机械手设计

合集下载

机械手的控制设计

机械手的控制设计

机械手的控制设计随着制造业的发展,机械手已经成为不可或缺的自动化生产设备之一。

机械手的控制设计是机械手能够准确、灵活地完成生产任务的关键。

本文将介绍机械手控制系统的基本原理、常见控制技术和未来的发展趋势。

一、机械手控制系统的基本原理机械手控制系统的基本原理是将指令传输到机械手的控制器中,然后控制器将指令转化为控制信号并送达电机,从而控制机械手的运动。

通常,机械手控制系统包括以下几个方面:1. 传感器:用于测量机械手的位置、速度、力量、方向等参数,并将这些参数转化为电信号送到控制器中。

2. 控制器:用于接收传感器的信号,并通过计算、判断等操作,生成电气信号,控制机械手的运动,从而实现自动化操作。

3. 电机:用于驱动机械手的运动,根据控制器的信号控制机械手的运动速度、方向、力量等参数。

二、机械手控制技术机械手控制技术是实现机械手自动化操作的重要技术手段,常见的机械手控制技术主要包括以下几种:1. 点位控制技术:点位控制技术是指通过控制机械手的每个关节的运动来确定机械手的末端位置。

在点位控制技术中,通常采用PID控制器控制机械手的角度位置。

2. 轨迹控制技术:轨迹控制技术是指通过控制机械手沿一定的参考轨迹运动,从而实现特定的操作。

在轨迹控制技术中,通常需要根据轨迹规划算法生成参考轨迹,并采用开环或闭环控制策略进行控制。

3. 力控制技术:在一些质量检测和装配操作中,需要对机械手施加一定的力来完成操作。

在力控制技术中,需要通过力传感器或压力传感器等器件测量机械手的施力情况,然后采用适当的控制策略来控制机械手的力量,从而实现一定的装配和调整操作。

三、机械手控制系统的未来发展趋势随着自动化技术的迅速发展,机械手控制系统也在不断发展和完善,针对未来机械手控制系统的发展趋势可以从以下几个方面进行展望:1. 智能化:未来的机械手控制系统将更加智能化,增加复杂任务的规划和执行能力,实现更加快捷高效的生产操作。

在智能化方面,主要应用机器人视觉等先进技术。

焊接机械手毕业设计

焊接机械手毕业设计

焊接机械手毕业设计【篇一:自动焊接机械手设计(毕业设计)】自动焊接机械手设计1 绪论1.1 技术概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。

特别适合于多品种、变批量的柔性生产。

它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。

机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。

机器人应用情况,是一个国家工业自动化水平的重要标志。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

1.2 现状及国内外发展趋势国外机器人领域发展近几年有如下几个趋势:(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。

(2)机械结构向模块化、可重构化发展。

例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。

(3)工业机器人控制系统向基于pc机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。

(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

平面关节型机械手设计_毕业设计精品

平面关节型机械手设计_毕业设计精品

平⾯关节型机械⼿设计_毕业设计精品平⾯关节型机械⼿设计⽬录第1章绪论 (1)第2章机械⼿总体⽅案设计 (2)2.1总体⽅案分析 (2)2.2总体结构分析 (3)第3章机械⼿总体结构设计 (6)3.1 机械⼿⼿部设计 (6)3.2 移动关节的设计 (9)3.3 ⼩臂的设计 (11)3.4 ⼤臂的设计 (16)3.5 机⾝的设计 (18)结束语 (21)参考⽂献 (22)平⾯关节型机械⼿设计第⼀章绪论随着我国⼯业⽣产的飞跃发展,⾃动化程度的迅速提⾼,实现⼯件的装卸、转向、输送或操持焊枪、喷枪、扳⼿等⼯具进⾏加⼯、装配等作业的⾃动化,已愈来愈引起⼈们的重视。

机械⼿是模仿着⼈⼿的部分动作,给定程序、轨迹和要求实现⾃动抓取、搬运或操作的⾃动机械装置。

在⼯业⽣产中应⽤的机械⼿被称为“⼯业机械⼿”。

⽣产中应⽤实现安全⽣产;尤其在⾼温、⾼压、低温、低压、粉尘、易爆、有毒⽓体和放射性等恶劣环境中,它代替⼈进⾏正常的⼯作,意义更为重⼤。

因此,在机械加⼯、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻⼯业、交通运输业等⽅⾯得到越来越⼴泛的应⽤。

机械⼿的结构形式开始⽐较简单,专业性较强,仅为某台机床的上下料装置,是附属于该机床的专⽤机械⼿。

随着⼯业技术的发展,制成了能够独⽴的按程序控制实现重复操作,使⽤范围⽐较⼴的“程序控制通⽤机械⼿”,简称通⽤机械⼿。

由于通⽤机械⼿能很快地改变⼯作程序,适应性较强,所以它不断变换⽣产品种的中⼩批量⽣产中获得⼴泛的应⽤。

本次课程设计的平⾯关节型机械⼿是应⽤于上下料、搬运环类零件,从内孔夹持⼯件,代替⼈⼿的繁重劳动,减轻⼯⼈的劳动强度,改善劳动条件,提⾼劳动⽣产率。

本次课程设计是通过设计平⾯关节型机械⼿,培养综合运⽤所学知识,分析问题和解决问题的能⼒。

第⼆章平⾯关节型机械⼿总体⽅案设计平⾯关节型机器⼿⼜称SCARA型装配机器⼿,是Selective Compliance Assembly Robot Arm的缩写,意思是具有选择柔顺性的装配机器⼈⼿臂。

