的距离小于圆的半径圆心为()0,0,半径1r =1<,整理得:2m <解得:22m -<<故选:B .6.(多选题)(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A .直线l 与圆C 相离B .直线l 与圆C 相交C .圆C 上到直线l 的距离为1的点共有2个D .圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d ==,所以可知选项B ,D 正确,选项A ,C 错误.故选:BD7.(2021·四川眉山·高二期中)圆222440x y x y +-+-=与直线2140()tx y t t R ---=∈的位置关系为__________.【答案】相交【解析】由2140()tx y t t R ---=∈得(24)10()x t y t R ---=∈,令240,10,2, 1.x y x y -=--=∴==-所以直线过定点(2,1)P -.把(2,1)P -的坐标代入圆的方程的左边得到414440+---<,所以点(2,1)P -在圆内,所以直线和圆相交.故答案为:相交8.(2021·辽宁实验中学高二期中)已知圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,则实数b 的取值范围是___________.【答案】(-【解析】根据题意得圆C 的圆心为()0,0,半径为2r =,因为圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,1r <+3<,解得b -<<所以实数b 的取值范围是(-故答案为:(-9.(2022·全国·高二课时练习)已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是______.【答案】()13,13-【解析】由圆的方程知其圆心为()0,0,半径2r =,设圆心到直线1250x y c -+=的距离为d ,则13c d =;圆上有且仅有四个点到直线1250x y c -+=的距离为1,则1cd =<,解得:1313c -<<,所以实数c 的取值范围是()13,13-.故答案为:()13,13-.考点2:直线与圆相交的性质——韦达定理及应用10.(2021·安徽·马鞍山二中高二期中)已知一个动点P 在圆220432x y y -+=+上移动,它与定点(6,0)Q 所连线段的中点为M .(1)求点M 的轨迹方程;(2)是否存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=,若存在,求直线l 的方程;若不存在,说明理由.【解析】(1)设(,)M x y ,因M 是线段PQ 的中点,而点(6,0)Q ,则有点(26,2)P x y -,因P 在圆:22(2)36x y ++=上,于是得:22(26)(22)36x y -++=,化简得:22(3)(1)9x y -++=,所以点M 的轨迹方程是:22(3)(1)9x y -++=.(2)假定存在符合条件的直线l ,当l 斜率不存在时,直线:0l x =与圆M 相切,不符合题意,当直线l 斜率存在时,设直线l 方程为:3y kx =-,由223(3)(1)9y kx x y =-⎧⎨-++=⎩消去y 并整理得:22(1(64))40k x k x +-++=,则()22(64)1610k k ∆=+-+>,解得512k >-,122641kx x k ++=+,12241x x k =+,由2121212212()4x x x x x x x x +=⇔+=,得2226416()11k k k +=++,解得512k =-,与512k >-矛盾,所以不存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=.11.(2021·云南大理·高二期中)已知圆C 的圆心C 在直线40x y +-=上,且圆C 经过()2,0M ,()0,2N 两点.(1)求圆C 的方程;(2)已知点()0,P m ,过原点的直线l 与圆C 交于A ,B 两点,且PA PB ⊥.若13m <<,求直线l 的斜率k 的取值范围.【解析】(1)设(),C a b ,则222240(2)(2)a b a b a b +-=⎧⎨-+=+-⎩,解得2a =,2b =.从而圆C 的半径2r ==,故圆C 的方程为22(2)(2)4x y -+-=(或224440x y x y +--+=).(2)设直线l :y kx =,()11,A x y ,()22,B x y .联立224440y kx x y x y =⎧⎨+--+=⎩,整理得()2214(1)40k x k x +-++=,则1224(1)1k x x k ++=+,12241x x k =+.因为A ,B 两点在直线l 上,所以11y kx =,22y kx =,所以212241ky y k =+,1224(1)1k k y y k ++=+.因为PA PB ⊥,所以1PA PB k k ⋅=-,所以12121y m y mx x --⋅=-,即()21212120x x y y m y y m +-++=,则22222444(1)0111k mk k m k k k ++-+=+++,即24(1)41k k m k m+=++.因为()1,3m ∈,所以[)44,5m m+∈,所以24(1)451k k k +≤<+,解得1k ³.12.(2021·浙江省象山县第二中学高二期中)已知圆G 过点()1,3M -,()6,4N 且圆心G 在x 轴.(1)求圆G 的标准方程;(2)圆G 与x 轴的负半轴的交点为A ,过点A 作两条直线分别交圆于B ,C 两点,且5AB AC k k ⋅=-,求证:直线BC 恒过定点.【解析】(1)由题意设圆心为(,0)G a=3a =,5r ==,所以圆G 方程为22(3)25x y -+=;(2)在圆方程中令0y =得2x =-或8x =,所以(2,0)A -,BC 斜率存在时,设BC 方程为y kx m =+,设1122(,),(,)B x y C x y ,由()22x 325y kx m y =+⎧⎪⎨-+=⎪⎩得222(1)2(3)160k x km x m ++-+-=,2224(3)4(1)(16)0km k m ∆=--+->,即22166250k m lm --+>(*),1222(3)1km x x k -+=-+,2122161m x x k -=+,12121212()()22(2)(2)AB ACy y kx m kx m k k x x x x ++=⨯=++++2212121212()52()4k x x km x x m x x x x +++==-+++,22222222(16)2(3)5(16)20(3)201111k m km km m km m k k k k ------+=+-++++,化简得223720m km k -+=,(2)(3)0m k m k --=,所以2m k =或3k m =,都满足(*)式.2m k =时,方程为2y kx k =+,过定点(2,0)-,舍去,3k m =时,方程为3y mx m =+,过定点1(,0)3-,BC 斜率不存在时,1111(,),(,)B x y C x y -,21152AB ACy k k x ⎛⎫=-=- ⎪+⎝⎭,22115(2)y x =+,又2211(3)25x y -+=,12x ≠-,解得113x =-,因此BC 也过点1(,0)3-.综上,直线过定点1(,0)3-.13.