2017浙江省数学竞赛试题与参考答案

合集下载

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。

2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。

3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。

则21xx yy w w c-=_________。

解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。

所以1221=4xx yy w w f c-。

4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。

这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。

浙江省杭州市萧山区2017年高考模拟命题竞赛数学试卷17Word版含答案

浙江省杭州市萧山区2017年高考模拟命题竞赛数学试卷17Word版含答案

2017年高考模拟试卷数学卷本试卷分选择题和非选择题两部份。

总分值150分,考试时刻120分钟。

选择题部份(共40分)一. 选择题(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1. [原创] 已知集合{|2}xP x R y =∈=,2{|1}Q y R y x =∈=-,那么P Q ⋂=( ▲ )A .[1,1]-B .[0,)+∞C .(,1][1,)-∞⋃+∞D .(0,1]2. [原创] 已知复数34i z i ⋅=+,其中i 为虚数单位,那么z =( ▲ )A .43i -+B .43i --C .43i -D .43i +3. [原创] 假设命题P :关于任意的x ,有|1||21|x x a ++-≥恒成立,命题Q :3a ≤,那么P 是Q 的( ▲ )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件4. [原创] 在平面直角坐标系XOY 中,曲线()ln f x a x x =+在x a =处的切线过原点,那么a =( ▲ )A .1B .eC . 1eD .05. [原创] 已知正整数,x y 知足不等式组2252x y x y y -≤⎧⎪+≥⎨⎪≤⎩,那么221x y x +++的取值范围为( ▲ )A .77[,]42B .7[2,]2C .7[,2]4D .57[,]226. [原创] 在三角形ABC ∆中,=4AB ,0AC λλ=>(),假设2CA CB ⋅≥-对任意的0λ>恒成立,那么角A 的取值范围为( ▲ )A .[]42ππ,B .3[]44ππ,C .3(0,]4πD .3[4ππ,)7. [原创] 浙江省高考制度改革以来,学生能够从7门选考科目中任意选取3门作为自己的选考科目。

