基因表达谱芯片的数据分析
基因表达谱芯片
基因表达谱芯片(Gene Expression Microarray),简称基因芯片,是一种高通量的基因分析技术,它可以同时检测数千个基因的表达水平。基因芯片的核心是由成千上万的探针组成的芯片,每个探针可以检测一个特定的基因的表达水平。通过对样本进行处理和标记,然后与芯片上的探针进行杂交和检测,可以获得每个基因的表达水平数据。
基因芯片的应用非常广泛,特别是在生命科学领域中。它可以用于研究不同生物条件下基因表达的变化,探索基因调控机制,发现新的基因标记,甚至可以用于疾病的早期诊断和治疗。除此之外,基因芯片还可以应用于农业、环境、食品安全等领域。
基因芯片技术的优点是可以同时检测大量基因的表达水平,从而提高研究效率和减少研究成本。此外,基因芯片还可以在不需要繁琐实验和检测的情况下,快速、准确地得到大量基因表达数据。这些数据可以用于建立基因表达谱和生物信息学分析,从而发现新的基因调控机制,识别疾病相关基因和生物标志物,提高研究和诊断水平。
基因芯片的数据分析
基因表达谱芯片的数据分析基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。
然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。
基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。
根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。
(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。
1 差异基因表达分析(difference expression, DE)对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。
1.1倍数变化(fold change, FC)倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。
一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。
由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。
处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。
该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。
生物芯片数据分析简介
一、基因芯片与基因表达 二、基因表达谱统计与分类分析 三、Ontology与基因功能注释 四、基于芯片数据的pathway分析
一、基因芯片与基因表达
什么是生物芯片?
一块指甲大小(1cm3 )的有多聚赖氨酸包被的硅片或其 它固体支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维 素膜、尼龙膜等 )。 生物芯片通过微加工和微流体系 统将生化分析中的样品制备、生 化反应、及结果检测有机地结合 集成在一起 。 具有高速度、分析自动化、及高 度并行处理能力 。
Subcellular components where a gene-product is found. Encompasses subcellular structures, locations, and macromolecular complexes
GO example
(Browser at /cgi-bin/go.cgi)
cDNA microarray
microRNA Chip
Biological question
Experimental design Microarray experiment
Image analysis
Normalization
Estimation
Testing
Clustering
Discrimination
13,601 Genes
Signal Transduction Ligand Binding or Carrier Motor Protein
GO Analysis—目标基因群显著性、靶向性基因功能分析。 Go Analysis对目标基因(差异基因等)进行GO分类,而后 对GO进行基于离散分布的显著性分析、误判率分析、富集度 分析,得出与实验目的有显著联系的、低误判率的、靶向性 的基因功能分类,该分类即导致样本性状差异的最重要的功 能差别,其所属基因是进一步验证的重要目标基因。 数据要求:标有上调和下调比值的差异基因列表。
基因表达谱数据分析技术
第18卷第6期微阵列技术[1-3]的到来对生物学和医学来说是一场革命,通过它可以同时观测成千上万个基因的表达水平,从而能够在基因组水平上以系统的、全局的观念去研究生命现象及其本质。
还可以根据基因在不同条件下表达的差异性来进行复杂疾病诊断、药物筛选、个性化治疗、基因功能发现、农作物优育和优选、环境检测和防治、食品卫生监督及司法鉴定等,因此对基因表达谱的研究具有重要的理论价值和应用意义。
微阵列基因表达数据具有维数高、样本小、非线性的特点,这对一些传统的机器学习方法提出了新的挑战,对其数据的分析已成为生物信息学研究的焦点。
1基因表达数据采集基因表达数据采集可分为三个步骤:微阵列设计、图像分析和数据获取、过滤、标准化。
基因芯片(gene chip ),简称为微阵列,就是指固着在载体上的高密度DNA 微点阵,具体地说就是将靶基因或寡核苷酸片段有序地、高密度排列在玻璃、硅等载体上。
mRNA (信使核糖核酸)的表达水平的获得是通过选取来自不同状态的样本(如正常组织与肿瘤组织、不同发育阶段组织,或用药之前与用药之后组织等,一种称为实验样本,另外一种称为参考样本),在逆转录过程中,实验样本和参考样本RNA (核糖核酸)分别用不同的红、绿荧光染料去标记,并将它们混合,与微阵列上的探针序列进行杂交,经适当的洗脱步骤与激光扫描仪对芯片进行扫描,获得对应于每种荧光的荧光强度图像,通过专用的图像分析软件,可获得微阵列上每个点的红、绿荧光强度(Cy5和Cy3),其比值(Cy5/Cy3)表示该基因在实验样本中的表达水平。
在通常情况下,考虑Cy5和Cy3的数值时,还应考虑相应的背景数值,如果微阵列上某个基因的Cy5或Cy3数值比相应的背景数值低,则该基因的表达水平无法确定。
为了方便数据处理,常孟令梅等:一种基于DCT 变换的图像认证算法文章编号:1005-1228(2010)06-0017-03基因表达谱数据分析技术刘玲(江苏财经职业技术学院,江苏淮安223001)摘要:人类基因组计划的研究已进入后基因组时代,后基因组时代研究的焦点已经从测序转向功能研究,主要采用无监督和有监督技术来分析基因表达谱和识别基因功能,通过基因转录调控网络分析细胞内基因之间的相互作用关系的整体表示,说明生命功能在基因表达层面的展现,对目前基因表达谱数据分析技术及它们的发展,进行了综述性的研究,分析了它们的优缺点,提出了解决问题的思路和方法,为基因表达谱的进一步研究提供了新的途径。
基因表达谱数据分析方法
基因表达谱数据分析方法基因表达谱是对生物体内基因表达情况的记录,通过对基因表达谱的分析,可以了解到基因在不同条件下的表达状态,从而揭示生命现象的本质和规律。
这对于研究基本生物现象、发现新的治疗手段等具有重要的意义。
随着高通量技术的发展,获取基因表达谱数据已经成为了常规操作。
但是,如何对这些数据进行分析和处理,是一个相当复杂的问题。
本文将介绍基因表达谱数据分析的基本方法和技巧。
我们将从预处理数据、差异分析、聚类分析、通路分析和生物信息学工具等几个方面进行论述。
一、预处理数据首先,我们需要将原始数据进行预处理,去除质量较差的数据,检查样本之间的差异和异常值等。
预处理过程旨在保证数据的准确性和可靠性,为后续的分析奠定基础。
二、差异分析差异分析是对基因表达谱数据进行质量评估和过滤的关键步骤。
常用的差异分析方法包括T检验、方差分析、Wilcoxon秩和检验等。
差异分析的目标是找出在不同实验条件下,哪些基因的表达发生了变化。
这是为了找到有生物学意义的差异基因集合并进一步进行研究。
三、聚类分析聚类分析是将基因表达谱数据中的基因和样本分别分成若干类,使得同一类中的基因或样本具有相似的表达模式,不同类之间具有较大的差异。
这样的分类结果有助于我们找出基因表达谱数据中的模式。
聚类分析常用的方法包括层次聚类和k-平均聚类等。
四、通路分析通路分析是将差异基因集合与特定生物过程或通路进行关联,以揭示差异基因集合在生物学上的意义。
通常,通路分析需要利用基因注释或生物信息学数据库中的信息,将差异基因集合与通路相对应,从而找到可能受到影响的通路。
五、生物信息学工具最后,利用生物信息学工具进行综合分析和可视化。
有很多生物信息学工具可以用来对基因表达谱数据进行分析和可视化,比如R、Python、Cytoscape等。
这些工具可以帮助我们更好地理解和解释基因表达谱数据中的生物学意义。
总结:基因表达谱数据分析是序列分析的一个重要分支,广泛应用于生物信息学、系统生物学和合成生物学等领域。
