实验报告OSPF动态路由的配置

合集下载

第6章 OSPF路由协议配置

第6章 OSPF路由协议配置

6.1.2 链路状态协议的工作原理
1. 发现邻居 向所有可用网络发送Hello分组,依靠这种Hello协议,链路状态协议 实现邻居的发现。
2. 数据库同步 在确定了邻居之后,路由器将进行链路状态数据库(LSDB)的同步,主 要包括以下三个过程: (1)创建链路状态通告(LSA) 在创建链路状态通过的过程中,其中一个重要的步骤是计算出每个接 口的度量值。在OSPF中使用代价(cost)作为度量值。Cost为1到65535之间 的一个整数。不同厂商的代价计算方法不尽相同,但其一般原则是带宽越 高,代价越小(越优先)。思科的代价计算公式是108/带宽。 如果带宽大于100M的话,将产生1个小于1的小数,这是不允许的.因此从 IOS版本11.2之后,可以使用命令ospf auto-cost reference-bandwidth 来 修正这个问题,允许管理者更改缺省的参考带宽。
第6章 OSPF动态路由的配置
(时间:8学时)
第6章 动态路由的配置
学习目的与要求:
动态路由协议能够动态地反映网络的状态,当网络发 生变化时,网络中的路由器会把这个消息通告给其他的路 由器,最终所有的路由器将知道网络的变化,及时调整路 由表,从而保证数据包的正常传输。 学完本章,你将能够: 描述链路状态路由协议原理 熟练配置OSPF路由
6.2.1
OSPF协议概述
OSPF是开放标准同时性能远强于RIP协议,因此在大中型 网络中OSPF协议得到了普遍使用,其特点如下: (1)OSPF是自治系统内部使用的协议即内部网关协议,是 基于链路状态算法的路由协议。 (2)OSPF使用IP分组直接封装OSPF协议报文,协议号是89。 OSPF数据包的TTL值被设为1,即OSPF数据包只能被传送到 一跳范围之内的邻居路由器。 (3)OSPF当前主要使用的版本是针对IPv4开发的OSPFv2, 其协议的具体描述在RFC2328中。另外针对IPv6的OSPFv3 也开始使用,在RFC2470中确定了OSPFv3的基本标准。 (4)OSPF能快速收敛,当网络拓扑发生变化时,OSPF可以 立即发送更新报文,使这一变化在自治系统中同步。同时 OSPF这种不定时广播路由,也节省了带宽资源。

13实验十三三层交换机OSPF动态路由

13实验十三三层交换机OSPF动态路由

13实验⼗三三层交换机OSPF动态路由实验⼗三三层交换机OSPF 动态路由⼀、实验⽬的1. 掌握三层交换机之间通过 OSPF 协议实现⽹段互通的配置⽅法。

2. 理解 RIP 协议和 OSPF 协议内部实现的不同点。

⼆、应⽤环境当两台三层交换机级联时,为了保证每台交换机上所连接的⽹段可以和另⼀台交换机上连接的⽹段互相通信,最简单的⽅法就是设置静态路由。

三、实验设备1.DCRS-5650-28C 交换机 2 台2.PC 机 2—4 台PC1PC2 PC1PC3PC4五、实验要求1.在交换机A 和交换机B 上分别划分基于端⼝的VLAN:2.交换机A 和B 通过的24 ⼝级联。

3.配置交换机A 和B 各VLAN 虚拟接⼝的IP 地址分别如下表所⽰:4.PC1-PC4 的⽹络设置为:5.验证:没有OSPF路由之前:PC1 与PC2,PC3 与PC4 可以互通。

PC1、PC2 与PC3、PC4 不通。

配置OSPF路由之后:四台PC 之间都可以互通。

若实验结果和理论相符,则本实验完成。

六、实验步骤1.交换机恢复出⼚设置(以交换机A为例,交换机B配置步骤同A)DCRS-5650-28C>enableDCRS-5650-28C#set defaultAre you sure? [Y/N] = yDCRS-5650-28C#writeDCRS-5650-28C#reload Process with reboot? [Y/N] y2. 创建vlan10和vlan20、vlan100 和并给相应vlan添加端⼝。

DCRS-5650-01(Config)#vlan 10DCRS-5650-01(Config-Vlan10)#switchport interface ethernet1/1-8DCRS-5650-01(Config-Vlan10)#exitDCRS-5650-01(Config)#vlan 20DCRS-5650-01(Config-Vlan20)#switchport interface ethernet 1/9-16 DCRS-5650-01(Config-Vlan20)#exitDCRS-5650-01(Config)#vlan 100DCRS-5650-01(Config-Vlan100)#switchport interface ethernet 1/24 Set the port Ethernet1/24 access vlan 100 successfullyDCRS-5650-01(Config-Vlan100)#exitDCRS-5650-01#show vlan3.配置交换机各vlan虚接⼝的IP地址1)开启三层转发功能(默认情况下此功能关闭,若要配置多个IP,需要先开启此功能)DCRS-5650-01((Config)#l3 enable (此命令不能⾃动补全,需⼿动输⼊)2)分别给Vlan 10 与Vlan 20、vlan100配置IP地址DCRS-5650-01(Config)#int vlan 10DCRS-5650-01(Config-If-Vlan10)#ip address 192.168.10.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan10)#no shutDCRS-5650-01(Config-If-Vlan10)#exitDCRS-5650-01(Config)#int vlan 20DCRS-5650-01(Config-If-Vlan20)#ip address 192.168.20.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan20)#no shutDCRS-5650-01(Config-If-Vlan20)#exitDCRS-5650-01(Config)#int vlan 100DCRS-5650-01(Config-If-Vlan100)#ip address 192.168.100.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan100)#no shutDCRS-5650-01(Config-If-Vlan100)#exit4.配置各PC的IP地址,注意配置⽹关验证PC之间是否连通:查看路由表,进⼀步分析上⼀步的现象原因。