机械手控制设计_梯形图设计(PLC设计课件)

机械手控制设计_梯形图设计(PLC设计课件)

启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
6.右转,离开左侧位
尽职责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
机械臂下降,下降到位置,抓取工件(夹紧),上升,传送带1启动,机械手上升到位置,左转,左转到位,下降,放 置工件(放松),上升,右转,下降,继续抓取工件。
启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置

数控车床上下料机械手设计_毕业设计

数控车床上下料机械手设计_毕业设计
三:控制系统:有点动控制和连续控制两种方式。大多数用插销板进行点位程序控制,也有采用可编程序控制器控制、微型计算机数字控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特性。
1.3机械手的分类
1.根据用途不同分类
机械手按用途主要分为三类:第一类为通用机械手,它是一种不依赖于主机的独立装置,可以根据需要编写控制程序,完成所需的功能,这类机器人有球坐标式、圆柱坐标式和直角坐标式等多种形式,主要由基座、腰关节、大臂、小臂以及手爪等组成,在三维空间里具有很好的灵活性和通用性,因此具有广泛的应用,对于该类机器人的研究和应用已经颇为成熟,由于其良好的通用性,只要在手爪部位安装合适的装置即可完成相应的功能。
关键词:数控车床;机械手;气动元件;伺服电机
ABSTRACT
This designmainly aims at the manipulator of the CNC lathe processing rotor of loading process, and analysis the motion process of workpiece by the production line to the workbench. Mainly adopts pneumatic components, gas, manipulator grasping and flip functions such as oscillating cylinder, servo motor and ball screw is used to implement manipulator transverse shift, in order to realize the movement of the scheme. Through the design of manipulator used in CNC lathe design steps and methods of systematic knowledge, according to its design manipulator that economy is applicable, and the cylinder of the structure and working principle of the comprehensive control.

工业机械手设计

工业机械手设计

摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。

通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。

关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................281 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。

