几何中辅助线的规律
初中数学几何辅助线技巧
几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
由角平分线想到的辅助线一、截取构全等:如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等:如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形:如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。
初中几何辅助线大全及口诀
作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
102条作几何辅助线的规律
102条作几何辅助线的规律规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n -1)个.规律7.如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17.三角形的两个内角平分线相交所成的钝角等于90度加上第三个内角的一半.规律18.三角形的两个外角平分线相交所成的锐角等于90度减去第三个内角的一半.规律19.从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23.在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
102条作几何辅助线的规律,以后再也不怕了!
102条作几何辅助线的规律,以后再也不怕了!几何中,同学们最头疼的就是做辅助线了,所以,今天数姐整理了做辅助线的102条规律,从此,再也不怕了!规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7.如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17.三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18.三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19.从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23.在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
几何中添加辅助线的一般原则
添线原则:一把分散的几何元素转化为相对集中的几何元素(如把分散的元素集中在一个三角形或两个全等的三角形中,以使定理能够针对应用)二把不规则的图形转化为规则的图形,把复杂图形转化为简单的基本图形。
常见方法:1.遇到等腰三角形时,添底边中线,或已知底边中线添两腰,应用等腰三角形三线合一性质;2.遇到直角三角形时,添斜边中线,应用直角三角形性质解题;3.遇到三角形中线时,将中线延长一倍;4.遇到两条线段的和等于第三条线段,可在长的线段上截取,也可延长短的线段;5.遇到证明圆中的弧、弦、圆心角、弦心距之间的关系时,常添半径或弦心距;6.遇到一些常见的几何基本图形残缺不全时,利用添线补全基本图形。
例题:如图,已知△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于点F。
求证:AF=EF(4)本阶段涉及的证明类型及方法:①证明两线段相等方法1.利用全等三角形性质证明;2.利用等腰三角形性质及判定证明;3.利用直角三角形性质及度量关系证明;4.利用平行四边形性质证明;5.利用线段的中垂线、角平分线性质证明;6.利用图形翻折证明;7.通过计算线段证明;8.利用第三线段过渡证明。
例1:如图,已知RT△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC. 求证:MN=AC ②证明两角相等方法1.利用全等三角形性质证明;2.利用平行四边形性质证明;3.利用等腰三角形性质证明;4.利用平行线性质证明;5.利用计算角度证明;6.利用常用定理证明(如对顶角相等、同角或等角的余角或补角相等、圆的性质等)例2:如图:已知在△ABC中,AB=AC, E是AB的中点,以点E为圆心,EB 为半径画弧,交BC于D, 连结ED并延长ED到点F, 使DF=DE,连FC. 求证:<F=<A③证明两直线平行方法1.利用平行线的判定证明;2.利用平行四边形性质证明;3.利用平行线的传递性证明;例3:如图:已知∠1与∠2互补,∠A=∠ D求证:AB ∥CD ④证明两直线垂直方法 1.利用垂直定义证明;2.利用邻补角的两角的平分线互相垂直证明;3.利用三角形内角和证明;4.利用等腰三角形性质证明;5.利用垂径定理证明;例4:如图:已知在△ABC 中,AD ⊥BC,M 为BC 的中点, 且∠BAD=∠DAM=∠MAC 求证:∠BAC=90°⑤证明线段的和差倍分方法 1.通过代数方法证明;2.利用直角三角形斜边上的中线等于斜边的一半证明;3.利用在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半证明; 4.利用截长补短法证明; 5.利用延短等长法证明;例5:如图:已知在△ABC 中,AD 是BC 上的高,∠B=2∠C, 求证:AB+BD=DC⑥证明角的和差倍分方法1.利用三角形外角等于不相邻的两个内角和证明;2.利用平行线性质证明;3.通过代数方法证明;4.通过题中的平行线、垂线中隐含的角与角间的联系证明。
初中几何常见辅助线作法口诀
初中几何常见辅助线作法口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,中线加倍全等现。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
常见基本图形:8字形,平行8字形,平行等8字形,领子,射影,类射影1.平行、平分、等腰,知二推一。
2.中线加倍3.补形4.旋转、平移、轴对称5.遇角分线截长补短或作双垂直,构成一对全等三角形。
6.遇两个等边三角形有公共顶点,用一长一短和长短间的夹角证全等7.遇2倍角常变作等腰三角形顶角的外角8.证线段的1/2时,常变作中位线,直角三角形斜边中线或30°Rt△9.等边三角形面积:10.30°底角等腰三角形,腰是a,底是a,面积是11.图中见120°角,想60°角;见15°角,想30°角;12.梯形常用辅助线:延两腰,作双高,平行于一腰,平行于对角线。
几何辅助线技巧!