实验 OSPF路由协议的配置与应用

实验  OSPF路由协议的配置与应用

OSPF路由协议的配置与应用一、实验目的1.理解三层交换机的工作原理;2.理解OSPF路由协议的工作原理;3. 掌握虚拟局域网VLAN的设置;4.掌握OSPF路由协议的配置方法。

二、实验内容1. 根据网络拓扑图,组建网络;2. 配置VLAN、设备互联地址、模拟终端IP地址;3. 配置OSPF路由协议,计算动态路由表;4. 测试网络互联互通。

三、实验步骤1、根据网络拓扑图,组建网络。

如图所示,其中路由器Router1和Router3之间使用V.35 DTE/DCE线缆进行连接,三层交换机Switch中端口Ethernet1/0/1~Ethernet1/0/2属于VLAN 20,而端口Ethernet 1/0/24属于VLAN 10。

2.三层交换机Switch的配置#进入系统视图<Switch >system-view#创建VLAN 10,并配置接口IP地址[Switch]vlan 10[Switch-vlan10] interface vlan-interface 10[Switch -Vlan-interface10]ip address 192.168.111.2 255.255.255.252#将端口Ethernet 1/0/24加入到VLAN 10中[Switch -Vlan-interface10]vlan 10[Switch-vlan10]port Ethernet 1/0/24#创建VLAN 20,并配置接口IP地址[Switch -Vlan-interface10]vlan 20[Switch-vlan20]interface vlan-interface 20[Switch –Vlan-interface20]ip address 192.168.112.1 255.255.255.0 #将端口Ethernet 1/0/1~1/0/2加入到VLAN 20中[Switch –Vlan-interface20]vlan 20[Switch-vlan20] port Ethernet 1/0/1 to Ethernet 1/0/2#退出VLAN视图,进入系统视图[Switch-vlan20]quit#配置交换机Router-ID[Switch]router id 1.1.1.1#创建OSPF进程并进入OSPF视图[Switch]ospf#在OSPF视图下创建区域0并进入区域视图[Switch-ospf-1]area 0#指定属于该区域的接口网段[Switch-ospf-1]network 192.168.111.0 0.0.0.3[Switch-ospf-1]network 192.168.112.0 0.0.0.2553.路由器Router1的配置#进入系统视图<Router1>system-view#配置端口Ethernet 0/1的IP地址[Router1]interface ethernet 0/1[Router1-Ethernet0/1]ip address 192.168.111.1 255.255.255.252#配置端口Serial 1/0的IP地址[Router1-Ethernet0/1]interface serial 1/0[Router1-Serial1/0]ip address 202.1.1.1 255.255.255.252#配置路由器Router-ID[Router1-Serial1/0]quit[Router1]router id 2.2.2.2#创建OSPF进程并进入OSPF视图[Router1]ospf#在OSPF视图下创建区域0并进入区域视图[Router1-ospf-1]area 0#指定属于该区域的接口网段[Router1-ospf-1-area-0.0.0.0]network 192.168.111.0 0.0.0.3[Router1-ospf-1-area-0.0.0.0]network 202.1.1.0 0.0.0.34.路由器Router2的配置#进入系统视图<Router2>system-view#配置以太网接口0/1的IP地址[Router2]interface loopback 0[Router2-Loopback0]ip address 192.168.113.1 255.255.255.255#配置端口Serial 1/0的IP地址[Router2]interface serial 1/0[Router2-Serial1/0]ip address 202.1.1.2 255.255.255.252#配置路由器Router-ID[Router2-Serial1/0]quit[Router2]router id 3.3.3.3#创建OSPF进程并进入OSPF视图[Router2]ospf#在OSPF视图下创建区域0并进入区域视图[Router2-ospf-1]area 0#指定属于该区域的接口网段[Router2- ospf-1-area-0.0.0.0]network 202.1.1.0 0.0.0.3 [Router2- ospf-1-area-0.0.0.0]network 192.168.113.0 05.实验结果验证1) 查看三层交换机Switch的路由表[Switch] display ip routing-tableRouting Tables: PublicDestinations :8 Routes : 82) 查看路由器Router1的路由表[Router1] display ip routing-tableRouting Tables: PublicDestinations : 9 Routes : 93) 查看路由器Router2的路由表[Router2] display ip routing-tableRouting Tables: PublicDestinations : 9 Routes : 94) 在PC1的“命令提示符”下输入ping 192.168.103.2,结果如图4-15所示;反之,从PC3同样可以ping通PC1和PC2。

路由协议配置实验报告心得

路由协议配置实验报告心得

路由协议配置实验报告心得引言路由协议配置实验是计算机网络课程中的一项重要实践环节,通过实验可以让学生深入理解和掌握路由协议的原理和配置方法。

本文将结合个人的实验经验,分享在路由协议配置实验中的心得和体会。

实验背景在计算机网络中,路由协议是实现网络互连和数据包转发的重要组成部分。

常见的路由协议包括RIP(Routing Information Protocol)和OSPF (Open Shortest Path First)等,它们通过在路由器之间交换路由信息,确定最佳路径并进行数据转发。

在实验中,我们将通过配置路由器上的协议参数,模拟网络环境并观察路由器之间的交互情况。

实验目的该实验的主要目的是让学生通过实践,掌握以下技能:1. 熟悉路由器的基本配置和命令行操作;2. 理解和配置常见的动态路由协议(如RIP和OSPF);3. 搭建网络拓扑,观察路由器之间的路由信息交换过程;4. 分析和解决网络故障,优化网络性能。