(2021·广东外语外贸大学实验中学高二期中)已知过点(0,2)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于M ,N 两点.(1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求||MN .【解析】(1)圆22:(2)(3)1C x y -+-=,圆心(2,3),半径1r =设直线l 的方程为2y kx =+,即20kx y -+=因为直线l 与圆C 1<,解得403k <<.所以k 的取值范围为40,3⎛⎫ ⎪⎝⎭.(2)设()11,M x y ,()22,N x y .联立()()222231y kx x y =+⎧⎪⎨-+-=⎪⎩,整理得()()2212440k x k x +-++=,所以122241k x x k ++=+,12241x x k =+,所以()()()21212121224212481k k OM ON x x y y k x x k x x k +⋅=+=++++=++uuu r uuu r .由题设得()2428121k k k ++=+,解得12k =,所以直线l 的方程为122y x =+,所以圆心(2,3)C 在直线l 上,所以2MN =.14.(2021·广东·广州市第七十五中学高二期中)已知圆C 经过两点A (2,2),B (3,3),且圆心C 在直线x -y +1=0上.(1)求圆C 的标准方程;(2)设直线l :y =kx +1与圆C 相交于M ,N 两点,O 为坐标原点,若645OM ON ⋅=,求|MN |的值.【解析】(1)设所求圆C 的标准方程为()222()()0x a y b r r -+->=,由题意,有222222(2)(2)(3)(3)10a b r a b r a b ⎧-+-=⎪-+-=⎨⎪-+=⎩,解得231a b r =⎧⎪=⎨⎪=⎩,所以圆C 的标准方程为22(2)(3)1x y -+-=;(2)设1(M x ,1)y ,2(N x ,2)y ,将1y kx =+代入22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=,所以1224(1)1k x x k ++=+,12271x x k =+,0∆>,所以21212121224(1)64(1)()1851k k OM ON x x y y k x x k x x k+⋅=+=++++=+=+,解得2k =或3k =,检验3k =时,∆<0不合题意,所以2k =,所以12125x x +=,1275x x =,所以||MN 考点3:切线问题15.(2021·安徽·合肥市第六中学高二期中(理))圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上(1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.【解析】(1)因圆心C 在直线:20l x y --=上,则设(,2)C a a -,由||||CA CB =得:,解得0a =,因此,圆心(0,2)C -,半径||5r CA ==,所以圆C 的方程为:22(2)25x y ++=.(2)设过点(5,8)P 的圆C 的切线方程为:(5)(8)0m x n y -+-=,220m n +≠,5=,整理得:2430mn n +=,解得0n =或34m n =-,当0n =时,切线方程为:50x -=,当34m n =-时,切线方程为:34170x y -+=,所以过点(5,8)P 的圆C 的切线方程为50x -=或34170x y -+=.16.(多选题)(2021·湖北·高二期中)设有一组圆()()()22:4k C x k y k k R -+-=∈,下列命题正确的是()A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点()3,0C .存在定直线与圆k C 都相切D .经过点()2,2的圆k C 有且只有一个【答案】AC【解析】根据题意,圆22:()()4()k C x k y k k R -+-=∈,其圆心为(,)k k ,半径为2;依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确;对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=,化简得22650k k -+=,364040=-=-<,方程无解,B 错误;对于C ,存在直线y x =±0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =,这两条直线始终与圆k C 相切,C 正确,对于D ,将(2,2)代入圆的方程可得22(2)()42k k -+=-,解得2k =D 错误;故选:AC .17.(2021·安徽滁州·高二期中)过圆22:4O x y +=上一点(P -作圆O 的切线l ,则直线l 的方程是()A .40x -=B .20x +-=C .20x +=D .40x +=【答案】D【解析】由题意点(P -为切点,所以1OP l k k ⋅=-,又OP k =l k =因此直线l 的方程为40x +=.故选:D18.(2021·天津市咸水沽第二中学高二期中)过点(3,1)M 作圆222620x y x y +--+=的切线l ,则l 的方程为()A .40x y +-=B .40x y +-=或3x =C .20x y --=D .20x y +-=或3x =【答案】C【解析】根据题意,设圆x 2+y 2﹣2x ﹣6y +2=0的圆心为C ,圆x 2+y 2﹣2x ﹣6y +2=0,即()()22138-+-=x y ,其圆心为(1,3),又由点M 的坐标为(3,1),有()()2231138-+-=,即点M 在圆上,则13131-==--MC k ,则切线的斜率k =1,则切线的方程为y ﹣1=(x ﹣3),即x ﹣y ﹣2=0;故选:C .19.(2021·山东济宁·高二期中)过点()2,3P -的直线l 与圆222230x y x y ++--=相切,则直线l 的方程是()A .2x =-或280x y -+=B .280x y -+=C .2x =-或210x y ++=D .210x y ++=【答案】B【解析】把圆222230x y x y ++--=化为标准方程得:()()22115x y ++-=.因为()2,3P -在圆上,所以过P 的切线有且只有一条.显然过点()2,3P -且斜率不存在的直线:2x =-与圆相交,所以过P 的切线的斜率为k .因为切线与过切点的半径垂直,所以()13112k -=----,解得:12k =,所以切线方程为:()1322y x -=+,即280x y -+=.故选:B20.(2022·四川·泸县五中高二期中(文))已知直线()10ax y a R -+=∈是圆()()22:124C x y -+-=的一条对称轴,过点()2,A a --向圆C 作切线,切点为B ,则AB =()AB C D .【答案】C【解析】由圆()()22:124C x y -+-=,可知该圆的圆心坐标为()1,2C ,半径为2,因为直线10ax y -+=是圆()()22:124C x y -+-=的一条对称轴,所以圆心()1,2在直线10ax y -+=上,所以有2101a a -+=⇒=,因为过点()2,1A --向圆C 作切线,切点为B ,所以AC ==所以AB ==故选:C21.