目前C 学校的A 专业需要物理、技术、化学科目,B 专业需要技术、政治、历史科目,甲同窗想报考C 学校的A 和B 专业,其中A 、B 专业只要考生的选考科目中有一门知足条件即可报考,现请问甲同窗选择选考科目种类是( ▲ )种A .15B .35C .31D .198. [原创] 已知1(,0)F c -,2(,0)F c 别离为双曲线2222:1(,0)x y a b a bΓ-=>的左、右核心,过点1F 作直线l 切圆222()x c y r -+=于点P ,l 别离交Γ右支于A 、B 两点(A 、B 位于线段1F P 上),假设1||:||:||2:2:1F A AB BP =,那么双曲线Γ的离心率的值为( ▲ )A .5B .2655C .2623+D .263+ 9. [原创] 在四面体A BCD -中,,EF 别离为棱,AB CD 的中点,过EF 的平面α交,BC AD 于,GH ,那么,EGF EHF S S ∆∆知足以下哪一种关系( ▲ )A .EGF EHF S S ∆∆=B .EGF EHF S S ∆∆>C .EGF EHF S S ∆∆<D .,EGF EHF S S ∆∆随着平面α的转变而转变10、[原创]已知二次函数2(),,,f x ax bx c a b c N +=++∈,函数()f x 在11(,)44-上有两个零点,那么a b c ++的最小值为()A .38B .39C .40D .41非选择题部份(共110分) 二. 填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 11. [原创] 27log 83= ▲ ; 已知函数22()log (1)f x x x =++,那么221(log 3)(log )3f f += ▲ ; 12. [原创] 已知()2sin()cos 6f x x a x π=++的最大值为2,那么a = ▲ ;假设12,x x R ∀∈,12|()()|f x f x m -≤,那么m 的取值范围是 ▲13. [原创] 已知立体几何体的三视图如右图所示, 那么该立体几何体的体积是 ▲ ; 立体几何体的表面积是 ▲ .14. [原创] 已知数列{}n a 中,12a =,122(2)n a a na n n +++=≥,那么n a = ▲ ;假设数列1{}n n a a +的前n 项和为n S ,那么n S = ▲ .15. [原创] 已知函数()||f x x a m =-+,现规定1()()f x f x =,1()(())(1)n n f x f f x n +=≥,那么方程()0n f x =存在实数根的充要要条件是 ▲ (,,n a m 三者关系)16. [原创] 已知20c b >>,那么22(2)a b a c b -的最小值是 ▲17. [原创] 已知向量,,a b c 知足||1,||||,()()0a a b b a c b c =-=-⋅-=.关于确信的b ,记c 的长度的最大值和最小值别离为,m n ,那么当b 转变时,m n -的最小值是 ▲ .三. 解答题(本大题共5大题,共74分,解许诺写出文字说明、证明进程或演算步骤.) 18. [原创] 在ABC ∆中,角,,A B C 对应的边别离是,,a b c ,已知3B π∠=,4c =(Ⅰ)若3sin 5C =,求ABC ∆的面积. (Ⅱ)1CB CA ⋅=-,求b 的值.19. [原创] 如图,在底面是平行四边形的四棱锥P ABCD -中,,E F 别离是,AB PC 的中点,平面PDE ⊥平面PCD ,1PD DE ==,2PE AB ==(Ⅰ)证明:直线//BF 面PDE(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.20. [原创] 已知函数2()xf x e ax x =--,2()231g x ax bx a =+-+.(Ⅰ)假设函数()f x 在R 上是单调递增的,求实数a 的值. (Ⅱ)当[4,4]x ∈-时,()0g x ≥恒成立,求5a b +的取值范围.21. [原创] 如图,在直角坐标系xoy 中,,A B 别离是椭圆22221x y a b +=2,P 是椭圆上的任意一点(异于左、右极点),直线AP 与直线l :2a x c =相交于M 点,当P 在椭圆上的上极点时,3AP BP ==.(Ⅰ)求椭圆标准方程.(Ⅱ)设BP 的斜率为1k ,BM 的斜率为2k ,(i )求证:12k k 为定值.(ii )假设BP 平分ABM ∠,求2212k k +的值.22. [原创]对任意正整数n ,设n a 是关于x 的方程31x nx -=的最大实数根 (1)12n n n a a n +<<<+(2)、当4n ≥时,对任意的正整数m 2()n m n n m na a n m n ++-<-<+(3)、设数列21{}n a 的前n 项和为n S ,求证:2ln(1)133n n n S +<<2016年高考模拟试卷数学答卷一、选择题(每小题4分,共10小题,共40分)题号12345678910答案二、填空题(此题共有7小题,其中第1一、1二、13、14题每空3分,第1五、1六、17题每空4分,共36分)11. ,_____________. 12.___________ ,13., 14.,15.____ _ _ 16, 17三、解答题(本大题共5小题,共74分.解许诺写出文字说明,证明进程或演算步骤)18.(本小题满分14分)19.(本小题满分15分)题号1-1011-171819202122总分得分2017年高考模拟试卷数学参考答案与评分标准1.【答案】B【解析】由{|}P x x R =∈,{|0}Q y y =≥,得{|0}P Q x x ⋂=≥.2.【答案】D【解析】由已知,得z =43i +,3443iz i i+==-. 3.【答案】A【解析】由|1||21|x x ++-恒成立,得min (|1||21|)a x x ≤++-,利用各绝对值的零点,别离画出函数的大致图像,即当32x =时,min 3(|1||21|)2x x ++-=,现在命题P :32a ≤;又由于命题Q :3a ≤,得P Q ⇒. 4.【答案】B【解析】由()ln f x a x x =+,得'()1a f x x =+,即'()2k f a ==。

2017年数学竞赛初中初赛答案

2017年数学竞赛初中初赛答案


1 006 1 007
伊…伊
2 004 2 005

2 005 2 006
……………………………… 2 分
= 2 伊(1 + 2 + 3 + … + 2 005 + 2 006)
4分
= 2 006 伊 2 007
5分
= 4 026 042.
6分
14.(员)设爸爸追上乐乐用了 x 分钟援由题意列方程,得
5分
所以甲说的“801 班得第四”是对的;则丙说“803 班得第三”的对的;乙说“802 班得冠军”是对的.所以 804 班
是亚军.
9分
四、一鼓作气(本大题共 2 道小题,17 题 12 分,18 题 12 分,总计 24 分)
17. 当 a > 1 时,a >
1 a

1分
当 a = 1 时,a =
1 a
;当 a = 0 时,1a
不存在,没法比较;当 0 < a
< 1 或 a < -1 时,a <
1 a
.
12 分
18.(1)设年降水量为 x 万 m3,每人年平均用水量为 y m3.
1分
嗓 由题意,得
12 12
000 000
+ +
20x 15x
= 16 伊 20y, =(16 + 4)伊 15y.
9分
所以 a + b + c + d = 45,俞
11 分
将俞代入虞,愚,舆,余得
a = 3,b = 9,c = 12,d = 21,
13 分
所以 d - a = 21 - 3 = 18.