自动上下料机械手设计

自动上下料机械手设计

自动上下料机械手设计自动上下料机械手的设计首先需要考虑其结构和动力系统。

结构部分包括机械臂、抓取器、传感器以及控制系统等。

机械臂通常由多个关节组成,每个关节都能够进行旋转或伸缩,使机械手能够在三维空间内灵活移动。

抓取器通常采用夹爪或磁力吸盘等方式,以确保物料能够被牢固地抓取。

传感器可以用于检测物料的位置和重量,以及监测机械手的运动过程。

控制系统则负责控制机械手的运动,使其能够按照预设的路径和速度进行操作。

在机械手的设计中,需要考虑物料的形状、尺寸和重量等因素。

不同的物料需要不同的抓取器和动作方式来保证抓取和放置的准确性。

例如,对于较小的物料,可以采用夹爪和吸盘的组合方式,以确保物料的稳固性。

对于较大的物料,可以采用多个机械臂协同工作,以增加抓取和放置的能力。

另外,自动上下料机械手的设计还需要考虑安全性和可靠性。

机械手在工作过程中需要能够识别和避免障碍物,以防止发生意外事故。

同时,机械手的动力系统和控制系统需要具备稳定性和可靠性,以确保机械手能够长时间稳定地运行。

为了提高自动上下料机械手的效率,可以采用一些先进的技术和功能。

例如,可以采用视觉系统来识别物料的位置和形状,以便机械手能够准确地抓取。

还可以采用自适应控制算法,根据物料的特性和工作环境的变化,来调整机械手的运动方式和参数,以提高工作效率和减少能量消耗。

在自动上下料机械手的设计中,还需要考虑其与其他设备和系统的协调工作。

例如,需要与生产线中的输送带、传送机和包装机等设备进行无缝连接,确保物料的连续运输和加工过程。

总之,自动上下料机械手的设计需要综合考虑结构、动力、抓取器、传感器、控制系统等多个因素。

通过合理的设计和优化,可以实现机械手对物料的准确抓取、移动和放置,提高生产效率和产品质量。

同时,还需要注重安全性和可靠性的考虑,确保机械手能够稳定和长时间地运行。

机械手的设计

机械手的设计

机械手的设计机械手是一种具有高度灵活性和准确性的自动化设备,广泛应用于工业生产线、医疗手术、装配和包装等领域。

机械手的设计需要考虑多方面因素,包括机械结构、电气控制和运动学算法等,下面我将从这几个方面详细介绍机械手的设计。

一、机械结构机械结构是机械手设计的核心,主要包括机械臂、关节和执行器三部分。

机械臂是机械手的主体,负责完成各种运动和动作。

关节是连接机械臂的组件,能够使机械臂在多个方向进行运动。

执行器负责将机械臂传输的运动信号转化为物理动作,例如抓取、旋转等。

机械结构的设计需要考虑以下因素:1. 功能需求:根据机械手的应用需求,确定机械手需要具备哪些功能和动作,例如抓取、旋转、移动等。

2. 机械臂的结构:机械臂的结构决定了机械手的可达性、波动和抗外力等性能。

通常有三种设计方式:串联式、并联式和混合式。

3. 关节和执行器选型:需要考虑负载、精度、速度、控制方式等因素,选择合适的关节和执行器。

4. 材料选择和加工:需要根据机械手的负载、速度和精度要求,选择合适的铝合金、碳纤维等材料,并采用先进的加工技术进行制造。

二、电气控制电气控制是机械手的另一个重要组成部分。

它负责将机械手进行的任何运动和动作转换为电信号,从而实现自动化控制和精确调节。

电气控制主要包括传感器、执行器和控制系统三个方面。

电气控制的设计需要考虑以下因素:1. 传感器:传感器能够感知机械手周围的环境信息,例如位置、速度、力矩等。

需要选择合适的传感器,避免传感器数据的误差,提高机械手的运动精度和稳定性。

2. 执行器:执行器是将电信号转换为物理动作的组件。

采用先进的执行器能够提高机械手的运动速度和精度。

3. 控制系统:控制系统是机械手的大脑,负责控制机械手的运动和动作。

需要采用先进的控制系统来保证机械手的运动稳定性和精度。

三、运动学算法运动学算法是机械手设计的重要组成部分。

它的作用是根据机械手的运动学模型,计算机械手各关节的运动轨迹和角度,从而实现机械手的各种动作和运动。

机械手的机械结构设计与精度分析

机械手的机械结构设计与精度分析

机械手的机械结构设计与精度分析一、引言机械手作为一个复杂的机电一体化系统,在现代工业中扮演着重要的角色。

它能够完成复杂的操作,如抓取、搬运、组装等,广泛应用于生产线自动化以及其他领域。

机械手的机械结构设计以及精度分析对其工作性能有着直接的影响。

本文将深入探讨机械手的机械结构设计与精度分析。

二、机械手的机械结构设计1. 关节结构设计机械手的关节结构设计是机械手设计中最关键的部分之一。

关节的设计需要兼顾结构的刚性和运动的灵活性。

常见的关节结构包括球面关节、回转关节和滑动关节等。

在设计中,需考虑关节的承载能力、运动范围和摩擦等因素,以保证关节的可靠性和稳定性。

2. 运动链设计运动链是机械手的运动组织结构,决定了机械手的工作空间和自由度。

运动链的设计需要满足机械手工作的要求,如抓取物体的大小和形状、工作速度等。

常见的运动链结构有串联结构、并联结构和混合结构等。

在设计中,需平衡机械结构的复杂性和运动灵活性,以提高机械手的工作效率和稳定性。