(2022·甘肃·临泽县第一中学高二期中(理))直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【解析】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ ==,故选:B .22.(2022·上海·华东师范大学附属东昌中学高二期中)经过圆22:25C x y +=上一点()4,3A -且与圆相切的直线的一般式方程为__________.【答案】43250x y --=【解析】由题意,圆22:25C x y +=,可得圆心坐标为(0,0)C ,因为()4,3A -,则303404CA k --==--,则过点()4,3A -且与圆相切的直线的斜率为43k =,根据直线的点斜式方程,可得直线的方程为4(3)(4)3y x --=-,即43250x y --=,即点()4,3A -且与圆相切的直线的一般式方程为43250x y --=.故答案为:43250x y --=23.(2021·湖南·常德市第二中学高二期中)已知圆C :x 2+y 2=20,则过点P (4,2)的圆的切线方程是________.【答案】2100x y +-=【解析】由224220+=知P 在圆C 上,而(0,0)C ,2142PC k ==,所以所求切线斜率为2k =-,方程为22(4)y x -=--,即2100x y +-=.故答案为:2100x y +-=.24.(2022·上海理工大学附属中学高二期中)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ===,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=25.(2021·四川省叙永第一中学校高二期中(文))过直线34140x y ++=上的动点P 作圆22(1)(2)4x y -+-=的切线,切点为A ,则切线长PA 的最小值为____________.【解析】根据题意,圆的方程为22(1)(2)4x y -+-=,其圆心(1,2),半径2r =;设圆心为C ,即(1,2)C ;则有2222||||||||4PA PC AC PC =-=-,当||PC 取得最小值时,切线长||PA 最小,因为||PC 5=,则||PA=26.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)已知圆224470x y x y +-++=与直线20x ay --=相切,则=a ___________.【答案】33【解析】()()22224470221x y x y x y +-++=⇒-++=,圆的圆心为(2,-2),半径r =1,()()2222311a a a -⋅--=⇒=+-故答案为:33±.考点4:切点弦问题27.(2021·福建宁德·高二期中)过圆221x y +=外一点(2,1)P -引圆的两条切线,则经过两切点的直线方程是________.【答案】210x y --=【解析】设切点分别为()()1122,,,A x y B x y ,因为点,A B 在圆221x y +=上,所以以,A B 为切点的切线方程分别为:11221,1x x y y x x y y +=+=,而点()2,1P -在两条切线上,所以112221,21x y x y -=-=,即点P 满足直线21210x y x y -=⇒--=.故答案为:210x y --=.28.(2021·广东·广州市第六十五中学高二期中)过点()5,3P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则直线AB 的方程为_________.【答案】5390x y +-=【解析】根据题意,过点(5,3)P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则2||||95PA PO =-,则以P 为圆心,PA 为半径为圆为22(5)(3)25x y -+-=,即圆2210690x y x y +--+=,AB 为两圆的公共弦所在的直线,则有2222910690x y x y x y ⎧+=⎨+--+=⎩,变形可得:5390x y +-=;即直线AB 的方程为5390x y +-=,故答案为:5390x y +-=29.(2021·安徽·合肥一中高二期中)已知圆22:4O x y +=,过动点(),4P a a +分别做直线PM 、PN 与圆O 相切,切点为M 、N ,设经过M 、N 两点的直线为l ,则动直线l 恒过的定点坐标为__________.【答案】()1,1-【解析】设点()00,Q x y 为圆O 上一点,当OQ 的斜率存在且不为零时,直线OQ 的斜率为0y x ,此时,圆O 在点()00,Q x y 处的切线方程为()0000x y y x x y -=--,即2200004x x y y x y +=+=,当OQ 与x 轴重合时,00y =,204x =,此时切线方程为0x x =,满足004x x y y +=,当OQ 与y 轴重合时,00x =,204y =,此时切线方程为0y y =,满足004x x y y +=.综上所述,圆O 在其上一点()00,Q x y 处的切线方程为004x x y y +=.设点()11,M x y 、()22,N x y ,则直线PM 的方程为114x x y y +=,直线PN 的方程为224x x y y +=,由题意可得()()11224444ax a y ax a y ⎧++=⎪⎨++=⎪⎩,所以,点M 、N 的坐标满足方程()440ax a y ++-=,故直线MN 的方程为()440ax a y ++-=,即()()440a x y y ++-=,由0440x y y +=⎧⎨-=⎩,解得11x y =-⎧⎨=⎩,因此,直线l 恒过的定点坐标为()1,1-.故答案为:()1,1-.30.(2021·安徽·屯溪一中高二期中)已知直线:10()l x ay a +-=∈R 是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的两条切线,切点分别为B 、D ,则直线BD 的方程为()A .350x y +-=B .250x y +-=C .350x y -+=D .250x y +-=【答案】A【解析】根据题意,圆C 的标准方程为()()22214x y -+-=,即圆心为C (2,1),半径为2.∴点(2,1)在直线10x ay +-=上,即2101a a +-=∴=-∴点A 的坐标为(-4,-1)AC ∴==∴过点A 作圆C 的切线所得切线长为6=∴以点A 为圆心,6为半径的圆A 的方程为()()224136x y +++=圆A 与圆C 的方程作差得350x y +-=,即直线BD 的方程为350x y +-=故选:A .31.(2021·四川省绵阳第一中学高二期中)过点()1,1P 作圆C :224470x y x y +--+=的两条切线,切点分别为A ,B ,则直线AB 的方程为()A .30x y +-=B .10x y --=C .10x y -+=D .10x y +-=【答案】A【解析】224470x y x y +--+=,即()()22221x y -+-=,圆心为()2,2,半径1r =.当斜率不存在时,直线1x =与圆相切,切点为()1,2;当斜率为0时,直线1y =与圆相切,切点为()2,1.故直线方程为斜率21112k -==--,直线方程为()12y x =--+,即30x y +-=.故选:A .32.