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

选择题部分(共40分)、选择题:本大题共 10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题 目要求的。

1 .已知P {x |1 x 1} , Q {2 x 0},则 P QA • ( 2,1)B • ( 1,0)C • (0,1)D • ( 2, 1)【答案】A【解析】取P,Q 所有元素,得P Q ( 2,1).绝密★启用前2017年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4页,选择题部分1至2页,非选择题部分 3至4页。

满分150分。

考试用时120分钟。

考生注意: 1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。

2 •答题时,请按照答题纸上 注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式: 球的表面积公式 锥体的体积公式S 4 R 2 球的体积公式 1 V -Sh3其中S 表示棱锥的底面面积,h 表示棱锥的高 台体的体积公式 其中R 表示球的半径 柱体的体积公式 V=Sh其中S 表示棱柱的底面面积,h 表示棱柱的高1 ------------------ V §h(S a S a S £)其中S a , $分别表示台体的上、下底面积 h 学%科网表示台体的高2 2x 2 .椭圆一9 y1的离心率是4A .远3 【答案】B【解析】e .9 433 .某几何体的三视图如图所示(单位: cm3)是nF+1【答案】【解析】n 12(_2~ 1)4 .若x, y满足约束条件y2yA. [0,6] B . [0,4] 【答案】Dcm),则该几何体的体积(单位:正视图Q俯视圈C.3n彳T+1D.弓+31,选A.0,则z=x+2y的取值范围是C. [6, +8]D. [4,+ 8【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4, 无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则A .与a有关,且与b有关B .与a有关,但与b无关C.与a无关, 且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在f (0) b, f(1) 12a aa b, f ( )b 中取,所以最值之差2 4b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为3,贝U d>0”是S 4 + S” >S 的A .充分不必要条件B .必要不充分条件C .充分必要条件D •既不充分也不必要条件【答案】C【解析】S 4 S 6 2S 5 d ,所以为充要条件,选 C.【答案】D8.【答案】9 .如图,已知正四面体 D-\BC (所有棱长均相等的三棱锥),PQR 分别为AB , BC , CA 上的点,C . a < B <Y【解析】原函数先减再增,再减再增,因此选 8.已知随机变量A . E( J<E( C . E(1)>E( 1满足P(1 =1) =P)i, P (1=0) =1 —|:)i , i = 12) , D( 1)<D( 2)B.E( 1)<E( 2), D( 1)<D( 2) D.E( 1)>E(1 小,2.若 0<p 1<p 2< ,则22) , D( 1)>D( 2)2) , D(1)>D( 2)【解析】 Q E( i )P i ,E( 2) p 2 , E( 1)E( 2) Q D( 1)P 1(1 pj, D( 2) P 2(1 P 2),D( 1) D( 2) (P 1P 2)(1 P 1 P 2)0,选 A.AP=PB ,BQ QCCR RA2,分别记二面角 D -PR-Q , D -PQ-R , D -QR-P 的平面较为 a B, Y 则7.函数y=f(x)的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是D.【答案】B【解析】设0为三角形ABC 中心,贝U O 到PQ 距离最小,0到PR 距离最大,0到RQ 距离居中,而高相 等,因此所以选BLLW iun10.如图,已知平面四边形 ABCD , AB 丄BC, AB = BC = AD = 2, CD = 3, AC 与BD 交于点O ,记Ii = OAOB ,uur Lur LLLT Lur I 2=OB OC , I 3=OC OD ,贝U/)A. I 1 <I 2 < I 3 nB . I 1<I 3 <I 2C . c I 3<I 1 < I 2D . I 2<I 1<I 3【答案】CLUL LILT LLTT L ILT LLL T LLLT【解析】因为 AOBCOD 90°,所以 OB OC 0 OA OB OCOD(QOA OC,OB OD)非选择题部分(共110分)7小题,多空题每题 6分,单空题每题 4分,共36分。