3. 结构材料选择机械手的结构材料选择直接关系到机械手的刚性和重量。

常见的结构材料有钢、铝合金和碳纤维等。

在选择材料时,需根据机械手的工作环境和负载要求进行综合考虑。

高刚性和低重量的材料能够提高机械手的工作精度和速度,同时也增加了机械手的成本。

三、机械手的精度分析1. 误差来源分析机械手的精度主要受到结构误差、运动误差和传感器误差等因素的影响。

结构误差包括制造和装配误差,运动误差包括机械间隙和传动误差等。

传感器误差包括测量误差和漂移误差等。

2. 精度评估方法机械手的精度评估方法通常包括静态精度和动态精度。

静态精度是指机械手在静止状态下达到的精度,可以通过点位误差和重复定位误差等指标进行评估。

动态精度是指机械手在运动状态下达到的精度,可以通过轨迹精度和速度误差等指标进行评估。

3. 精度优化方法为提高机械手的精度,可以采取一系列的优化方法。

例如,通过加强关节的刚性和减小结构误差来提高静态精度;通过控制机械间隙和传动系统的精度来提高动态精度;通过使用高精度传感器和改进控制算法来减小传感器误差等。

机械手设计概述

机械手设计概述

机械手设计概述机械手是一种通过电子控制的机器人手臂,其特点是具有多关节,并且可以完成各种复杂的工作。

机械手广泛应用于工业生产中,能够帮助人类完成重复性高、难度大的精细工作,大大提高了工作效率和生产质量。

机械手的设计是机械工程领域中的一项重要技术,本文将对机械手的设计概述进行介绍。

一、机械手的组成机械手通常由机械结构、控制系统、传感器和执行器四部分组成。

机械结构是机械手的物理载体,其设计包括机械臂的材料、形状、长度、关节数量等等。

控制系统是机械手的智能引擎,它可以管理和控制机械手的动作、位置、速度等参数。

传感器可以检测机械手周围的环境,控制机械手避免与其他物体进行碰撞。

执行器是机械手真正完成任务的部分,比如通过手夹进行零件抓取、松开等。

二、机械手的设计原理机械手的设计原理基于三个关键点:1)力学;2)电气学;3)控制理论。

力学主要应用于机械手的材料强度、承重能力、动态特性等方面。

电气学主要应用于控制系统的设计,包括电路、电机、传感器等。

控制理论涉及系统控制理论和数学建模技术,它能够帮助设计师对机械手的运动进行更清晰地规划和优化。

三、机械手的设计步骤1)任务分析:分析所需执行的任务,明确设计的目的和要求。

2)机械结构设计:根据任务分析的结果,确定机械手的材料、形状、长度、关节数量等参数,设计机械臂的机构、运动形式、驱动方式、末端执行器等。

3)控制系统设计:根据机械手的结构和要求,选型控制器、编码器和传感器等,完成控制系统的设计与开发。

4)机械手测试:对机械手进行测试和评估,确保其能够完成预定任务并且性能优良稳定。

5)机械手上线:在实际工作中对机械手进行应用。

四、机械手的应用领域机械手在目前的工业生产中广泛应用,特别是在汽车制造、电子设备、医疗器械、食品加工等领域。

机械手不仅可以取代人力完成精细的任务,而且由于机械手反应快、准确性高,生产效率比人类工作效率更高。

五、机械手的不足与未来发展机械手在应用中也存在一些不足之处,最突出的是柔性差,难以适应不同形状或材料的物体。

机械手结构设计毕业论文

机械手结构设计毕业论文

1。

绪论1.1工业机械手设计的意义1、熟悉机械手的应用场合及有关机械手设计的步骤;2、机械手可以提高生产过程中的自动化程度,减轻人力,便于有节奏的生产;3、结合机械手设计这方面的知识,在设计过程中学会怎样发现问题、研究问题、解决问题。

1。

2国外的机械情况现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化。

机械手首先是从美国开始研制的。

1958年美国联合控制公司研制出第一台机械手。

他的结构是:机体上安装回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的.1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。

商名为Uni-mate(即万能自动)。

运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。

不少球坐标式通用机械手就是在这个基础上发展起来的。

同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手.1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。

该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型.虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Uni-mate公司和斯坦福大学、麻省理工学院联合研制一种Uni—mate 型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本.如Uni-mate公司建立了8年机械手试验台,进行各种性能的试验。

