黑龙江大庆中考数学试题
大庆中考数学试题及答案
大庆中考数学试题及答案本文为大庆中考数学试题及答案。
一、选择题1. 某数列的通项公式为an = 3n - 1,其中n为自然数。
则当n = 5时,数列的值为________。
A. 10B. 14C. 15D. 16【答案】B. 142. 若两个直角三角形的斜边相等,且一个直角边分别是15cm和20cm,那么另一个直角边长度为________cm。
A. 15B. 20C. 25D. 30【答案】C. 253. 如图所示,正方形ABCD中,线段AE是边BC的中线,AE =6cm,那么正方形ABCD的面积是________cm²。
(图略)A. 18B. 24C. 36D. 72【答案】DD. 72二、填空题1. 已知函数f(x) = 2x + a,若f(2) = 10,则实数a的值为_______。
【答案】62. 若1 < x < 2,那么不等式-3x + 2 > 0的解集为________。
【答案】x < 2/3三、解答题1. 计算 (a + b)³的值,并化简。
【解答】(a + b)³ = a³ + 3a²b + 3ab² + b³2. 已知直角三角形斜边长为10cm,另一直角边长为6cm,求该三角形的面积。
【解答】三角形面积公式为:面积 = 底边 * 高 / 2因此,面积 = 6 * 8 / 2 = 24cm²四、应用题某商场举行打折活动,打5折。
小明买了一张原价100元的商品,请计算小明购买该商品实际支付的金额。
【解答】打5折意味着打了50%的折扣,因此小明需要支付的金额为100元* 50% = 50元。
综上所述,本文介绍了大庆中考数学试题,并提供了答案和解析。
通过这些题目的训练,考生可以更好地理解数学题目的解法和应用。
希望本文能对考生的复习有所帮助。
2023年黑龙江省大庆市中考数学真题 (解析)
2023年大庆市初中升学考试数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.【答案】B【解析】解:2023的相反数是2023-,故选:B .2.【答案】C【解析】A 选项,不是中心对称图形,此选项不符合题意,排除;B 选项,不是中心对称图形,此选项不符合题意,排除;C 选项,是中心对称图形,此选项符合题意;D 选项,不是中心对称图形,此选项不符合题意,排除;故答案为:C .3.【答案】A【解析】解:数字1268000000用科学记数法表示为:91.26810⨯,故选:A .4.【答案】A【解析】解:该几何体的俯视图是,故选:A .5.【答案】D【解析】解: 0ab >,∴a b 、同号,0a b +>,00a b ∴>>,,A 选项,()a b ,在第一象限,因为小手盖住的点在第四象限,故此选项不符合题意;B 选项,()a b -,在第二象限,因为小手盖住的点在第四象限,故此选项不符合题意;C 选项,()--,a b 在第三象限,因为小手盖住的点在第四象限,故此选项不符合题意;D 选项,()a b -,在第四象限,因为小手盖住的点在第四象限,故此选项符合题意;故选:D .6.【答案】B【解析】解:该同学五项评价得分从小到大排列分别为7,8,9,9,10,出现次数最多的数是9,所以众数为9,位于中间位置的数是9,所以中位数是9,平均数为7899108.65++++=故选:B .7.【答案】C【解析】解:A 选项,一个函数是一次函数不一定是正比例函数,故本选项不符合题意;B 选项,有两组对角相等的四边形一定是平行四边形,故本选项不符合题意;C 选项,两条直角边对应相等的两个直角三角形一定全等,故本选项符合题意;D 选项,一组数据的方差不一定大于这组数据的标准差,故本选项不符合题意;故选:C .8.【答案】A【解析】解:设粽子的成本为a (a 是常数且0a >)元,设降价幅度为x ,则()()125%1a x a +⨯-≥,解得20%x ≤,即为了不亏本,降价幅度最多为20%.故选:A .9.【答案】D【解析】解:根据题意可得:FBG DAB α∠=∠=,四边形ABCD 为菱形,AD BC ABD CBD αβ∴∠=∠=+∥,,180DAB ABC ∴∠+∠=︒,22ABC ABD CBD αβαβαβ∠=∠+∠=+++=+ 22180ααβ∴++=︒,3902βα∴=︒-,故选:D .10.【答案】C【解析】解:根据题意可得:BC =,AP t BQ ==,,设m AB a =,则m BC =,作PE BC ⊥交CB 的延长线于点E ,作AF BC ⊥交CB 的延长线于点F ,,120ABC ∠=︒ ,60ABF ∴∠=︒,33m 22AF AB a ∴==,()()333m 222PE PB AB PA a t ==-=-,()2221133333222444216PBQa S BQ PE a t t at t a ⎛⎫∴=⋅⋅=⋅-=-+=--+ ⎪⎝⎭ ,由图象可得PBQ S 的最大值为3,23316a ∴=,解得:4a =或4a =-(舍去),4a ∴=,4m AB BC AF ∴===,,,∴平行四边形ABCD 的面积为:224m BC AF ⋅==,故选:C .二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.【答案】抽样调查【解析】解:调查某品牌护眼灯的使用寿命,具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.12.【答案】100π【解析】解:∵圆锥的底面半径为5,高为12,∴它的体积215121003ππ=⨯⨯⨯=,故答案为:100π.13.【答案】MCB△【解析】解: 四边形ABCD 是矩形,90A D C ∴∠=∠=∠=︒,90DNM DMN ∴∠+∠=︒,由折叠的性质可得:90BMN A ∠=∠=︒,180NMD BMN BMC ∠+∠+∠=︒ ,90NMD BMC ∴∠+∠=︒,DNM BMC ∴∠=∠,NDM MCB ∴ ∽,故答案为:MCB △.14.【答案】1-,1,3【解析】解:∵()121x x +-=,当10x +=时,=1x -;当21x -=时,3x =;当21x -=-时,1x =,此时12x +=,等式成立;故答案为:1-,1,3.15.【答案】16【解析】解:根据题意列出表格如下:思想政治地理化学生物思想政治思想政治,地理思想政治,化学思想政治,生物地理地理,思想政治地理,化学地理,生物化学化学,思想政治化学,地理化学,生物生物生物,思想政治生物,地理生物,化学由表格可得,共有12种等可能的结果,其中该同学恰好选择地理和化学两科的有2种结果,∴某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为:21126=,故答案为:16.16.【答案】32a -≤<-【解析】解:解不等式3(1)6x x ->-,得: 1.5x >-,解不等式8220x a -+≥,得:4x a ≤+,不等式组有三个整数解,∴不等式组的整数解为1-,0、1,则142a ≤+<,解得32a -≤<-.故答案为:32a -≤<-.17.【答案】21【解析】根据题意得:()5a b +展开后系数为:1,5,10,10,5,1,系数和:515101051322+++++==,()6a b +展开后系数为:1,6,15,20,15,6,1,系数和:61615201561642++++++==,()7a b +展开后系数为:1,7,21,35,35,21,7,1,系数和:71721353521711282+++++++==,故答案为:128.18.【答案】①②③【解析】解:延长B A ',并截取AE AB =,连接C E ',如图所示:∵180BAC B AC ''∠+∠=︒,∴360180180a b +=︒-︒=︒,∵180BAE a +∠=︒,∴BAE β∠=,∴BAC CAE CAE EAC '∠+∠=∠+∠,∴BAC EAC '∠=∠,根据旋转可知,AC AC '=,AB AB '=,∵AB AE =,∴ABC AEC ' ≌,∴BC C E '=,ABC AEC S S '= ,∵AB AB '=,AB AE =,∴AE AB =',∴AB C AEC S S '''= ,∴ABC AB C S S ''=△△,即ABC 与AB C ''△面积相同,故①正确;∵AE AB =',B D C D '=',∴AD 是B C E ''△的中位线,∴12AD C E '=,∵BC C E '=,∴2BC AD =,故②正确;当AB AC =时,AB AB AC AC ''===,∴AB B ABB ''∠=∠,AB C AC B ''''∠=∠,AC C ACC ''∠=∠,A ABC CB =∠∠,∵360AB B ABB AB C AC B AC C ACC ABC ACB ''''''''∠+∠+∠+∠+∠+∠+∠+∠=︒,∴180ABB ABC AC B AC C AB B ACB AB C ACC ''''''''∠+∠+∠+∠=∠+∠+∠+∠=︒,即180B BC CC B '''∠+∠=︒,故③正确;∵6BC =,∴根据②可知,132AD BC ==,∵当AB AC =时,4AB AB AC AC ''====,AD 为中线,∴AD B C ''⊥,∴90ADB '∠=︒,∴2222437B D AB AD ''=-=-=,∴27B C B D '''==综上分析可知,正确的是①②③.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【答案】1【解析】解:原式=﹣2﹣2×22+2=﹣22=1.20.【答案】2x x +,13【解析】解:224224x x x x x x -++--()()242222x x x x x x x =-++-+-()()()()()()()()2224222222x x x x x x x x x x x -+=-++-+-+-()()22242422x x x x x x x ---+=+-()()2222x x x x -=+-()()()222x x x x -=+-2x x =+,当1x =时,原式11123==+.21.【答案】30.【解析】设第一批足球单价为x 元,则第二批足球单价为()2x -元,由题意得:800156022x x ⨯=-,解得:80x =,经检验:80x =是原分式方程的解,且符合题意,则第二批足球单价为:280278x -=-=,∴该学校两批共购买了8001560308078+=,答:该学校两批共购买了30个.22.【答案】垂直高度PC 约为204米【解析】解:过点B 作BD PC ⊥于D ,作BE AC ⊥于E ,则四边形DCEB 为矩形,∴DC BE =,在Rt ABE △中,15A ∠=︒,sin BE A AB=,则sin 4000.259103.6BE AB A =⋅≈⨯=(米),∴103.6DC BE ==米,在Rt PBD △中,30PBD ∠=︒,200BP =米,则11002PD BP ==米,100103.6204PC PD DC ∴=+=+≈米.答:垂直高度PC 约为204米.23.【答案】(1)40,25(2)7(3)我校获“志愿者勋章”的学生人数是700人【解析】(1)解:根据题意可得:本次接受调查的学生人数为:481510340++++=(人),扇形统计图中的m 的值为:100102037.57.525----=,故答案为:40,25;(2)解:根据题意可得:所调查的学生本学期参加志愿服务次数的平均数为:546871581093740⨯+⨯+⨯+⨯+⨯=(次);(3)解:根据题意得:()37.5%25%7.5%1000700++⨯=(人),答:我校获“志愿者勋章”的学生人数是700人.24.【答案】(1)证明,见解析(2)45【解析】(1)∵四边形ABCD 是平行四边形,∴AD BC ∥,∴DAF AFC ∠=∠,ADC DCF ∠=∠,∵E 为线段CD 的中点,∴DE CE =,∴ADE FCE ≅△△,∴AE EF =,∴四边形ACFD 是平行四边形,∵90ACF ∠=︒,∴平行四边形ACFD 是矩形.(2)过点E 作EG AC ⊥于点G ,∵四边形ABCD 是平行四边形,∴AD BC =,∵四边形ACFD 是矩形,∴AD CF =,∴5AD BC CF ===,∵13CD =,∴12DF ==,∴四边形ABCE 的面积等于ABC AEC S S + ,∵111253022ABC S AC BC =⨯⨯=⨯⨯= ,12ACE S AC GE =⨯⨯ ,∵点E 是对角线的中心,∴1522GE AD ==,∴1151215222ACE S AC GE =⨯⨯=⨯⨯= ,∴平行四边形ABCD 的面积为:301545+=.25.【答案】(1)一次函数的解析式为3y x =-+,反比例函数的解析式为2y x=(2)32(3)0t <或12t <<【解析】(1)解:把()1,2A 代入一次函数y x m =-+,得12m -+=,解得:3m =,∴一次函数的解析式为:3y x =-+,把()1,2A 代入反比例函数k y x=,得21k =,解得:2k =,∴反比例函数的解析式为:2y x=;(2)解:联立32y x y x =-+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,()21B ∴,,令直线AB 与x 交于点C,如图,,当0y =时,30x -+=,解得:3x =,()30C ∴,,11113323122222AOB AOC BOC A B S S S OC y OC y ∴=-=⋅⋅-⋅⋅=⨯⨯-⨯⨯= (3)解:由图象可得:,当M 在N 的上方时,t 的取值范围为:0t <或12x <<.26.【答案】(1)173240817x y x ⎛⎫=-<< ⎪⎝⎭(2)当87x =时,窗户透过的光线最多(窗户的面积最大),最大面积为327.【解析】(1)∵四边形BCDE 是矩形,∴BC DE ∥,∵BE IJ MN CD ∥∥∥,∴BE IJ MN CD y ====.∵AB AC =,F 是边BC 的中点,∴2BC DE x ==,AFBC ⊥,∵:3:4AF BF =,∴34x AF =,∴54x AB AC ===.∵点G 、H 、F 分别是边AB 、AC 的中点,∴1528x FG FH AB ===,∴5534162222844x x x y x =-⨯-⨯-⨯-,∴174162x y =-,∴1748x y =-,∵174080x x ⎧->⎪⎨⎪>⎩,∴32017x <<,∴173240817x y x ⎛⎫=-<< ⎪⎝⎭;(2)设面积为S ,则1713242824x x S x x ⎛⎫=-+⨯⨯ ⎪⎝⎭2782x x =-27832277x ⎛⎫=--+ ⎪⎝⎭,∴当87x =时,窗户透过的光线最多(窗户的面积最大),最大面积为327.27.【答案】(1)证明,见解析(2)证明,见解析(3)5AH FH =【解析】(1)连接OC∵AC 平分DAB ∠,∴DAC CAB ∠=∠,∵OA OC =,∴CAB OCA ∠=∠,∴DAC OCA ∠=∠,∴AD OC ∥,∵CD AD ⊥,∴90D OCE ∠=∠=︒,∴CD 是O 的切线.(2)证明,如下:由(1)得,90OCE ∠=︒,∵DAC CAB ∠=∠,∵FG AB ⊥,∴90FGA ∠=︒,∴90AHF CAB ∠=∠+︒,∵90ACE OCA ∠=∠+︒,∴ACE AHF ∽,∴AC AE AH AF=,∴AC AF AE AH ⋅=⋅.(3)∵4sin 5DEA ∠=,∴45OC OE =,设O 的半径为4x ,∴5OE x =,∴3CE x ==,∵9AE OA OE x =+=,∴436955AD x x =⨯=,275DE x ==,∵DE DC CE =+,∴125DC x =,∵22222361255AC AD DC ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴12105AC x =,∵ACE AHF ∽,∴1210410535AH FH x AC CE x ===.28.【答案】(1)2=23y x x --(2(3)513t -<≤且0t ≠或43t =-【解析】(1)解:由表格可知,二次函数2y ax bx c =++的图象经过点()1,0-,()0,3-,()1,4-,代入2y ax bx c =++得到034a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,∴二次函数2y ax bx c =++的表达式为2=23y x x --;(2)如图,连接PR ,QR ,过点R 作RM PQ ⊥交PQ 的延长线于点M,∵点Q 的横坐标为m ,∴()2,23Q m m m --,∵()222314y x x x =--=--,∴抛物线的对称轴为直线1x =,∵点P 与点Q 关于直线1x =对称,设点()2,23P n m m --,则11m n -=-,解得2n m =-,∴点P 的坐标为()22,23m m m ---,当x m =+时,((()222323221y x x m m m m =-=+-+--=+--,即()(221R m m m +--,则()223M m m m +--,∴()()2221232R m m m m M +----+=-=-,()222PM m m m =+-=+,∴22tan m RM RPQ PM ∠====即tanRPQ ∠的;(3)由表格可知点()1,0A -、()3,0B ,将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到()0,3A '、()4,3B ',由题意可得,二次函数()2211(3)421y x x x t t t =--=--,与线段A B ''只有一个交点,当0t >时,抛物线()2211(3)421y x x x t t t =--=--开口向上,顶点41,t ⎛⎫- ⎪⎝⎭在A B ''下方,当4x =时,21(3)2B x x y t '--≥,即33t -<,解得53t ≤,∴53t ≤,当0x =时,21(3)2A x x y t '--<,即33t -<,解得1t >-,∴503t <≤,此时满足题意,当0t <时,抛物线()2211(3)421y x x x t t t =--=--开口向下,顶点41,t ⎛⎫- ⎪⎝⎭在A B ''上时,43t -=,解得43t =-,此时满足题意,将点()0,3A '代入21(3)2y x x t -=-得到33t =-,解得1t =-,将点()4,3B '代入21(3)2y x x t -=-得到13(1683)t =--,解得53t =,∴10t -<<,此时满足题意,综上可知,513t-<≤且0t≠或43t=-.。