浙江省高中数学竞赛试卷PDF版

浙江省高中数学竞赛试卷PDF版

| an |≤ 2, n = 1, 2,3, , 可 得 {an} 从 第 k 项 开 始 是 一 个 周 期 数 列 , 周 期 为
l−k.
……………………………………………………15 分
(5) 由(3)可知对于任意的 n, bn 的值只有 4 p +1 (有限个), 故总能找到 k < l , 使得 bk = bl ,从而有 ak = al .
立空间直角坐标系,则 A(0, 3 , 0) , B(− 1 , 0, 0 ), C(1 , 0, 0 ), P(0, 3 , 6 ) .
2
2
2
63
所以 D(1 , 3 , 6 ) 。从而 可设 E(1 t, 3 − 5 3 t, 6 t) ( 0 ≤ t ≤ 1 ),
4 12 6
4 2 12 6
于是 BE =(1 t + 1 , 3 − 5 3 t, 6 t) 。设所求角为 θ ,则 4 2 2 12 6
值范围为_____________.
解答: 命题 p 成立 当且仅当 a > 1;命题 q 成立当且仅当 −2 < a < 2 。若 p ∨ q
为真命题, p ∧ q 为假命题,则 a ∈ (−2,1] ∪[2, +∞) .
6. 设 S 是 (0, 5) 中所有有理数的集合,对简分数 q ∈ S, ( p, q) = 1 ,定义函数
方程可变形为
max( f (x), g(x)=) ax + 2 .
由 −2x ≥ 2 1− x2 得 x ≤ −
2 ,从而有
2
max(
f
( x),
g ( x))
=
−2x,
2 1− x2

2017年全国高中数学联赛一试(A卷)答案

2017年全国高中数学联赛一试(A卷)答案
A8 A7

y A2
A3
O A6
A4 A5
x
中 恰 有 Ai3 , Ai5 两 点 与 之 距 离 为 5 ( 这 里 下 标 按 模 8 理 解 ) ,因而恰有 { Ai , Ai3 , Ai5}(i 1, 2, , 8) 这 8 个三点组被计了两次.从而满足条件的三点组个 48 4 数为 56 8 48 ,进而所求概率为 . 84 7
2017 年全国高中数学联合竞赛一试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 设 f ( x) 是定义在 R 上的函数, 对任意实数 x 有 f ( x 3) f ( x 4) 1 . 又 当 0 x 7 时, f ( x) log 2 (9 x) ,则 f (100) 的值为 . 1 答案: − . 2 1 解:由条件知, f ( x 14) f ( x) ,所以 f ( x 7) 1 1 1 f (100) f (100 14 7) f (2) . f (5) log 2 4 2 2 则 x cos y 的取值范围是 . 2. 若实数 x, y 满足 x 2 cos y 1 , 答案: [1, 解:由于 由 有最小值 可知, (这时 y 可以取 ) ; 当 时,

2017年普通高等学校招生全国统一考试数学试题(浙江卷,参考解析)

2017年普通高等学校招生全国统一考试数学试题(浙江卷,参考解析)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。

既可以突出重点又可以提高复习信心,效率和效益也会双丰收。

少做、不做难题,努力避免“心理饱和”现象的加剧。

保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P Y A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P Y )1,2(-.2.椭圆221 94x y+=的离心率是A.133B.53C.23D.59【答案】B【解析】945e-==,选B.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.π2+1 B.π2+3 C.3π2+1 D.3π2+3【答案】A【解析】2π1211π3(21)1322V⨯=⨯⨯+⨯⨯=+,选A.4.若x,y满足约束条件3020xx yx y≥⎧⎪+-≥⎨⎪-≤⎩,则z=x+2y的取值范围是A.[0,6] B.[0,4] C.[6,+∞]D.[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<Q111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<Q ,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠>o,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<<u u u r u u u r u u u r u u u r u u u r u u u rQ选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2017年五套数学竞赛题附答案