准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。

它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。

毕业设计(论文) 自动分拣机械手的设计

毕业设计(论文) 自动分拣机械手的设计

毕业设计(论文)自动分拣机械手的设计自动分拣机械手的设计旨在解决物品分拣过程中的人力繁重和效率低下的问题。

随着电子商务的迅速发展以及物流行业的日益繁忙,传统的人工分拣方式已经无法满足快速准确的分拣需求。

因此,自动分拣机械手的研究和设计变得至关重要。

本文将详细介绍自动分拣机械手的设计主题和背景,并概述此研究的目的和意义。

通过本文的研究,我们将摸索出一种可行的自动分拣机械手设计方案,使分拣过程更加高效、准确和智能化。

这将对物流行业的发展和提升分拣效率具有重要的指导和应用意义。

通过对自动分拣机械手设计的研究,我们将展示其优势,包括提高分拣效率、降低人力成本、减少人为错误,并提高物流行业的整体竞争力。

同时,我们将探索可能的挑战和限制,以及未来进一步改进和发展的方向。

本文的研究结果将为自动分拣机械手的设计和使用提供有益的指导,并为相关领域的研究和应用提供参考。

希望通过本文的研究,能够推动自动分拣技术的进步和创新,进一步提升物流行业的发展水平。

本部分概述关于自动分拣机械手的设计的相关文献资料,介绍现有的设计方法和技术,并分析其优缺点。

本文将详细讲解自动分拣机械手的设计原理,包括其结构、工作原理、运动控制等方面的内容。

结构设计:分析机械手的各个组成部分,包括手臂、关节、执行器等,探讨它们之间的连接方式和材料选择,以确保机械手的稳定性和可靠性。

工作原理:介绍机械手在执行分拣任务时的工作原理。

包括分析机械手的传感器系统,以便准确地感知待分拣物品的位置和特征,并探讨机械手的决策逻辑和动作策略。

运动控制:探讨机械手的运动控制方法,包括位置控制、速度控制和力控制等。

讨论各种控制算法和技术,以实现机械手的高效准确运动。

通过对自动分拣机械手的设计原理进行详细讲解,希望能为相关研究和实际应用提供有价值的参考。

本章将介绍自动分拣机械手整体系统的设计,包括硬件设计和软件设计两个方面,详细说明各个组成部分的功能和相互关系。

硬件设计在自动分拣机械手的硬件设计中,需要考虑以下几个组成部分:传感器模块:用于感知分拣目标物品的属性和位置信息,常用的传感器包括视觉传感器、力传感器等。

机械手设计的任务书

机械手设计的任务书

机械手设计的任务书任务目标本项目的目标是设计并制造一款多功能机械手。

机械手应具备以下功能和特点:1.灵活性:机械手应具备多自由度的运动能力,能够完成各种复杂的动作和任务。

2.精准度:机械手在执行任务时应具备高精度的定位和控制能力,能够达到亚毫米级别的精度要求。

3.载重能力:机械手应具备一定的载重能力,能够承载和操控一定重量的物体。

4.可编程性:机械手应具备良好的可编程性,能够根据用户需求进行灵活的动作和任务调整。

5.安全性:机械手应具备安全保护机制,能够识别和避免潜在的危险情况,保障操作人员的安全。

实施方案1. 需求分析在开始设计机械手之前,首先需要进行需求分析,明确产品的具体功能和性能要求。

需求分析应包括以下方面:1.运动范围:确定机械手需要覆盖的工作区域,包括各个自由度的运动范围。

2.精度要求:确定机械手需要达到的定位和控制精度,包括静态和动态精度。

3.载重要求:确定机械手需要承载和操控的最大重量,以及稳定性要求。

4.可编程性要求:确定机械手需要具备的编程界面和功能。

5.安全性要求:确定机械手需要具备的安全保护机制,如碰撞检测和急停功能等。

2. 机械结构设计基于需求分析的结果,进行机械结构设计。

机械结构设计应包括以下内容:1.运动机构设计:确定机械手的运动机构,包括关节类型、驱动方式和传动机构等。

2.结构材料选择:选择适当的结构材料,使机械手具备足够的强度和刚度。

3.关节设计:设计机械手的各个关节,包括关节的结构和驱动方式。

4.末端执行器设计:设计机械手的末端执行器,用于操控和承载物体。

3. 控制系统设计在机械结构设计的基础上,进行控制系统设计。

控制系统设计应包括以下内容:1.传感器选择:选择适当的传感器,用于感知机械手的姿态、位置和力量等信息。

2.控制算法设计:设计机械手的控制算法,实现运动和定位控制。

3.用户界面设计:设计与机械手交互的用户界面,包括编程界面和监控界面等。

4. 安全与可靠性设计在机械手设计的过程中,安全与可靠性是非常重要的考虑因素。

机械手设计剖析

机械手设计剖析

一、总体方案设计1.1设计任务基本要求:设计一个多自由度机械手(至少要有三个自由度)将最大重量为40Kg的工件,由车间的一条流水线搬到别一条线上;二条流水线的距离为:1000mm;工作节拍为:70s;工件:最大直径为160mm 的棒料;1.2总体方案确定1.2.1自由度自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。

自由度表示了机器人灵活的尺度,在三维空间中描述一个物体的位置和姿态需要六个自由度。

机械手的自由度越多,越接近人手的动作机能,其通用性就越好,但是结构也越复杂,自由度的增加也意味着机械手整体重量的增加。

轻型化与灵活性和抓取能力是一对矛盾,,此外还要考虑到由此带来的整体结构刚性的降低,在灵活性和轻量化之间必须做出选择。

工业机器人基于对定位精度和重复定位精度以及结构刚性的考虑,往往体积庞大,负荷能力与其自重相比往往非常小。

一般通用机械手有5~6个自由度即可满足使用要求(其中臂部有3个自由度,腕部和行走装置有2~3个自由度),专用机械手有1~2个自由度即可满足使用要求。

在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一动作。

在满足前提条件上尽量使结构简单,所以我们这次选择5自由度机械手。

1.2.2机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手:特点:操作机的手臂具有三个移动关节,其关节轴线按直角坐标配置。

优缺点:结构刚度较好,控制系统的设计最为简单,但其占空间较大,且运动轨迹单一,使用过程中效率较低。

结构图:(2)圆柱坐标型机械手:特点:操作机的手臂至少有一个移动关节和一个回转关节,其关节轴线按圆柱坐标系配置。

优缺点:结构刚度较好,运动所需功率较小,控制难度较小,但运动轨迹简单,使用过程中效率不高。

结构图:( 3)球坐标(极坐标)型机械手:特点:操作机的手臂具有两个回转关节和一个移动关节,其轴线按极坐标系配置。

基于PLC的机械手控制设计(毕业设计)

基于PLC的机械手控制设计(毕业设计)

基于PLC的机械手控制设计(毕业设计)
毕业设计题目:基于PLC的机械手控制设计
设计目标:
设计一个基于PLC的机械手控制系统,能够实现机械手对物体的抓取和放置操作。

设计内容:
1. 硬件设计:选择合适的PLC控制器,根据机械手的结构和控制需求,设计电路和连接方式,包括传感器、执行器、驱动器等硬件组成部分。

2. 软件设计:编写PLC程序,实现机械手的控制逻辑。

包括对机械手运动轨迹的规划、抓取力度的控制、异常情况的处理等功能。

3. 通信设计:如果需要与其他设备或系统进行通信,设计与外部设备的接口和通信协议。

4. 安全设计:考虑机械手在工作过程中可能出现的危险情况,设计安全机制,如急停按钮、防碰撞装置等。

5. 用户界面设计:设计一个简明易懂的用户界面,方便用户对机械手进行操作和监控。

6. 系统测试和调试:对设计的控制系统进行测试和调试,保证系统的稳定性和可靠性。

7. 性能评估和改进:对设计的控制系统进行性能评估,分析系统的优点和不足,并提出改进方案。

8. 文档编写:编写毕业设计报告,包括设计方案、实施过程、测试结果和分析等内容。

预期成果:
1. 完整的机械手控制系统,能够准确抓取和放置物体。

2. 可靠的硬件设计和稳定的软件程序。

3. 安全可靠的系统设计,能够防止意外事故的发生。

4. 用户友好的界面设计,简化操作流程。

5. 毕业设计报告和相关文档。

机械手手部的设计计算

机械手手部的设计计算

机械手手部的设计计算1.1 手部设计基本要求(1)应具有适当的夹紧力和驱动力。

应当考虑到在一定的夹紧力下,不同的传动机构所需的驱动力大小是不同的。

(2)手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭合绕支点所转过的角度)γ∆,以便于抓取工件。

(3)要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。

(4)应保证手抓的夹持精度。

1.2 典型的手部结构(1)回转型包括滑槽杠杆式和连杆杠杆式两种。

(2)移动型移动型即两手指相对支座作往复运动。

(3)平面平移型。

1.3 机械手手抓的设计计算1.1.1 选择手抓的类型及夹紧装置本设计是设计平动搬运机械手的设计,考虑到所要达到的原始参数:手抓张合角γ∆=060,夹取重量为60Kg。