基因组学研究中的表达谱数据分析方法解析
基因组学研究中的表达谱数据分析方法解析概述:基因组学研究是研究生物体基因组的编码和非编码序列的科学。
在基因组学研究中,表达谱数据是一种重要的数据类型,由于其高维度和复杂性,需要采用一系列的分析方法和技术来解析。
本文将介绍基因组表达谱数据的分析方法,包括数据预处理、差异表达分析、聚类分析、富集分析以及网络分析。
一、数据预处理:数据预处理是基因组表达谱数据分析的第一步,目的是清除原始数据中的噪声、去除非生物学的变异以及纠正技术上的偏见。
常用的数据预处理步骤包括数据质量控制、归一化和基因过滤。
1. 数据质量控制:首先需要对原始数据进行质量控制,该步骤可通过查看测序质量分数和测序错误率来评估。
常用的工具有FastQC和Trimmomatic等。
该步骤的目的是排除测序引入的噪声。
2. 归一化:由于不同样本之间的表达量存在显著的差异,我们需要对数据进行归一化处理,以消除样本间的偏差。
常用的归一化方法有TPM、FPKM和RPKM等。
归一化后的数据便于后续的比较和统计分析。
3. 基因过滤:在分析表达谱数据时,一些基因的表达量非常低,对分析结果产生较小的影响并增加运算复杂性。
因此,我们通常会对表达量低于一定阈值的基因进行过滤处理,从而提高分析效率。
常用的过滤标准包括表达量百分位数和表达量阈值。
二、差异表达分析:差异表达分析是基因表达谱数据分析的核心内容之一,旨在发现不同条件下存在差异表达的基因。
通常,差异表达分析包括基于假设检验的方法和机器学习方法。
1. 基于假设检验的方法:这类方法通常基于统计学原理,将样本分组,通过计算差异表达的显著性水平来判断基因是否差异表达。
常用的方法包括Student's t-test、Wilcoxon秩和检验和Fisher's确切检验等。
这些方法基于不同的假设,在数据有明确的分布前提下,可以得到比较可靠的差异表达结果。
2. 机器学习方法:机器学习方法对差异表达分析具有较高的灵活性和预测能力。
基因表达谱的构建和分析方法
基因表达谱的构建和分析方法基因表达谱是指某一时刻细胞内基因转录水平的全面反映。
它对了解不同细胞状态的差异性、疾病发生机制及药物治疗等具有重要的意义。
本文将对基因表达谱的构建和分析方法进行简要介绍。
一、基因表达谱的构建基因表达谱的构建方法包括microarray和RNA-Seq两种主要技术方法。
1. microarraymicroarray技术是将探针(probe)固定在芯片表面用于检测不同的核酸分子。
其构建基因表达谱的流程如下:(1)提取全基因组mRNA,反转录为cDNA。
(2)将cDNA打标记并杂交到微阵列中。
(3)信号扫描与数据分析。
microarray技术具有高通量、快速、灵敏、重复性好等特点,被广泛应用于药物筛选、肿瘤检测和疾病诊断等领域。
但是,其局限在于存在信号的非特异性、探针设计的错误等问题。
2. RNA-SeqRNA-Seq技术是基于高通量测序技术,通过定量并分析RNA 样本中所有的转录本、可变剪切事件和基因表达状况。
其构建基因表达谱的流程如下:(1)提取RNA,并用RNA脱除重复序列技术去除rRNA。
(2)转录为cDNA。
(3)建立文库并测序。
(4)数据处理和分析。
RNA-Seq技术具有更高的分辨率和准确度,能够检测到新转录本和SNP,且不受局限于预先设定的探针。
但其存在成本、数据处理和分析的复杂度等问题。
二、基因表达谱的分析方法基因表达谱的分析方法包括聚类分析、差异表达基因分析、通路富集分析等多种方法,这里仅简要介绍其中的两种。
1. 聚类分析聚类分析可以将一组基因根据其表达特征分成不同的簇,并确定它们之间的相似度。
聚类分析是基于特征基因进行的,特征基因的数量对结果有重要影响。
聚类分析主要分为两种:层次聚类和k-means聚类。
层次聚类根据相似度建立基因树,然后根据阈值将基因分为不同的簇。
k-means聚类将基因分成固定数量的簇,通过相似度计算和簇内距离最小化来划分簇。
2. 差异表达基因分析差异表达基因分析用于比较两个或多个条件下基因表达水平的差异。
基因芯片及其数据分析
Page 3
2.基因芯片发展历史
Southern & Northern Blot
Dot Blot
Macroarray
Microarray
3.基因芯片癿杂交原理
如图,在一块基片表面固定了序列已知癿八核苷酸癿探针。当溶液中带有荧 光标记癿核酸序列TATGCAATCTAG,不基因芯片上对应位置癿核酸探针产 生互补匹配时,通过确定荧光强度最强癿探针位置,获得一组序列完全互补 癿探针序列。据此可重组出靶核酸癿序列。
Page 6
5.制备基因芯片癿固定方法
目前已有多种方法可以将寡核苷酸或短肽固定到固相支持 物上。这些方法总体上有两种,即原位合成( in situ synthesis )不合成点样两种。支持物有多种如玻璃片、 硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊 处理。 作原位合成癿支持物在聚合反应前要先使其表面衍生出羟 基或氨基(视所要固定癿分子为核酸或寡肽而定)幵不保 护基建立共价连接;作点样用癿支持物为使其表面带上正 电荷以吸附带负电荷癿探针分子,通常需包被以氨基硅烷 或多聚赖氨酸等。
Page 7
6.基因芯片癿合成原理
基因芯片在片合成原理图 美国Affymetrix公司制备癿基因芯片产品在1.28*1.28cm2表面上可包含 300,000个20至25mer寡核苷酸探针,每个探针单元癿大小为10um X 10um。 其实验室芯片癿阵列数已超过到1,000,000个探针。
Page 8
Page 10
光纤微珠芯片癿组装
Page 11
光纤微珠芯片癿优点
光纤微珠芯片是利用独特癿微珠阵列(BeadArray)技术生产 癿芯片,具有高密度、高重复性、高灵敏度、低上样量、 定制灵活等特点,兊服了传统芯片癿多个技术瓶颈,丌仅 检测筛选速度很高,也显著降低了研究成本。光纤微珠芯 片有可能成为以后基因芯片癿发展方向。
基因表达谱分析的实验方法及数据解读
基因表达谱分析的实验方法及数据解读基因是生物体内最基本的生物学信息单元,它们的表达水平可以反映生物活动的差异性。
为了更好地了解基因表达的机制,越来越多的科学家开始关注基因表达谱分析。
通过基因表达谱分析,我们可以了解基因的表达情况以及基因与疾病相关的信息。
本文将从实验方法和数据解读两个方面进行介绍,帮助读者更好地了解基因表达谱分析。
一、实验方法1. 前期准备基因表达谱分析需要进行实验,而实验的准备工作非常重要。
首先,必须选择要研究的样本,如人类组织、小鼠细胞、大麦品种等。
因为样本数量和质量对结果的影响非常大,因此在选择样本时必须严谨。
其次,为了确保数据的准确性和可重复性,必须严格按照实验流程操作。
如RNA提取、RNA浓度、DNA酶处理等步骤,如果有一步出错,就会影响整个实验的结果。
最后,选择适当的实验方法也非常重要,可以根据研究的目的和研究条件选择不同的方法。
2. 基本实验方法(1)Microarray分析Microarray分析是一种快速高通量的DNA分析技术,它可以同时分析成千上万个基因在不同条件下的表达水平。
使用这种方法需要用特定的芯片进行实验,芯片的制作需要基因组数据和探针的设计。
该方法可以发现全局基因的表达差异,但是只能分析已知基因,因此对于基因组结构不完整的生物来说不是很适用。
(2)RNA-seq分析RNA-seq分析是一种利用高通量测序技术的快速分析RNA的方法。
使用这种方法需要进行RNA的提取、建库、测序,然后通过数据分析得到基因表达谱。
与Microarray相比,这种方法可以分析未知基因和表达水平较低的基因,因此适用于各种不同生物的表达分析。
二、数据解读1. 数据聚类和热图分析一般来说,在基因表达数据处理中,处理出来的基因表达数据大小可能会很大,观察起来非常困难,不方便数据分析和判断。
因此,聚类分析和热图是可视化数据的常用方式。
聚类可以将基因根据其表达水平分为不同的类别,所以可以更好地理解垂直方向上类别的信息。
基因表达谱的分析和解读
基因表达谱的分析和解读基因表达谱是指生物体内基因在特定环境或状态下的表达情况的记录,是基因组学、分子生物学和计算生物学的交叉学科。
目前,随着高通量测序技术和计算能力的迅猛发展,基因表达谱分析逐渐成为生命科学研究的重要领域。
一、基因表达谱的分析1、测定基因表达谱基因表达谱的测定主要有两种方法:芯片技术和转录组测序。
芯片技术是通过制备特定的DNA探针,然后将其固定到芯片表面,用于检测样品中的RNA,可以同时检测几百万个基因。
转录组测序则是通过高通量测序技术,对RNA进行测序,可以获取到全基因组的表达信息。
两种方法具有互补性,可以提供更为全面的基因表达谱信息。
2、处理基因表达谱数据分析基因表达谱数据的主要任务是将大量的原始数据转化为可解释和可视化的结果。
常用的数据处理方法包括以下几个步骤:(1)数据归一化:由于样品之间的RNA浓度和RNA种类的差异,需要进行数据归一化,以消除这些技术差异。
(2)差异分析:根据生物实验的目的,选择适宜的分析方法,比较不同样品在基因表达水平上的差异。