2017年五套数学竞赛题附答案

20XX 年浙江高中数学竞赛一,填空题(每题8分,共80分)1. 在多项式()()610321x x x 的展开式+-的系数为______.2. 已知()5log 35log172+=-a a ,则实数a=_________.3. 设()[]1,02在b ax x x f ++=中有两个实数根,则b a 22-的取值范围是___________.4. 设()1sin sin sin cos cos cos sin ,,222222=+-+-∈y x y x y x x x R y x 且,则=-y x _______.5.已知两个命题,命题()()0log :>=x x x f p a 函数单调递增;命题函数:q ()012>++=ax x x g ()R x ∈,q p q p ∧∨为真命题,若为假命题,则实数a 的取值范围为____.6. 设S 是⎪⎭⎫ ⎝⎛850,中所有有理想的集合,对简分数()1,,=∈q p S pq,定义函数,1p q p q f +=⎪⎪⎭⎫ ⎝⎛则()32=x f 在S 中根的个数为___________.7. 已知动点P ,M,N 分别在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,则PN PM +的最小值为__________.8. 已知棱长为1的正四面体P —ABC,PC 的中点为D,动点E 在线段AD 上,则直线与平面ABC 所成的角的取值范围为__________.9.已知平面向量0.10,321,,,=⋅<<===c b c b a若λ()λλ---1所有取不到的值的集合为____________.10. 已知()()()0421212,0.1,0,2222=---+-+⎩⎨⎧≥-<-=x a x x f x x f x x x x x f 方程有三个根.321x x x <<若()12232x x x x -=-,则实数a=_______.二. 解答题11. (本题满分20分)设()()(),⋯=+=+=+,2,1,316,322121n x f x x f x x f n n 对每个n ,求()x x f n 3=的实数解。

2017年高考浙江卷数学试题解析(参考版)

2017年高考浙江卷数学试题解析(参考版)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =+⋅+柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积 V =Shh 学%科网表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P A .)1,2(- B .)0,1(- C .)1,0( D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P )1,2(-.2.椭圆22194x y +=的离心率是 A .133B .53C .23D .59【答案】B 【解析】94533e -==,选B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A 【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B =,2·I OB OC =,3·I OC OD =,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠> ,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<< 选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2017年数学真题及解析_2017年浙江省高考数学试卷

2017年数学真题及解析_2017年浙江省高考数学试卷

2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)2.(4分)椭圆+=1的离心率是()A.B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+34.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=.15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆+=1的离心率是()A.B.C.D.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+3【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,=,=(0,3,6),=(,6,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=.,再根据S 【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出△BDC【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S=BC•AE=×2×=,△ABC∵BD=2,=S△ABC=,∴S△BDC∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是4,最大值是.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] .【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k ∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP==x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2x n+1﹣x n得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2xn+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。

湖州市2017年第十届“期望杯”小学数学竞赛试题及参考答案(五年级)

湖州市2017年第十届“期望杯”小学数学竞赛试题及参考答案(五年级)

湖州市第十届“期望杯”小学数学竞赛试题(五年级)(2017年12月30日下午1:30—3:00;满分120分)考点:_______________________ 考场号:___________ 座位号:_________________学校:_______________________ 班级:____________姓名:_________________题号一(1~11)二(12~16)得分得分一、填空(第1~2题每题6分,第3~11题每题7分,共75分)1. 计算:0.37×1.9+0.81×3.7=()2. 计算:15.9÷1.1-3.8÷1.1=()3. 2017个7连乘,积的个位数字是()。