(2020·安徽·六安市城南中学高二期中(理))过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为P 、 Q ,则线段PQ 的长为()A .3B .4C .5D .6【答案】B【解析】由题意,2268200x y x y +--+=可化为22(3)(4)5x y -+-=,∴圆心(3,4)C ,半径r =,则有5OC =,故切线段长l ==若线段PQ 的长为x ,则2xOC l r ⋅=⋅,得4x =.故选:B .考点5:弦长问题33.(2021·广东·化州市第三中学高二期中)过点M (2,2)的直线l 与圆x 2+y 2﹣2x ﹣8=0相交于A ,B 两点,则|AB |的最小值为_____;此时直线l 的方程为_______.【答案】4260x y +-=【解析】∵圆x 2+y 2﹣2x ﹣8=0,即(x ﹣1)2+y 2=9,圆心C (1,0),半径为3,点M (2,2)在圆内,20221MC k -==-,要使|AB |的值最小,则MC ⊥AB ,此时|MC |=|AB |=4=;直线l 的斜率为12-,则直线l 的方程为y ﹣2=12-(x ﹣2),即x +2y ﹣6=0.故答案为:4;260x y +-=.34.(2021·湖北黄冈·高二期中)已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则t 的取值范围为______,所有的弦中,最长的弦的长度为______.【答案】403t <≤【解析】由于直线x y t +=与圆()2222x y t t t R +=-∈有公共点,所以220403t t t ⎧->⇒<≤≤;又弦长==23t =时,有最大值,其最大值为故答案为:403t <≤35.(2021·广东·潮州市湘桥区南春中学高二期中)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=,(1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F DEF D E F ++=⎧⎪+++=⎨⎪+++=⎩,消去F 得:362D E D E -=⎧⎨-+=-⎩,解得:02D E =⎧⎨=-⎩,∴F =-4,∴圆C 的方程为:22240x y y +--=.(2)由(1)知:圆C 的标准方程为:22(1)5x y +-=,圆心(0,1)C,半径r =;点(0,1)C 到直线l的距离2d r ==<,故直线l 与圆C 相交,故直线l 被圆C截得的弦长为=36.(2021·广东·新会陈经纶中学高二期中)已知圆22:240C x y y +--=,直线()10l mx y m m -+-∈R :=.(1)写出圆C 的圆心坐标和半径,并判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A 、B 两点,若直线l 的倾斜角为120°,求弦AB 的长.【解析】(1)由题设知圆C :()2215x y +-=,∴圆C 的圆心坐标为C ()0,1,半径为r 又直线l 可变形为:()11y m x -=-,则直线恒过定点()1,1M ,∵()2211115+-=<,∴点M 在圆C 内,故直线l 必定与圆相交.(2)由题意知0m ≠,∴直线l 的斜率k m =tan120=︒=,∴圆心C ()0,1到直线l 10y +=的距离d ==,∴||AB ===.37.(2022·山东·济南外国语学校高二期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求线段AB 的垂直平分线方程;(2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =,求直线l 的方程.【解析】(1)设AB 的中点为D ,则(0,1)D .由圆的性质,得CD AB ⊥,所以1CD AB k k ⨯=-,得1CD k =-.所以线段AB 的垂直平分线的方程是1y x =-+.(2)设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为()0r r >,由(1)得直线CD 的方程为1y x =-+,由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =,所以圆心()1,0C ,||2r CA ==,所以圆C 的标准方程为22(1)4x y -+=.(3)由(1)设F 为MN 中点,则CF l ⊥,得||||FM FN ==圆心C 到直线l的距离||1d CF ==,当直线l 的斜率不存在时,l 的方程0x =,此时||1CF =,符合题意;当直线l 的斜率存在时,设l 的方程2y kx =+,即20kx y -+=,由题意得d =34k =-;故直线l 的方程为324y x =-+,即3480x y +-=;综上直线l 的方程为0x =或3480x y +-=.38.(2021·湖北宜昌·高二期中)已知圆M 过点(1,2),(1,4),(3,2)A B C -.(1)求圆M 的方程;(2)若直线:340l x y b +-=与圆M相交所得的弦长为b 的值.【解析】(1)设圆M 的方程为220x y Dx Ey F ++++=,因为圆M 过(1,2),(1,4),(3,2)A B C -三点,则1420,11640,94320,D E F D E F D E F +-++=⎧⎪++++=⎨⎪++++=⎩解得2,4,1D E F =-=-=,所以圆M 的方程为222410x y x y +--+=,即22(1)(2)4x y -+-=;(2)由题意,得圆心(1,2)到直线l的距离1d =,1=,即|11|5b -=,解得6b =或16.故所求b 的值为6或16.39.(2022·上海·华东师范大学附属东昌中学高二期中)直线10x y +-=被圆()()229114x y -+-=所截得的弦长为__________【解析】圆()()229114x y -+-=的圆心为()1,1,半径为32圆心()1,1到直线10x y +-=2=则直线10x y +-=被圆()()229112x y -+-=所截得的弦长为40.(2021·福建·晋江市第一中学高二期中)已知()3,0M 是圆228280x y x y +--+=内一点,则过点M 最短的弦长为()A .B C .6D .8【答案】A【解析】圆228280x y x y +--+=,即()()22419x y -+-=,则该圆的半径为3,圆心为()4,1,M∴过点M 最短的弦长为.故选:A41.(2022·全国·高二期中)若直线20x y --=与圆()224x a y -+=所截得的弦长为则实数a 为().A .1-B .1或3C .3或6D .0或4【答案】D【解析】圆()224x a y -+=的圆心坐标为(,0)a ,半径为2,圆心(,0)a 到直线20x y --=的距离为d =,又直线20x y --=被圆()224x a y -+=所截的弦长为故,即2(2)4a -=,解得0a =或4a =.故选:D .42.(2022·江苏·淮阴中学高二期中)已知直线0x y m -+=与圆22:40C x y y ++=相交于A 、B 两点,若CA CB ⊥,则实数m 的值为()A .4-或0B .4-或4C .0或4D .4-或2【答案】A【解析】圆C 的标准方程为()2224x y ++=,圆心为()0,2C -,半径为2r =,因为CA CB ⊥且2CA CB ==,故ABC 为等腰直角三角形,且AB ==则圆心C 到直线AB 的距离为12d AB ==由点到直线的距离公式可为d ==4m =-或0.