(3)聚类分析:聚类分析可以将相似的基因表达谱分为一组,便于发掘潜在的基因功能和作用途径。
二、基因表达谱的解读1、生物信息学分析基因表达谱数据的解析和生物信息学密切相关。
常见的生物信息学分析包括基因富集分析、通路富集分析和功能注释分析。
基因富集分析是通过将基因表达谱中显著性差异的基因与特定的基因功能数据库相比较,来鉴定具有显著富集的通路和生物过程。
通路富集分析则是将差异基因与已知通路或生物过程相匹配,以确定哪些通路或过程与表型变化相关。
2、机器学习方法机器学习是一种人工智能的分析方法,目的是从数据中挖掘模式和规律。
基于机器学习的基因表达谱分类方法可以将样本分为不同的亚型或状态,以进一步理解基因表达谱的生物学意义。
常见的机器学习方法包括支持向量机、随机森林和人工神经网络等。
机器学习方法通常需要多个数据集的共同验证,以确保分析的稳健性和可靠性。
基因表达谱的分析与应用
基因表达谱的分析与应用基因表达谱是指在特定的生理和疾病状态下,细胞内不同基因的表达量。
它记录了一个细胞或组织中基因表达的整体情况,并反映了这个细胞或组织所处的状态。
近年来,随着DNA芯片技术的发展和大数据分析方法的不断更新,基因表达谱已成为了生物学、医学等研究领域的重要工具之一。
本文将从基因表达谱的原理及其分析方法、在医学领域中的应用等方面进行探讨。
一、基因表达谱的原理人体内的每一个细胞都包含相同的基因序列,但在不同的时间和空间中,各基因是否表达以及表达的水平都是不一样的。
基因表达谱通常由DNA芯片技术获得,DNA芯片是一种高密度的固相芯片,上面固定了数千至数百万个不同的DNA探针,用于检测样品中mRNA的表达量。
通过将细胞或组织中的mRNA荧光标记后杂交到DNA芯片上,利用荧光信号检测出不同探针的信号强度,得到基因表达量的信息。
二、基因表达谱的分析方法1、差异基因分析差异基因分析是基于不同条件下的基因表达谱数据,找出表达量差异显著的基因。
在疾病的机制研究中,可以将正常组织与被检测组织的基因表达谱进行对比,找出在疾病状态下存在显著差异的基因。
该方法常用于发掘分子标志物、疾病发生机制研究以及药物作用机制的研究等方面。
2、基因功能注释基因功能注释是将差异表达基因的生命学信息进行分类、整合和分析,以发现基因的生物学功能及其网络关系。
这项工作常常将基因表达谱数据与对基因的生物学注释进行比对,以验证差异表达的基因是否具有特殊的生物学含义,从而有针对性地深入研究。
3、基因集富集分析基因集富集分析是将差异表达分析结果中的基因按其生物学功能和通路进行分类,再与基因注释数据库中的通路进行比较,检测差异表达基因是否与特定通路、过程、功能相关。
三、基因表达谱在医学上的应用1、疾病标志物的筛选基因表达谱作为一种高通量技术,能大规模地筛选疾病标志物。
通过对不同疾病状态下的基因表达谱进行分析,能够找到在疾病发生和发展过程中特异的基因表达变化,从而寻找到新的疾病标志物,弥补传统生物化学方法的缺陷。
基因芯片和基因表达谱分析
基因芯片和基因表达谱分析在人类基因测序技术不断发展的背景下,基因芯片和基因表达谱成为了研究生物学和医学领域的重要工具。
本文将重点探讨基因芯片和基因表达谱分析的原理、应用以及未来发展方向。
一、基因芯片基因芯片(Gene chip)又称为微阵列芯片(microarray)是一种将数万个DNA序列可控地捕捉在一个硅片上的生物技术产品。
其原理基于同位素标签法和荧光标记法,用来研究生物大分子(包括DNA、RNA和蛋白质)在细胞周期、转录和翻译等生物活动过程中的表达差异和变化规律。
基因芯片的操作过程分为如下几步:1. DNA序列打印和固定。
通过免疫印刷技术,将已知的DNA序列按照一定的规则打印到芯片上,并使用化学方法将其固定在芯片上,作为反应体系中的探针。
2. 样品准备和反应。
将待测样品中的RNA提取、反转录成cDNA,再将其标记为荧光分子,加入到含有探针的芯片反应体系中。
其中,标记为红色和绿色的荧光分子分别代表着样品RNA在两种不同条件下的表达水平。
3. 芯片扫描和数据统计。
将芯片送入扫描仪中扫描,获得荧光信号强度。
通过芯片上探针的位置、荧光信号的强度以及探针序列的注释信息等,对数据进行分析和解读,得到各种基因的表达信息。
基因芯片在各个领域有着广泛的应用。
在医学领域,它可以用于疾病诊断、治疗效果预测、药物靶点筛选等方面的研究。
在生物学研究中,它可以分析基因调控、遗传变异和发育过程等生物学领域的课题。
二、基因表达谱分析基因表达谱分析是以生物体内mRNA的转录活性水平为信号,分析在不同条件下各种基因的表达水平差异。
常见的基因表达谱分析方法有RT-qPCR、Northern blot、Western blot、RNA-seq等。
其中,RT-qPCR方法是一种基于荧光信号检测的技术,可以非常精确地检测出RNA的拷贝数。
其操作过程分为三步:反转录、定量PCR和数据分析。
反转录过程中,RNA被逆转录酶逆转录成DNA。
基因表达数据分析方法及其应用研究共3篇
基因表达数据分析方法及其应用研究共3篇基因表达数据分析方法及其应用研究1随着技术的不断发展,基因表达数据分析在生命科学研究中扮演着越来越重要的角色。
基因表达数据分析是研究基因功能的关键一步,它使得科学家可以了解基因在特定情况下的表达水平。
在本文中,我们将讨论基因表达数据分析的方法及其应用。
1.基因表达数据的来源和类型基因表达数据是通过分析转录组和基因芯片等数据获得的。
转录组技术通过测量RNA浓度,包括RNA-seq和microarray。
而基因芯片就是一种将成千上万的基因测量并呈现的芯片。
基因表达数据存在多种类型,包括原始数据、表达矩阵、差异表达矩阵、注释文件和元数据等等。
2. 基因表达数据分析的方法(1)数据清理数据清理是数据分析过程中的第一步。
它包括数据预处理、去除冗余数据、去除噪声和填补数据空缺等操作。
(2)正则化正则化的目的是调整不同基因表达数据之间的差异,消除数据中的计量误差和探测效率的误差。
几种正则化方法包括平滑、归一化和标准化。
(3)差异分析差异分析是研究基因表达数据中各基因在不同样品之间差异的方法。
常用的差异分析方法包括t-test、ANOVA、FDR和q值等。
(4)聚类分析聚类分析是将数据根据观察指标相似度进行分类的方法。
在基因表达数据上,它通常用于发现不同条件下的基因表达模式。
(5)变异分析变异分析是一种寻找表达值变异的基因的方法。
通常,基因的变异程度与其在癌症和其他疾病中的作用有关。
(6)功能注释功能注释是将基因表达数据与已知基因功能相结合的方法,从而获得数据更深层次的信息。
它通常用于解释基因表达数据的生物学意义,如基因表达数据和肿瘤发展的相关性等。
3.应用研究基因表达数据分析可应用于许多研究领域,包括基因表达和调控、单细胞分析和肿瘤生物学等。
(1)基因表达和调控基因表达数据分析可用于挖掘基因之间的相互关系以及调控通路。
这些信息可以在理解细胞生物学、发育及疾病发生机制的过程中发挥重要作用。
基因组学研究中的表达谱数据分析实验报告
基因组学研究中的表达谱数据分析实验报告1. 研究背景和目的基因组学研究是一门研究基因组结构、功能和表达等方面的学科。
其中,表达谱数据分析是基因组学研究中重要的一环,它可以帮助我们了解基因在不同条件下的表达情况,从而揭示基因调控和生物过程等方面的机制。
本实验的目的是利用表达谱数据分析方法,解析某组织或细胞在不同条件下的基因表达谱谱,以及评估基因的差异表达情况和通路富集分析。
2. 数据获取和预处理我们首先获得了一组某种生物体在不同处理条件下的表达谱数据。
这些数据可以通过RNA测序等技术获得,其中包含了上千个基因的表达水平信息。
在进行数据分析之前,我们需要对原始数据进行预处理。
首先,我们对原始测序数据进行质控,剔除低质量的碱基和低测序深度的样本。
随后,我们利用比对算法将测序reads与参考基因组序列进行比对,得到每个基因的计数信息。
最后,我们对每个基因的计数进行归一化处理,通过计算fpkm或tpm等指标,将其转化为相对表达水平。
3. 差异表达基因分析在基因表达谱的分析中,我们通常关注基因在不同样本中的表达水平差异。
为了找出差异表达基因,我们采用了差异表达分析方法,如DESeq2、edgeR等。
在差异表达分析中,我们根据各个基因的表达水平,采用统计模型来计算差异表达的显著性。
通过比较不同处理条件下的样本,我们可以得到差异表达基因的列表。
通过差异表达基因分析,我们可以发现与不同处理条件相关的基因,并进一步探究其与生物学过程、通路的关联。
4. 通路富集分析为了更好地理解差异表达基因的生物学功能和调控机制,我们进行了通路富集分析。
通路富集分析可以帮助我们找到与差异表达基因相关的生物通路和功能模块。
在通路富集分析中,我们将差异表达基因与已知的生物通路数据库进行比对,利用统计方法来判断差异表达基因在某个通路中的富集程度的显著性。
通过这种方法,我们可以识别出与特定处理条件相关联的通路和功能模块,为进一步的研究提供线索。
基因表达谱分析方法的使用教程
基因表达谱分析方法的使用教程基因表达谱分析是研究基因在细胞或组织中的表达水平及其变化的重要手段。
通过分析基因表达谱,可以揭示基因在不同生理状态和疾病发生发展过程中的作用机制,为进一步的研究提供重要依据。