4. 把循环小数2.71828·1·,移动循环节的第一个圆点,使新产生的循环小数尽可能大,最大是()。

5. 左下图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔。

如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入()号袋。

6. 排一本400页的书的页码,共需要()个数码“0”。

7. 右上图中每个小正方形的边长都是1,图中阴影部分的面积是()。

8. 把15把椅子放成一排,客人随时来到,并在空椅子上就坐,而每当此时,与他相邻的客人就起身离去。

如果开始时所有椅子都是空的,那么椅子上客人最多时坐()人。

9. 下图中共有12个小图形,每一个不同的小图形表示1-9中的一个数码,每三个图形表示1个三位数。

共有4个三位数:146,521,658和692。

请问,第2幅图表示的三位数是()。

(1)(2)(3)(4)10.从1~9这9个数字中取出三个,组成六个不同的三位数。

如果六个三位数的和是3330,那么这六个三位数中最大的是()11.如右图,1个三角形把平面分成了A、B两部分,那么用3个三角形最多可以把平面分成()部分。

2017年浙江卷(理科数学)含答案

2017年浙江卷(理科数学)含答案

绝密★启用前2017年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:球的表面积公式 锥体的体积公式球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高台体的体积公式其中R 表示球的半径柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积 V =Shh 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,那么【A 】24S R =π13V Sh =343V R =π1()3a b V h S S ={|11}P x x =-<<{02}Q x =<<PQ =A.B.C.D.2.椭圆的离心率是【B】ABC.D.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【A】(第3题图)A.B.C.D.4.若,满足约束条件则的取值范围是【D】A.[0,6] B.[0,4]C.[6,D.[4,5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–m【B】A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的【C】A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.函数y=f(x)的导函数的图象如图所示,则函数y=f(x)的图象可能是【D】(1,2)-(0,1)(1,0)-(1,2)22194x y+=235912π+32π+312π+332π+ x y3020xx yx y≥⎧⎪+-≥⎨⎪-≤⎩,,,2z x y=+)+∞)+∞()y f x'=(第7题图)8.已知随机变量满足P (=1)=p i ,P (=0)=1–p i ,i =1,2. 若0<p 1<p 2<,则【A 】 A .<,< B .<,> C .>,<D .>,>9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则【B 】(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记,,,则【C 】i ξi ξi ξ121E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ2BQ CRQC RA==1·I OA OB =2·I OB OC =3·I OC OD =(第10题图)A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2017年高考浙江数学试题与答案(word解析版)

2017年高考浙江数学试题与答案(word解析版)