实验步骤实验中,我针对RIP和OSPF两种协议进行了配置实验。

具体步骤如下:1. 准备实验环境:搭建一定规模的虚拟网络拓扑,并将路由器、交换机等网络设备连接起来;2. 初始化路由器:设置路由器的基本参数,如IP地址、子网掩码等;3. 配置RIP协议:通过命令行配置路由器上的RIP协议,设置路由器之间的邻居关系和路由信息的交换方式;4. 配置OSPF协议:同样通过命令行配置路由器上的OSPF协议,设置路由器之间的邻居关系和链路状态数据库的同步方式;5. 观察实验结果:检查路由表和链路状态数据库的变化,验证路由协议的正常工作;6. 优化网络:根据实验结果,对网络进行优化调整,如调整路由器的权重、修改链路成本等;7. 解决故障:模拟网络故障,观察路由器的恢复过程,并尝试解决故障。

实验心得通过参与路由协议配置实验,我深刻体会到了以下几个方面的重要性:理论与实践相结合在课堂上学习了路由协议的相关理论知识后,实验为我们提供了一个将理论应用于实践的机会。

OSPF动态路由的配置网络地址转换NAT设置

OSPF动态路由的配置网络地址转换NAT设置

4.OSPF动态路由的配置OSPF(Open Shortest Path First开放式最短路径优先)[1]是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。

与RIP相比,OSPF是链路状态路由协议,而RIP是距离矢量路由协议。

OSPF的协议管理距离(AD)是110。

OSPF协议主要优点:1、OSPF是真正的LOOP- FREE(无路由自环)路由协议。

源自其算法本身的优点。

(链路状态及最短路径树算法)2、OSPF收敛速度快:能够在最短的时间内将路由变化传递到整个自治系统。

3、提出区域(area)划分的概念,将自治系统划分为不同区域后,通过区域之间的对路由信息的摘要,大大减少了需传递的路由信息数量。

也使得路由信息不会随网络规模的扩大而急剧膨胀。

4、将协议自身的开销控制到最小。

OSPF域内HDLCHDLC——面向比特的同步协议:High Level Data Link Control(高级数据链路控制规程)。

HDLC是面向比特的数据链路控制协议的典型代表,该协议不依赖于任何一种字符编码集;数据报文可透明传输,用于实现透明传输的“0比特插入法”易于硬件实现;全双工通信,有较高的数据链路传输效率;所有帧采用CRC检验,对信息帧进行顺序编号,可防止漏收或重份,传输可靠性高;传输控制功能与处理功能分离,具有较大灵活性。

OSPF域内PPP连接的设置公私合作关系(PPP,public-private partnership)是公共基础设施项目(如新的电信系统、机场和电厂)的一个资助模式。

PPP具有处理错误检测、支持多个协议、允许在连接时刻协商IP地址、允许身份认证等功能。

适合于调制解调器、HDLC位序列线路、SONET和其它的物理层上使用。

它支持错误检测、选项协商、头部压缩以及使用HDLC类型帧格式(可选)的可靠传输5.网络地址转换NAT设置网络地址转换(NAT,Network Address Translation)属接入广域网(WAN)技术,是一种将私有(保留)地址转化为合法IP地址的转换技术,它被广泛应用于各种类型Internet接入方式和各种类型的网络中。

动态路由配置实验报告

动态路由配置实验报告

1. 了解动态路由协议的基本原理和工作机制;2. 掌握RIP和OSPF两种动态路由协议的配置方法;3. 通过实验,提高网络配置和故障排查能力。

二、实验环境1. 路由器:2台Cisco 2960系列路由器;2. 计算机客户端:2台PC机;3. 网线:2根直通网线,2根交叉网线;4. 路由器配置软件:Tera Term或PuTTY。

三、实验拓扑实验拓扑图如下:```+------+ +------+ +------+| PC1 |---->| R1 |---->| R2 |---->| PC2 |+------+ +------+ +------+```四、实验步骤1. 配置PC1和PC2的IP地址、子网掩码和默认网关;2. 配置R1和R2的接口IP地址、子网掩码和默认网关;3. 配置R1和R2的RIP动态路由协议;4. 验证PC1和PC2之间的连通性;5. 配置OSPF动态路由协议,验证网络连通性;6. 修改R1或R2的配置,观察网络连通性变化,分析故障原因。

1. 配置PC1和PC2的IP地址、子网掩码和默认网关PC1的IP地址:192.168.1.1,子网掩码:255.255.255.0,默认网关:192.168.1.2PC2的IP地址:192.168.2.1,子网掩码:255.255.255.0,默认网关:192.168.2.22. 配置R1和R2的接口IP地址、子网掩码和默认网关R1的接口配置如下:R1(config)#interface FastEthernet0/0R1(config-if)#ip address 192.168.1.2 255.255.255.0R1(config-if)#no shutdownR1的接口配置如下:R2(config)#interface FastEthernet0/0R2(config-if)#ip address 192.168.2.2 255.255.255.0R2(config-if)#no shutdown3. 配置R1和R2的RIP动态路由协议R1的RIP配置如下:R1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 192.168.2.0R2的RIP配置如下:R2(config)#router ripR2(config-router)#network 192.168.1.0R2(config-router)#network 192.168.2.04. 验证PC1和PC2之间的连通性在PC1上ping PC2的IP地址,发现无法ping通。

网络实验6路由器OSPF动态路由配置,路由器综合路由配置

网络实验6路由器OSPF动态路由配置,路由器综合路由配置

《网络原理与技术实验》实验报告实验名称:路由器OSPF动态路由配置,路由器综合路由配置评分:________班级:学号:姓名:实验目的:●掌握OSPF协议的配置方法:●掌握查看通过动态路由协议OSPF学习产生的路由;●熟悉广域网线缆的链接方式;实验原理:OSPF开放式最短路径优先协议,是目前网路中应用最广泛的路由协议之一。