本文将介绍几种常用的基因表达谱分析方法及其使用教程。
1. microarray芯片技术Microarray技术是目前最常用的基因表达谱分析技术之一。
它通过在玻璃片或硅片上固定大量的探针序列,然后将待测样品中的RNA反转录成cDNA标记,与芯片上的探针序列杂交,利用荧光探针检测标记的cDNA的信号强度来反映基因的表达水平。
使用microarray技术进行基因表达谱分析的步骤如下:1) 设计实验:确定实验的目的、样品来源、实验方案和所需探针等。
2) 样品处理:提取RNA并进行反转录,将RNA转化为cDNA,并标记荧光。
3) 芯片处理:将标记的cDNA杂交于芯片上的探针序列,完成杂交后进行芯片洗涤。
4) 扫描芯片:使用芯片扫描仪检测芯片上标记的cDNA的荧光信号。
5) 数据分析:对扫描得到的图像进行图像分析、标准化、差异基因筛选和功能富集分析等。
2. RNA测序技术RNA测序技术(RNA-Seq)是一种基于高通量测序平台的基因表达谱分析技术,它通过直接测序RNA分子,可以定量测量每个基因的表达水平,并发现新基因和变异。
使用RNA测序技术进行基因表达谱分析的步骤如下:1) RNA提取:从细胞或组织中提取RNA,并进行质量检测和纯化。
2) RNA片段化和逆转录:将RNA经过碱水解或酶处理,得到短的RNA 片段,然后进行逆转录合成cDNA。
3) 文库构建:对cDNA进行末端修复、A尾化、连接测序接头和PCR扩增等处理,构建测序文库。
4) 文库测序:将测序文库装载到测序仪上,进行高通量测序,得到原始测序数据。
5) 数据分析:对原始测序数据进行质控、对齐、定量、差异基因表达分析以及功能注释等。
3. qRT-PCR技术量子链反应实时荧光定量聚合酶链式反应(qRT-PCR)是一种常用的基因表达谱分析方法,其优点在于准确、灵敏和高通量。
生物信息学中的基因表达数据分析方法综述
生物信息学中的基因表达数据分析方法综述随着高通量测序技术的发展与应用,获取到的基因表达数据呈爆炸式增长,这使得生物信息学中的基因表达数据分析变得愈发重要。
基因表达数据分析的目的是了解在不同条件下基因的表达特征,通过分析基因表达谱,揭示潜在的遗传背景和细胞功能。
本综述将介绍几种常用的基因表达数据分析方法,包括表达量计算、差异表达分析、基因共表达网络分析和功能富集分析。
表达量计算是基因表达数据分析的第一步,用于确定基因在样本中的相对表达水平。
最常用的方法是通过RNA测序(RNA-Seq)技术获取原始测序数据,并使用拼接成转录本(transcriptomes)来计算基因的表达水平。
常用的计算方法包括TPM(每百万转录本数)和FPKM (每千万转录本数)。
这两种方法都考虑了基因长度和测序深度的因素,并可以在不同样本之间进行比较。
差异表达分析是基因表达数据分析中的一个重要环节,用于识别在不同样本之间表达量差异显著的基因。
常见的差异表达分析方法包括DESeq2和edgeR。
这些方法可以根据统计学原理和模型,准确地确定在不同条件下哪些基因显著差异表达,从而为后续研究提供重要线索。
除了差异表达分析,基因共表达网络分析也是生物信息学中的重要内容。
基因共表达网络是一种基于基因表达模式的分析方法,用于发现在不同条件下相互关联的基因。
基因共表达网络分析可以帮助我们了解基因之间的相互作用、功能模块和调控通路。
常用的基因共表达网络分析方法包括WGCNA(加权基因共表达网络分析)和ARACNE (逆协方差网络分析)。
这些方法可以从大量的基因表达数据中发现共表达模式,并构建具有生物学意义的基因共表达网络。
功能富集分析是基因表达数据分析中了解基因功能和生物学过程的重要手段。
功能富集分析通过将不同ially表达的基因与特定的功能注释进行比较,来推断基因的功能特征和参与的生物过程。
功能富集分析可以帮助我们从大量的基因表达数据中识别与特定疾病相关的基因集合,并进一步理解这些基因的生物学功能。
生物信息学中的基因表达谱分析方法与实验验证
生物信息学中的基因表达谱分析方法与实验验证基因是生物体内负责遗传信息传递和功能发挥的基本单位。
基因的表达谱是指在不同组织、不同发育阶段或不同环境下,基因的表达水平发生的变化。
了解基因表达谱对理解生物体的发育、生理功能以及疾病的发生机制具有重要意义。
生物信息学中的基因表达谱分析方法及其实验验证成为了研究人员关注的焦点。
一、基因表达谱分析方法1. 基因芯片技术基因芯片技术通过分子杂交的原理,用DNA探针将全部的基因序列固定在芯片表面,然后通过探针与待测RNA样品的杂交反应,测量待测RNA与芯片上探针的互作强度。
这样可以得到基因表达谱的信息。
基因芯片技术可以同时检测成千上万个基因的表达情况,具有高通量、高灵敏度和高度复制性的优势。
但芯片设计和数据分析存在一定的挑战。
2. RNA测序技术RNA测序技术是近年来发展起来的一种新技术。
通过将RNA反转录成cDNA,然后使用高通量测序技术对cDNA进行测序,得到读数,再通过比对到基因组上,计算基因的表达水平。
RNA测序技术不受芯片反应物数量的限制,可以检测所有表达的基因,并且能够检测到新的转录本和基因外转录本。
此外,RNA测序技术的精确度更高,可以检测到低表达基因的信号。
二、基因表达谱的实验验证1. 实时定量PCR实时定量PCR是一种常用的基因表达分析技术。
通过PCR反应体系中加入专一引物和荧光探针,可以测定特定基因的表达水平。
实时定量PCR可以定量测定基因在不同时间点或不同条件下的表达谱,具有高度灵敏度和高重复性。
此外,实时定量PCR也可以用来验证芯片和测序技术的结果。
2. 蛋白质印迹蛋白质印迹(Western blot)是一种常用的分析蛋白质表达水平和转录后修饰的实验方法。
通过电泳将蛋白质分离,并利用特异性抗体与目标蛋白质结合,然后用荧光或酶标技术进行检测。
蛋白质印迹可以定量测定蛋白质的表达水平,可以与基因表达谱进行对照分析,从而验证基因表达水平的准确性。
基因表达水平的计算和分析方法
基因表达水平的计算和分析方法基因表达是生命活动的基础,每个细胞都依赖于基因表达来维持正常的生理功能。
随着高通量技术的发展,越来越多的基因表达数据积累,如何从这些数据中提取有价值的信息成为生物数据分析领域的重要研究方向之一。
基因表达数据分析的核心是基因表达水平的计算和分析方法。
一、基因表达水平的计算方法基因表达水平的计算方法有三种:基于芯片、基于RNA-seq和蛋白质组学分析法。
1.基于芯片的计算方法基于芯片的基因表达计算方法是通过DNA芯片技术,采用荧光信号分析技术来计算基因表达水平。
基本上分为以下步骤:首先将RNA转化为cDNA,并标记为荧光物质并打上芯片;通过荧光信号分析技术对荧光素的强度进行检测,并将强度值转换为基因表达水平。
这种方法已经被广泛应用,但是具有一定的局限性。
芯片技术复杂、成本高昂、对特定基因有选择性和检测范围有限等缺点,限制了其在大规模研究和应用中的应用。
2.基于RNA-seq的计算方法RNA-seq技术是最新的一种高通量测序技术,可同时检测所有共同的基因表达和新的转录本,以及所有SNP和突变等分子标记,分子分类和转录水平分布。
它可以使有限的生物材料得到有效和高精度的序列,并在不断更新的转录本数据库中分析和基因注释。
RNA-seq可以直接测量RNA转录本的量,并不是通过荧光信号而是通过量化RNA-seq文库中测序reads的数目来计算基因表达的水平。
可以检测很少的RNA,扩大了涉及的基因范围和研究范围,大大提高了检测效率和准确率。
3.蛋白质组学分析法蛋白质组学方法是一种更直接的基因表达水平测量方法。
蛋白质是基因表达的最终产物,是表达的直接结果,可以反映基因表达水平的真实状态。
蛋白质组学方法通过进行质谱分析,测量蛋白质的多肽序列,进而实现对基因表达水平的定量。
二、基因表达水平的分析方法基因表达水平的分析方法可以分为两个方面:一是对数据进行预处理并分析数据的结构,二是基于分析的结果进行生物学的解释和计算。
基因芯片数据分析
第三步:模型评估
第7次课 基因芯片数据分析
研究现状与最新进展
内容提要
1. 数据预处理 2. 寻找差异基因 3. 聚类分析 4. 分类分析 5. 通路与功能分析 6. 基因调控网络构建
1. 数据预处理
校正前后的芯片MA散点图
2. 寻找差异基因
根据p值和变化倍数确定差异表达基因
3. 聚类分析
目的: 基于相似性或者差异程度,对基因/样品进行划分, 每一个分组称为一个“cluster” 划分多少组:生物学背景,用户定义
自组织映射神经网络
优点是自动提取样本数据中的信息,是一种全局 的决策方法,能避免陷入局部最小。具有更稳健 更准确的特点,对噪声稳定,一般不依赖于数据 分布的形状。
缺点在于必须实现人为设定类的数目与学习参数, 而且学习时间较长
(四)双向聚类
双向聚类:识别基 因表达谱矩阵中同 质的子矩阵,运用 特定的基因子类识 别样本子类。
层次聚类方法
目前运用在芯片数据分析中最多的聚类方法, 得到类似于进化分析的系统树图。
其主要思想是先计算n个样本类间的距离,再 将相似性最高的两类合并为一个新类,得到n1类的矩阵,不断重复这个过程直至所有的基 因融合成为一个大类。
层次聚类