2020年黑龙江省大庆市中考数学试题及参考答案(word解析版)
2020年大庆市初中升学统一考试数学试题(考试时间120分钟,总分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1 B.0 C.π D.2.天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为()A.2.9×108B.2.9×109C.29×108D.0.29×10103.若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣14.函数y=的自变量x的取值范围是()A.x≤0 B.x≠0 C.x≥0 D.x≥5.已知正比例函数y=k1x和反比例函数y=,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④6.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1 B.2 C.3 D.47.在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差8.底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为()A.1:1 B.1:3 C.1:6 D.1:99.已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n 的值为()A.10+或5+2B.15 C.10+D.15+310.如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH 的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程)11.点P(2,3)关于y轴的对称点Q的坐标为.12.分解因式:a3﹣4a=.13.一个周长为16cm的三角形,由它的三条中位线构成的三角形的周长为cm.14.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=.15.两个人做游戏:每个人都从﹣1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为.16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为.17.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.18.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.三、解答题(本大题共10小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣5|﹣(1﹣π)0+()﹣1.20.(4分)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=.21.(5分)解方程:﹣1=.22.(6分)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:≈1.414,≈1.732).23.(7分)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)24.(7分)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.25.(7分)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.26.(8分)如图,反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=的图象交于另一点B.过点A 作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.(1)求反比例函数y=的表达式;(2)求点A,C的坐标和△AOC的面积.27.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D 作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)求证:DN2=BN•(BN+AC);(3)若BC=6,cosC=,求DN的长.28.(9分)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n的取值范围.(直接写出结果即可)答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1 B.0 C.π D.【知识考点】算术平方根;实数大小比较.【思路分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据实数比较大小的方法,可得﹣1<0<<π,∴在这四个数中,最大的数是π.故选:C.【总结归纳】此题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为()A.2.9×108B.2.9×109C.29×108D.0.29×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:2900000000用科学记数法表示为2.9×109,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣1【知识考点】非负数的性质:绝对值;非负数的性质:偶次方.【思路分析】利用非负数的性质得出x,y的值,代入计算得出答案.【解题过程】解:∵|x+2|+(y﹣3)2=0,∴x+2=0,y﹣3=0,解得:x=﹣2,y=3,故x﹣y=﹣2﹣3=﹣5.故选:A.【总结归纳】此题主要考查了非负数的性质,正确得出x,y的值是解题的关键.4.函数y=的自变量x的取值范围是()A.x≤0 B.x≠0 C.x≥0 D.x≥【知识考点】函数自变量的取值范围.【思路分析】根据被开方数大于等于0列式计算即可得解.【解题过程】解:根据题意可得:2x≥0,解得:x≥0,故选:C.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.已知正比例函数y=k1x和反比例函数y=,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】根据各个小题中的函数图象,可以得到k1和k2的正负情况,从而可以判断k1•k2的正负情况,从而可以解答本题.【解题过程】解:①中k1>0,k2>0,故k1•k2>0,故①符合题意;②中k1<0,k2>0,故k1•k2<0,故②不符合题意;③中k1>0,k2<0,故k1•k2<0,故③不符合题意;④中k1<0,k2<0,故k1•k2>0,故④符合题意;故选:B.【总结归纳】本题考查反比例函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.6.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1 B.2 C.3 D.4【知识考点】正方体相对两个面上的文字.【思路分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解题过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“6”是相对面,“5”与“2”是相对面,“3”与“4”是相对面.故选:B.【总结归纳】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差【知识考点】算术平均数;中位数;极差;方差;统计量的选择.【思路分析】根据中位数的实际意义,通过比较去掉最高分和最低分前后的数据变化进行判断即可.【解题过程】解:原来7个数据,从小到大排列处在中间位置的那个数与去掉一个最高和一个最低后剩下的5个数中间位置的那个数是相同的,因此中位数不变,故选:C.【总结归纳】本题考查中位数、众数、平均数、极差的意义,理解各个概念的意义和计算方法是正确判断的前提.8.底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为()A.1:1 B.1:3 C.1:6 D.1:9【知识考点】圆锥的计算.【思路分析】设圆锥和圆柱的底面圆的半径为r,圆锥的高为h,则圆柱的高为3h,然后利用圆锥和圆柱的体积公式计算.【解题过程】解:设圆锥和圆柱的底面圆的半径为r,圆锥的高为h,则圆柱的高为3h,所以圆锥与圆柱的体积的比=(×πr2×h):(πr2×3h)=1:9.故选:D.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆柱.9.已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n 的值为()A.10+或5+2B.15 C.10+D.15+3【知识考点】勾股定理;相似三角形的性质.【思路分析】直接利用相似三角形的性质结合勾股定理分别得出符合题意的答案.【解题过程】解:当3,4为直角边,6,8也为直角边时,此时两三角形相似,不合题意;当3,4为直角边,m=5;则8为另一三角形的斜边,其直角边为:=2,故m+n=5+2;当6,8为直角边,n=10;则4为另一三角形的斜边,其直角边为:=,故m+n=10+;故选:A.【总结归纳】此题主要考查了相似三角形的性质,正确分类讨论是解题关键.10.如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH 的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或【知识考点】三角形的面积;正方形的性质;平移的性质.【思路分析】分两种情形:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB交EH于Q,AC交FG于P.如图2中,当点A在正方形外部时,分别求解即可解决问题.【解题过程】解:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB 交EH于Q,AC交FG于P.由题意,△ABC是等腰直角三角形,AQ=OE=OG=AP=OF,S△OEF=1,∵y=,∴S四边形AOEQ+S四边形AOFP=1.5,∴OA•2=1.5,∴OA=,∴AM=1+=.如图2中,当点A在正方形外部时,由题意,重叠部分是六边形WQRJPT,S重叠=S△ABC﹣2S△BQR﹣S△AWT,∴2.5=××﹣1﹣×2AN×AN,解得AN=,∴AM=2+,综上所述,满足条件的AM的值为或2+,故选:A.【总结归纳】本题考查正方形的性质,平移变换,多边形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程)11.点P(2,3)关于y轴的对称点Q的坐标为.【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,据此即可解答.【解题过程】解:点P(2,3)关于y轴的对称点Q的坐标为(﹣2,3).故答案为:(﹣2,3).【总结归纳】本题考查了关于x轴、y轴的对称点的坐标.解题的关键是掌握关于x轴、y轴的对称点的坐标的特征,关于y轴对称的两个点纵坐标不变,横坐标变成相反数.12.分解因式:a3﹣4a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解题过程】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.一个周长为16cm的三角形,由它的三条中位线构成的三角形的周长为cm.【知识考点】三角形中位线定理.【思路分析】根据三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.即可求得结果.【解题过程】解:如图,∵点D、E分别是AB、AC的中点∴DE=BC.同理可得:DF=AC,EF=AB,∴DE+DF+EF=(AB+BC+AC)=16=8(cm).则三条中位线构成的三角形的周长为8cm.故答案为:8.【总结归纳】本题考查了三角形中位线定理,解决本题的关键是掌握三角形中位线定理.14.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=.【知识考点】余角和补角.【思路分析】根据∠COD=90°,∠AOD=108°,进而得出∠AOC的度数,根据∠COB=∠AOB﹣∠AOC即可得出结论.【解题过程】解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.故答案为:72°.【总结归纳】本题考查了角的计算及直角三角形,熟知角的和差计算方法是解答此题的关键.15.两个人做游戏:每个人都从﹣1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为.【知识考点】列表法与树状图法.【思路分析】画树状图展示所有9种等可能的结果,找出其中两数的绝对值相等的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有9种等可能的结果,其中两数的绝对值相等的结果数为5,所以两人所写整数的绝对值相等的概率=.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为.【知识考点】规律型:图形的变化类.【思路分析】观察图形可得前几个图需要黑色棋子的个数,发现规律即可得第20个图需要黑色棋子的个数.【解题过程】解:观察图形可知:第1个图需要黑色棋子的个数为:3=1×3;第2个图需要黑色棋子的个数为:8=2×4;第3个图需要黑色棋子的个数为:15=3×5;第4个图需要黑色棋子的个数为:24=4×6;…发现规律:第n个图需要黑色棋子的个数为:n(n+2);所以第20个图需要黑色棋子的个数为:20(20+2)=440.故答案为:440.【总结归纳】本题考查了规律型﹣图形的变化类,解决本题的关键是根据图形的变化寻找规律.17.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.【知识考点】根的判别式;根与系数的关系.【思路分析】根据判别式,根与系数的关系,二次函数的性质一一判断即可.【解题过程】解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④若方程的两个实根一个大于3,另一个小于3.