属于内部网管路由协议,能够适应各种规模的网络环境,是典型的链路状态协议。

OSPF 路由协议通过向全网扩散本设备的链路状态信息,使网络中每台设备最终同步一个具有全网链路状态的数据库,然后路由器采用OSPF算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。

实验拓扑图:实验步骤:新建packet tracer拓扑图(1)在本实验中的三层交换机上划分VLAN10和VLAN20,其中VLAN10用于连接校园网主机,VLAN20用于连接R1。

(2)路由器之间通过V35电缆通过串口连接,DCE端连接在R1上,配置其时钟频率64000。

(3)主机和交换机通过直连线,主机与路由器通过交叉线连接。

(4)在S3560上配置OSPF路由协议。

(5)在路由器R1、R2上配置OSPF路由协议。

(6)将PC1、PC2主机默认网关设置为与直连网路设备接口IP地址。

(7)验证PC1、PC2主机之间可以互相同信;PC1IP: 192.168.1.2Submask: 255.255.255.0Gateway: 192.168.1.1PC2IP: 192.168.2.2Submask: 255.255.255.0Gateway: 192.168.2.1S3560enconf thostname S3569vlan 10exitvlan 20interface fa 0/10switchport access vlan 10exitint fa 0/20switchport access vlan 20exitinterface vlan 10ip address 192.168.1.1 255.255.255.0 no shutdownexitinterface vlan 20ip address 192.168.3.1 255.255.255.0 no shutdownendshow ip route //空的conf tip routingrouter ospf 1network 192.168.1.0 0.0.0.255 area 0 network 192.168.3.0 0.0.0.255 area 0 endshow ip route实验程序执行结果:实验二实验目标:掌握综合路由器的配置方法;掌握查看通过路由重分布学习产生的路由;熟悉广域网线缆的链接方式;技术原理:为了支持本设备能够运行多个路由协议进程,系统软件提供了路由信息从一个路由进程重分布到另一个路由进程的功能。

计算机网络路由配置组网实验报告

计算机网络路由配置组网实验报告

路由配置组网实验路由器组网一、实验目的通过路由建立起网络之间的连接,熟悉路由器的基本操作命令,并掌握组网的基本技术。

二、实验设备路由器两台(华为),V.35电缆一对,集线器两台,学生实验主机。

三、实验内容和要求给定3个C类网络地址:192.168.1.0,192.168.2.0,192.168.3.0。

1.请按下面的网络图作出网络规划。

并写出路由器的端口地址和各节点网络地址。

2.配置静态路由,使R1和R2两边的机器能够互相连通。

3.配置动态路由RIP和OSPF,使R1和R2两边的机器能够互相连通。

四、实验步骤1.进行端口配置路由器R1:[Quidway]int e0[Quidway-Ethernet0]ip addr 192.168.1.6 255.255.255.0[Quidway-Ethernet0]undo shutdown[Quidway-Ethernet0]int s0[Quidway-Serial0]ip addr 192.168.2.3 255.255.255.0[Quidway-Serial0]clock rate 64000[Quidway-Serial0]undo shutdown路由器R2:[Quidway]int e0[Quidway-Ethernet0]ip addr 192.168.3.6 255.255.255.0[Quidway-Ethernet0]int s0[Quidway-Serial0]ip addr 192.168.2.4 255.255.255.0[Quidway-Serial0]clock rate 64000[Quidway-Serial0]undo shutdownR1连接的三台主机配置:A:ifconfig eth0 192.168.1.1 netmask 255.255.255.0Route add default gw 192.168.1.6B:ifconfig eth0 192.168.1.2 netmask 255.255.255.0Route add default gw 192.168.1.6C:ifconfig eth0 192.168.1.3 netmask 255.255.255.0Route add default gw 192.168.1.6R2连接的三台主机配置:A:ifconfig eth0 192.168.3.1 netmask 255.255.255.0Route add default gw 192.168.3.6B:ifconfig eth0 192.168.3.2 netmask 255.255.255.0Route add default gw 192.168.3.6C:ifconfig eth0 192.168.3.3 netmask 255.255.255.0Route add default gw 192.168.3.62.静态路由配置路由器R1:[Quidway]ip routing[Quidway]ip route-static 192.168.3.0 255.255.255.0 192.168.2.4 路由器R2:[Quidway]ip routing[Quidway]ip route-static 192.168.1.0 255.255.255.0 192.168.2.33.动态路由配置4.1 RIP配置:路由器R1:[Quidway]undo ip route 192.168.3.0 255.255.255.0 192.168.2.4[Quidway]rip[Quidway-rip]network 192.168.1.0[Quidway]display ip routeRouting Table:Destination/Mask Proto perf Mertic Nexthop interface192.168.1.0/24 Direct 0 0 127.0.0.1 FastEthernet0/0 192.168.2.0/24 Direct 0 0 127.0.0.1 Serial0/0192.168.3.0/24 Static 60 x next hop error!192.168.3.0/24 RIP 100 1 192.168.2.4 Serial0/0路由器R2:[Quidway]rip[Quidway-rip]network 192.168.3.0[Quidway]undo ip route 192.168.1.0 255.255.255.0 192.168.2.3[Quidway]display ip routeRouting Table:Destination/Mask Proto perf Mertic Nexthop interface192.168.3.0/24 Direct 0 0 127.0.0.1 FastEthernet0/0 192.168.2.0/24 Direct 0 0 127.0.0.1 Serial0/0192.168.1.0/24 Static 60 x next hop error!192.168.1.0/24 RIP 100 1 192.168.2.3 Serial0/04.2 OSPF配置:路由器R1:[Quidway]router id 127.0.0.6[Quidway]ospf enable[Quidway]import-route direct[Quidway]ospf enable area 0路由器R2:[Quidway]router id 127.0.0.6[Quidway]ospf enable[Quidway]import-route direct[Quidway]ospf enable area 0五、实验总结本次实验内容比较简单,而且有比较完善的参考资料可以查阅,真正做起来本应该没有难度,但是还是出现了不少问题,可能是在模拟器上做和真机上做有些差异吧。