初中数学140分以上,必须掌握的几何辅助线技巧!几何常见辅助线口诀三角形:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形:平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形:半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
由角平分线想到的辅助线:一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自已试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
初中数学须掌握的几何辅助线技巧
初中数学必须掌握的几何辅助线技巧01几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去三角形中两中点,连接则成中位线三角形中有中线,倍长中线得全等四边形平行四边形出现,对称中心等分点梯形问题巧转换,变为三角或平四平移腰,移对角,两腰延长作出高如果出现腰中点,细心连上中位线上述方法不奏效,过腰中点全等造证相似,比线段,添线平行成习惯等积式子比例换,寻找线段很关键直接证明有困难,等量代换少麻烦斜边上面作高线,比例中项一大片圆形半径与弦长计算,弦心距来中间站圆上若有一切线,切点圆心半径连切线长度的计算,勾股定理最方便要想证明是切线,半径垂线仔细辨是直径,成半圆,想成直角径连弦弧有中点圆心连,垂径定理要记全圆周角边两条弦,直径和弦端点连弦切角边切线弦,同弧对角等找完要想作个外接圆,各边作出中垂线还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦内外相切的两圆,经过切点公切线若是添上连心线,切点肯定在上面要作等角添个圆,证明题目少困难02由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°。
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90°,BD为∠ABC的平分线,CE⊥BE。
初中几何辅助线口诀
初中几何辅助线口诀(含经典题解析)BC=AB+CD。
如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180
如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。
AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。
中线。
已知ΔABC的面积为2,求:ΔCDF的面积。
分析:利用中线分等底和同高得面积关系。
CD的延长线分别交EF的延长线G、H。
求证:∠BGE=∠CHE。
如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。
分析:取AB中点得RTΔ斜边中线得到等量关系。
已知,如图△ABC中,AB=5,AC=3,则中线AD的取值围是。
∠C=180
由全等三角形想到的辅助线
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 的度数
BC=17. 求CD的长。
分别是AD、BC的中点,连接EF,求EF的长。
的面积。
在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
证:EF//AD
(2)在梯形ABCD中,AD∥BC,∠BAD=90°,E是DC上的中点,连接AE和BE,求∠AEB=2∠CBE。
分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。
平面几何中作辅助线的规律探究
下面笔者就平面几何中作辅助线的规律作如下探求:
笔者认为:要想正确作出辅助线就必须对作辅助线的原则有一个深入的了解,一般来说,作辅助线具有以下三条原则:
1、构造基本图形的原则
构造基本图形是作辅助线的基本方法,它是出于对几何图形整体的把握作出辅助线的,许多常见的辅助线都体现了这种原则,大家都知道,转化的思想是一种重要的数学思想,在解平面几何题中往往会遇到较复杂的图形,我们可以通过“割”或“补”将较复杂的几何图形转化成几个基本图形进行研究。
(例如构造等腰三角形、直角三角形、全等三角形、相似形,中位线、平行四边形等)
2、显示隐含条件的原则
挖掘题目中的隐含条件,是几何证题的基本功,将隐含条件通过作辅助线使之显示出来,隐含条件往往是通过补齐图形来实现的。
(例如:两圆相交作出公共弦后,显示出圆内接四边形或同弧圆周角;两圆相切时作公切线,显示出弦切角;直径隐含着直径所对的圆周角(是直角);切线隐含着过切点的半径(垂直);三角形内心隐含着角平分线等等)
3、条件集中的原则
通过作辅助线将分散的条件,分散的结论,通过平移、旋转、对称等变换,使其相对集中在某个基本图形中,以利于建立相关数量的关系,达到使题目获证的目的。
下面结合实例分类说明以上三种原则在证题中的应用。
本文来源于枫叶教育网()
原文链接:/info/55681-2.htm
本文来源于枫叶教育网()
原文链接:/info/55681-1.htm。
初中几何辅助线口诀和秘籍
初中几何辅助线口诀和秘籍初中几何学是数学学科中的一门重要课程,学习几何学除了需要掌握基本的概念和定理外,还需要学会灵活运用辅助线。
辅助线是指在几何图形中,为了解决问题而临时引入的辅助线段或辅助点。
正确使用辅助线可以帮助我们更好地理解和解决几何问题。
下面,我将为大家介绍一些初中几何中常用的辅助线口诀和秘籍。
一、辅助线口诀1. 平分线辅助口诀:平分线的作用是将线段、角等等平均分成两份。
当我们遇到需要将线段或角平分的问题时,可以使用平分线来解决。
平分线的特点是与所要平分的线段或角相交于一点,并将其平分为两份。
2. 垂直平分线辅助口诀:垂直平分线的作用是将线段平分,并且垂直于所要平分的线段。
当我们需要将线段垂直平分时,可以使用垂直平分线来解决。
垂直平分线的特点是与所要平分的线段相交于中点,并且与该线段垂直。
3. 高线辅助口诀:高线的作用是求解三角形的高。
当我们需要求解三角形的高时,可以使用高线来解决。
高线的特点是从一个顶点引垂线到对边,该垂线即为三角形的高。
4. 中位线辅助口诀:中位线的作用是将三角形的两个顶点与对边的中点连线。