则有32﹣6﹣a<0,∴a>3,故④正确,故答案为3.【总结归纳】本题考查一元二次方程的根的判别式,根与系数的关系,二次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.【知识考点】全等三角形的判定与性质;等边三角形的性质;轨迹.【思路分析】根据已知条件证明△ABD≌△BCE,再得∠AFB=120°,可得点F的运动轨迹是以点O为圆心,OA为半径的弧,此时∠AOB=120°,OA=,根据弧长公式即可得点F的运动路径的长度.【解题过程】解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∴在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,∴∠AFB=120°,∴点F的运动轨迹是以点O为圆心,OA为半径的弧,如图,此时∠AOB=120°,OA==,所以弧AB的长为:=.则点F的运动路径的长度为.故答案为:.【总结归纳】本题考查了轨迹、全等三角形的判定与性质、等边三角形的性质,解决本题的关键是综合运用以上知识.三、解答题(本大题共10小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣5|﹣(1﹣π)0+()﹣1.【知识考点】实数的运算;零指数幂;负整数指数幂.【思路分析】原式第一项绝对值计算,第二项利用零指数幂的法则计算,第三项利用负指数幂的法则计算,计算即可得到结果.【解题过程】解:|﹣5|﹣(1﹣π)0+()﹣1=5﹣1+3=7.【总结归纳】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=.【知识考点】整式的混合运算—化简求值.【思路分析】根据整式的混合运算顺序先进行整式的化简,再代入值进行计算即可.【解题过程】解:原式=x2+4x﹣5+x2﹣4x+4=2x2﹣1,当x=时,原式=2()2﹣1=5.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值进行计算.21.(5分)解方程:﹣1=.【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘x﹣1,得:2x﹣x+1=4,解这个方程,得:x=3,经检验,x=3是原方程的解,∴原方程的解是x=3.【总结归纳】本题主要考查了解分式方程,会把分式方程转化为整式方程是解答本题的关键.22.(6分)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:≈1.414,≈1.732).【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】在Rt△ABM中,根据等腰直角三角形的性质求得AM,在Rt△AME中,根据正弦函数求得AE,在Rt△AEC中,根据正弦函数求得AC.【解题过程】解:∵AB⊥BD,∠BAM=45°,∴∠AMB=45°,∴∠AMB=∠BAM,∴AB=BM=20,∴在Rt△ABM中,AM=20,作AE⊥MC于E,由题意得∠ACM=45°,∠CAM=75°,∴∠AMC=60°,∴在Rt△AME中,AM=20,∵sin∠AME=,∴AE=sin60°•20=×20=10,在Rt△AEC中,∠AEC=90°,∠ACE=45°,AE=10,∴sin∠ACE=,∴AC===20≈35(米),答:两建筑物顶点A、C之间的距离约为35米.【总结归纳】本题考查了解直角三角形的应用,借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形是解题关键.23.(7分)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)【知识考点】总体、个体、样本、样本容量;用样本估计总体;频数(率)分布直方图.【思路分析】(1)根据总体和样本容量的定义即可得问题中的总体和样本容量;(2)根据表格所给数据先求出50.5~75.5的有4人,75.5~100.5的有16人,再根据a+b=20,2a=3b,即可求出a,b的值;(3)利用样本估计总体的方法即可估计该校该年级学生跳绳成绩优秀的人数大约是多少人.【解题过程】解:(1)1000名学生一分钟的跳绳次数是总体,样本容量是:40;(2)由题意所给数据可知:50.5~75.5的有4人,75.5~100.5的有16人,∴a+b=40﹣4﹣16=20,∵2a=3b,∴解得a=12,b=8,(3)1000×=200(人),答:估计该校该年级学生跳绳成绩优秀的人数大约是200人.【总结归纳】本题考查了频数分布直方图、总体、个体、样本、样本容量、用样本估计总体,解决本题的关键是综合运用以上知识.24.(7分)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.【知识考点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质.【思路分析】(1)在矩形ABCD中,O为对角线AC的中点,可得AD∥BC,AO=CO,可以证明△AOM≌△CON可得AM=CN,进而证明四边形ANCM为平行四边形;(2)根据MN⊥AC,可得四边形ANCM为菱形;根据AD=4,AB=2,AM=AN=NC=AD﹣DM,即可在Rt△ABN中,根据勾股定理,求DM的长.【解题过程】(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.【总结归纳】本题考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定与性质,解决本题的关键是综合运用以上知识.25.(7分)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,根据“购买甲种笔记本15个,乙种笔记本20个,共花费250元;购买一个甲种笔记本比购买一个乙种笔记本多花费5元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,根据总价=单价×数量结合此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数可得出最多购买甲种笔记本的个数,设购买两种笔记本总费用为w元,根据总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解题过程】解:(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,依题意,得:,解得:.答:购买一个甲种笔记本需要10元,购买一个乙种笔记本需要5元.(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,依题意,得:(10﹣2)m+5×0.8(35﹣m)≤250×90%,解得:m≤21,又∵m为正整数,∴m可取的最大值为21.设购买两种笔记本总费用为w元,则w=(10﹣2)m+5×0.8(35﹣m)=4m+140,∵k=4>0,∴w随m的增大而增大,∴当m=21时,w取得最大值,最大值=4×21+140=224.答:至多需要购买21个甲种笔记本,购买两种笔记本总费用的最大值为224元.【总结归纳】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.26.(8分)如图,反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,。
2024年黑龙江省大庆市中考数学复习训练试题(一)
2024年黑龙江省大庆市中考数学复习训练试题(一)一、单选题1.下列四个实数中最大的是( )A .0B .2-C .1D .22.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 3.某几何体的三视图如图所示,则该几何体是( )A .B .C .D . 4.如图表示光从空气进入水中前、后的光路图,若按如图建立平面直角坐标系,并设入水前与入水后光线所在直线的表达式分别为1122,y k x y k x ==,则关于1k 与2k 的关系,正确的是( )A .210k k <<B .120k k <<C .120k k <<D .210k k << 5.如图,在平行四边形ABCD 中,利用直尺和圆规,分别以B 、D 为圆心,相同的长度为半径(半径大于线段BD 的一半)作四段弧,分别交于M 、N 两点,连接M 、N ,分别交AD BC、于E 、F ,连接BE DF 、,则四边形EBFD 为( )A .梯形B .平行四边形C .矩形D .菱形6.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A ,曲线终点为B ,过点,A B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角α为60︒.若圆曲线的半径1.5km OA =,则这段圆曲线»AB 的长为( ).A .km 4πB .km 2πC .3km 4πD .3km 8π 7.学期末,班主任为获得“文明学生”和“劳动积极分子”称号的学生准备了A ,B 两种礼物.已知A ,B 两种礼物的总价分别为450元和420元.且A 种礼物比B 种礼物多10份,A ,B 两种礼物的单价分别是这一批礼物平均单价的910和1.2倍,则这一批礼物的平均单价是( ) A .15元 B .556元 C .10元 D .172元 8.若m ,n 是一元二次方程2210x x +-=的两个实数根,则3221m m n mn m +-=-( )A .3-B .CD .39.如图,在Rt ABC △中,90ACB ∠=︒,以AB 为边向三角形外作正方形ABDE ,作E F B C ⊥于点F ,交对角线AD 于点G ,连接BG .要求BFG V 的周长,只需知道( )A .AC 的长B .BC 的长 C .BF 的长D .FG 的长10.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(4,0),其对称轴为直线1x =,结合图象给出下列结论:①0abc >;②30a c +<;③()13,M y -,()23,N y 是抛物线上两点,则12y y <;④若关于x 的一元二次方程25ax bx c a ++=-没有实数根,则102a <<; ⑤对于任意实数m ,总有20am bm a b +--≥.其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作元.12.分解因式:2428a ab -=.13.如图是工地塔吊,塔吊用钢缆连接成三角形的理由是.14.某商店 1 月份盈利 2400 元,3月份的盈利达到3456元,且从1月到3月每月盈利的平均增 长率都相同,则每月盈利的平均增长率为.15.若112x y +=-,则353x xy y x xy y-+=++. 16.如图,在平面直角坐标系xOy 中,点A 坐标是(0,3),点B 在x 轴正半轴上,且60BAO ∠=︒,将Rt AOB V 绕点O 逆时针旋转,当点A 的对应点A '落在函数3(0)y x x=-<的图象上时,设点B 的对应点B '的坐标是(,)m n ,则m n +=.17.如图,AC 是O e 的直径,PA 切O e 于点A ,PB 切O e 于点B ,且601P PA ∠=︒=,,则点O 到弦AB 的距离为.18.如图,在ABC V 中,90BAC ∠=︒,D 是AC 边上一点,2C CBD ∠∠=,E ,F 分别是BC BD ,上的点,且2BEF CAE AB BE ∠=∠=,.(1)设CBD α∠=,则BEF ∠=(用含α的式子表示);(2)若21EF CE ==,,则BE 的长为.三、解答题19.(1)计算:0(2023)2|π-+(2)解不等式:3(2)2(2)->+x x .20.图①、图②、图③均是66⨯的正方形网格,每个小正方形的边长均为1,点A ,B ,C ,用无刻度的直尺在给定的网格中按要求画图:(1)如图①,在AB 上画一点E ,连结DE ,使ADE C ∠=∠;(2)如图②,在AB 上画一点F ,连结DF ,使AFD C ∠=∠;(3)如图③,在AB 上画一点M ,连结CM ,使AMD BMC ∠=∠.21.如图,数学兴趣小组用无人机测量一幢楼AB 的高度.小亮站立在距离楼底部94米的D 点处,操控无人机从地面F 点,竖直起飞到正上方60米E 点处时,测得楼AB 的顶端A 的俯角为30︒,小亮的眼睛点C 看无人机的仰角为45︒(点B F D 、、三点在同一直线上).求楼AB 的高度.(参考数据:小亮的眼睛距离地面1.71.7)22.某中学随机从七、八年级中各抽取20名选手组成代表队参加党史知识竞赛,计分采用10分制,选手得分均为整数,这次竞赛后,将七、八年级两支代表队选手成绩,整理绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)请根据以上信息直接在答题卡上补全条形统计图;(2)七年级代表队学生成绩的平均数是,中位数是,众数是;(3)八年级代表队学生成绩扇形统计图中,8分成绩对应的圆心角度数是度,m的值是;(4)该校八年级有500人,根据抽样调查的结果,请你估计该校八年级学生中有多少名学生的成绩是9分.23.元旦档刷新历史票房纪录,春节档有望继续表现优秀.春节有4部影片在春节档上映,分别是《热辣滚烫》《飞驰人生2》《熊出没・逆转时空》《第二十条》.小亮和小丽两名同学分别从《热辣滚烫》《飞驰人生2》《第二十条》三部电影中随机选择一部观看,将《热辣滚烫》表示为A,《飞驰人生2》表示为B,《第二十条》表示为C.假设这两名同学选择观看哪部电影不受任何因素影响,且每一部电影被选到的可能性相等.记小亮同学的选择为x,小丽同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求小亮和小丽两名同学恰好选择观看同一部电影的概率.=,24.已知:如图,四边形ABCD是矩形,分别延长AD,CD到点E,F,使D E A D=,DF CD ,,,.连接AC AF EF EC(1)求证:四边形ACEF是菱形;(2)连接BE,如果四边形ACEF的周长是2CF=,求BE的长.25.如图,在平面直角坐标系xOy 中,直线1l :21y x =+与y 轴交于点A ,直线2l 与y 轴,x 轴交于点B ,点C ,1l 与2l 交于点()1D m ,,连接OD ,已知OC 的长为4.(1)求点D 的坐标及直线2l 的解析式;(2)求AOD △的面积;(3)若直线2l 上有一点P 使得ADP △的面积等于ADO △的面积,直接写出点P 的坐标. 26.某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如表:(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?27.如图1,等腰ABC V 中,AB AC =,以AC 为直径的O e 与AB 所在直线、BC 分别交于点D 、E ,EF AB ⊥于点F .e的切线;(1)求证:EF为O(2)当90∠<︒时,若2BACBF=,4EF=,求AD的长.(3)如图2,当90∠>︒时,若2BACEF=,求AD的长.AF=,428.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点E是第四象限内抛物线上的动点,连接CE和BE.求V BCE面积的最大值及此时点E的坐标;(3)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.。
大庆中考数学试题及答案初三
大庆中考数学试题及答案初三一、选择题1. 已知函数 f(x) = 2x + 1,求 f(3) 的值。
A. 6B. 7C. 8D. 92. 设直线 l 的斜率为 2,该直线与 x 轴的交点为 A(2, 0),则直线 l的方程为:A. y = 2xB. y = 2x + 1C. y = 2x - 1D. y = -2x + 13. 袋中有红、白、蓝三种颜色的球,红球的数量是白球数量的三倍,而白球的数量又是蓝球数量的两倍。
如果袋中共有 x 个球,则红球、白球和蓝球的数量分别为:A. x, 3x, 6xB. x, 2x, 4xC. x, 2x, 6xD. x, 3x, 9x二、填空题4. 设 a + b = 10, a - b = 4,则 a 的值为 ________。
5. 解方程 3x - 7 = 5,得到的解为 ________。
三、解答题6. 在平行四边形 ABCD 中,已知 AB = 6 cm, BM = 3 cm, AN = 4 cm。