故选:A .43.(2022·广东·仲元中学高二期中)已知直线l :y kx =与圆22:20C x y y +--=相交于M ,N两点,若MN =k 的值为()AB .2CD .3【答案】C【解析】圆22:20C x y y +--=,可化为(()2214x y -+-=,∴圆心C的坐标),半径为21=,又圆心到直线的距离d =1=,解得0k =(舍去)或k 故选:C考点6:面积问题44.(2021·广东·汕头市潮阳区棉城中学高二期中)过直线:2l y x =-上任意点P 作圆22:1C x y +=的两条切线,切点分别为,A B ,当切线长最小时,切线长为_________;同时PAB △的面积为_______.【答案】112【解析】依据题意,作出图形,如下图:因为直线l 过点P 且与圆221x y +=相切于点A ,所以PA OA ⊥,所以PA ==要使得PA 最小,则OP 要最小,由题可得:OP 的最小值就是点O 到直线:2l y x =-的距离d ==此时,min 1PA =,所以4OPA π∠=由切线的对称性可得:,12BPA PB π∠==所以PAB △的面积为111122PABS =⨯⨯=,故答案为:1;12.45.(2021·广西·防城港市防城中学高二期中)已知点()3,2A ,点()3,6B ,直线l 过定点()1,0.(1)求以线段AB 为直径的圆的标准方程;(2)记(1)中求得的圆的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,PQ 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【解析】(1)依题可知线段AB 的中点为()3,4是圆心,半径122r AB ===.∴所求圆的标准方程为:()()22344x y -+-=;(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离2d =,解得:34k =,∴l :3430x y --=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于P ,Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离d ==,∵()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦△(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.46.(2020·四川省成都高新实验中学高二期中)已知直线:250l x y --=与圆22:50C x y +=相交于A ,B 两点,求:(1)交点A ,B 的坐标(2)AOB 的面积.【解析】(1)直线:250l x y --=与圆22:50C x y +=的交点,由2225050x y x y --=⎧⎨+=⎩,可得55x y =-⎧⎨=-⎩,71x y =⎧⎨=⎩所以交点A ,B 的坐标为()5,5--,()7,1(2)设直线:250l x y --=与x 轴的交点为E ,则()5,0E 所以AOBAOEEOBSSS=+11||22A B y OE y OE =+‖()1||2A B y y OE =+1652=⨯⨯15=47.(2020·湖北·高二期中)直线:1l y x =+与圆22:430C x y y +-+=交于A 、B 两点,则ABC 的面积是_________.【答案】12【解析】圆()22:21C x y +-=,()0,2C 到直线l 的距离021222d -+=,∴22122AB ⎛⎫=-= ⎪ ⎪⎝⎭∴111222ABC S AB d =⋅==△故答案为:1248.(2021·广东·佛山一中高二期中)已知圆的方程为222440x y x y +---=,设该圆过点()2,3M 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 面积为()A .6B .C .D .【答案】C【解析】圆的标准方程为()()22129x y -+-=,圆心为()1,2E ,半径为3r =,()()2221329-+-<,故点M 在圆()()22129x y -+-=内,如下图所示:则ME 过点M 的弦过圆心时,弦长取最大值,即26AC r ==,当过M 的弦与ME 垂直时,弦长取最小值,即BD =此时AC BD ⊥,此时,四边形ABCD 的面积为11622S AC BD =⋅=⨯⨯=故选:C .49.(2021·福建龙岩·高二期中)设直线20ax y ++=与圆()22:24C x y +-=相交于A 、B 两点,且ABC 的面积为2,则=a ()A .B .C .D .【答案】D【解析】由三角形的面积公式可得212sin 22ABC S ACB =⨯⨯∠=△,可得sin 1ACB ∠=,0ACB π<∠<,故2ACB π∠=,则ABC 为等腰直角三角形,所以,圆心C 到直线20ax y ++=的距离为2sin4d π==由点到直线的距离公式可得d=,解得a=故选:D.50.(2021·江西南昌·高二期中(理))已知圆的方程为222440x y x y+---=,设该圆过点()1,3M的最长弦和最短弦分别为AC和BD,则四边形ABCD面积为()AB.C.8D.13【答案】B【解析】圆的方程为222440x y x y+---=,化为标准方程:()()22129x y-+-=,圆心为()1,2N,半径为3r=,当过点()1,3M的直线与NM垂直时,弦长最短,且AC==当过点()1,3M的直线且过圆心时,弦长最长,且26BD r==,此时,AC BD⊥,所以四边形ABCD面积为11622S AC BD=⋅=⨯=故选:B考点7:直线与圆中的定点定值问题51.(2021·山东潍坊·高二期中)已知圆M的圆心与点()1,4N-关于直线10x y-+=对称,且圆M与y轴相切于原点O.(1)求圆M的方程;(2)过原点O的两条直线与圆M分别交于,A B两点,直线,OA OB的斜率之积为12-,,OD AB D⊥为垂足,是否存在定点P,使得DP为定值,若存在,求出P点坐标;若不存在,说明理由.【解析】(1)(1)设M(a,b).则411141022baa b-⎧=-⎪⎪+⎨-+⎪-+=⎪⎩.解得3ab=⎧⎨=⎩.所以该圆的半径为3,.所以圆M的方程为()2239x y-+=;(2)设OA所在直线方程为()0y kx k=≠,联立()2239x y y kx ⎧-+=⎪⎨=⎪⎩得226611A Ak x y k k =⋅=++,同理把k 换做-12k ,可得222412,1414B Bk kx y k k-==++所以AB 所在直线方程为222636(1121k k y x k k k -=-+-+).当0y =时,可得4x =,故直线AB 过定点C (4,0).由于OC 为定值,且△ODC 为直角三角形,OC 为斜边,所以OC 中点P 满足22OC DP ==为定值,由于O (0,0),C (4,0),故由中点坐标公式可得P (2,0),故存在点P (2,0),使得|DP |为定值.52.(2021·全国·高二期中)已知圆C经过点(0,,(及()3,0.经过坐标原点O 的斜率为k 的直线l 与圆C 交于M ,N 两点.(1)求圆C 的标准方程;(2)若点()3,0P -,分别记直线PM 、直线PN 的斜率为1k 、2k ,求12k k +的值.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由圆C过(0,,(及()3,0.