乳腺癌亚型分类研究
乳腺癌亚型:根据浸润性乳腺癌基因表达情况分类 采用层次聚类法
基因芯片聚类分析举例
例1. 酵母新陈代谢的时序基因芯片数据分析 例2. 芯片数据的基因本体富集性分析
聚类方法的问题
问题:下面的情况有用吗?
距离度量问题:怎样定义? 更复杂的方法: manifold clustering
5. 芯片数据的分类分析
线性判别分析(LDA):找边界 K临近(KNN):和“朋友”保持一致 机器学习方法:
生物信息学中的基因表达谱分析方法
生物信息学中的基因表达谱分析方法生物信息学是一门跨学科的科学,通过运用计算机科学、数学、统计学和生物学等多个领域的技术来研究生物信息。
在这个领域中,基因表达谱分析是十分重要的研究方向之一。
基因表达谱分析可以帮助研究人员了解哪些基因在特定条件下活跃,从而揭示基因的功能和与疾病有关的机制。
本文将介绍一些常用的基因表达谱分析方法,包括基于测序数据的RNA-seq和微阵列芯片。
首先,RNA-seq是近年来广泛应用于基因表达谱分析的一种技术。
这种方法通过对细胞或组织中的RNA进行高通量测序,以揭示转录组中的所有RNA分子。
RNA-seq的工作流程包括RNA提取、电泳碎片、建库、测序和数据分析等环节。
通过测序获得的读段将经过各种生物信息学工具和方法进行分析,可以得到不同样本之间基因表达量的比较,以及发现和注释新的转录本、可变剪接事件、单核苷酸多态性等。
此外,微阵列芯片也是常用的基因表达谱分析方法之一。
微阵列芯片利用DNA探针与样品中的RNA杂交,以测定基因在特定条件下的表达水平。
这种方法有两种常用的类型,即探针设计型和探针棋盘型。
探针设计型芯片是根据预先设定的基因列表来制作,并使用这些探针来检测样品中的RNA。
而探针棋盘型芯片则是将大量的DNA探针固定在芯片上,其中每个探针都与特定的基因序列相对应,从而可以同时检测成千上万个基因的表达。
通过微阵列芯片分析,我们可以获得基因表达谱的定性和定量信息,进而比较不同样本之间的差异。
此外,为了更好地理解和解释基因表达谱数据,还可以使用聚类和差异表达基因分析等方法。
聚类分析旨在将样本或基因按照表达模式的相似性进行分类。
通常,聚类分析使用无监督学习算法,如层次聚类或K-means聚类算法,对基因表达数据进行聚类,并生成聚类图谱。
差异表达基因分析则用于鉴定在不同样本之间表达差异显著的基因。
差异表达基因分析可以帮助我们筛选出与特定生物过程、疾病或实验条件相关的基因,从而进一步研究其可能的生物学功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因表达谱芯片的数据分析(2012-03-13 15:25:58)转载▼标签:杂谈分类:生物信息摘要基因芯片数据分析的目的就是从看似杂乱无序的数据中找出它固有的规律, 本文根据数据分析的目的, 从差异基因表达分析、聚类分析、判别分析以及其它分析等角度对芯片数据分析进行综述, 并对每一种方法的优缺点进行评述, 为正确选用基因芯片数据分析方法提供参考.关键词: 基因芯片; 数据分析; 差异基因表达; 聚类分析; 判别分析吴斌, 沈自尹. 基因表达谱芯片的数据分析.世界华人消化杂志2006;14(1):68-74/1009-3079/14/68.asp0 引言基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析, 通过有效数据的筛选和相关基因表达谱的聚类, 最终整合杂交点的生物学信息, 发现基因的表达谱与功能可能存在的联系. 然而每次实验都产生海量数据, 如何解读芯片上成千上万个基因点的杂交信息, 将无机的信息数据与有机的生命活动联系起来, 阐释生命特征和规律以及基因的功能, 是生物信息学研究的重要课题[1]. 基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析, 假如分类还没有形成, 非监督分析和聚类方法是恰当的分析方法; 假如分类已经存在, 则监督分析和判别方法就比非监督分析和聚类方法更有效率。
根据研究目的的不同[2,3], 我们对基因芯片数据分析方法分类如下: (1)差异基因表达分析: 基因芯片可用于监测基因在不同组织样品中的表达差异, 例如在正常细胞和肿瘤细胞中; (2)聚类分析: 分析基因或样本之间的相互关系, 使用的统计方法主要是聚类分析;(3)判别分析: 以某些在不同样品中表达差异显著的基因作为模版, 通过判别分析就可建立有效的疾病诊断方法.1 差异基因表达分析(difference expression, DE)对于使用参照实验设计进行的重复实验, 可以对2样本的基因表达数据进行差异基因表达分析, 具体方法包括倍数分析、t检验、方差分析等.1.1 倍数变化(fold change, FC) 倍数分析是最早应用于基因芯片数据分析的方法[4], 该方法是通过对基因芯片的ratio值从大到小排序, ratio是cy3/cy5的比值, 又称R/G值. 一般0.5-2.0范围内的基因不存在显著表达差异, 该范围之外则认为基因的表达出现显著改变. 由于实验条件的不同, 此阈值范围会根据可信区间应有所调整[5,6]. 处理后得到的信息再根据不同要求以各种形式输出, 如柱形图、饼形图、点图等. 该方法的优点是需要的芯片少, 节约研究成本; 缺点是结论过于简单, 很难发现更高层次功能的线索; 除了有非常显著的倍数变化的基因外, 其它变化小的基因的可靠性就值得怀疑了; 这种方法对于预实验或实验初筛是可行的[7]. 此外倍数取值是任意的, 而且可能是不恰当的, 例如, 假如以2倍为标准筛选差异表达基因, 有可能没有1条入选, 结果敏感性为0, 同样也可能出现很多差异表达基因, 结果使人认为倍数筛选法是在盲目的推测[8,9].1.2 t检验(t-test) 差异基因表达分析的另一种方法是t检验[10], 当t超过根据可信度选择的标准时, 比较的两样本被认为存在着差异. 但是t检验常常受到样本量的限制, 由于基因芯片成本昂贵, 重复实验又很费时, 小样本的基因芯片实验是很常见的, 但是小样本导致了不可信的变异估计. 为了克服这种缺点, 研究者提出了调节性t检验(regularized t-test), 它是根据在基因表达水平和变异之间存在着相互关系, 相似的基因表达水平有着相似的变异这个经验, 应用贝叶斯条件概率(贝叶斯定理)统计方法, 通过检测同一张芯片临近的其它基因表达水平, 可以对任何基因的变异程度估计进行弥补. 这种方法对于基因表达的标准差估计优于简单的t-test和固定倍数分析法[11].1.3 方差分析(analysis of variance, ANOVA) 方差分析(ANOVA)又称变异数分析或F检验, 其目的是推断两组或多组资料的总体均数是否相同, 检验两个或多个样本均数的差异是否有统计学意义, 方差分析可用于差异基因表达研究[12]. 方差分析需要参照实验设计, 参照样本常用多种细胞的mRNA混合而成, 由于所有的细胞同时表达的基因众多, 结果低表达基因在样本混合后就被稀释而减少了参照样本的代表性, 因此, 增加参照样本的细胞不会提高参照样本的代表性[13].方差分析能计算出哪些基因有统计差异, 但它没有对那些组之间有统计差异进行区分, 比如用单因素方差分析对A、B、C、D 4组进行分析, 对于某一个基因, 方差分析能够分析出A组与B、C、D组之间有差异, 但是B、C、D之间无统计学意义. 这就需要使用均值间的两两比较(post-hoc comparisons)检验, 该检验是对经方差分析后的基因进行下一水平更细节的分析[14]. 即t-检验只能用于检验两样本中均值是否存在显著性差异, 而两两比较技术考虑了多于2样本间均数的比较.上述所有的参数分析方法必须平衡假阳性、假阴性错误[15,16], 控制假阳性率有4种方法: (1)邦弗朗尼(Bonferroni)方法, 计算公式: Corrected P-value =P-value×n(number of genes in test), 如果纠正P值仍小于错误率(如0.05), 则该基因将属于有表达差异的基因.(2)Bonferroni Step-down(Holm)法, 这种校正方法与邦弗朗尼很相似, 但没有前者严格. 主要思想如下: 每个基因的P值从低到高排序, Corrected P-value=P-value×n(n-1/n-2……), 如果纠正P值仍小于错误率(如0.05), 则该基因将属于有表达差异的基因. (3)Westafall &Young参数法, 前面2种方法都是单独对P值进行纠正, 本方法通过同时对所有基因进行排序, 充分利用基因间的独立性进行P值纠正. 每个基因的P值是按原始资料的排序进行计算; 将资料划分为人工组和对照组而产生新的数据. 采用新数据计算所有基因的P值, 新P值再与以前的P值进行比较, 上述过程重复很多次, 最后计算出纠正P值. 如果纠正P值仍小于错误率(如0.05), 则该基因将属于有表达差异的基因. (4)Benjamini & Hochberg假阳性率法, 该方法是4种方法中最不严谨的方法, 因此可能产生很多的假阳性和假阴性, 其方法如下: 首先对每一个基因的P值由小到大排序, 最大的P值保持不变, 其它基因按下列公式计算P值,Corrected P-value =P value×(n/n-1)以此类推, 若P<0.05则为有差异基因.