求 MN 的长度。
解:设 MN 的长度为 x cm。
由平行四边形性质可知 BM || CD,因此△BMN ∼△CDN。
根据相似比例可得:BM/CD = MN/ND代入已知值,得到 3/6 = x/(x+4)解得 x = 2所以 MN 的长度为 2 cm。
四、应用题7. 一张纸的长和宽的长度比为 2:1,如果将这张纸等分成 6 个小正方形,则每个小正方形的边长是多少?解:设纸的长为 2x,宽为 x。
将纸等分成 6 个小正方形后,每个小正方形的边长为 y cm。
根据题意可得:2x/y = 6解得 y = x/3所以每个小正方形的边长为纸的宽度的 1/3。
答案:1. B2. C3. C4. a 的值为 75. 解为 x = 46. MN 的长度为 2 cm7. 每个小正方形的边长为纸的宽度的 1/3。
大庆初三数学试题及答案
大庆初三数学试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪个是正整数?A. -2B. 0C. 1D. 2.5答案:C2. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 以下哪个表达式等于0?A. 2x - 4xB. 3x + 2xC. 5x - 5xD. 4x - 3x答案:C4. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C5. 以下哪个是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^3 + bx + cD. y = ax^2 + bx^3 + c答案:A6. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的面积是多少?A. 12平方厘米B. 15平方厘米C. 18平方厘米D. 24平方厘米答案:B7. 以下哪个是30度的正弦值?A. 1/2B. √3/2C. 1/√2D. √2/2答案:A8. 一个数的立方等于-8,那么这个数是:A. -2B. 2C. -1D. 1答案:A9. 以下哪个是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A10. 以下哪个是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = -2D. x = -3答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个角的补角是120度,那么这个角的度数是______。
答案:60度13. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是______。
答案:514. 一个数的绝对值是7,那么这个数可以是______或______。
2023年黑龙江省大庆市中考数学试卷含答案解析
绝密★启用前2023年黑龙江省大庆市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 实数2023的相反数是( )A. 2023B. −2023C. 12023D. −120232. 搭载神舟十六号载人飞船的长征二号F遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度.下列图标中,其文字上方的图案是中心对称图形的是( )A. B.C. D.3. 大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( )A. 1.268×109B. 1.268×108C. 1.268×107D. 1.268×1064.一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.5.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A. (a,b)B. (−a,b)C. (−a,−b)D. (a,−b)6. 某中学积极推进学生综合素质评价改革,该中学学生小明本学期德、智、体、美、劳五项的评价得分如图所示,则小明同学五项评价得分的众数、中位数、平均数分别为( )A. 9,9,8.4B. 9,9,8.6C. 8,8,8.6D. 9,8,8.47. 下列说法正确的是( )A. 一个函数是一次函数就一定是正比例函数B. 有一组对角相等的四边形一定是平行四边形C. 两条直角边对应相等的两个直角三角形一定全等D. 一组数据的方差一定大于标准差8. 端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A. 20%B. 25%C. 75%D. 80%9. 将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=( )A. 45°+12α B. 45°+32α C. 90°−12α D. 90°−32α10. 如图1,在平行四边形ABCD中,∠ABC=120°,已知点P在边AB上,以1m/s的速度从点A向点B运动,点Q在边BC上,以√ 3m/s的速度从点B向点C运动.若点P,Q同时出发,当点P到达点B时,点Q恰好到达点C处,此时两点都停止运动.图2是△BPQ的面积y(m2)与点P的运动时间t(s)之间的函数关系图象(点M为图象的最高点),则平行四边形ABCD的面积为( )A. 12m2B. 12√ 3m2C. 24m2D. 24√ 3m2第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 为了调查某品牌护眼灯的使用寿命,比较适合的调查方式是______ (填“普查”或“抽样调查”).12. 一个圆锥的底面半径为5,高为12,则它的体积为______ .13.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是______ .14. 若x满足(x−2)x+1=1,则整数x的值为______ .15. 新高考“3+1+2”选科模式是指,除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______ .16. 若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为______ .17. 1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为______ .18.如图,在△ABC中,将AB绕点A顺时针旋转α至AB′,将AC绕点A逆时针旋转β至AC′(0°<α<180°,0°<β<180°),得到△AB′C′,使∠BAC+∠B′AC′=180°,我们称△AB′C′是△ABC的“旋补三角形“,△AB′C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.下列结论正确的有______ .①△ABC与△AB′C′面积相同;②BC=2AD;③若AB=AC,连接BB′和CC′,则∠B′BC+∠CC′B′=180°;④若AB=AC,AB=4,BC=6,则B′C′=10.三、解答题(本大题共10小题,共66.0分。
中考数学最新真题试题汇编及解析(大庆)
1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
3
(3,1)
(3,2)
(3,3)
由表可知,两次卡片编号之积有1、2、3、4、6、9,卡片组合共有9种等可能的结果,其中两次卡片编号之积为奇数有1、3、9,卡片组合共有(1,1),(1,3),(3,1),(3,3)4种等可能的结果,
故C选项正确,不符合题意;
D、底和腰相等的等腰三角形是等边三角形,
故D选项正确,不符合题意;
故选:A.
【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.
9.平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足 .点Q为线段 的中点,则点Q运动路径的长为( )
14.不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为____________.
【答案】
【解析】
【分析】根据题意列表,然后找出两次卡片编号之积为奇数的可能的结果数,然后计算求解即可.
∴ ,
∴ ,
解得 或 ,
故答案为: 或
【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.
16.观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“ ”的个数是____________.
【答案】49
【解析】
大庆中考数学试题及答案
大庆中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3<5的解?A. x<4B. x>4C. x<1D. x>1答案:A2. 计算下列哪个表达式的值等于0?A. 3x - 2xB. 4x + 5xC. 2x^2 - 2x^2D. x^2 - 2x + 1答案:C3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 3x^3D. y = 4/x答案:B5. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的周长是多少厘米?A. 16B. 18C. 20D. 22答案:C6. 计算下列哪个表达式的值等于1?A. (-1)^2B. (-1)^3C. (-1)^4D. (-1)^5答案:A7. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A8. 一个正数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A9. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A10. 计算下列哪个表达式的值等于-1?A. 1 - 2B. 2 - 3C. 3 - 4D. 4 - 5答案:B二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个角的补角是120°,那么这个角的度数是______。
答案:60°13. 一个数的立方是-8,这个数是______。
答案:-214. 一个等差数列的首项是2,公差是3,那么它的第五项是______。
答案:1715. 一个直角三角形的两个锐角的度数之和是______。
黑龙江省大庆市中考数学试卷及答案(Word解析版)
黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(•大庆)下列运算结果正确的是()A.B.a2•a3=a6C.a2•a3=a5D.a2+a3=a6考点:二次根式的性质与化简;合并同类项;同底数幂的乘法.分析:根据二次根式的化简、合并同类项、同底数幂的乘法分别进行计算,即可得出答案.解答:解:A、=a,(a≥0),故本选项错误;B、a2•a3=a5,故本选项错误;C、a2•a3=a5,故本选项错误;D、a2+a3=a6,同类项,不能合并,故本选项错误.故选C.点评:此题考查了二次根式的化简、合并同类项、同底数幂的乘法,记准法则是解题的关键,注意同底数幂的乘法与幂的乘方很容易混淆.2.(3分)(•大庆)若实数a满足a﹣|a|=2a,则()A.a>0 B.a<0 C.a≥0 D.a≤0考点:绝对值.分析:先求出|a|=﹣a,再根据绝对值的性质解答.解答:解:由a﹣|a|=2a得|a|=﹣a,∴a≤0.故选D.点评:本题考查了绝对值的性质,比较简单,熟记绝对值的性质是解题的关键.3.(3分)(•大庆)已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是()A.2B.5C.9D.10考点:圆与圆的位置关系.分析:根据两圆相交时圆心距与两圆半径之间的数量关系进行解答.解答:解:∵半径分别为3和6的两圆相交,又∵3+6=9,6﹣3=3,∴这两圆的圆心距d的取值范围是3<d<9.只有B选项符合.故选B.点评:此题考查了圆与圆的位置关系.解此题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.4.(3分)(•大庆)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大考点:一次函数的性质.分析:根据一次比例函数图象的性质可知.解答:解:A、将点(﹣1,3)代入原函数,得y=﹣3×(﹣1)+1=4≠3,故A错误;B、因为k=﹣3<0,b=1>0,所以图象经过一、二、四象限,y随x的增大而减小,故B,D错误;C、正确;D、当x=1时,y=﹣2<0,故C正确.故选C.点评:本题考查的是一次函数的性质,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.5.(3分)(•大庆)若不等式组的解集为0<x<1,则a的值为()A.1B.2C.3D.4考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出方程,求出方程的解即可.解答:解:∵解不等式①,得x>,解不等式②,得x<,∴原不等式组的解集为:<x<,∵不等式组的解集为0<x<1,∴=0,=1,解得:a=1,故选A.点评:本题考查了解一元一次不等式和一元一次不等式组的应用,关键是能根据不等式组的解集得出关于a的方程.6.(3分)(•大庆)已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是()A.B.C.D.考点:梯形中位线定理;反比例函数的图象;反比例函数的应用.分析:根据梯形的中位线定理和梯形的面积的计算方法确定两个变量之间的函数关系,然后判断其图象即可.解答:解:梯形的面积=×梯形上、下底之和×高,符合k=hx,故h=(x>0,h>0)所以是反比例函数.故选D.点评:本题考查了反比例函数的图象及反比例函数的应用,解题的关键是根据实际问题列出函数关系式.7.(3分)(•大庆)已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0C.2D.3考点:抛物线与x轴的交点.专题:计算题.分析:根据函数图象得到﹣3<x<1时,y<0,即可作出判断.解答:解:令y=0,得到x2+2x﹣3=0,即(x﹣1)(x+3)=0,解得:x=1或x=﹣3,由函数图象得:当﹣3<x<1时,y<0,则m的值可能是0.故选B.点评:此题考查了抛物线与x轴的交点,利用了数形结合的思想,求出x的范围是解本题的关键.8.(3分)(•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据图示几何体和俯视图可知该几何体底面一层有三个正方形,上面一层有一个正方形,然后找到从左面看到的图形即可.解答:解:由图示几何体和俯视图可知该几何体底面一层有三个正方形,上面一层有一个正方形,则从左面看易得图形:.故选D.点评:本题考查了三视图的知识,注意左视图是从物体的左面看得到的视图.9.(3分)(•大庆)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()A.B.C.D.考点:等边三角形的判定与性质分析:依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D=;同理求出S△CC1B1=S△BB1A1=;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.解答:解:依题意画出图形,如下图所示:过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.又AC1=AC﹣CC1=3﹣1=2,AD=1,∴点D为AC1的中点,∴S△AA1C1=2S△AA1D=2××12=;同理可求得S△CC1B1=S△BB1A1=,∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1=×32﹣3×=.故选B.点评:本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.10.(3分)(•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.