.专业.专注.数学(理科)第I 卷(选择题共40分)、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中三棱锥的底面是底边长 2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体2 的体积为V 二1 3「 — 1 2 1^n1 ,故选A .3 2 2 2 点评】本题考查了空间几何体三视图的应用问题 ,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.x _0(4 )12017年浙江,4 , 4分】若x , y 满足约束条件 x ,y-3_0,则z=x'2y 的取值范围是x -2y 空0( )(A ) 0,6 丨 (B ) b,4 1 (C ) 6,=丨 (D ) !4, :: 1答案】D,所以直线过点 2,1时取最小值4,无最大值,故选D .2017年普通高等学校招生全国统一考试(浙江卷)点评】本题考查线性规划的简单应用 ,画出可行域判断目标函数的最优解是解题的关键,只有一项符合题目要(1 )匸017年浙江,1 , 4 分】已知 P ={x| -1 :::x :::1}, Q 二{ —2 ::: x :::0},贝V P^Q 二( (A ) (-2,1)( B ) (-1,0)(C ) (0,1)答案】A解析】取P,Q 所有元素,得P j Q =(21),故选A .(D) (-2,-1)点评】本题考查集合的基本运算,并集的求法,考查计算能力9 | 4(A ) 13(B ) 丄33答案】B解析】e = .^45 -,故选B .3 3点评】本题考查椭圆的简单性质的应用,考查计算能力.(3 )12017年浙江 ,3 , 4分】某几何体的三视图如图所示位:cm 3) 是()JI313兀, (A ) -1(B ) — 3(C ) — 1222答案】A,该几何体是圆锥的一半和一个三棱锥组成解军析】如图,可行域为一开放区域 (2)12017年浙江,2, 4分】椭圆— 11的离心率是(C )解析】由几何的三视图可知 (单,圆锥的底面圆的半径为1 ,.专业.专注.(5) [2017年浙江,5, 4分】若函数f x =x2 - ax b在区间10,1 ]上的最大值是M ,最小值是m ,则M -m ()(A)与a有关,且与b有关(B)与a有关,但与b无关(C)与a无关,且与b无关(D)与a无关,但与b有关答案】Ba a2解析】解法一:因为最值在f (0) =b, f(1) =1 • a • b, f (―?) =b —匸中取,所以最值之差一定与b无关,故选B.解法二:函数f x =x2 ax b的图象是开口朝上且以直线为对称轴的抛物线,①当-空1或」 2 2a0 ,即a :::-2 ,或a ■ 0时,函数f x在区间0,1 ]上单调,此时M —m =M - m的值与a有关,与b无关,故选B.点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.(6)12017年浙江,6, 4分】已知等差数列Ia n 1的公差为d ,前n项和为§,则’d 0堤’S4 S6 2S5”的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件答案】C解析】由S4 S6 -2S5 =10a1 21^2 5a1 10d =d ,可知当d 0 时,有Q •足-2S5 0 ,即S4S6 2Ss ,反之,若S4 Ss 2S S ,则d・0,所以d 0堤S4 S6 .2S5 ”的充要条件,故选C.点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题答案】D 瞰军析】解法一:由当f x <0时,函数f( x)单调递减,当「X 0时,函数f(x)单调递增,则由导函数y二「x的图象可知:f x先单调递减,再单调递增,然后单调递减,最后单调递增,排除A, C, 且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,,故选D.解法二:原函数先减再增,再减再增,且x=0位于增区间内,故选D .点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8 )【2017年浙江,8 , 4分】已知随机变量1满足P \ =1 [=P i , P \ =0[=1 - P i , i =1,2 .若.word可编辑.f 1 - f 0|; |a ,故1 aM -m的值与a有关,与b无关;②当 1 ,即_2辽a辽-1时,函数f x在区间0,a=—,故M - m的值与a有关,与b无.2 4a 1 a I关;③当0 ,即-1 :::a乞0时,函数f X在区间0,-2 2 1! 2 一=a -,故M ~^m的值与a有关,与b无关.综上可得:.2 4,且 f 0 . f 1 ,此时M -m = f 0::-ff 0 ::: f 1 ,此时M —m 二f 0 —f上递减,上递减,在-旦,1上递增,且2(7)y = f (x)的图像如图所示在-?1匸017年浙江,7 , 4分】函数y=f x的导函数,则函数y = f x的.专业.专注.1…0 ::: pi ::: P 2 <2,则((A ) E(J :::E ( 2),(C ) E( J .E( 2), 答案】A 解析】E( J = p,E( 2) *2,. E( J :::E( 2) : D( J 二 口(1一 pJ,D( 2) = P 2(1-P 2),■ D( 1) -D( 2)=(P 1 -P 2)(1-P 1 -P 2)O 故选 A •点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题•9 , 4分】如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥 PQRD -PQ -R , D(A) l :,答案】B懈析】解法一:如图所示,建立空间直角坐标系.设底面- ABC 的中心为O •不妨设 OP =3•贝 UO 0,0,0 , P 0, -3,0 , C 0,-6,0 , D 0,0,6 .2 , Q 3,2,0 , R -2 3,0,0 , PR =[「2 .3,3,0 , PD = 0,3,6 . 2 , PQ = 3,5,0 , QR =[—3 一 3, 一2,0 ,QD - - .3, -2,6 . 2 •设平面PDR 的法向量为n = x,y,z ,贝卩. [n PD =0-2 3x 3y =0 { _ ,可得n =(用,2 72, 7 \,取平面ABC 的法向量m =(0,0,1 ). 3y 6 2z =0 m n1卄1 「 一 ,口则 cos m,n,取〉二arccos^= •同理可得:* 2 123= arccos .T.••.「::::::-.V 95 V 15 V 95 V681解法二:如图所示,连接OD , OQ , OR , OG _QR ,垂足分别为E , F , cos :二汪=OE S 卸R PE=—OE •同理可得:cos : =OFOE 2 h 2PF由已知可得:OE OG OF .二 cos 、; n cos • cos :,:-,-, 为锐角.•••%<丫<3 故选 B .点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力 属于难题•(10 )12017年浙江,10, 4分】如图,已知平面四边形 ABCD , AB — BC , AB = BC = AD =2 , CD =3,AC 与 BD 交于点 O ,记 h=OAOB , 12= OB OC , J=OCOD ,贝U ()(B ) E( \) :::E( ;) , D( \) D( 2) (D ) E( J .E( ;) , D( J :::D(;)D( J :::D( 2)D( J :::(9 )12017年浙江, BQ CR,CA 上的点,AP=PB , 竺=竺=2 ,分别记二面角 D -PR -Q ,QC RA-QR -P 的平面较为:,'■,,贝卩( ) (B ) 「:::::: - (C ):-:::::::分别为AB , BC 0E _ DR , OF _ DQ ,过点0发布作垂线 3 =arccos^^V681P 设 OP=h •, 连接P E 0G OFc , OF 2 h 2cos cos :,:-,期 OG cos PGOG 2 h 2(D )1,可得 则.专业.专注.(A ) I 1:: I 2::I 3( B ) I 1 ::: I 3 ::: I 2( C ) I 3 ::: h ::: I 2 ( D ) I 2 ::: I 2 :::爲答案】c解析】・・AB_BC , AB =BC =AD =2 , CD =3,二 AC =2* 2,「上AOB /COD 90 ,由图象知 OA ::: OC , OB ::OD ,二 0 OA OB O C OD , OB O C .0,即 l 3 :: h :: l 2 ,故选 C . 点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第口卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. (11 )2017年浙江,算到任意精度。