上述前3种方法可概括为误差率判断族(family-wise error rate, FWER), 它的特点是允许很少的假阳性基因发生, 而假阳性率(false discovery rate, FDR)是允许一定率的假阳性基因发生. 总之, 假阳性率(FDR)在差异表达与控制假阳性率之间提供了一个好的平衡统计, Bonferroni是最严格的方法, 也是最保守的假阳性估计方法. Westfall & Young参数法是以基因的共同调节进行计算, 因此它的计算是很慢的, 对假阳性率的估计也是很保守的[17,18]. 1.4 非参数分析(nonparametric analysis) 由于微阵列数据存在"噪声"干扰而且不满足正态分布假设, 因此使用t-检验和回归模型进行筛选的方法可能有风险. 非参数检验并不要求数据满足特殊分布的假设, 所以使用非参数方法对变量进行筛选虽然粗放, 但还是可行的[19]. 目前用于基因表达谱数据分析的非参数方法除了传统的非参数t-检验(nonparametric t-test)、Wilcoxon秩和检验(Wilcoxon rank sun test)等外[20], 一些新的非参数方法也应用于基因表达谱数据的分析中, 如经验贝叶斯法(empirical Bayes method)[21]、芯片显著性分析(significance analysis of microarray, SAM)[22]、混合模型法(the mixture model method, MMM)[23]等. 参数法的缺点是分析数据有假设检验, 比如改变样本中的变异可明显影响分析结果, 对同样数据的转换(如对数), 对其分析结果也有明显的影响. 非参数方法对于这种情况的发生更有效, 但是它对表达数据分析的敏感性不如参数方法.1.5 回归分析(regression analysis) 目前使用的一些简单的参数分析方法是通过数据转换(如对数)来达到正态分布为假设前提的, 或者是估计的经验分布, 然而这二种方法对基因表达数据可能都是不合理的, 非参数方法忽视了数据的分布, 而参数方法又会误判数据的分布[24,25]. 基因表达谱的回归分析是可以处理多个基因变量间线性依存关系的统计方法, 于是研究者们提出了使用回归分析基因表达谱数据, 如Li et al[26]使用互变量(Cox)回归方法分析基因表达谱数据, 用于患者的生存率预判; Huang et al[27]将线性回归方法应用于肿瘤的分类研究中.2 聚类分析(clustering analysis)组聚类分析的目的在于辨别在某些特性上相似的事物, 并按这些特性将样本划分成若干类(群), 使同类事物具有高度同质性, 而不同类事物则有高度异质性. 聚类分析是通过建立各种不同的数学模型, 它把基于相似数据特征的变量或样本组合在一起. 归为一个簇的基因在功能上可能相似或关联, 从而找到未知基因的功能信息或已知基因的未知功能. 但是由于使用数据转换、归一化等因素, 导致对聚类分析结果的影响较大; 此外, 聚类只是为了寻求类, 不管所聚的类别是否有意义[28].2.1 分层聚类法(hierarchical clustering, HCL) 分层聚类是将n个样品各作为一类, 计算n个样品两两之间的距离, 构成距离矩阵, 合并距离最近的两类为一新类, 计算新类与当前各类的距离[29]. 再合并、计算, 直至只有一类为止. 分层聚类是第一个被应用于基因表达谱数据分析的聚类方法[30], 由于结果的可视化和基因间关系的明确表现, 广泛地应用于基因表达谱的肿瘤亚型分类和幸存率研究中[31,32].2.2 K-均值聚类(K-means clustering, KMC) K-均值聚类是先选择初始凝聚点, 根据欧氏距离系数, 将每个样品归类, 各类的重心代替初始凝聚点, 根据欧氏距离将每个样品不断地归类, 直至分类达到稳定. K-均值算法是采用误差平方和为准则函数的动态聚类方法, 其计算快速, 适合于大规模的数据计算[33]. 如D'ambrosio et al[34]为了理解肥大细胞增生的分子机制和寻找其鉴定的分子标记, 选取肥大细胞增生症患者和正常人的骨髓的单核细胞进行基因芯片实验, 应用K-均值聚类和分层聚类得到同一类的10个基因, 进一步分析鉴定出3个基因属于该疾病的候选标记基因. 但是K-均值聚类也有不足之处, 它对初始凝聚点比较敏感, 如果初始凝聚点没有选择好就可能集合在标准功能值的局域极小值上. 而另一个问题在于它是完全无结构的方法, 聚类的结果是无组织的[35].2.3 自组织映射图网络(self-organizing map clustering, SOM) 神经网络中邻近的各个神经元通过侧向交互作用彼此相互竞争, 自适应地发展成检测不同信号的特殊检测器, 这就是自组织特征映射的含义. 其基本原理是将多维数据输入成几何学节点, 相似的数据模式聚成节点, 相隔较近的节点组成相邻的类, 从而使多维的数据模式聚成2维节点的自组织映射图. 自组织映射图允许对类进行调整, 属于监督类聚类[36]. 自组织映射图分类标准明确; 优化的次序好于其它聚类法, 在基因表达谱的数据分析中得到广泛的应用. 如Covell et al[37]认为多种肿瘤可能具有共同的基因表达谱, 他们选取了14种肿瘤和正常对照组织进行基因表达谱研究, 结果自组织图能完全将肿瘤和正常组织区分出来, 自组织图对各种肿瘤的分辨率达到80%的准确性, 其中对白血病、中枢神经系统肿瘤、黑色素瘤、子宫癌、淋巴瘤有很好的判别作用, 对直肠癌、乳腺癌、肺癌的判别差.2.4 双向聚类(two-way clustering, TWC) 基因表达谱常采用单向聚类法(one-way clustering), 即要么以整个样本中特性相似的基因进聚类, 或者以基因表达相似的样本进行聚类. 对样本和基因同时进行聚类就是双向聚类法(two-way clustering)[38], 目前基因表达谱的数据分析常用的双向聚类有基因剃须(gene shaving, GS)和格子模型(plaid models). 基因剃须是通过基因的共同表达值或表达量来鉴定基因的亚类, 基因表达谱分析方法常用监督进行聚类, 没有考虑一个基因可能属于多个类. 基因剃须对基因或样本进行分类既可以是监督的, 也可以是非监督的. 基因剃须近年逐渐被应用于基因表达谱的分析中, 如Hastie et al[39]使用基因剃须方法分析了B细胞淋巴瘤患者的基因表达谱, 鉴定了一小类可用于生存率预判的基因. 作者认为基因剃须方法是一种潜在有用的基因表达谱数据分析方法. Jiang et al[40]使用了2种基因剃须方法筛选肺腺癌的标志基因, 通过和正常组织的基因表达谱比较, 分别筛选到13条和10条, 其中5条是共同的. 格子模型的目的是分析基因芯片数据可解释的生物结构, 即基因或样本的亚类. 各类之间可以进一步聚类, 从而获得稳定的、有意义的分层结构[41,42]. 目前应用格子模型进行基因表达数据分析的实例还不多.2.5 混合聚类法所谓混合聚类就是先非监督(unsupervised)聚类再监督(supervised)聚类. 其优点是可以整合多种聚类方法的优点, 目前混合聚类受到越来越多研究者的关注, 如由于基因芯片数据的复杂性和多维性, 为利于基因表达谱数据的处理, 有必要对复杂多维的原始数据进行简化处理, 为了解决这个问题, Wang et al[43]提出了双水平分析, 即首先使用自组织图减少原始数据的多维性, 然后进行了K-均值和分层聚类以建立样本判别的基因表达模型. Herrero et al[44]还论述如何将自组织图和分层聚类组合成一个优秀的工具用于基因表达谱的数据分析.3 判别分析(discriminant analysis)判别分析能够依据样本的某些特性, 以判别样本所属类型. 与聚类分析不同的是, 判别分析是用某种方法将研究对象分成若干类的前提下, 建立判别函数, 用以判定未知对象属于已知分类中的哪一类. 基因判别分析(有监督学习)是在已有数据的基础上建立分类器, 并利用所建立的分类器对未知样品的功能或状态进行预测[45,46]. 目前使用的判别分析方法主要有: 支持向量机、决策树、贝叶斯分类、神经网络法等.3.1 费希尔判别分析(fisher discriminant analysis, FDA) 费希尔判别分析是以线形函数为准则进行判别[47], Cho et al[48]应用费希尔判别方法分析肿瘤患者的基因表达谱资料以判别肿瘤的分型. 如Dangond et al[49]将费希尔判别方法应用于计算肌萎缩侧索硬化病的基因表达谱研究中.3.2 贝叶氏网络(bayesian networks) 也被称为因果网络(causal networks), 是描述数据变量之间依赖关系的一种图形模式, 是一种用来进行推理的模型. 贝叶斯网络为人们提供了一种方便的框架结构来表示因果关系, 这使得不确定性推理在逻辑上更为清晰、更好理解[50]. 