分析:根据平行四边形、菱形的判定与性质分别判断得出即可.解答:解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.点评:此题主要考查了菱形的判定以及矩形和正方形的判定,熟练掌握相关判定是解题关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•大庆)计算:sin260°+cos60°﹣tan45°=.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:原式=()2+﹣1=+﹣1=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,解答本题的关键是熟练掌握几个特殊角的三角函数值.12.(3分)(•大庆)在函数y=中,自变量x的取值范围是x≥﹣.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.解答:解:依题意,得2x+1≥0,解得x≥﹣.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(•大庆)地球的赤道半径约为6 370 000米,用科学记数法记为 6.37×106米.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6 370 000用科学记数法表示为:6.37×106.故答案为:6.37×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(•大庆)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为180°.考点:圆锥的计算分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.解答:解:∵侧面积为2π,∴圆锥侧面积公式为:S=πrl=π×1×l=2π,解得:l=2,∴扇形面积为2π=,解得:n=180,∴侧面展开图的圆心角是180度.故答案为:180°.点评:此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.15.(3分)(•大庆)某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为1500元.考一元一次方程的应用.点:分析:首先假设原价为x元,根据降价20%后应为(1﹣20%)x,再根据又降低了100元,此时售价为1100元得出等式求出即可.解答:解:设原价为x元,根据题意得出:(1﹣20%)x﹣100=1100解得:x=1500.故答案为:1500.点评:此题主要考查了一元一次方程的应用;得到第二次降价后的价格的等量关系是解决本题的关键.16.(3分)(•大庆)袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为.考点:列表法与树状图法分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与所得的两位数大于30的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,所得的两位数大于30的有6种情况,∴所得的两位数大于30的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.(3分)(•大庆)已知…依据上述规律计算的结果为(写成一个分数的形式)考点:规律型:数字的变化类分析:根据已知得出原式=×[(1﹣)+(﹣)+(﹣)+…+(﹣)]进而求出即可.解答:解:∵…∴=×[(1﹣)+(﹣)+(﹣)+…+(﹣)]=×(1﹣)=.点评:此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键.18.(3分)(•大庆)如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.考点:扇形面积的计算;等边三角形的性质.分析:设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积.解答:解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,∴S阴影部分=××12=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.三、解答题(共10小题,满分46分)19.(•大庆)计算:﹣++(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、立方根、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=0.5﹣++1=0.5﹣2++1=1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、立方根、二次根式化简等考点的运算.20.(•大庆)已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.考点:因式分解的应用.分析:由a+b=﹣3,ab=2,可得a2+b2=10,因为(a2+b2)ab=a3b+ab3,所以a3b+ab3=﹣30.解答:解:∵a+b=2,∴(a+b)2=4,∴a2+2ab+b2=4,又∵ab=﹣3,∴a2+b2=10,∴(a2+b2)ab=a3b+ab3=﹣30.点评:本题为代数式求值题,主要考查整体思想,是一道比较基础的题目,要认真掌握,并确保得分.21.(•大庆)如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.(1)求一次函数的解析式;(2)求反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)由OA与OB的长,确定出A与B的坐标,代入一次函数解析式中求出k1与b 的值,即可确定出一次函数解析式;(2)由OD的长,确定出D坐标,根据CD垂直于x轴,得到C与D横坐标相同,代入一次函数解析式求出C的纵坐标,确定出C坐标,将C坐标代入反比例解析式中求出k2的值,即可确定出反比例解析式.解答:解:(1)∵OA=OB=2,∴A(﹣2,0),B(0,2),将A与B代入y=k1x+b得:,解得:,则一次函数解析式为y=x+2;(2)∵OD=2,∴D(2,0),∵点C在一次函数y=x+2上,且CD⊥x轴,∴将x=2代入一次函数解析式得:y=2+2=4,即点C坐标为(2,4),∵点C在反比例图象上,∴将C(2,4)代入反比例解析式得:k2=8,则反比例解析式为y=.点评:此题考查了一次函数与反比例函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.22.(•大庆)某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A表示城镇职工基本医疗保险;B表示城镇居民基本医疗保险;C表示“新型农村合作医疗”;D表示其他情况](1)补全条形统计图;(2)在本次调查中,B类人数占被调查人数的百分比为25%;扇形统计图中D区域所对应的圆心角的大小为36°.(3)据了解,国家对B类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B类人员每年享受国家补助共多少元?考点:条形统计图;用样本估计总体;扇形统计图分析:(1)“新型农村合作医疗”的人数=这次调查的总人数×45%,“城镇职工基本医疗保险”的人数=2000﹣B表示的人数﹣C表示的人数﹣D表示的其他情况的人数.(2)用B表示的“城镇居民基本医疗保险”的人数÷这次调查的总人数可得B类人数占被调查人数的百分比.(3)该县B类人员每年享受国家补助的总钱数=国家对B类人员每人每年补助的钱数×100×B类人员所占的百分比.解答:解:(1)如下图.(2)500÷2000=25%,即在本次调查中,B类人数占被调查人数的百分比为25%.D区域区域的圆心角为:=36°;(3)210×100×25%=5250(万元).答:该县B类人员每年享受国家补助共5250万元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(6分)(•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.考点:全等三角形的判定与性质.分析:(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.解答:(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.点评:本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.24.(6分)(•大庆)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.考点:垂径定理;待定系数法求二次函数解析式;勾股定理.专题:计算题.分析:(1)连结AC,过点C作CM⊥x轴于点M,根据垂径定理得MA=MB;由C点坐标得到OM=2,CM=,再根据勾股定理可计算出AM,可可计算出OA、OB,然后写出A,B两点的坐标;(2)利用待定系数法求二次函数的解析式.解答:解:(1)过点C作CM⊥x轴于点M,则MA=MB,连结AC,如图∵点C的坐标为(2,),∴OM=2,CM=,在Rt△ACM中,CA=2,∴AM==1,∴OA=OM﹣AM=1,OB=OM+BM=3,∴A点坐标为(1,0),B点坐标为(3,0);(2)将A(1,0),B(3,0)代入y=x2+bx+c得,解得.所以二次函数的解析式为y=x2﹣4x+3.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理和待定系数法求二次函数的解析式.25.(8分)(•大庆)如图所示,AB是半圆O的直径,AB=8,以AB为一直角边的直角三角形ABC中,∠CAB=30°,AC与半圆交于点D,过点D作BC的垂线DE,垂足为E.(1)求DE的长;(2)过点C作AB的平行线l,l与BD的延长线交于点F,求的值.考点:相似三角形的判定与性质;圆周角定理;解直角三角形.分析:(1)先由圆周角定理得出∠ADB=90°,再解Rt△ABD,得出BD=4,然后解Rt△BDE,即可求出DE的长;(2)先由DE⊥BC,AB⊥BC,得出DE∥AB,根据平行线分线段成比例定理得出=,则DA=3CD,再证明△FCD∽△BAD,根据相似三角形对应边成比例即可求出的值.解答:解:(1)∵AB是半圆O的直径,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,∠DAB=30°,AB=8,∴BD=AB=4.在Rt△BDE中,∠DEB=90°,∠DBE=30°,BD=4,∴DE=BD=2;(2)∵DE⊥BC,AB⊥BC,∴DE∥AB,∴===,∴CA=4CD,∴DA=3CD.∵CF∥AB,∴∠FCD=∠BAD,∠DFC=∠DBA,∴△FCD∽△BAD,∴===.点评:本题考查了圆周角定理,解直角三角形,相似三角形的判定与性质,难度适中,求出DE的长,进而得到DA=3CD是解题的关键.26.(8分)(•大庆)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a,转盘指针所指区域内的数字为b,求关于x的方程ax2+3x+=0有实数根的概率.考点:列表法与树状图法;根的判别式.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由根的判别式得出方程ax2+3x+=0有实数根的所有情况,利用概率公式求解即可求得答案.解答:解;(1)画树状图得出:总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:;(2)∵方程ax2+3x+=0有实数根的条件为:9﹣ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2)∴关于x的方程ax2+3x+=0有实数根的概率为:=.点评:此题主要考查了根的判别式和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.27.(9分)(•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.考点:特殊角的三角函数值;一元二次方程的解专题:新定义.分析:(1)按照题目所给的信息求解即可;(2)分三种情况进行分析:①当∠A=30°,∠B=120°时;②当∠A=120°,∠B=30°时;③当∠A=30°,∠B=30°时,根据题意分别求出m的值即可.解答:解:(1)由题意得,sin120°=sin(180°﹣120°)=sin60°=,cos120°=﹣cos(180°﹣120°)=﹣cos60°=﹣,sin150°=sin(180°﹣150°)=sin30°=;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,﹣,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验﹣是方程4x2﹣1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验不是方程4x2﹣1=0的根.综上所述:m=0,∠A=30°,∠B=120°.点评:本题考查了特殊角的三角函数值,解答本题的关键是按照题目所给的运算法则求出三角函数的值和运用分类讨论的思想解题,难度一般.28.(9分)(•大庆)如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,=4S1S3.考相似形综合题.点:专题:探究型.分析:(1)直接根据三角形的面积公式解答即可;(2)作DM⊥BC,垂足为M,DM与EF交与点N,根据=t,可知AF=tFB,再由BM=MC=AD=1可得出====,所以NE=,根据EF=FN+NE即可得出结论;(3)根据AB=AF+FB=(t+1)FB=3,可得出FB=,故可得出AF=tFB=,根据三角形的面积公式可用t表示出S1,S3,S2,由s22=4S1S3.即可得出t的值.解答:解:(1)∵S1=AD•AF=x,S3=BC•BF=×2×(3﹣x)=3﹣x,∴S1S3=x(3﹣x)=(﹣x2+3x)=[﹣(x﹣)2+]=﹣(x﹣)2+(0<x<3),∴当x=时,S1S3的最大值为;(2)作DM⊥BC,垂足为M,DM与EF交与点N,∵=t,∴AF=tFB,∵BM=MC=AD=1,∴====,∴NE=,∴EF=FN+NE=1+=;(3)∵AB=AF+FB=(t+1)FB=3,∴FB=,∴AF=tFB=,∴S1=AD•AF=×=,S3=BC•FB=×2×=;S2=AB•FE=×3×=,∴S1S3=,S22=,∴=4×,即4t2﹣4t+1=0,解得t=.点评:本题考查的是相似形综合题,熟知三角形的面积公式、二次函数的最值问题等相关知识是解答此题的关键.。
(中考精品卷)黑龙江省大庆市中考数学真题(解析版)
2022年大庆市初中升学考试数学考生注意:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区城内。
2.选择题每小题选出答案后,用2B 铅笔在答题卡上把对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题用黑色字迹的钢笔或签字笔在答题卡相应位置作答。
在草稿纸、试题卷上作答无效。
3.考试时间120分钟。