2017-2018学年浙江省台州市玉环县陈屿小学五年级(下)竞赛数学试卷

2017-2018学年浙江省台州市玉环县陈屿小学五年级(下)竞赛数学试卷

2017-2018学年浙江省台州市玉环县陈屿小学五年级(下)竞赛数学试卷
一、填空(30分,其中1-4题每空2分,其余每题3分)
1.(4.00分)既是2的倍数,又是5和7的倍数中,最小三位数是,最大三位数是.2.(2.00分)的分子增加15,分母应该增加,分数的大小不变.
3.(2.00分)一个正方体纸盒放在桌面上,它盖住桌面25dm2的面积,这个正方体纸盒的体积是.
4.(4.00分)甲数除以6余3,乙数除以6余2,那么甲乙两数的和除以6余,甲乙两数的差除以6余.
5.(3.00分)五个数的平均数是20,把其中一个数改为8后,这五个数的平均数变成了17,这个改动的数原来为.
6.(3.00分)正方形的对角线长12cm,这个正方形的面积为cm2.
7.(3.00分)有一个自然数,它最小的两个因数之和是4,最大的两个因数之和是100,求这个自然数.
8.(3.00分)下面4个方框各填一个数字,如果这四个数字都是奇数,请写出这个完整的算式.□□×□□=585.
9.(3.00分)四个完全一样的长方形和一个小正方形组成一个大正方形的,(如图)如果大、小正方形的面积分别为64分米2和4分米2,其中一个长方形的长是.
10.(3.00分)甲每小时生产15个零件,乙每小时生产12个零件.一次,甲乙同时生产同样多的零件,结果甲比乙提前4小时完成任务.甲一共生产了个零件.
二、解答题(共1小题,满分12分)
11.(12.00分)简便计算
12.5×+×12.5+×12.5
+++…。

2017年浙江省高中数学竞赛试卷

2017年浙江省高中数学竞赛试卷

2017年浙江省高中数学竞赛试卷一、填空题:本大题共10个小题,每小题8分,共80分. 1.在多项式310(1)(2)x x -+的展开式中6x 的系数为 . 2.已知3)a -=,则实数a = .3.设2()f x x ax b =++在[]0,1中有两个实数根,则22a b -的取值范围为 .4.设x ,y R ∈,且222222sin cos cos cos sin sin 1sin()x x x y x yx y -+-=+,则x y -= .5.已知两个命题,命题p :函数()log a f x x =(0x >)单调递增;命题q :函数2()1g x x ax =++ (x R ∈).若p q ∨为真命题,p q ∧为假命题,则实数a 的取值范围为 .6.设S 是5(0,)8中所有有理数的集合,对简分数q S p ∈,(,)1p q =,定义函数1()q q f p p +=,则2()3f x =在S 中根的个数为 . 7.已知动点P ,M ,N 分别在x 轴上,圆22(1)(2)1x y -+-=和圆22(3)(4)3x y -+-=上,则||||PM PN +的最小值为 .8.已知棱长为1的正四面体P ABC -,PC 的中点为D ,动点E 在线段AD 上,则直线BE 与平面ABC 所成的角的取值范围为 .9.已知平面向量a r ,b r ,c r ,满足||1a =r ,||2b =r ,||3c =r ,01λ<<,若0b c ⋅=r r,则|(1)|a b c λλ---r r r所有取不到的值的集合为 .10. 已知22,0,()1,0,x x f x x x -<⎧⎪=⎨-≥⎪⎩方程()|()240f x f x ax +---=有三个根123x x x <<.若32212()x x x x -=-,则实数a = .二、解答题:本大题共5个小题,满分120分,将答案填在答题纸上)11. (本题满分20分)设1()f x =1()n f x +,1,2,n =L .对每个n , 求()n f x 3x =的实数解.12. (本题满分20分)已知椭圆22162x y +=的右焦点为F ,过F 的直线(2)y k x =-交椭圆于P ,Q 两点(0)k ≠.若PQ 的中点为原点,直线ON 交直线3x =于M . (I)求MFQ ∠的大小; (Ⅱ)求PQMF的最大值.13. (本题满分20分)设数列{}n a 满足:1|2|2n n a a +-=,||2n a ≤,1,2,3,n =L . 证明:如果1a 为有理数,则从某项后{}n a 为周期数列.14. (本题满分30分)设1a ,2a ,3a ;1b ,2b ,3b Z +∈,证明:存在不全为零的数1λ,2λ, {}30,1,2λ∈,使得112233a a a λλλ++和112233b b b λλλ++同时被3整除.15. (本题满分30分)设{}12,,n a a a σ=…,为{}1,2,,n …的一个排列,记11()ni i i F a a σ+==∑,11n a a +=,求min ()F σ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档