开放式最短路径优先路由协议OSPF 配置实验报告

开放式最短路径优先路由协议OSPF 配置实验报告
Router(config-if)#
%LINK-5-CHANGED: Interface Serial0/1/1, changed state to up
Router(config-if)#exit
Router(config)#route ospf 1
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0
Router(config-if)#route ospf 1//启用OSPF协议,ID号为1
Router(config-router)#network 192.168.0.0 0.0.0.255 area 0//发布网络
Router(config-router)#network 172.16.0.0 0.0.0.255 area 0
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface FastEthernet0/0
Router(config-if)#ip address 172.18.0.1 255.255.255.0
Router(config-router)#network 192.168.1.
00:13:29: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.1.1 on Serial0/1/0 from LOADING to
FULL, Loading Done0 0.0.0.255 area 0
Router(config-if)#ip address 10.1.1.1 255.255.255.0

实验报告OSPF动态路由的配置

实验报告OSPF动态路由的配置

实验报告OSPF动态路由的配置一、实验目的学习理解OSPF协议的基本概念和原理,熟悉如何在路由器上进行OSPF协议的配置,了解动态路由的优势和使用场景。

二、实验设备及环境1.两台Cisco路由器,型号为CISCO 1941。

2.一台PC,用于通过远程终端软件进行配置。

三、实验步骤及结果1.配置基本网络环境在路由器上面配置基本网络,包括路由器的IP地址、掩码、路由器名称等。

2.配置OSPF协议OSPF协议是一种链路状态协议,通过洪泛算法计算网络拓扑,并为该拓扑分配最短路径,从而获得网络路由信息。

因此,在进行OSPF协议的配置时,需要比较细致的考虑网络拓扑结构和各个节点的IP地址等信息。

在路由器上进行OSPF协议的配置步骤如下:(1)进入路由器命令行界面,输入en命令进入enable模式。

(2)输入conf t命令进入全局配置模式。

(3)输入router ospf 1命令进入OSPF配置模式,其中的数字1表示一个process id,是用来识别一个ospf进程的唯一标志。

(4)输入network 192.168.1.0 0.0.0.255 area 0命令为第一个路由器添加一个网络,其中192.168.1.0是网络的IP地址,0.0.0.255是子网掩码,area 0表示这个网络为区域0。

同样的,我们可以为第二个路由器添加一个网络。

(5)保存配置命令为write memory。

3.查看OSPF协议的状态和路由表信息在路由器上可以通过show命令查看OSPF协议的状态和路由表信息,具体步骤如下:(1)输入en进入enable模式,再输入show ip protocols命令查看OSPF协议的状态。

(2)输入show ip route命令查看路由表信息,其中O表示该路由为OSPF路由。

四、实验结果分析通过以上步骤的配置,可以让两台路由器之间建立起OSPF协议的动态路由,它可以实现自动学习网络拓扑结构,获得最短路径并自动更新路由表信息,从而提高网络的可靠性和拓展性。

实验6.3-OSPF动态路由的配置

实验6.3-OSPF动态路由的配置

图6-26 RIP动态路由配置网络拓扑图
步骤2配置PC机的IP地址、子网掩码和默认网关地址
分别按图6-27、6-28、6-29配置PC机的IP地址、子网掩码和默认网关地址。

图6-27 PC1的IP配置图6-28 PC2的IP配置
图6-29 PC3的IP配置
步骤3 配置路由器的接口
分别对3台路由器的快速以太网口和串口配置IP地址,并激活。

图6-30 Router1的接口配置
图6-31 Router2的接口配置配置Router3的快速以太网接口和串口,见图6-32。

图6-32 Router3的接口配置
图6-33 Router1的路由信息
只有两条和Router1直接相连的直连路由信息,到其他网络没有路由。

C 10.0.0.0/8 is directly connected, Serial2/0 表示网络10.0.0.0/8通过串口Serial2/0与本路由器
步骤5检验网络的连通性
在主机PC1的命令行分别输入ping PC2和PC3的IP地址的命令,如图6-34所示。

超时,表明PC1与PC2、PC3尚未连通。

图6-34 用ping命令检测PC1至PC2和PC3的连通性步骤6配置OSPF动态路由协议
在全局配置模式下分别对每台路由器配置OSPF协议
Router1的配置命令如下:
图6-38 配置完OSPF协议后的Router1的路由表信息
从图中可看出增加了三条以O为标志的路由记录,表明是通过OSPF协议动态获得的至其他三
图6-39 查询Router1的路由协议信息
图6-40 用ping命令检测PC1至PC2和PC3的连通性。

实验3-路由器配置 实验报告

实验3-路由器配置 实验报告

实验3-路由器配置实验报告实验 3 路由器配置实验报告一、实验目的本次实验的主要目的是让我们熟悉和掌握路由器的基本配置方法,包括网络地址的分配、路由协议的设置、访问控制列表的配置等,从而能够搭建和管理一个简单的网络环境,提高我们对网络原理和技术的理解和应用能力。

二、实验环境1、硬件环境若干台计算机路由器设备(型号:_____)2、软件环境操作系统:Windows 10终端模拟软件:SecureCRT三、实验原理1、路由器的作用路由器是网络中的核心设备,负责连接不同的网络,并根据网络地址和路由协议选择最佳的路径来转发数据包,实现不同网络之间的通信。