4.全卷共28小题,总分120分。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1. 2022的倒数是( ) A. 2022B. 2022-C.12022D.12022-【答案】C 【解析】【分析】根据倒数的定义作答即可. 【详解】2022的倒数是12022, 故选:C .【点睛】本题考查了倒数的概念,即乘积为1的两个数互为倒数,牢记倒数的概念是解题的关键.2. 地球上的陆地面积约为2149000000km ,数字149000000用科学记数法表示为( ) A. 71.4910⨯B. 81.4910⨯C. 91.4910⨯D.101.4910⨯【答案】B 【解析】【分析】科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看原数变成a 时,小数点移动了多少位,|n|与小数点移动的位数相同.当原数的绝对值大于或等于10时,n 为正整数.【详解】将149000000用科学记数法表示为:81.4910⨯. 故选:B.【点睛】本题考查了科学记数法的表示方法,正确确定n 的值是解本题的关键. 3. 实数c ,d 在数轴上的对应点如图所示,则下列式子正确的是( )A. c d >B. ||||c d >C. c d -<D.0c d +<【答案】C 【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴上的点表示的数右边的总比左边的大,得c <0<d , A 、c d <,原结论错误,故此选项不符合题意; B 、||||c d <,原结论错误,故此选项不符合题意;C 、∵c <0<d ,且||||c d <,∴c d -<,原结论正确,故此选项符合题意;D 、∵c <0<d ,且||||c d <,∴0c d +>,原结论错误,故此选项不符合题意; 故选:C .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.4. 观察下列图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A .不是轴对称图形,是中心对称图形.故本选项不合题意; B .是轴对称图形,不是中心对称图形.故本选项不合题意; C .不是轴对称图形,是中心对称图形.故本选项不合题意; D .既是轴对称图形又是中心对称图形.故本选项符合题意. 故选:D .【点睛】本题考查轴对称图形与中心对称图形的概念,理解轴对称图形与中心对称图形的概念是解题的关键.5. 小明同学对数据12,22,36.4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是( ) A. 平均数 B. 标准差C. 方差D. 中位数【答案】D 【解析】【分析】根据平均数,标准差,方差与中位数的定义进行判断即可.【详解】解:A 中平均数是指在一组数据中所有数据之和再除以这组数据的个数,与被污染数有关,故不符合题意;C 中方差是每个样本值与全体样本值的平均数之差的平方和的平均数,与被污染数有关,故不符合题意;B 中标准差是方差的算术平方根,与被污染数有关,故不符合题意;D 中是按顺序排列的一组数据中居于中间位置的数,为36,与被污染数无关,故符合题意; 故选D .【点睛】本题考查了平均数,标准差,方差与中位数.熟练掌握平均数,标准差,方差与中位数的定义是解题的关键.6. 已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( ) A. 60π B. 65πC. 90πD. 120π【答案】B 【解析】【分析】根据圆锥侧面展开图的面积πS rl =,计算求解即可.【详解】解:由题意知,圆锥侧面展开图的半径即圆锥的母线长l 13=, ∴圆锥侧面展开图的面积为ππ51365S rl π==⨯⨯=, 故选B .【点睛】本题考查了圆锥侧面展开图的面积,勾股定理.解题的关键在于明确圆锥侧面展开图的面积πS rl =,其中r 为圆锥底面半径,l 为圆锥侧面展开图的半径即圆锥的母线长.7. 如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在E 处.若156∠=︒,242∠=︒,则A ∠的度数为( )A. 108︒B. 109︒C. 110︒D. 111︒【答案】C 【解析】【分析】先根据平行四边形的性质,得出AB CD ,根据平行线的性质,得出156ABE ∠=∠=︒,根据折叠得出1282ABD ABE ∠=∠=︒,根据三角形内角和得出∠A 的度数即可.【详解】解:∵四边形ABCD 为平行四边形, ∴AB CD ,156ABE ∴∠=∠=︒,根据折叠可知,ABD EBD ∠=∠, ∴11562822ABD ABE ∠=∠=⨯︒=︒, 242∠=︒ ,∴1802110A ABD ∠=︒-∠-∠=︒,故C 正确. 故选:C .【点睛】本题主要考查了平行四边形的性质,平行线的性质,三角形内角和定理,折叠性质,根据已知条件求出28ABD ∠=︒是解题的关键. 8. 下列说法不正确的是( )A. 有两个角是锐角的三角形是直角或钝角三角形B. 有两条边上的高相等的三角形是等腰三角形C. 有两个角互余的三角形是直角三角形D. 底和腰相等的等腰三角形是等边三角形【答案】A 【解析】【分析】利用等腰三角形性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案. 【详解】解:A 、设∠1、∠2为锐角, 因为:∠1+∠2+∠3=180°,所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A 选项不正确,符合题意;B 、如图,在△ABC 中,BE ⊥AC ,CD ⊥AB ,且BE =CD .∵BE ⊥AC ,CD ⊥AB , ∴∠CDB =∠BEC =90°, 在Rt △BCD 与Rt △CBE 中,CD BEBC CB =⎧⎨=⎩, ∴Rt △BCD ≌Rt △CBE (HL ), ∴∠ABC =∠ACB ,∴AB =AC ,即△ABC 是等腰三角形., 故B 选项正确,不符合题意;C 、根据直角三角形的判定:有两个角互余的三角形是直角三角形,, 故C 选项正确,不符合题意;D 、底和腰相等的等腰三角形是等边三角形, 故D 选项正确,不符合题意; 故选:A .【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能的力.9. 平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为( )A. 4πB.C. 8πD.【答案】B 【解析】【分析】设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫⎪⎝⎭,,根据8OM ON +=,得出()8n m +-=,然后分两种情况,80n -≤<或08n ≤≤,得出2m 与2n的函数关系式,即可得出Q 横纵坐标的关系式,找出点Q 的运动轨迹,根据勾股定理求出运动轨迹的长即可.【详解】解:设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫ ⎪⎝⎭,, ∵8OM ON +=,∴()8n m +-=,(88n -≤≤,80m -≤≤) , ∵当80n -≤<时,()8n m n m +-=--=, ∴422n m --=,即422m n=--, ∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的负半轴上,坐标为(-4,0),另一端在y 轴的负半轴上,坐标为(0,-4),∴此时点Q =∵当08n ≤≤时,()8n m n m +-=-=, ∴422n m -=,即422m n=-, ∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的正半轴上,坐标为(4,0),另一端在y 轴的负半轴上,坐标为(0,-4),∴此时点Q =;综上分析可知,点Q 运动路径的长为=B 正确. 故选:B .【点睛】本题主要考查了平面直角坐标系中的动点问题,根据题意找出点Q 的运动轨迹是两条线段,是解题的关键.10. 函数[]y x =叫做高斯函数,其中x 为任意实数,[]x 表示不超过x 的最大整数.定义{}[]x x x =-,则下列说法正确的个数为( )①[ 4.1]4-=-; ②{3.5}0.5=;③高斯函数[]y x =中,当3y =-时,x 的取值范围是32x -≤<-; ④函数{}y x =中,当2.5 3.5x <≤时,01y ≤<. A. 0 B. 1C. 2D. 3【答案】D 【解析】【分析】根据[]x 表示不超过x 的最大整数,即可解答. 【详解】解:①[ 4.1]5-=-,故原说法错误;②{3.5} 3.5[3.5] 3.530.5=-=-=,正确,符合题意;③高斯函数[]y x =中,当3y =-时,x 的取值范围是32x -≤<-,正确,符合题意; ④函数{}y x =中,当2.5 3.5x <≤时,01y ≤<,正确,符合题意; 所以,正确的结论有3个. 故选:D .【点睛】本题考查了有理数的混合运算,解决本题的关键是明确[]x 表示不超过x 的最大整数.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.在函数y =x 的取值范围是_________.【答案】32x ≥- 【解析】分析】二次根式内非负,则函数有意义. 【详解】要使函数有意义,则二次根式内为非负 ∴2x+3≥0 解得:32x ≥-故答案为:32x ≥-【点睛】本题考查函数的取值范围,我们通常需要关注2点:一是分母不能为0,二是二【次根式内的式子非负.12. 写出一个过点(0,1)D且y随x增大而减小的一次函数关系式____________.【答案】y=-x+1(答案不唯一)【解析】【分析】根据一次函数的性质,k<0时,函数值y随自变量x的增大而减小,然后解答即可.【详解】解:∵函数值y随自变量x的增大而减小,∴设一次函数关系式为y=-x+b,把点(0,1)代入得,b=1,∴一次函数关系式为y=-x+1.故答案为:y=-x+1(答案不唯一).【点睛】本题考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13. 满足不等式组25010xx-≤⎧⎨->⎩的整数解是____________.【答案】2【解析】【分析】分别求出不等式组中各不等式的解集,再求出其公共解集,找出符合条件的x的整数解即可.【详解】解:25010xx-≤⎧⎨->⎩①②,解不等式①得,52x≤;解不等式②得,1x>∴不等式组的解集为:5 12x<≤∴不等式组的整数解为2,故答案为:2.【点睛】本题主要考查了求一元一次不等式组的整数解,解答此类题目的关键是熟练掌握求不等式组解集的方法.14. 不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为____________.【答案】49【解析】【分析】根据题意列表,然后找出两次卡片编号之积为奇数的可能的结果数,然后计算求解即可.【详解】解:由题意知,列表如下: 1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)由表可知,两次卡片编号之积有1、2、3、4、6、9,卡片组合共有9种等可能的结果,其中两次卡片编号之积为奇数有1、3、9,卡片组合共有(1,1),(1,3),(3,1),(3,3)4种等可能的结果,∴两次卡片编号之积为奇数的概率为49, 故答案为:49. 【点睛】本题考查了列举法求概率.解题的关键在于找出两次卡片编号之积为奇数的可能的结果数.15. 已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________. 【答案】52或32- 【解析】【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式, ∴()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=, ∴214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.16. 观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49 【解析】【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个, 第2个图案中有六边形图形:2+3+2=7个, 第3个图案中有六边形图形:3+4+3=10个, 第4个图案中有六边形图形:4+5+4=13个, ……∴第16个图案中有六边形图形:16+17+16=49个, 故答案为:49.【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题.17. 已知函数231y mx mx m =++-的图象与坐标轴恰有两个公共点,则实数m 的值为____________. 【答案】1或45- 【解析】【分析】函数图象与坐标轴恰有两个公共点,则分两种情况:第一种情况,函数图象过原点;第二种情况,函数图象与x 轴只有一个交点,分别计算即可【详解】当函数图象过原点时,函数231y mx mx m =++-的图象与坐标轴恰有两个公共点,此时满足10m -=,解得1m =;当函数图象与x 轴只有一个交点且与坐标轴y 轴也有一个交点时, 此时满足()()23410mm m ∆=--=,解得0m =或45m =-,当0m =是,函数变为1y =-与y 轴只有一个交点,不合题意;综上可得,1m =或45m =-时,函数图象与坐标轴恰有两个公共点. 故答案为:1或45- 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质.18. 如图,正方形ABCD 中,点E ,F 分别是边,AB BC 上的两个动点,且正方形ABCD 的周长是BEF 周长的2倍,连接,DE DF 分别与对角线AC 交于点M ,N .给出如下几个结论:①若2,3AE CF ==,则4EF =;②180EFN EMN ∠+∠=︒;③若2,3AM CN ==,则4MN =;④若2,3MN BE AM==,则4EF =.其中正确结论的序号为____________.【答案】②【解析】【分析】根据已知条件可得=+EF AE FC ,即可判断①,进而推出45EDF ∠=︒,导角可得②正确,作DG EF ⊥于点G ,连接,GM GN ,证明GMN 是直角三角形,勾股定理验证③,证明30BEF MNG ∠=∠=︒,即可判断④求解.【详解】解:∵正方形ABCD 的周长是BEF 周长的2倍,∴BE BF EF AB BC ++=+,∴=+EF AE FC ,①若2,3AE CF ==,则5EF =,故①不正确;如图,在BA 的延长线上取点H ,使得AH CF =,四边形ABCD 是正方形,90DAH DAE DCF ∴∠=∠=∠=︒,AD CD =,ADH CDF ∴ ≌,CDF ADH ∴∠=∠,HD DF =,H DFC ∠=∠,EF AE CF AE AH EH =+=+= ,DE DE =,DHE DFE ∴ ≌()SSS ,HDE FDE ∴∠=∠,H EFD ∠=∠,HED FED ∠=∠,90CDF ADF ADH ADF HDF ∠+∠=∠+∠=∠=︒ ,45EDF HDE ∴∠=∠=︒,H DFC DFE ∠=∠=∠,45EMN HED EAM DEF ∠=∠+∠=︒+∠,41805DE EFN EMN F DF EDF DEF C DFC ∴∠+∠=∠+∠︒+∠=∠+∠=+︒ 即180EFN EMN ∠+∠=︒,故②正确;如图,作DG EF ⊥于点G ,连接,GM GN ,则90DGE DAE ∠=∠=︒,AED GED ∠=∠ ,DE DE =,AED GED ∴ ≌,同理可得GDF CDF ≌,,AG DG CF ADE GDE GDF CDF ∴==∠=∠∠=∠,,,A G ∴关于DE 对称轴,,C G 关于DF 对称,,GM AM GN CN ∴==,45,45EGM EAM NGF NCF ∠=∠=︒∠=∠=︒,180454590MGN ∴∠=︒-︒-︒=︒,GMN ∴ 是直角三角形,③若2,3AM CN ==,∴2,3GM GN ==,4MN ∴==≠,故③不正确,MG AM =, 若2,3MN BE AM==, 即sin MNG ∠=12MG MN =, 30MNG ∴∠=︒,180EFN EMN ∠+∠=︒,180EMN AME ∠+∠=︒,又CFN EFN ∠=∠,AME CFN ∴∠=∠,22AEM CFN ∴∠=∠,即AMG CFG ∠=∠,GMN BFE ∴∠=∠,30BEF MNG ∴∠=∠=︒,cos cos cos30BE BEF GNM EF ∴∠==∠=︒= 3BE = ,EF ∴== 故④不正确.故答案为:②.【点睛】本题考查了正方形的性质,轴对称的性质,解直角三角形,全等三角形的性质与判定,掌握以上知识是解题的关键.三、解答题(本大题共10小题,共66分.在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:02|(3)π-⨯-+【答案】【解析】【分析】原式分别根据绝对值的代数意义,零指数幂的运算法则以及立方根的意义化简各项后,再计算乘法,最后计算加法即可.【详解】解:0|2|(3)π-⨯-+=2)12--⨯-=22+-=【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键. 20. 