当我们需要求解三角形的中位线时,可以使用中位线来解决。
中位线的特点是连接三角形的两个顶点与对边中点,将三角形分成两个相等的小三角形。
5. 角平分线辅助口诀:角平分线的作用是将角平分为两个相等的角。
当我们需要将角平分时,可以使用角平分线来解决。
角平分线的特点是从角的顶点引一条线段与角的两边相交于一点,并将角平分为两个相等的角。
二、辅助线秘籍1. 利用垂直平分线求解线段的长度:当我们需要求解一个线段的长度时,可以通过引入垂直平分线的方式来解决。
首先,我们将该线段的两个端点与垂直平分线的两个交点相连,然后利用勾股定理求解。
2. 利用高线求解三角形的面积:当我们需要求解一个三角形的面积时,可以通过引入高线的方式来解决。
首先,我们从一个顶点引垂线到对边,然后利用面积公式S=底×高/2求解。
汇总(密)丨初中中考数学102条作几何辅助线的规律
汇总(密)丨102条作几何辅助线的规律【编】LHX和WMO线、角、相交线、平行线规律1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
规律2平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。
规律3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
规律4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
规律5有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。
规律6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。
规律7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
规律8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
规律9互为邻补角的两个角平分线所成的角的度数为90°。
规律10平面上有n条直线相交,最多交点的个数为n(n-1)个。
规律11互为补角中较小角的余角等于这两个互为补角的角的差的一半。
规律12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
规律13已知AB∥DE,如图⑴~⑹,规律如下:规律14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。
三角形部分规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。
规律16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。
规律17三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。
40句几何辅助线顺口溜!太好记了!
40句几何辅助线顺口溜!太好记了!很多同学都说几何难,不知道从哪里入手!其实,主要还是辅助线的添加问题,那么该怎么添辅助线呢?现在给大家推荐一些歌诀,对你一定有帮助!初中几何常见辅助线作法歌诀辅助线人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
▽ 三角形▽图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
三角形□ 四边形□平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
辅助线☉ 圆☉半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
初中几何辅助线作法大全
线,角,相交线,平行线规律1.假如平面上有n (n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一款直线,一共可以画出12n (n -1)款.规律2.平面上地n 款直线最多可把平面分成〔12n (n +1)+1〕个部分.规律3.假如一款直线上有n 个点,那么在这个图形中共有线段地款数为12n (n -1)款.规律4.线段(或延长线)上任一点分线段为两段,这两款线段地中点地距离等于线段长地一半.例:如图,B 在线段AC 上,M 是AB 地中点,N 是BC 地中点.求证:MN =12AC 证明:∵M 是AB 地中点,N 是BC 地中点∴AM = BM =12AB ,BN = CN = 12BC ∴MN = MB +BN = 12AB + 12BC = 12(AB + BC )∴MN =12AC练习:1.如图,点C 是线段AB 上地一点,M 是线段BC 地中点.求证:AM =12(AB + BC ) 2.如图,点B 在线段AC 上,M 是AB 地中点,N 是AC 地中点.求证:MN =12BC 3.如图,点B 在线段AC 上,N 是AC 地中点,M 是BC 地中点.求证:MN =12AB 规律5.有公共端点地n 款射线所构成地交点地个数一共有12n (n -1)个.规律6.假如平面内有n 款直线都经过同一点,则可构成小于平角地角共有2n (n -1)个.规律7. 假如平面内有n 款直线都经过同一点,则可构成n (n -1)对对顶角.规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16n (n -1)(n -2)个.规律9.互为邻补角地两个角平分线所成地角地度数为90o .规律10.平面上有n 款直线相交,最多交点地个数为12n (n -1)个.规律11.互为补角中较小角地余角等于这两个互为补角地角地差地一半.N M CB A MC BA N M CB A N MCB A规律12.当两直线平行时,同位角地角平分线互相平行,内错角地角平分线互相平行,同旁内角地角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知AB ∥DE ,如图⑴~⑹,规律如下:规律14.成“8”字形地两个三角形地一对内角平分线相交所成地角等于另两个内角和地一半.例:已知,BE ,DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o ,求∠E 地度数.