2、 IP 地址分配为了使网络中的设备能够相互通信,需要为每个设备分配唯一的 IP 地址。

IP 地址分为网络地址和主机地址两部分,通过子网掩码来划分。

3、路由协议常见的路由协议有静态路由和动态路由。

静态路由需要手动配置每一条路由信息,适用于小型网络;动态路由协议如 RIP、OSPF 等可以自动学习和更新路由信息,适用于大型复杂网络。

4、访问控制列表访问控制列表(ACL)用于控制网络中的数据包流量,根据源地址、目的地址、端口号等条件对数据包进行过滤和允许或拒绝操作。

四、实验步骤1、连接设备将计算机通过串口线或网线连接到路由器的相应接口,并打开终端模拟软件建立连接。

2、进入特权模式在终端中输入用户名和密码登录路由器,然后输入“enable”命令进入特权模式。

3、配置接口 IP 地址进入接口配置模式,例如“interface ethernet 0/0”。

配置 IP 地址和子网掩码,如“ip address 19216811 2552552550”。

4、配置静态路由使用“ip route”命令配置静态路由,例如“ip route 19216820 2552552550 19216812”,表示目标网络为 19216820/24,下一跳地址为19216812。

5、配置动态路由协议(以 RIP 为例)启用 RIP 协议,输入“router rip”。

两台三层交换机单区域OSPF动态路由实验

两台三层交换机单区域OSPF动态路由实验

两台三层交换机单区域OSPF动态路由实验⼀、实验⽬的1、掌握三层交换机之间通过OSPF协议实现⽹段互通的配置⽅法。

2、理解RIP协议和OSPF协议内部实现的不同点⼆、应⽤环境当两台三层交换机级联时,为了保证每台交换机上所连接的⽹段可以和另⼀台交换机上连接的⽹段互相通信,使⽤OSPF协议可以动态学习路由。

三、实验拓扑四、实验要求1、在交换机A和交换机B上分别划分基于端⼝的VLAN:交换机VLAN 端⼝成员交换机A101~8209~1610024交换机B301~8409~16101242、交换机A和B通过的24⼝级联。

3、配置交换机A和B各VLAN虚拟接⼝的IP地址分别如下表所⽰:VLAN10VLAN20VLAN30VLAN40VLAN100VLAN101192.168.10.1192.168.20.1192.168.30.1192.168.40.1192.168.100.1192.168.100.24、 PC1-PC4的⽹络设置为:设备IP地址gateway MaskPC1 192.168.10.101192.168.10.1255.255.255.0PC2 192.168.20.101192.168.20.1255.255.255.0PC3192.168.30.101192.168.30.1255.255.255.0PC4 192.168.40.101 192.168.40.1255.255.255.0五、实验步骤:1、给主机设IP,划分VLAN,给VLAN划分端⼝,给VLAN设IPSwitch>enableSwitch#configConfiguring from terminal, memory, or network [terminal]?Enter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname SwitchASwitchA(config)#vlan 100SwitchA(config-vlan)#exitSwitchA(config)#vlan 10SwitchA(config-vlan)#exitSwitchA(config)#vlan 20SwitchA(config-vlan)#exitSwitchA(config)#interface fastEthernet 0/24SwitchA(config-if)#switchport access vlan 100SwitchA(config)#interface range fastEthernet 0/1-10SwitchA(config-if-range)#switchport access vlan 10SwitchA(config-if-range)#interface range fastEthernet 0/11-20SwitchA(config-if-range)#switchport access vlan 20SwitchA(config-if-range)#exitSwitchA(config)#SwitchA(config)#interface vlan 100SwitchA(config-if)#ip address 192.168.100.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#interface vlan 10SwitchA(config-if)#ip address 192.168.10.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#interface vlan 20SwitchA(config-if)#ip address 192.168.20.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#exit查看SwitchA(config)#router ?eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)ospf Open Shortest Path First (OSPF)rip Routing Information Protocol (RIP)SwitchA(config)#router ospf ?<1-65535> Process ID2、启⽤ospf 动态路由、宣告⽹段(network ⽹络地址反掩码区域号)SwitchA(config)#router ospf 1SwitchA(config-router)#network 192.168.10.0 0.0.0.255 area 0 SwitchA(config-router)#network 192.168.20.0 0.0.0.255 area 0 SwitchA(config-router)#network 192.168.100.0 0.0.0.255 area 0 SwitchA(config-router)# 3、当两个交换机都设置完成后,查看设置的结果如下:SwitchA#show ip routePS:另⼀个交换机配置与之类似六、实验结果:1、没有OSPF路由协议之前:PC1与PC2,PC3与PC4可以互通。

动态路由OSPF实验实例

动态路由OSPF实验实例

动态路由OSPF实验实例A 步骤一(基本配置):R1上的命令:enconfig terminalhostname R1interface fastethernet0/0ip address 192.168.0.254 255.255.255.0interface serial1/0ip address 10.0.0.1 255.0.0.0clock rate 72000no shutdownR2上的命令:enconfig terminalhostname R2interface fasterethernet0/0ip address 192.168.1.254 255.255.255.0 no shutdowninterface serial1/0ip address 10.0.0.2 255.0.0.0clock rate 72000步骤二(动态路由OSPF配置):注意哦:R1和R2动态路由OSPF配置要在全局模式下(config)#R1上的命令:R1(config)#route ospf 10 //10是进程号(0—99)R1(config-router)#network 192.168.0.0 0.0.0.255 area 0R1(config-router)#network 10.0.0.0 0.255.255.255 area 0endwrite //存盘R2上的命令:Router(config)#route ospf 20Router(config-router)#network 192.168.1.0 0.0.0.255 area 0Router(config-router)#network 10.0.0.0 0.255.255.255 area 0endwrite步骤三(pc的配置):pc1的IP 设为192.168.0.1 255.255.255.0pc2的IP 设为192.168.1.1 255.255.255.0B 查看路由配置用show ip routeR1上显示:R1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 10.0.0.0/8 is directly connected, Serial1/0C 192.168.0.0/24 is directly connected, FastEthernet0/0O 192.168.1.0/24 [110/782] via 10.0.0.2, 00:00:29, Serial1/0R2上显示:R2#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 10.0.0.0/8 is directly connected, Serial1/0C 192.168.0.0/24 is directly connected, FastEthernet0/0O 192.168.1.0/24 [110/782] via 10.0.0.2, 00:00:29, Serial1/0C 用PC1机器去PING pc2能通则静态路配置成功。