先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 【答案】a ab +,23【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题. 【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭ =222a ab a b b b--÷ =()()()a a b b b a b a b -+- =a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法.21. 某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?【答案】现在平均每天生产80个零件【解析】【分析】设现在平均每天生产x 个零件,则原计划生产()20x -个零件,由题意得,80060020x x =-,计算求出x 的值,然后进行检验即可. 【详解】解:设现在平均每天生产x 个零件,则原计划生产()20x -个零件, 由题意得,80060020x x =-, 去分母得,()80020600x x ⨯-=,移项合并得,20016000x =,系数化为1得,80x =,检验,将80x =代入得()200x x -≠,所以80x =是原分式方程的解,∴现在平均每天生产80个零件.【点睛】本题考查了分式方程的应用.解题的关键在于根据题意列分式方程. 22. 如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB .飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45︒和30°.若飞机离地面的高度CD 为1000m ,且点D ,A ,B 在同一水平直线上,试求这条江的宽度AB (结果精确到1m ,参考数据:1.7321≈≈)【答案】这条江的宽度AB 约为732米【解析】【分析】在Rt ACD △和Rt BCD 中,利用锐角三角函数,用CD 表示出AD BD 、的长,然后计算出AB 的长;【详解】解:如图,∵CE DB ∥,∴45,30CAD ACE CBD BCE ∠=∠=︒∠=∠=︒,在Rt ACD △中,∵45CAD ∠=︒,∴1000AD CD ==米,在Rt DCB △中,∵tan CBD CD BD∠=,∴CD BD tan CBD ==∠(米),∴)100010001732AB BD AD =-=-=≈(米) , 答:这条江的宽度AB 约为732米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题.题目难度不大,解决本题的关键是用含CD 表示出AD BD 、的长.23. 中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分,为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下: 抽取的200名学生成绩统计表组别海选成绩 人数 A 组5060x ≤< 10 B 组6070x ≤< 30 C 组7080x ≤< 40 D 组8090x ≤< a E 组 90100x ≤≤70请根据所给信息解答下列问题:(1)填空:①=a ____________,②b =____________,③θ=____________度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A 组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?【答案】(1)50;15;72(2)82(3)700【解析】分析】(1)结合统计表和扇形统计图计算即可; (2)利用加权平均数公式计算即可;(3)直接用总人数乘以样本的优秀率即可求解.【小问1详解】解:2001030407050a =----=(人); 3010015200%%%b =⨯=;4036072200θ=⨯︒=︒. 故答案为:50;15;72【小问2详解】被选取的200名学生成绩的平均数为:()155106530754085509570200⨯+⨯+⨯+⨯+⨯ ()1=5501950300042506650200++++ 1=16400=82200⨯; 答:估计被选取的200名学生成绩的平均数是82;【小问3详解】【702000100%=700200⨯⨯(人). 答:估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有700人.【点睛】本题考查了统计表、扇形统计图,从两个统计图表中获取有用信息是解题的关键.样本估计总体是统计中常用的方法,同时还考差了加权平均数的意义和计算方法. 24. 如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.【答案】(1)证明见解析(2)证明见解析 【解析】【分析】(1)由BE CF =可得BC EF =,证明()ABC DFE SSS △≌△,则ABC DFE ∠=∠,AB DF ∥,进而结论得证;(2)由AE AC =,可知AEC ACE DEF ∠=∠=∠,AE DE =,则AEB DEB ∠=∠,证明()AEB DEB SAS ≌,进而结论得证.【小问1详解】证明:∵BE CF =,∴BE EC EC CF +=+,∴BC EF =,在ABC 和DFE △中,∵AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,∴()ABC DFE SSS ≌,∴ABC DFE ∠=∠,∴AB DF ∥,又∵AB DF =,∴四边形ABDF 是平行四边形.【小问2详解】证明:由(1)知,()ABC DFE SSS ≌,∴ACB DEF ∠=∠,∵AE AC =,∴AEC ACE DEF ∠=∠=∠,AE DE =,∴AEB DEB ∠=∠,在AEB △和DEB 中,∵EB EB AEB DEB AE DE =⎧⎪∠=∠⎨⎪=⎩,∴()AEB DEB SAS ≌,∴AB DB =.【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定.解题的关键在于熟练掌握全等三角形的判定与性质,平行四边形的判定.25. 已知反比例函数k y x=和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.【答案】(1)3y x =(2)+【解析】【分析】(1)用待定系数法求出函数解析式;(2)作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,进行计算即可;【小问1详解】 解:把(3,)(31,)3k a b a b ++,代入1y x =-,得 313113b a k b a =-⎧⎪⎨+=+-⎪⎩, 解得,3k =, 所以反比例函数解析式是3y x=; 【小问2详解】存在点P 使△ABP 周长最小,理由: 解133y x y x ⎧=⎪⎪⎨⎪=⎪⎩和33y x y x =⎧⎪⎨=⎪⎩得, 31x y =±⎧⎨=±⎩和13x y =±⎧⎨=±⎩, 0x >,∴31x y =⎧⎨=⎩和13x y ì=ïí=ïî, ∴()()3,1,1,3A B ,作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,当点A 、P 、'B 在一条直线上时,线段'AB 的长度最短,所以存在点P 使△ABP 周长最小,△ABP 的周长=AB BP AP ++'AP AB B A =++'AB B A =+ ,=,==+.【点睛】本题考查函数的综合,掌握待定系数法求函数解析式,利用轴对称求出点P 位置是解题关键.26. 果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?【答案】(1)增种28棵果树时,每棵果树的平均产量为66kg ;0.5(2)y 与x 的函数关系式为y =-0.5x +80(0<x ≤80) (3)增种果树50棵时,果园的总产量最大,最大产量是6050kg【解析】【分析】(1)①根据图像可知,增种果树为x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,可以得出图中点P 表示的实际意义;②根据增种10棵果树时,果园内的每棵果树平均产量为75kg .增种28棵果树时,每棵果树的平均产量为66kg ,可以得出每增种1棵果树时,每棵果树平均产量减少的量;(2) 根据增种10棵果树时,果园内的每棵果树平均产量为75kg .增种28棵果树时,每棵果树的平均产量为66kg ,设y 与x 的函数关系式为y =kx +b ,将x =10,y =75;x =28,y =66代入可得y 与x 的函数关系式;(3) 根据题意,果园的总产量w =每棵果树平均产量kg y ×果树总棵树;可得w 与x 的二次函数关系式,根据二次函数的图像和性质即可解得.【小问1详解】①根据图像可知,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,所以图中点P 表示的实际意义是:增种28棵果树时,每棵果树的平均产量为66kg , 所以答案为:增种28棵果树时,每棵果树的平均产量为66kg ,②根据增种10棵果树时,果园内的每棵果树平均产量为75kg .增种28棵果树时,每棵果树的平均产量为66kg ,可以得出:每增种1棵果树时,每棵果树平均产量减少为:(75-66)÷(28-10)=9÷18=0.5(kg )所以答案为:0.5【小问2详解】根据增种10棵果树时,果园内的每棵果树平均产量为75kg .增种28棵果树时,每棵果树的平均产量为66kg ,设y 与x 的函数关系式为y =kx +b将x =10,y =75;x =28,y =66代入可得10752866k b k b +=⎧⎨+=⎩解得0.580k b =-⎧⎨=⎩∴y 与x 的函数关系式为y =-0.5x +80(0<x ≤80)小问3详解】根据题意,果园的总产量w =每棵果树平均产量kg y ×果树总棵树可得w =(-0.5x +80)(60+x )=-0.5x 2+50x +4800∵a =-0.5<0所以当x =50-5022(0.5)b a =-=⨯- 时,w 有最大值 w 最大=6050所以增种果树50棵时,果园的总产量最大,最大产量是6050kg【点睛】本题考查了一次函数,二次函数的应用,解答本题的关键是看懂图像,明确题【意,列出相应的函数关系式,利用二次函数的性质解答.27. 如图,已知BC 是ABC 外接圆O 的直径,16BC =.点D 为O 外的一点,ACD B ∠=∠.点E 为AC 中点,弦FG 过点E .2EF EG =.连接OE .(1)求证:CD 是O 的切线;(2)求证:()()OC OE OC OE EG EF +-=⋅;(3)当FG BC 时,求弦FG 的长.【答案】(1)答案见解析(2)答案见解析 (3)3-【解析】【分析】(1)根据BC 是△ABC 外接圆⊙O 的直径,得∠BAC =90°,由因为∠ACD =∠B ,得∠BCD =90°,即可得答案;(2)先证△FEA ∽△CEG ,得EF AE CE EG =,又因AE =CE ,EF =2EG ,得CE 2=2EG 2,得OC 2-OE 2=EC 2,即可得答案;(3)作ON ⊥FG ,延长FG 交线段于点W ,得四边形ONWC 为矩形,得NG =1.5EG ,NE =0.5EG ,EW =8-1.5EG +EG =8-0.5EG ,得(8-0.5EG )2+64-2EG 2-14EG 2=2EG 2,得EG=1,即可得答案.【小问1详解】解:∵BC 是△ABC 外接圆⊙O 的直径,∴∠BAC =90°,∴∠B +∠ACB =90°,∵∠ACD =∠B ,∴∠ACD +∠ACB =90°,∴∠BCD =90°,为∵OC是OO的半径,∴CD是OO的切线;【小问2详解】如下图,连接AF、CG,∴∠AFE=∠ECG,∵∠AEF=∠CEG,∴△FEA∽△CEG,∴EF AE CE EG=,∵点E为AC中点,∴AE=CE,∵EF=2EG,∴2EG CE CE EG=,∴CE2=2EG2,∵∠BAC=90°,点E为AC中点,∴EO∥AB,∴∠OEC=90°,∴OC2-OE2=EC2,∴OC2-OE2=2EG2,∴(OC+OE)(OC−OE)=EG⋅EF;【小问3详解】作ON⊥FG,延长FG交线段于点W,∵BC =16,∴OC =8,∵FG ∥BC ,∴四边形ONWC 为矩形,∵EF =2EG ,∴FG =3EG ,∴NG =1.5EG ,NE =0.5EG ,EW =8-1.5EG +EG =8-0.5EG ,由(2)可知:OC 2-OE 2=2EG 2,∴CE 2=2EG 2,∴OE 2=64-2EG 2,ON 2=64-2EG 2-14EG 2,EW 2=(8-0.5EG )2, ∴(8-0.5EG )2+64-2EG 2-14EG 2=2EG 2,解得EG 1-,∴FG =3EG =3-. 【点睛】本题考查了圆周角定理,垂径定理,切线的判定定理,相似三角形的判定与性质,勾股定理,矩形的性质,解题的关键是作合适的辅助线.28. 已知二次函数2y x bx m =++图象的对称轴为直线2x =.将二次函数2y x bx m =++图象中y 轴左侧部分沿x 轴翻折,保留其他部分得到新的图象C .(1)求b 的值;(2)①当0m <时,图象C 与x 轴交于点M ,N (M 在N 的左侧),与y 轴交于点P .当MNP △为直角三角形时,求m 的值;②在①的条件下,当图象C 中40y -≤<时,结合图象求x 的取值范围;(3)已知两点(1,1),(5,1)A B ---,当线段AB 与图象C 恰有两个公共点时,直接写出m 的取值范围.【答案】(1)4-(2)①1-,②12x -≤<或 01x ≤≤ 或 32x ≤≤+ (3)41m -≤≤-或13m ≤≤【解析】【分析】(1)根据二次函数的对称轴为直线22b x =-=,求出b 值即可; (2)①由(1)知,二次函数的解析式为24y x x m =-+,令0x =,则y m =,可得()0,P m ,令0y =,则240x x m -+=,求出()2M -,()2N +,则2MO =-,2ON =OP m =-,证明MOP PON ∽,则MO OPPO ON ==,整理得,2m m -=,求出满足要求的m 的值即可;②由①可知,二次函数解析式为241y x x =--,y 轴左侧图象的解析式为()2410y x x x =-++≤,可画图象C 如图所示,令4y =-,则2414x x -++=-,求出满足要求的x 值,令4y =-,则2414x x --=-,求出满足要求的x 值,然后结合图求x 的取值范围即可;(3)由题意知,二次函数的解析式为()()224040x x m x y x x m x ⎧-+-≤⎪=⎨-+>⎪⎩,AB 为平行于x 轴的线段,由题意知,分两种情况求解:①当线段AB 与图象C 在y 轴左侧有一个交点时,线段AB 与图象C 在y 轴右侧有一个交点,即令241x x m -+-=-,241x x m -+=-,当10x -≤≤时,根据x 的取值范围求m 的取值范围,当05x <≤时,根据x 的取值范围求m 的取值范围,然后取公共部分即可;②当线段AB 与图象C 在y 轴左侧没有交点,线段AB 与图象C 在y 轴右侧有两个交点,即令241x x m -+-=-,241x x m -+=-,当10x -≤≤时,根据x 的取值范围求m 的取值范围,当05x <≤时,根据x 的取值范围求m 的取值范围,然后取公共部分即可.【小问1详解】。
2024年黑龙江省大庆市中考数学试卷(附答案)
2024年黑龙江省大庆市中考数学试卷(附答案)一、选择题:本题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合要求。