∴23030330F F D F ⎧+=⎪⎪++=⎨⎪++=⎪⎩可得203D E F =-⎧⎪=⎨⎪=-⎩,∴圆C 的方程为:22230x y x +--=,其标准方程为()2214x y -+=;(2)设()11,M x y ,()22,N x y ,直线l 为y kx =,与圆C :()2214x y -+=联立得:()221230k x x +--=,∴()22443112160k k ∆=+⨯⨯+=+>,则12221x x k +=+,12231x x k =-+,∴12121212123333y y kx kx k k x x x x +=+=+++++()()()1212122333k x x x x x x ++⎡⎤⎣⎦=++()()22126611033k k k x x -⎛⎫+ ⎪++⎝⎭==++.53.(2020·浙江温州·高二期中)已知圆C :2280x x y ++=,直线l :20mx y m ++=.(1)当直线l 与圆C 相交于A ,B两点,且AB =l 的方程.(2)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得12PM PN=?若存在,求出点M ,N 的坐标;若不存在,说明理由.【解析】(1)由已知可得圆心()4,0C -,4r =.圆心C 到直线l的距离d =因此AB ===.22421m m =+,解得1m =±,直线l 的方程为2y x =+或2y x =--.(2)设(),P x y ,()1,0M x ,()2,0N x 由已知可得228x y x +=-12=,化简得211222821824x x x x x x x x -+-=-+-.即()()221221241240x x x x x -++-=恒成立所以122221412040x x x x -+=⎧⎨-=⎩,解得12612x x =-⎧⎨=-⎩,或1224x x =-⎧⎨=⎩所以满足题意的定点M ,N 存在,其坐标为()6,0M -,()12,0N -或()2,0M -,()4,0N .54.(2020·辽宁·大连八中高二期中)已知圆22:1O x y +=与x 轴的正半轴交于点P ,直线:30l kx y k --+=与圆O 交于不同的两点A ,B .(1)求实数k 的取值范围;(2)设直线PA ,PB 的斜率分别是12,k k ,试问12k k +是否为定值?若是定值,求出该定值;若不是定值,请说明理由;【解析】∵圆221O x y +=:与x 轴的正半轴交于点P ,∴圆心00O (,),半径1r =,()10,P .(1)∵直线30l kx y k --+=:与圆O 交于不同的两点,A B ,∴圆心O 到直线l 的距离1d =<,即3k -43k >.(2)设11(,)A x y ,22(,)B x y 联立22301kx y k x y --+=⎧⎨+=⎩,可得2222(1)(26)680k x k k x k k +--+-+=,∴2122261k k x x k -+=+,2122681k k x x k-+=+,∴121212121212(1)3(1)3332111111y y k x k x k k k x x x x x x -+-++=+=+=++------221222212123(2)3[262(1)]22()168(26)1x x k k k k k x x x x k k k k k +---+=+=+-++-+--++1862293k k --=+=-为定值.∴12k k +是定值,定值为23-.55.(2021·吉林·长春外国语学校高二期中)已知圆1O过点P ,且与圆2222:(2)(2)(0)O x y r r ++-=>关于直线20x y -+=对称.(1)求圆1O 、圆2O 的方程;(2)过点Q 向圆1O 和圆2O 各引一条切线,切点分别为C ,D ,且2QD QC =,则是否存在一定点M ,使得Q 到M 的距离为定值λ?若存在,求出M 的坐标,并求出λ的值;若不存在,请说明理由.【解析】(1)设圆1O 的圆心1(,)O a b ,因为圆1O 与圆2222:(2)(2)O x y r ++-=关于直线20x y -+=对称,可得2112222022b a a b -⎧⋅=-⎪⎪+⎨-+⎪-+=⎪⎩,解得0,0a b ==,设圆1O 的方程为222x y r +=,将点P ,代入可得2r =,所以圆1O 的方程为224x y +=,圆2O 的方程为22(2)(2)4x y ++-=.(2)由2QD QC ==设()00,Q x y ,则()()()2222000022444x y x y ++--=+-,化简得22002268339x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,所以存在定点22,33M ⎛⎫- ⎪⎝⎭使得Q 到M.56.(2021·湖南·怀化五中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)直线n 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.(3)直线m 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之和为0,求证:直线m 的斜率是定值,并求出该定值.【解析】(1)依题意,圆C 的半径22||345CA =+,所以圆C 的标准方程是:()22325x y -+=.(2)当直线n 的斜率不存在时,设(,),(,)M a b N a b -,由直线AM ,AN 的斜率之积为2,得442b b a a ---⋅=,即22162b a =-,又由点M ,N 在圆C 上得()22325a b -+=,消去b 得:260a a +=,而0a ≠,则6a =-,此时20b <,因此,无解,当直线n 的斜率存在时,设其方程为y kx t =+,由22(3)25y kx t x y =+⎧⎨-+=⎩消去y 并整理得:222(1)2(3)160k x kt x t ++-+-=,设1122(,),(,)M x y N x y ,则1222(3)1kt x x k --+=+,2122161t x x k -=+,直线AM 斜率114AM y k x -=,直线AN 斜率224AN y k x -=,则()()221212121212444·4AM ANt kx t kx t x xk k k k t x x x x x x -+-+-+==+-⋅+2222222226(1)(4)(4)26(1)(4)(4)16164kt k t k t k t k k t k k t t t t -++-+-+++-=+-⋅+=--+6424k t t +-==+,整理得612t k =-,此时直线n :(6)12y k x =+-过定点()6,12--,所以直线n 过一个定点,该定点坐标是()6,12--.(3)设直线AM 方程为:4y rx =+,由224(3)25y rx x y =+⎧⎨-+=⎩消去y 并整理得:22(1)2(43)0 r x r x++-=,则有点22268464(,)11r r rMr r--++++,而直线AN:4y rx=-+,同理22268464(,)11r r rNr r+--+++,于是得直线MN的斜率2222224644643116868411MNr r r rr rk r rr r-++--+-++==--+-++,所以直线m的斜率是定值,该定值为3 4-.。
高一数学 直线与圆的方程——直线与圆的位置关系(带答案)