常用的工业机械手手部,按握持工件的原理,分为夹持和吸附两大类。

吸附式常用于抓取工件表面平整、面积较大的板状物体,不适合用于本方案。

本设计机械手采用夹持式手指,夹持式机械手按运动形式可分为回转型和平移型。

平移型手指的张开闭合靠手指的平行移动,这种手指结构简单, 适于夹持平板方料, 且工件径向尺寸的变化不影响其轴心的位置, 其理论夹持误差零。

若采用典型的平移型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。

显然是不合适的,因此不选择这种类型。

通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。

夹紧装置选择常开式夹紧装置,它在弹簧的作用下机械手手抓闭和,在压力油作用下,弹簧被压缩,从而机械手手指张开。

1.1.2 手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆 图1.1(a )为常见的滑槽杠杆式手部结构。

(a)(b)图1.1 滑槽杠杆式手部结构、受力分析1——手指 2——销轴 3——杠杆在杠杆3的作用下,销轴2向上的拉力为F ,并通过销轴中心O 点,两手指1的滑槽对销轴的反作用力为F 1和F 2,其力的方向垂直于滑槽的中心线1oo 和2oo 并指向o 点,交1F 和2F 的延长线于A 及B 。

搬运机械手的设计

搬运机械手的设计

搬运机械手的设计引言搬运机械手作为一种自动化设备,在工业生产中起着重要的作用。

它能减少人力投入,提高生产效率,降低劳动强度,增强生产线的稳定性等。

本文将介绍搬运机械手的设计原理及其相关技术要点。

设计原理搬运机械手的设计基于以下几个原理:1. 动力系统搬运机械手通常使用电动传动系统,其中包括电机、减速器和传动链条。

电机提供动力,减速器将电机的转速降低并提高扭矩,传动链条将转动动力传递到机械手的关节上。

2. 传感器系统搬运机械手需要通过传感器感知目标位置和状态,以便准确地进行搬运操作。

常用的传感器包括光电传感器、压力传感器、力传感器等。

3. 控制系统搬运机械手的控制系统负责接收传感器反响的信息,并根据预设的程序进行运动控制。

控制系统通常采用微处理器或PLC控制器,并通过编程实现机械手的自动化操作。

4. 结构设计搬运机械手的结构设计包括机械臂、夹爪和基座等局部。

机械臂由多个关节组成,可以实现各种自由度的运动。

夹爪用于抓取和放置物体,可以根据具体需求选择不同类型的夹爪。

基座用于支撑机械臂,并提供稳定的运动平台。

技术要点在设计搬运机械手时,需要注意以下技术要点:1. 选用适宜的动力系统根据需要进行搬运的物体的质量和大小,选择适当的电机功率和减速比。

要确保动力系统能够提供足够的扭矩和速度,以满足搬运操作的需求。

2. 使用适宜的传感器系统根据需要感知的信息类型选择适宜的传感器。

例如,使用光电传感器可以实现对物体位置和形状的检测,使用压力传感器可以实现对物体重量的检测。

3. 优化控制算法设计控制系统时,应根据具体情况优化控制算法,以提高机械手的运动速度和精度。

例如,可以采用反响控制算法实现位置闭环控制,以消除因外界干扰而引起的误差。

4. 结构设计的灵巧性为适应不同的搬运需求,机械臂的设计应具备一定的灵巧性。

例如,可以设计多关节机械臂,以实现更多自由度的运动,从而适应不同的工作环境和操作需求。

结论搬运机械手的设计是一个复杂而重要的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、总体方案设计1.1设计任务基本要求:设计一个多自由度机械手(至少要有三个自由度)将最大重量为40Kg的工件,由车间的一条流水线搬到别一条线上;二条流水线的距离为:1000mm;工作节拍为:70s;工件:最大直径为160mm 的棒料;1.2总体方案确定1.2.1自由度自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。

自由度表示了机器人灵活的尺度,在三维空间中描述一个物体的位置和姿态需要六个自由度。

机械手的自由度越多,越接近人手的动作机能,其通用性就越好,但是结构也越复杂,自由度的增加也意味着机械手整体重量的增加。

轻型化与灵活性和抓取能力是一对矛盾,,此外还要考虑到由此带来的整体结构刚性的降低,在灵活性和轻量化之间必须做出选择。

工业机器人基于对定位精度和重复定位精度以及结构刚性的考虑,往往体积庞大,负荷能力与其自重相比往往非常小。

一般通用机械手有5~6个自由度即可满足使用要求(其中臂部有3个自由度,腕部和行走装置有2~3个自由度),专用机械手有1~2个自由度即可满足使用要求。

在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一动作。

在满足前提条件上尽量使结构简单,所以我们这次选择5自由度机械手。

1.2.2机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手:特点:操作机的手臂具有三个移动关节,其关节轴线按直角坐标配置。