1.(3分)下列各组数中,互为相反数的是()A.|﹣2024|和﹣2024B.2024和C.|﹣2024|和2024D.﹣2024和【答案】A.2.(3分)人体内一种细胞的直径约为1.56微米,相当于0.00000156米,数字0.00000156用科学记数法表示为()A.1.56×10﹣5B.0.156×10﹣5C.1.56×10﹣6D.15.6×10﹣7【解答】解:0.00000156=1.56×10﹣6,故选:C.3.(3分)垃圾分类功在当代,利在千秋.下列垃圾分类指引标志中,文字上方的图形既是轴对称图形又是中心对称图形的是()A.厨余垃圾B.有害垃圾C.其他垃圾D.可回收物【答案】B.4.(3分)下列常见的几何体中,主视图和左视图不同的是()A.B.C.D.【答案】B.5.(3分)“铁人王进喜纪念馆”“龙凤湿地公园”“滨水绿道”和“数字大庆中心”是大庆市四个有代表性的旅游景点.若小娜从这四个景点中随机选择两个景点游览,则这两个景点中有“铁人王进喜纪念馆”的概率是()A.B.C.D.【答案】D.6.(3分)下列说法正确的是()A.若>2,则b>2aB.一件衣服降价20%后又提价20%,这件衣服的价格不变C.一个锐角和一条边分别相等的两个直角三角形全等D.若一个多边形的内角和是外角和的2倍,则这个多边形是六边形【答案】D.7.(3分)如图,在一次综合实践课上,为检验纸带①、②的边线是否平行,小庆和小铁采用了两种不同的方法:小庆把纸带①沿AB折叠,量得∠1=∠2=59°;小铁把纸带②沿GH折叠,发现GD与GC重合,HF与HE重合,且点C,G,D在同一直线上,点E,H,F也在同一直线上.则下列判断正确的是()A.纸带①、②的边线都平行B.纸带①、②的边线都不平行C.纸带①的边线平行,纸带②的边线不平行D.纸带①的边线不平行,纸带②的边线平行【解答】解:对于纸带①,∵∠1=∠2=59°,∴∠1=∠ADB=59°,∴∠DBA=180°﹣∠ADB﹣∠2=62°,由翻折的性质得:∠ABC=∠DBA=62°,∴∠DEB=180°﹣∠ABC﹣∠DBA=56°,∴∠1≠∠DEB,∴AD与EB不平行.对于纸带②中,由翻折的性质得:∠CGH=∠DGH,∠EHG=∠FHG,又∵C,G,D在同一直线上,点E,H,F也在同一直线上∴∠CGH+∠DGH=180°,∠EHG+∠FHG=180°,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴CD∥EF.综上所述:纸带①边线不平行,纸带②的边线平行.故选:D.8.(3分)在同一平面直角坐标系中,函数y=kx﹣k(k≠0)与y=的大致图象为()A.B.C.D.【解答】解:将x=1代入y=kx﹣k得,y=k﹣k=0,所以函数y=kx﹣k过定点(1,0).故B选项不符合题意.当k>0时,函数y=kx﹣k中y随x的增大而增大.因为当k>0时,y=>0,所以此函数的图象都在x轴的上方,所以AD不符合题意,C符合题意.故选:C.9.(3分)小庆、小铁、小娜、小萌四名同学均从1,2,3,4,5,6这六个数字中选出四个数字,玩猜数游戏.下列选项中,能确定该同学选出的四个数字含有1的是()A.小庆选出四个数字的方差等于4.25B.小铁选出四个数字的方差等于2.5C.小娜选出四个数字的平均数等于3.5D.小萌选出四个数字的极差等于4【分析】根据方差,平均数,极差的定义逐一判断即可.【答案】A.【点评】本题考查了方差,算术平均数,极差的定义,掌握相关的知识是解题的关键.10.(3分)如图,在矩形ABCD中,AB=10,BC=6,点M是AB边的中点,点N是AD边上任意一点,将线段MN绕点M顺时针旋转90°,点N旋转到点N′,则△MBN′周长的最小值为()A.15B.5+5C.10+5D.18【解答】解:过点N′作EF∥AB,交AD、BC于E、F,过点M作MG⊥EF于点G,∵矩形ABCD,∴AB∥CD,∴AB∥EF∥CD,∴四边形AMGE和BMGF都是矩形,∴∠A=∠MGN=90°,由旋转的性质得∠NMN'=90°,MN=MN′,∴∠AMN=90°﹣∠NMG=∠GMN′,∴△AMN≌△GMN′(AAS),∴MG=AM,∴点N在平行于AB,且与AB的距离为5的直线上运动,作点M关于直线EF的对称点M,连接MB交直线EF于点N′,此时△MBN′周长取得最小值,最小值为BM+BM′,∵BM=AB=5,MM′=5+5=10,∴,故选:B.二、填空题:本题8小题,每小题3分,共24分。
大庆中考数学试题及答案2023
大庆中考数学试题及答案2023一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 3D. -8答案:C2. 计算下列哪个表达式的结果是负数?A. 2 + 3B. -2 - 3C. 5 × 2D. -4 ÷ 2答案:B3. 如果一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A4. 下列哪个方程的解是x=2?A. x + 3 = 5B. 2x - 4 = 0C. 3x = 6D. x - 5 = 0答案:A5. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3或-3D. 9答案:C6. 计算下列哪个表达式的结果是0?A. 5 - 5B. 3 + 2C. 4 × 0D. 8 ÷ 8答案:C7. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C8. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A9. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C10. 计算下列哪个表达式的结果是正数?A. -2 × -3B. 4 ÷ -2C. -5 + (-3)D. 0 - 7答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是______。
答案:712. 如果一个角是直角的一半,那么这个角是______度。
答案:4513. 一个等腰三角形的底角是70°,那么顶角是______度。
答案:4014. 一个数的立方等于-8,这个数是______。
答案:-215. 一个数的倒数是2,那么这个数是______。
答案:0.516. 一个数的绝对值是它本身,这个数是非负数,那么这个数是______。
大庆初三数学试题及答案
大庆初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程 \(x^2 - 5x + 6 = 0\) 的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)答案:C2. 如果一个圆的半径是 \(r\),那么它的面积是多少?A. \(\pi r\)B. \(\pi r^2\)C. \(2\pi r\)D. \(4\pi r^2\)答案:B3. 下列哪个选项是不等式 \(2x - 3 > 5\) 的解?A. \(x > 4\)B. \(x < 4\)C. \(x > -1\)D. \(x < -1\)答案:A4. 函数 \(y = 2x + 3\) 的图像与y轴的交点是?A. \((0, 3)\)B. \((0, 2)\)C. \((3, 0)\)D. \((2, 0)\)答案:A5. 一个长方体的长、宽、高分别为 \(a\)、\(b\)、\(c\),那么它的体积是?A. \(abc\)B. \(ab + bc + ac\)C. \(a^2b^2c^2\)D. \(a + b + c\)答案:A6. 一个二次函数 \(y = ax^2 + bx + c\) 的顶点坐标是?A. \((-\frac{b}{2a}, c - \frac{b^2}{4a})\)B. \((\frac{b}{2a}, c + \frac{b^2}{4a})\)C. \((-\frac{b}{2a}, c + \frac{b^2}{4a})\)D. \((\frac{b}{2a}, c - \frac{b^2}{4a})\)答案:C7. 一个三角形的两边长分别为 \(3\) 和 \(4\),且这两边夹角为\(60^\circ\),那么这个三角形的面积是?A. \(3\)B. \(4\)C. \(6\)D. \(8\)答案:A8. 一个等腰三角形的底边长为 \(5\),腰长为 \(6\),那么这个三角形的周长是?A. \(17\)B. \(16\)C. \(15\)D. \(14\)答案:A9. 下列哪个选项是函数 \(y = x^3 - 3x^2 + 2\) 的零点?A. \(x = 0\)B. \(x = 1\)C. \(x = 2\)D. \(x = 3\)答案:B10. 一个正五边形的内角和是多少度?A. \(540^\circ\)B. \(360^\circ\)C. \(720^\circ\)D. \(1080^\circ\)答案:A二、填空题(每题4分,共20分)1. 一个直角三角形的两直角边长分别为 \(3\) 和 \(4\),那么它的斜边长是 _______。
大庆中考数学试卷真题答案
大庆中考数学试卷真题答案一、选择题1. 答案: B解析: 根据题意,利用首项、末项和项数的公式可以计算出这是一个等差数列,首项为4,末项为20,项数为9。
因此,公差为 (20 - 4) / (9 - 1) = 2。
所以,第5项为 4 + 2 * (5 - 1) = 12。
2. 答案: C解析: 这是一个递推数列,当 n = 1 时,数列的值为 4;当 n = 2 时,数列的值为 8;当 n = 3 时,数列的值为 12;当 n = 4 时,数列的值为16;...,根据题意可以得知,y 是 x 的 2 倍,所以递推数列的通项公式为 y = 4n。
当 n = 6 时,数列的值为 4 * 6 = 24。
3. 答案: D解析: 根据题意,可以列出方程:(4a + 5) / (2b - 1) = 7/3,交叉相乘后化简得到 12a + 15 = 14b - 7,整理后得到 12a - 14b = -22,可以约分得到 6a - 7b = -11,对比选项,得出 a = 3,b = 4。
4. 答案: C解析: 根据题意,计算体积可以使用V = πr²h 公式。
已知底面半径 r = 5 cm,高 h = 3 cm,代入公式得到 V = 3.14 * 5² * 3 = 235.5 cm³。
5. 答案: A解析: 根据题意,可以列出方程:(x + 3) / (x - 2) = 5,交叉相乘后化简得到 x + 3 = 5x - 10,整理后得到 4x = 13,解方程可得 x = 13/4 =3.25。
二、填空题6. 答案: 4解析: 根据题意,可知 m + n = 4,根据等式 m - n = 2 可以得到 m = 3,n = 1,所以 m² - n² = 3² - 1² = 8。
7. 答案: -1解析: 根据题意,将 (2x - 1)²展开得到 4x² - 4x + 1,计算得出令该值等于 -5 时,可以得到 4x² - 4x + 1 = -5,整理得到 4x² - 4x + 6 = 0,解方程可得 x = -1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)分别求出甲、乙两学校学生这次数学竞赛所得分数的中位数和平均数,以此比较哪个学生这次数学竞赛成绩更好些.
.
27.(本题9分) 如图, △ 的两直角边 边长为4, 边长为3,它的内切圆为⊙0,⊙0与边 、 、 分别相切于点 、 、 ,延长 交斜边 于点 .
(1)求⊙ 的半径长;
7.已知平面直角坐标系中两点 (-1,O)、B(1,2).连接AB,平移线段A8得到线段 ,若点A的对应点 的坐标为(2,一1),则B的对应点B1的坐标为()
A.(4,3)B.(4,1)C.(一2,3)D.(一2,1)
8如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积。若测量得AB的长为 20米,则圆环的面积为( )
4·若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线 与底面半径r之间的函数关系的是()
5若a+b>0,且b<0,贝a,b,-a,-b的大小关系为()
<-b<b<aB.-a<b<-b<aC.-a<b<a<-b D.b<-a<-b<a
6某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品,下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是()
黑龙江大庆中考数学试题
黑龙江省大庆市2011年初中升 学统一考试数学试题
一、选择题(本大题共10小题,每小题3分,共30分。)
1.与 互为倒数的是()
B.- C. D.2
2·用科学记数法表示数×10-5,它应该等于()
8B.58058D.005 8
3.对任意实数a,则下列等式一定成立的是()
A. B. C. D.
1 5.随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低 元后,又降低20%,此时售价为n元,则该手机原价为元.
16.如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.
17.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由个小正方体搭成.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟
24.(本题7分)某商店购进一批单价为8元的商品,如果按每件l0元出售,那么每天可销售100件。经调查发现,这种商品的销售单价每提高l元,其销售量相应减少l0件.将销售价定为多少,才能使每天所获销售利润最大最大利润是多少
(结果精确到0.1海里,参考数据 , )
22.(本题6分)小明参观上海世博会,由于仅有一天的时间,他上午从A一中国馆,B一日本馆,C一美国馆中任选一处参观,下午从D一韩国馆,E一英国馆,F一德国馆中任选一处参观.
(1)请用画树状图或列表的方法,表示小明所有可能的参观方式(用字母表示);
(2)求小明上午或下午至少参观一个亚洲国家馆的概率.
23.(本题7分)如图所示,制作 一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系。已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.
A.10平方米B.10 平方米
C.100平方米D.100 平方米
9.已知a、b、c是△ABC的三边长,且满足 ,则△ 的形状是( )
A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形
10.已知⊙0的半径为l,圆心0到直线l的距离为2,过 上任一点A作⊙0的切线,切点为B,则线段AB长度的最小值为( )
(2)求线段 的长.
28.(本题8分)二次函数: 图象顶点标的取值范围;
(2)若该二次函数图象与 轴交于 、 两点,求线段 长度的最小值.
2011年大庆市初中升学统一考试数学试题参考答案及评分标准
一、选择题(每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
D
B
A
B
D
C
C
二、填空题(每小题3分,共24分)
11. ;l2.n2;13.2;l4.-6;
15. ;16. ;l7.4;18.4.
三、解答题(共66分)
19.解:原式 …………………………………………………………3分
………………………………………………………………………4分
20.解:由 的解是 …………………………………….……..2分
25.(本题7分)如图, 是一张边 长为 ,边 长为 的矩形纸片,沿过点 的折痕将 角翻折,使得点 落在边 上的点 处,折痕交边 于点 .
(1 )求 的大小;
(2)求△ 的面积.
26.(本题7分)甲、乙两学校都选派相同人数的学生参加数学竞赛,比赛结束后,发现每名参赛学生的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统汁图回答下列问题.
A. 1B. C. D.2
二、填空题(本大题共8小题,每小题3分,共24分)
11计算:sin 230°+cos230°-2tan245°=_____.
12.根据以下等式: ,….
对于正整数n (n≥4),猜想:l+2+…+(n一1)+ n+(n一l)+…+2+1=.
13.已知 ,则 .
14.已知不等式组 的解集是 ,则 的值等于.
18.在四边形ABCD中,已知△ABC是等边三角形,∠ADC=300,AD=3,BD=5,则边CD的长为.
三、解答题(本大题共10小题,共66分)
19.(本题4分)计算:
20.(本题5分)已知 、 满足方程组 ,先将 化简,再求值。
21.(本题6分)如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处测得灯塔C在北偏西300方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西450方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.