OSPF动态路由的配置实验报告

OSPF动态路由的配置实验报告
Router(config-router)#network 192.168.20.0 0.0.0.255 area 0
Router(config-router)#network 192.168.20.0 0.0.0.255 area 0
Router(config-router)#network 30.1.1.1 0.0.0.0 area 0
Router(config-router)#network 192.168.30.0 0.0.0.255 area 0
Router(config-router)#network 10.1.1.1 0.0.0.0 area 0
Router(config-router)#exit
Router(config)#
Router(config-if)#ip add 192.168.30.1 255.255.255.0
Router(config-if)#exit
Router(config)#router ospf 10
Router(config-router)#exit
Router(config)#int loopback1
Router(config-if)#ip add 50.1.1.1 255.255.255.255
Router(config-if)#exit
Router(config)#router ospf 10
Router(config-router)#network 192.168.20.0 0.0.0.255 area 0
Router(config-if)#no shutdown
Router(config-if)#ip add 192.168.10.1 255.255.255.0

OSPF协议的动态配置及其实现研究的开题报告

OSPF协议的动态配置及其实现研究的开题报告

OSPF协议的动态配置及其实现研究的开题报告一、论文题目OSPF协议的动态配置及其实现研究二、研究背景和意义随着计算机网络技术的不断发展,网络规模和复杂度越来越大,网络拓扑结构也变得多样化。

在这个情况下,路由协议的选择成为了一个重要的问题。

在许多实际的网络环境中,Open Shortest Path First (OSPF)协议是一种被广泛采用的协议。

OSPF是一种基于链路状态的内部网关协议,它通过在网络中收集链路状态并计算最短路径来转发数据包。

OSPF协议具有优秀的路由优化和快速收敛性能,可以减少网络中的冗余信息和重复路由,提高网络的稳定性和效率。

在现实应用中,网络管理员可能需要经常更新网络拓扑结构和调整路由策略,以适应网络的不断变化。

因此,OSPF协议的动态配置和实现研究具有重要的意义。

三、研究内容1. OSPF协议的基本原理和算法分析;2. OSPF协议的动态配置模型研究,包括路由器的配置管理、网络拓扑结构的动态调整和路径选择策略的变更等方面;3. OSPF协议的实现分析和设计,探讨实现过程中的关键技术和实现方法;4. OSPF协议动态配置和实现的实验验证,证明所提出的方法和技术的可行性和有效性。

四、研究方法本研究主要采用以下方法:1. 文献调研和分析,通过调查和分析已有的OSPF协议和动态配置研究成果,为本研究提出可行性方案和技术路线;2. 构建OSPF协议的动态配置模型,在此基础上探讨动态配置实现的关键问题;3. 设计并实现OSPF协议的动态配置,通过实验验证方案的可行性和有效性。

五、预期成果1. 通过对OSPF协议的研究,深入了解其基本原理和算法,并为更进一步的研究奠定了基础;2. 提出基于动态配置的OSPF协议,为网络管理员提供更多可行的配置方案和策略;3. 提出OSPF协议的实现方案,并开发相应的软件工具;4. 在实验中验证所提出方法和技术的可行性和有效性。

六、研究进度安排1. 第一年:初步调研与分析,了解OSPF协议的基本原理和算法,并研究已有的OSPF协议和动态配置研究成果,确定研究方向和目标。

ospf配置实验报告

ospf配置实验报告

ospf配置实验报告OSPF配置实验报告一、实验目的本实验旨在通过配置OSPF(开放最短路径优先)协议,实现网络中路由器之间的动态路由选择,并验证其可行性和有效性。

二、实验环境本实验使用了三台路由器,分别命名为R1、R2和R3。

它们之间通过以太网连接,并配置了各自的IP地址。

三、实验步骤1. 配置IP地址在每台路由器上分别配置IP地址。

以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# interface ethernet0/0R1(config-if)# ip address 192.168.1.1 255.255.255.0R1(config-if)# no shutdown```同样地,对于R2和R3,分别配置IP地址为192.168.1.2和192.168.1.3。

2. 配置OSPF协议在每台路由器上配置OSPF协议,使其能够互相通信。

以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# router ospf 1R1(config-router)# network 192.168.1.0 0.0.0.255 area 0```同样地,对于R2和R3,分别配置区域号为0,网络地址为192.168.1.0/24。

3. 验证配置结果在每台路由器上查看OSPF邻居关系是否建立成功。

以R1为例,输入以下命令:```R1# show ip ospf neighbor```如果OSPF邻居关系建立成功,将显示R2和R3的IP地址。

4. 测试路由选择在R1上配置一个路由器接口的故障,模拟网络中的链路故障。

以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# interface ethernet0/0R1(config-if)# shutdown```此时,R1与R2之间的链路将被切断。