专题二 直线与圆的位置关系教学目标:直线和圆的位置关系的判断 教学重难点:直线和圆的位置关系的应用 教学过程:第一部分 知识点回顾考点一:直线与圆的位置关系的判断:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=()0r >有相交、相离、相切。
可从代数和几何两个方面来判断: (1)代数方法判断直线与圆方程联立所得方程组的解的情况:由⎩⎨⎧=-+-=++222)()(0r b y a x C By Ax ,消元得到一元二次方程,计算判别式∆, ①0∆>⇔相交;②0∆<⇔相离;③0∆=⇔相切; (2)几何方法如果直线l 和圆C 的方程分别为:0=++C By Ax ,222)()(r b y a x =-+-. 可以用圆心),(b a C 到直线的距离=d 22||Aa Bb C A B+++与圆C 的半径r 的大小关系来判断直线与圆的位置关系:①d r <⇔相交;②d r >⇔相离;③d r =⇔相切。
提醒:判断直线与圆的位置关系一般用几何方法较简捷。
例1 直线x sin θ+y cos θ=2+sin θ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能答案 B 解析 圆心到直线的距离d =|sin θ-2-sin θ|sin 2θ+cos 2θ所以直线与圆相切.例2 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C .(-24,24)D .(-18,18)答案C 设l 的方程y =k (x +2),即kx -y +2k =0.圆心为(1,0).由已知有|k +2k |k 2+1<1,∴-24<k <24.例3 圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离为1的点有几个?解:圆(x -3)2+(y -3)2=9的圆心为O 1(3,3),半径r =3, 设圆心O 1(3,3)到直线3x +4y -11=0的距离为d ,则d =22|334311|2334⨯+⨯-=<+如图1,在圆心O 1的同侧,与直线3x +4y -11=0平行且距离为1的直线l 1与圆有两个交点,这两个交点符合题意,又r -d =3-2=1,所以与直线3x +4y -11=0平行的圆的切线的两个切点中有一个切点也符合题意. 所以符合题意的点共有3个。
直线和圆的位置关系练习题附答案
直线和圆的位置关系练习题(附答案问题1:已知直线方程为2x+3y-6=0,圆心坐标为(1,-2),半径为3,求直线和圆的位置关系。
解:首先,我们可以将直线方程转换为一般方程的形式:2x+3y-6=0,即3y=-2x+6,最后得到y=(-2/3)x+2。
接下来,我们可以计算直线与圆心的距离,使用点到直线的距离公式:d = |Ax0 + By0 + C| / √(A^2 + B^2)其中A、B、C分别代表直线方程的系数,而(x0, y0)是圆心的坐标。
代入直线的方程,我们得到:d = |2(1) + 3(-2) - 6| / √(2^2 + 3^2)= |-1| / √(4 + 9)= 1 / √13= √13 / 13根据圆的半径和直线与圆心的距离,我们可以得出以下结论:1.如果直线与圆心的距离大于圆的半径,即√13 / 13 > 3,则直线与圆没有交点,且直线与圆外部没有公共点。
2.如果直线与圆心的距离等于圆的半径,即√13 / 13 = 3,则直线与圆相切于一个点。
3.如果直线与圆心的距离小于圆的半径,即√13 / 13 < 3,则直线与圆有两个交点,且直线与圆内部有两个公共点。
综上所述,直线2x+3y-6=0和圆心坐标为(1,-2),半径为3的圆的位置关系为:直线与圆有两个交点,且直线与圆内部有两个公共点。
问题2:已知直线方程为x-2y+3=0,圆心坐标为(2,1),半径为2,求直线和圆的位置关系。
解:将直线方程转换为一般方程的形式:x-2y+3=0。
计算直线与圆心的距离:d = |Ax0 + By0 + C| / √(A^2 + B^2)代入直线的方程,我们得到:d = |1(2) + (-2)(1) + 3| / √(1^2 + (-2)^2)= |2 - 2 + 3| / √(1 + 4)= |3| / √5= 3 / √5根据圆的半径和直线与圆心的距离,我们可以得出以下结论:1.如果直线与圆心的距离大于圆的半径,即 3 / √5 > 2,则直线与圆没有交点,且直线与圆外部没有公共点。
直线与圆、圆与圆的位置关系
直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )方程观点 Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)图形量的|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案: 6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a=±24.6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。
直线与圆的位置关系典例+讲解+习题+答案
4.2.1 直线与圆的位置关系直线与圆的位置关系(典例)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
例1、判断直线L:(1+m)x+(1-m)y+2m-1=0与圆O:x2+y2=9的位置关系。
法一:直线L:m(x-y+2)+x+y-1=0恒过点,∵点P在圆O内,∴直线L与圆O相交。
法二:圆心O到直线L的距离为当d<3时,(2m-1)2<9(2m2+2),∴14m2+4m+17>0∴m∈R所以直线L与直线O相交。
2.切线问题:例3:(1)已知点P(x0,y)是圆C:x2+y2=r2上一点,求过点P的圆C的切线方程;(xx+yy=r2)法一:∵点P(x,y)是圆C:x2+y2=r2上一点,∴当x≠0且y≠0时,∴切线方程为当P为(0,r)时,切线方程为y=r,满足方程(1);当P为(0,-r)时,切线方程为t=-r,满足方程(1);当P为(r,0)时,切线方程为x=r,满足方程(1);当P为(-r,0)时,切线方程为x=-r,满足方程(1);综上,所求切线方程为x0x+yy=r2法二:设M(x,y)为所求切线上除P点外的任一点,则由图知|OM|2=|OP|2+|PM|2,即x2+y2=r2+(x-x0)2+(y-y)2∴x0x+yy=r2且P(x,y)满足上面的方程。
综上,所求切线方程为x0x+yy=r2。
(2)已知圆O:x2+y2=16,求过点P(4,6)的圆的切线PT的方程。
解:当PT方程为x=4时,为圆O的切线,满足题意:设PT的方程为y-6=k(x-4),即kx-y-4k+6=0则圆心O到PT的距离为所以PT的方程为综上,切线PT的方程为x=4,5x-12y+52=0 例4、求过下列各点的圆C:x2+y2-2x+4y-4=0的切线方程:(1);(2) B(4,5)解:(1)圆C:(x-1)2+(y+2)2=9,圆心C(1,-2),r=3,且点A在圆C上,法一:设切线方程为,则圆心到切线的距离为,∴所求切线方程为法二:∵AC⊥l,∴所求切线方程为(2)点B在圆外,所以过B点的切线有两条设切线方程为y=k(x-4)+5,则圆心C到切线的距离为又直线x=4也是圆的切线方程,∴所求切线方程为例5、设点P(x,y)是圆x2+y2=1上任一点,求的取值范围。
直线与圆的位置关系例题
直线与圆的位置关系例题例题一:给定直线的方程为:y = 2x + 3,圆的方程为:(x - 1)^2 + (y - 2)^2 = 9,判断该直线与圆的位置关系。