优缺点:结构刚度较好,控制系统的设计最为简单,但其占空间较大,且运动轨迹单一,使用过程中效率较低。

结构图:(2)圆柱坐标型机械手:特点:操作机的手臂至少有一个移动关节和一个回转关节,其关节轴线按圆柱坐标系配置。

优缺点:结构刚度较好,运动所需功率较小,控制难度较小,但运动轨迹简单,使用过程中效率不高。

结构图:( 3)球坐标(极坐标)型机械手:特点:操作机的手臂具有两个回转关节和一个移动关节,其轴线按极坐标系配置。

优缺点:结构紧凑,但其控制系统的设计有一定难度,且机械手臂的刚度不足,机械结构较为复杂。

结构图:(4)多关节型机机械手。

特点:操作机的手臂类似人的上肢关节动作,具有三个回转关节。

优缺点:运动轨迹复杂,结构最为紧凑,但控制系统的设计难度大,机械手臂的刚度差。

结构图:因为本次设计的三自由度机械手主要用来运输2流水线的零件,2者距离1000mm,这就要求机械手结构简单紧凑,定位精度较高,占地面积小。

根据上面4种坐标形式,我选择了圆柱坐标形式,这种形式比较符合这次设计的需要。

图1-2-3是机械手搬运物品示意图。

图中机械手的任务是将传送带A上的物品搬运到传送带B。

图1-2-3机械手搬运物品示意图1.2.3机械手的主要部件及运动在圆柱坐在圆柱坐标式机械手的基本方案选定后,根据设计任务,为了满足设计要求,本设计关于机械手具有3个自由度既:手抓张合;手臂回转;手臂升降3个主要运动。

本设计机械手主要由3个大部件:(1)手部,采用一个直线液压缸,通过机构运动实现手抓的张合。

(2)腕部,腕部是联结手部和臂部的部件,腕部运动主要用来改变被夹物体的方位,它动作灵活,转动惯性小。

本课题腕部具有回转这一个自由度,采用一个回转液压缸实现手部回转。

(3)臂部,臂是机械手机构的主要执行部件。

它的作用是支撑腕部和手部,并带动它们在空间运动。

(4)机身,机身是直接支承和传动手臂的部件。

1.2.4机械手的驱动元件在机器人驱动系统中,使用的电机类型主要有步进电机、直流伺服电机、交流伺服电机以及最近几年出现的超声波电机和HD电动机等几种。

步进电机可直接将电脉冲信号转换成转角,每输入一个脉冲,步进电机就回转一定的角度,其角度大小与脉冲数成正比,旋转方向取决于输入脉冲的顺序。

步进电机可在很宽的范围内,通过改变脉冲的频率来调速,能够快速起动、反转和制动,有较强的阻碍偏离稳定的能力。

在机器人中无位置反馈的位置控制系统中得到了广泛的应用。

直流伺服电机在机器人中应用也很广泛。

常用它直接带动滚珠丝杠驱动关节手臂关节运动。

直流伺服电机的工作原理和基本结构均与一般动力用直流电机相同。

按激磁方式直流伺服电机可分为永磁式、他激式、并激式和串激式等。

在机器人驱动系统中多采用永磁式直流伺服电机。

.交流伺服电机在机器人中的应用情况与置流伺服电机相同,但交流伺服电机与直流伺服电机相.比,,功率大、过载能力强、无电刷、环境适应性好,因而交流伺服电机是今后机器人用电机的发展方向。

低速电机主要用于系统精度要求高的机器人。

为了提高功率体积比,伺服电机制成高转速,经齿轮减速后带动机械负载。

由于齿轮传动存在间隙,系统精度不易提高,若对功率体积比要求不十分严格,而对于精度有严格的要求,则最好取消减速齿轮,采用大力矩的低速电机,配以高分辨率的光电编码器及高灵敏度的测速发电机,实现直接驱动。

环形超声波电动机具有低速大转矩的特点,使用在机器人的关节处,不需齿轮减速,可直接驱动负载,因而可大大改善功率重量比,并可利用其中空结构传递信息。

HD电动机是一种小型大转矩(大推力)的电动机,电动机可直接与负载连接,可应用在系统定位精度要求高的机器人产品中。

通过上述对几种机器人常用电机的分析和比较,综合考虑本文机械手臂并不要求有很高的扭矩,但是要求有较高精度并要求能够快速启动和制动,所以选择应用较为广泛的直流伺服电机作为驱动电机。

1.2.5机械手的技术参数列表一、用途:搬运:用于传送带间搬运二、设计技术参数:1、抓重:40Kg (夹持式手部)2、自由度数:5个自由度3、座标型式:圆柱座标4、最大工作半径:1000mm6、手臂运动参数回转范围:0~180°二、各主要组成部分设计2.1爪部机构设计2.1.1对手部设计的要求(1)对手部设计的要求(a)有适当的夹紧力手部在工作时,应具有适当的夹紧力,以保证夹持稳定可靠,变形小,且不损坏工件的已加工表面。