在R2上查看路由表,输入以下命令:```R2# show ip route```可以看到R2的路由表中已经没有R1的网络地址。

基于Packet tracer网络实验:路由器OSPF动态路由协议配置

基于Packet tracer网络实验:路由器OSPF动态路由协议配置

基于Packet tracer网络实验:路由器OSPF动态路由协议配置一、构建拓补结构:二、基本链接关系和配置如下:上联端口端口IP地址下联端口下联端口地址ISP f0/1 192.168.100.9 255.255.255.252 RA(f0/1) 192.168.100.10 255.255.255.252 RA s1/0 192.168.110.9 255.255.255.252 RB(s1/0) 192.168.110.10 255.255.255.252 RB S1/1 192.168.120.9 255.255.255.252 RC(s1/1) 192.168.120.10 255.255.255.252 RC S1/2 192.168.130.9 255.255.255.252 RA(s1/2) 192.168.130.10 255.255.255.252PC机配置:设备IP地址子网掩码网关pc1192.168.10.10 255.255.255.0 192.168.10.1pc2192.168.20.10 255.255.255.1 192.168.20.1pc3192.168.30.10 255.255.255.2 192.168.30.1pc4192.168.40.10 255.255.255.3 192.168.40.1三、路由器的基本配置介绍:1、OSPF动态路由配置RA:RA(config)#router ospf 110RA(config-router)#network 192.168.20.0 0.0.0.255 area 10 RA(config-router)#network 192.168.100.8 0.0.0.3 area 10 RA(config-router)#network 192.168.110.8 0.0.0.3 area 10 RA(config-router)#network 192.168.130.8 0.0.0.3 area 10 RA(config-router)#endRA#write2、OSPF动态路由配置RB:RB#router ospf 110RB#network 192.168.30.0 0.0.0.255 area 10RB#network 192.168.110.8 0.0.0.3 area 10RB#network 192.168.120.8 0.0.0.3 area 10RB#endRB#write3、OSPF动态路由配置RC:RC#router ospf 110RC#network 192.168.40.0 0.0.0.255 area 10RC#network 192.168.120.8 0.0.0.3 area 10RC#network 192.168.130.8 0.0.0.3 area 10RC#endRC#write4、动态路由配置RB:ISP(config)#router ospf 110ISP(config-router)#network 192.168.10.0 0.0.0.255 area 10ISP(config-router)#network 192.168.100.8 0.0.0.3 area 10ISP#write四、测试(PC3与PC1、PC2、PC4通信,RA配置动态路由协议RIP前后的路由表比较)PC3与PC1、PC2、PC4通信结果:RA配置动态路由协议RIP前后的路由表比较:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院计算机工程学院实验报告书
课程名:《网络管理技术》
题目:动态路由的配置
班级:网络081
学号:*********
*名:***
1.目的与要求
掌握在路由器上配置RIP路由的方法,掌握针对RIP路由的常用查看和测试命令。

掌握在路由器上配置多区域OSPF路由的方法,掌握针对OSPF路由的常用查看和测试命令。

2.实验内容
(1)在指定拓扑结构的多个路由器上配置单区域OSPF路由;
(2)使用OSPF路由的常用查看和测试命令。

(3)在指定拓扑结构的多个路由器上配置多区域OSPF路由;
(4)使用OSPF路由的常用查看和测试命令。

(5)在第二台和第三台路由器串口上配置PPP验证,实现计算机间的通信。

(选做)
3.实验步骤
(1)按照给定的实验拓扑配置单区域(area0)OSPF路由在全局配置模式下在R1上配network
12.0.0.0 0.0.0.255 area 0 network 1.1.1.0 0.0.0.255 area 0;在R2上:配network
2.2.2.0 0.0.0.255 area 0,Network 12.0.0.0 0.0.0.255 area 0 network 2
3.0.0.0
0.0.0.255 area 0;在R3上:network 23.0.0.0 0.0.0.255 area 0,network 3.3.3.0
0.0.0.255 area 0;
(2)配好后查看相关端口状态确保正确后查看路由信息:show ip route show ip ospf interface;
在路由器R1上ping 2.2.2.2,ping 23.0.0.2 ping 23.0.0.3 ping 3.3.3.3测试成功,在R2:ping 1.1.1.1 ping 3.3.3.3;R3:ping 12.0.0.1 ping 12.0.0.2 ping 2.2.2.2 ping
1.1.1.1,测试成功。

(3)再根据拓扑结构配置多区域路由,路由在全局配置模式下在R1上配network 12.0.0.0
0.0.0.255 area 1 network 1.1.1.0 0.0.0.255 area 1;在R2上:配network 2.2.2.0
0.0.0.255 area 0,Network 12.0.0.0 0.0.0.255 area 0 network 23.0.0.0 0.0.0.255 area
0;在R3上:network 23.0.0.0 0.0.0.255 area 2,network 3.3.3.0 0.0.0.255 area 2;(4)重复步骤(2)进行测试。

(5)进行PPP协议配置时R2上的端口S1/2不稳定,经常时开时关,无法进行发送、认证,没有进行配置。

4.测试数据与实验结果
初始情况下查看端口状态
在R1上配置OSPF路由
待同组的同学配好后过几十秒进行查看路由信息(单区域)进行多区域配置在R1上如上
用查看命令进行验证
在R1上ping其他路由器和端口测试连通性
5.结果分析与实验体会
本次实验注重OSPF的配置,首先进行单区域的配置在步骤(1)上已经介绍了。

进行测试配置前注重故障的排查,当路由信息无法生成时查看路由器的各个端口状态确保无误后再进行查看。

多区域的配置只是根据自己的需要进行划分区域(我的是默认和报告上一样的),在路由器R1的配置是区域1.R3上的配置是区域2,R2上的有点复杂有2个区域网段12.0.0.0是区域1的其他的是区域0的其他没变,测试如上。

相关文档
最新文档