如Imoto et al[51]结合贝叶斯网络和生物学知识进行基因表达谱数据的基因网络分析, 并以酿酒酵母的基因表达谱数据为例进行了论证. Kim et al[52]将贝叶斯网络法应用于时间系列的基因表达谱数据的基因网络分析等.3.3 支持向量机(support vector machines, SVMs) 支持向量机是数据挖掘中的一个新方法. 支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题, 它通过训练一种"分类器"来辨识与已知的共调控基因表达类型相似的新基因[53-55]. 例如Williams et al[56]为了鉴定出肾母细胞瘤复发的基因表达谱模型, 研究了27例肾母细胞瘤患者的肿瘤组织, 其中13例2a内复发, 对复发和未复发的肿瘤组织进行基因芯片实验, 并应用支持向量机对基因表达谱数据进行分析, 结果发现了一小类可能用于肿瘤预诊的基因.3.4 决策树(decision trees) 决策树是一种常用于预测模型的算法, 它通过将大量数据有目的的分类, 从中找到一些有价值的, 潜在的信息. 它的主要优点是描述简单, 分类速度快, 特别适合大规模的数据处理[57]. Dettling et al[58]比较了不同决策树算法对基因表达谱分析的影响. Middendorf et al[59]应用决策树方法研究了简单生物的基因调节机制.3.5 人工神经网络法(artificial neural network, ANN) ANN是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型. 在这一模型中, 大量的节点(或称"神经元", 或"单元")之间相互联接构成网络, 即"神经网络", 以达到处理信息的目的. 其优势是运行分析时无需在心目中有任何特定模型, 而且, 神经网络可以发现交互作用效果(如年龄和性别的组合效果)[60]. O'Neill et al[61]将神经网络法应用于淋巴瘤基因表达谱数据的分析, 该方法对淋巴瘤预后和诊断都具有较好的判别作用. Sawa et al[62]对酵母属基因表达谱数据进行了欧氏距离、相关系数、相互信息和基于神经网络的聚类分析, 发现基于神经网络的聚类结果较前3种方法更为合理.4 其他分析4.1 主成分分析(principal component analysis, PCA) 在大规模基因表达数据的分析工作中, 由于组织样本例数远远小于所观察基因个数, 如果直接采用前述聚类分析可能产生较大误差, 故需要对聚类算法进行改进. 目前已经提出很多改进的聚类方法, 其中较为流行的方法是应用主成分分析方法对数据进行分析[63,64]. 主成分分析的目的是要对多变量数据矩阵进行最佳综合简化. 使用的方法是寻找这些变量的线性组合-称之为主成分, 使这些主成分间不相关. 为了能用尽量少的主成分个数去反映原始变量间提供的变异信息, 要求各主成分的方差从大到小排列, 第一主成分最能反映数据间的差异. 主成分分析通过合并原来的维数得到更少的维数来表示对象, 同时要求新的维数必须尽可能地反映原有维数所反映的信息, 它有较少的信息丢失. 主成分分析有助于简化分析和多维数据的可视化[65]. 如Crescenzi et al[66]应用主成分分析对60个肿瘤细胞株的基因表达谱数据进行分析, 结果发现肿瘤分型相关的基因有1375个, 主成分分析得到细胞运动等5个独立的成份. 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法. 从数学角度来看, 这是一种降维处理技术. 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的. 但是使用该方法可能导致一部分有用信息的丢失. 为此, Yeung et al[67]采用两个真实数据集和三个模拟数据集作为实验材料, 对采用主成分分析方法所得出的聚类结果作了评估. 他们发现, 进行主成分处理后的聚类质量没有明显提高, 甚至有所降低. 基于以上研究结果, 他们不主张使用PCA方法进行聚类分析.4.2 基因网络分析(gene network analysis) 基因表达分析包括3个层次[68], 首先是单基因水平, 即比较对照组与实验组的每个基因是否存在表达差异, 这主要指差异基因表达分析; 其次是多基因水平, 如按照基因的共同功能、相互作用、共同表达等进行的聚类分析; 最后是系统水平, 即以基因网络形式解释和理解生命现象. 在生物体系中, 基因从来不是单独起作用的, 它们相互作用呈网络状, 因此从网络的观点分析基因表达谱数据必然会导致对生物系统的更高层次的理解, 目前研究者们已经开始了这方面的研究. 正如前述的各种聚类方法, 假如几个基因被聚类在同一组, 它们有可能是共同表达的基因或者是有同样的信号通径, 深入分析这些基因的增强子可能发现它们共同的调节元件, 从而揭示生物系统更高层次的网络[69]. 另外应用目前已知全序列的模式生物(如酵母、结核分枝杆菌), 人们已研制出加载有他们全基因的芯片, 通过比较不同条件下(突变、基因撬出或设计时间系列)表达谱的变化, 再使用贝叶斯网络法等进行系统分析, 可揭示基因功能和调控网络[70]. 此外还可从代谢等角度研究, 比如从新陈代谢分析基因表达的网络关系等.总之, 基因芯片数据分析的方法众多, 随着研究的进展不断地有新的数学方法应用于芯片的数据分析中步研究5 参考文献1 Reimers M. Statistical analysis of microarray data. Addict Biol 2005; 10: 23-352 Hackl H, Cabo FS, Sturn A, Wolkenhauer O, Trajanoski Z. Analysis of DNA microarray data. Curr Top Med Chem2004; 4: 1357-13703 Leung YF, Cavalieri D. Fundamentals of cDNA microarray data analysis. Trends Genet 2003; 19: 649-6594 Gerhold D, Lu M, Xu J, Austin C, Caskey CT, Rushmore T. Monitoring expression of genes involved in drug metabolismand toxicology using DNA microarrays. Physiol Genomics 2001; 5: 161-1705 Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 2002; 3: 176 Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee NH, Yeatman TJ, Quackenbush J. Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 2002; 3: research00627 Black MA, Doerge RW. Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments. Bioinformatics 2002; 18: 1609-16168 Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol2003; 4: 2109 Raraty MG, Murphy JA, Mcloughlin E, Smith D, Criddle D, Sutton R. Mechanisms of acinar cell injury in acute pancreatitis. Scand J Surg 2005; 94: 89-9610 Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001; 17: 509-519 11 Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 2001; 276: 19937-1994412 Pavlidis P. Using ANOVA for gene selection from microarray studies of the nervous system.Methods 2003; 31: 282-28913 Hatfield GW, Hung SP, Baldi P. Differential analysis of DNA microarray gene expression data. Mol Microbiol2003; 47: 871-87714 Pan KH, Lih CJ, Cohen SN. Analysis of DNA microarrays using algorithms that employ rule-based expert knowledge. Proc Natl Acad Sci USA 2002; 99: 2118-212315 Aubert J, Bar-Hen A, Daudin J, Robin S. Correction: Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinformatics 2005; 6: 4216 Pawitan Y, Murthy KR, Michiels S, Ploner A. Bias in the estimation of false discovery rate in microarray studies. Bioinformatics 2005; 21: 3865-387217 Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005; 21: 3017-302418 Grant GR, Liu J, Stoeckert CJ Jr. A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics 2005; 21: 2684-269019 Zhao Y, Pan W. Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments. Bioinformatics 2003; 19: 1046-105420 Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 2002; 18: 1454-146121 Efron B, Tibshirani R. Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol2002; 23: 70-8622 Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response.Proc Natl Acad Sci USA 2001; 98: 5116-512123 Pan W, Lin J, Le CT. A mixture model approach to detecting differentially expressed genes with microarray data. Funct Integr Genomics 2003; 3: 117-12424 Strimmer K. Modeling gene expression measurement error: a quasi-likelihood approach. BMC Bioinformatics2003; 4: 1025 Segal MR, Dahlquist KD, Conklin BR. Regression approaches for microarray data analysis. J Comput Biol2003; 10: 961-98026 Li H, Gui J. Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics2004; 20: I208-I21527 Huang X, Pan W. Linear regression and two-class classification with gene expression data. Bioinformatics 2003; 19: 2072-207828 Azuaje F. Clustering-based approaches to discovering and visualising microarray data patterns. Brief Bioinform2003; 4: 31-4229 Guess MJ, Wilson SB. Introduction to hierarchical clustering. J Clin Neurophysiol 2002; 19: 144-15130 Levenstien MA, Yang Y, Ott J. Statistical significance for hierarchical clustering in geneticassociation and microarray expression studies. BMC Bioinformatics 2003; 4: 6231 Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Delpero JR, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgatte R. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 2004; 23: 1377-139132 Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869-1087433 Sherlock G. Analysis of large-scale gene expression data. Brief Bioinform 2001; 2: 350-36234 D'ambrosio C, Akin C, Wu Y, Magnusson MK, Metcalfe DD. Gene expression analysis in mastocytosis reveals a highly consistent profile with candidate molecular markers. J Allergy Clin Immunol 2003; 112: 1162-117035 Steinley D. Local optima in K-means clustering: what you don't know may hurt you. Psychol Methods 2003; 8: 294-30436 Toronen P, Kolehmainen M, Wong G, Castren E. Analysis of gene expression data using self-organizing maps. FEBS Lett 1999; 451: 142-14637 Covell DG, Wallqvist A, Rabow AA, Thanki N. Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2003; 2: 317-33238 Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA2000; 97: 12079-1208439 Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 2000; 1: RESEARCH000340 Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J, Tsai CJ, Zhang S. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004; 5: 81 rats. Dig Dis Sci 1995; 40: 2162-216941 Lazzeroni L, Owen A. Plaid models for gene expression data. Statistica Sinica 2002; 12: 61-8642 Plaid models, for microarrays and DNA expression Available from: URL: http://www-stat. stanford. edu/~owen/plaid43 Wang J, Delabie J, Aasheim H, Smeland E, Myklebost O. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics 2002; 3: 3644 Herrero J, Dopazo J. Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. J Proteome Res 2002; 1: 467-47045 Tsai CA, Lee TC, Ho IC, Yang UC, Chen CH, Chen JJ. Multi-class clustering and prediction in the analysis of microarray data. Math Biosci 2005; 193: 79-10046 Brock A, Huang S, Ingber DE. Identification of a distinct class of cytoskeleton-associated mRNAs using microarray technology. BMC Cell Biol 2003; 4: 6。