对于刚性很差的工件夹紧力大小应该设计得可以调节,对于笨重的工件应考虑采用自锁安全装置。

(b)有足够的开闭范围根据工件外圆大小,夹持的大小直径必须大于100mm 。

夹持类手部的手指都有张开和闭合装置。

工作时,一个手指开闭位置以最大变化量称为开闭范围。

对于回转型手部手指开闭范围,可用开闭角和手指夹紧端长度表示。

手指开闭范围的要求与许多因素有关,如工件的形状和尺寸,手指的形状和尺寸,一般来说,如工作环境许可,开闭范围大一些较好。

(c) 力求结构简单,重量轻,体积小手部处于腕部的最前端,工作时运动状态多变,其结构,重量和体积直接影响整个机械手机构的结构,抓重,定位精度,运动速度等性能。

因此,在设计手部时,必须力求结构简单,重量轻,体积小。

(d) 手指应有一定的强度和刚度(e)其它要求:因此送料,夹紧机械手机构,根据工件的形状,采用最常用的外卡式两指钳爪,夹紧方式用常闭史弹簧夹紧,松开时,用单作用式液压缸。

此种结构较为简单,制造方便。

2.1.2手部设计基本要求(1)应具有适当的夹紧力和驱动力。

应当考虑到在一定的夹紧力下,不同的传动机构所需的驱动力大小是不同的。

(2)手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭合绕支点所转过的角度)∆γ,以便于抓取工件。

(3)要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。

2.1.3机械手手抓的设计计算1.选择手抓的类型及夹紧装置本设计是设计平动搬运机械手的设计,考虑到所要达到的原始参数:手抓张60,夹取重量为30Kg。

常用的工业机械手手部,按握持工件的原理,分合角γ∆=0为夹持和吸附两大类。

吸附式常用于抓取工件表面平整、面积较大的板状物体,不适合用于本方案。

本设计机械手采用夹持式手指,夹持式机械手按运动形式可分为回转型和平移型。

平移型手指的张开闭合靠手指的平行移动,这种手指结构简单, 适于夹持平板方料, 且工件径向尺寸的变化不影响其轴心的位置, 其理论夹持误差零。

若采用典型的平移型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。

显然是不合适的,因此不选择这种类型。

通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。

夹紧装置选择常开式夹紧装置,它在弹簧的作用下机械手手抓闭和,在压力油作用下,弹簧被压缩,从而机械手手指张开。

2 、手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆图2-1-3.1为常见的滑槽杠杆式手部结构。

32 O1O21FN图2-1-3.1滑槽杠杆式手部结构图2-1-3.2滑槽杠杆式受力分析在杠杆3的作用下,销轴2向上的拉力为F ,并通过销轴中心O 点,两手指1的滑槽对销轴的反作用力为F 1和F 2,其力的方向垂直于滑槽的中心线1oo 和2oo 并指向o 点,交1F 和2F 的延长线于A 及B 。

由x F ∑=0 得 12F F = y F ∑=0 得 12cos FF α='11F F =- 由01M ∑()F =0 '1NF F=hcos ah α=F=2cos N bF aα式中 a ——手指的回转支点到对称中心的距离(mm ).α——工件被夹紧时手指的滑槽方向与两回转支点的夹角。

由分析可知,当驱动力F 一定时,α角增大,则握力N F 也随之增大,但α角过大会导致拉杆行程过大,以及手部结构增大,因此最好α=030~040。

3、夹紧力及驱动力的计算手指加在工件上的夹紧力,是设计手部的主要依据。

必须对大小、方向和作用点进行分析计算。

一般来说,需要克服工件重力所产生的静载荷以及工件运动状态变化的惯性力产生的载荷,以便工件保持可靠的夹紧状态。

手指对工件的夹紧力可按公式计算: 123N F K K K G ≥ 式中 1K ——安全系数,通常1.2~2.0;2k ——工作情况系数,主要考虑惯性力的影响。

可近似按下式估21b K a =+其中a ,重力方向的最大上升加速度;max va t =响max v ——运载时工件最大上升速度t 响——系统达到最高速度的时间,一般选取0.03~0.5s3K ——方位系数,根据手指与工件位置不同进行选择。

G ——被抓取工件所受重力(N )。

表2-1-3.1 液压缸的工作压力计算:设a=50mm,b=100mm,010<α<040;机械手达到最高响应时间为0.5s ,求夹紧力N F 和驱动力F 和 驱动液压缸的尺寸。

(1)设1 1.5K =, 5.0v a max=,g a 12+=K =1.02(a 运载工件时重力方向的最大上升加速度),30.5K = 根据公式,将已知条件带入:∴ N F =1.5⨯1.02⨯0.5⨯400=306N (2)根据驱动力公式得: 30630cos 5010022⨯⨯=)(计算F =918N (3)取0.85η= 108085.0918===η计算实际F F N (4)确定液压缸的直径D ()224F D d p π=-实际选取活塞杆直径d=0.5D,选择液压缸压力油工作压力P=0.8~1MPa,∴∴ D=75.0101108045.01p 462⨯⨯⨯⨯=-π)(π实际F =0.042 根据表2-1-3.2(JB826-66),选取液压缸内径为:D=50mm表2-1-3.2 液压缸的内径系列(JB826-66)则活塞杆内径为:d=50⨯0.5=25mm ,选取d=25mm4、活塞杆长度与手指长度的计算计算为了保证手抓张开角为060,活塞杆运动长度为34mm 。

相关文档
最新文档