解答一:首先,我们可以观察到圆的圆心坐标为(1, 2),半径为3。
我们可以计算直线在x轴上的截距为3/2,也就是说直线与x轴的交点为(0, 3/2)。
接下来,我们可以将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (3/2 - 2)^2 = 91 + (−1/2)^2 = 91 + 1/4 = 95/4 = 9由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。
例题二:给定直线的方程为:x + y = 4,圆的方程为:(x - 2)^2 + (y - 2)^2 = 4,判断该直线与圆的位置关系。
解答二:首先,我们观察到圆的圆心坐标为(2, 2),半径为2。
然后,我们可以令x = 0,来计算直线与y轴的截距,即直线与y轴的交点为(0, 4)。
接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 2)^2 + (4 - 2)^2 = 44 + 4 = 4由于等式左边等于右边,因此直线和圆有交点,它们是相交的。
例题三:给定直线的方程为:y = -3x + 2,圆的方程为:(x - 1)^2 + (y + 1)^2 = 4,判断该直线与圆的位置关系。
解答三:首先,我们观察到圆的圆心坐标为(1, -1),半径为2。
然后,我们可以计算直线在x轴上的截距为2/3,也就是说直线与x轴的交点为(0, 2/3)。
接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (2/3 + 1)^2 = 41 + (5/3)^2 = 41 + 25/9 = 49/9 + 25/9 = 434/9 = 4.由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。
例题四:给定直线的方程为:x - 2y = 6,圆的方程为:(x - 3)^2 + (y + 1)^2 = 9,判断该直线与圆的位置关系。
2.5直线与圆的位置关系(解析版)
2.5直线与圆的位置关系【推本溯源】1.回顾一下点与圆的位置关系,那么直线与圆有几种关系呢?点在圆内,点在圆上,点在圆外;直线与圆的位置关系:2.2.点与圆的位置关系我们是用点到圆心距离与半径比较,那直线与圆的位置关系怎么表示出来?设圆心到直线的距离为r当d <r 时,相交;当d=r 时,相切;当d >r 时,相离。
同样地,当相交时,d <r ;当相切时,d=r ;当相离时,d >r 。
3.如右图,经过圆O 的半径OD 外端点D ,作直线l ⊥OD ,直线l 的关系?∵l ⊥OD ∴OD=r ∴直线与l 相切因此,经过半径外端并且垂直与这条半径的直线是圆的切线。
注:①直线与圆有一个交点;②直线与过交点的半径垂直。
几何语言:∵l ⊥OD ,OD 是半径∴直线与l 相切4.如图,直线l 是圆O 的切线,切点为D ,直线l 与半径OD 有怎样(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线(如右图l 1);(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点;(如右图l 2).(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
(如右图l 3)的关系?l ⊥OD用反证法;假设l 与OD 不垂直,过圆心O 作OD ′⊥l ,垂足为D ′∵直线l 是圆O 的切线∴点O 到直线l 的距离等于半径∵点D ′在圆上,这样切线会和圆有两个交点,与题目相切矛盾∴l ⊥OD因此,圆的切线垂直于经过切点的半径。
5.(1)做一个圆,使它与已知三角形的各边都相切?可得圆心O 是三个内角平分线得交点。
(2)画出右图▲ABC 里面最大的圆因此,与三角形各边都相切的圆叫做三角形的内切圆,三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心到三边的距离都相等.这个三角形是圆的外切三角形。
如图:▲ABC因此,三角形的面积等于三角形周长与内切圆半径之积的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考能力测试数学基础训练25
基础训练25 圆的方程、直线和圆的位置关系
●训练指要
掌握圆的标准方程及一般方程,会用待定系数法,求圆的方程.
熟练掌握直线与圆的位置关系的代数确定方法与几何确定方法.
一、选择题
1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是
A.a <-2或a >3
2 B.-32<a <0 C.-2<a <0 D.-2<a <
32 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2
25 C.1 D.5
3.方程x 4-y 4-4x 2+4y 2=0表示的曲线是
A.两个圆
B.四条直线
C.两条平行线和一个圆
D.两条相交直线和一个圆
二、填空题
4.经过点M (1,3)的圆x 2+y 2=1的切线方程是_________.
5.若圆经过点A (a ,0),B (2a ,0),C (0,a )(a ≠0),则这个圆的方程为_________.
三、解答题
6.求过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的交点,且面积最小的圆的方程.
7.当C为何值时,圆x2+y2+x-6y+C=0与直线x+2y-3=0的两交点P、Q满足OP⊥OQ?(其中O为坐标原点)
8.已知圆C:x2+(y-1)2=5,直线l:mx-y+1=0,
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)设l与圆C交于A、B两点,若|AB|=17,求l的倾斜角;
(3)求弦AB的中点M的轨迹方程.
高考能力测试数学基础训练25答案
一、1.D 2.A 3.D
二、4.x =1或4x -3y +5=0
5.x 2+y 2-3ax -3ay +2a 2=0
三、6.5
4)56()513(22=-++y x 提示:求得直线与圆的交点A (-5
2,511),B (-3,2),利用圆的直径式方程得所求圆方程为.5
4)56()513(.0)2)(52()3)(511(22=-++=--+++y x y y x x 即 7.C =3
提示:联立直线与圆方程,消去x 得5y 2-20y +12+C=0.
由Δ>0⇒c <8.
设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4,y 1y 2=5
12C +. x 1·x 2=(3-2y 1)(3-2y 2)=-15+5
4(12+C ). OP ⊥OQ ⇔x 1x 2+y 1y 2=0⇒C =3.
满足C <8.
∴C =3为所求.
8.(1)略;(2)60°或120°
(3)x 2+y 2-x -2y +1=0(x ≠1)
提示:(1)l 方程化为y -1=mx ,
∴直线l 恒过定点(0,1).
又易知P 在圆C 内部,∴直线l 与圆C 总有两个不同交点.
(2)求得|AB |=.317120161222
±=⇒=++⋅+m m m m ∴tan θ=±3,倾斜角θ=60°或120°.
(3)设M (x ,y ),由|CM |2+|PM |2=|CP |2⇒轨迹方程.。