解:∠A +∠ABE =∠E +∠ADE ①∠C +∠CDE =∠E +∠CBE ②①+②得∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C∴∠E =12(∠A +∠C )1()∠ABC+∠BCD+∠CDE=360︒E D C BA +=∠CDE∠ABC ∠BCD 2()E DCBA-=∠CDE ∠ABC∠BCD 3()E DC BA-=∠CDE∠ABC ∠BCD 4()E D CBA +=∠CDE ∠ABC∠BCD 5()EDCB A +=∠CDE∠ABC ∠BCD 6()EDCBANME DBCAH GFE D BCAHGFED BCAH GFEDBCA∵∠A =45o,∠C =55o,∴∠E =50o三角形部分规律15.在利用三角形三边关系证明线段不等关系时,假如直接证不出来,可连结两点或延长某边构造三角形,使结论中出现地线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D,E为△ABC内两点,求证:AB+AC>BD+DE+CE.证法(一):将DE向两边延长,分别交AB,AC于M,N在△AMN中, AM+AN>MD+DE+NE①在△BDM中,MB+MD>BD②在△CEN中,CN+NE>CE③①+②+③得AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+CE证法(二)延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有,①AB+AF>BD+DG+GF②GF+FC>GE+CE③DG+GE>DE∴①+②+③有AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+CE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证地量(或与求证相关地量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为△ABC内任一点,求证:12(AB+BC+AC)<PA+PB+PC<AB+BC+AC规律16.三角形地一个内角平分线与一个外角平分线相交所成地锐角,等于第三个内角地一半.例:如图,已知BD为△ABC地角平分线,CD为△ABC地外角∠ACE地平分线,它与BD地延长线交于D.求证:∠A = 2∠D证明:∵BD,CD分别是∠ABC,∠ACE地平分线∴∠ACE =2∠1, ∠ABC =2∠2∵∠A = ∠ACE-∠ABC∴∠A = 2∠1-2∠2又∵∠D =∠1-∠2∴∠A =2∠D规律17. 三角形地两个内角平分线相交所成地钝角等于90o加上第三个内角地一半.例:如图,BD,CD分别平分∠ABC,∠ACB, 求证:∠BDC = 90o+12∠A证明:∵BD,CD分别平分∠ABC,∠ACBFGNMEDBA21C EDBA∴∠A+2∠1+2∠2 = 180o∴2(∠1+∠2)= 180o-∠A①∵∠BDC = 180o-(∠1+∠2)∴(∠1+∠2) = 180o-∠BDC②把②式代入①式得2(180o-∠BDC)= 180o-∠A 即:360o-2∠BDC =180o-∠A ∴2∠BDC = 180o+∠A∴∠BDC = 90o+12∠A规律18. 三角形地两个外角平分线相交所成地锐角等于90o减去第三个内角地一半.例:如图,BD,CD分别平分∠EBC,∠FCB, 求证:∠BDC = 90o-12∠A证明:∵BD,CD分别平分∠EBC,∠FCB∴∠EBC = 2∠1,∠FCB = 2∠2∴2∠1 =∠A+∠ACB①2∠2 =∠A+∠ABC②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A∴(∠1+∠2)= 90o+12∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+12∠A)∴∠BDC = 90o-12∠A规律19. 从三角形地一个顶点作高线和角平分线,它们所夹地角等于三角形另外两个角差(地绝对值)地一半.例:已知,如图,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.求证:∠EAD = 12(∠C-∠B)证明:∵AE平分∠BAC∴∠BAE =∠CAE =12∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 12〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o-∠C∵∠EAD = ∠EAC-∠DACDCBA2121FEDCBAE D CBA∴∠EAD = 12〔180o -(∠B +∠C )〕-(90o -∠C ) = 90o -12(∠B +∠C )-90o +∠C= 12(∠C -∠B )假如把AD 平移可以得到如下两图,FD ⊥BC 其它款件不变,结论为∠EFD =12(∠C -∠B ).注意:同学们在学习几何时,可以把自己证完地题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三,灵活应变地能力.规律20.在利用三角形地外角大于任何和它不相邻地内角证明角地不等关系时,假如直接证不出来,可连结两点或延长某边,构造三角形,使求证地大角在某个三角形外角地位置上,小角处在内角地位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 地外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F∵∠BDF 是△ABD 地外角,∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC规律21.有角平分线时常在角两边截取相等地线段,构造全等三角形. 例:已知,如图,AD 为△ABC 地中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE ,NF ,则DN = DC 在△BDE 和△NDE 中,DN = DB∠1 = ∠2ED = ED∴△BDE ≌△NDE ∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF规律22. 有以线段中点为端点地线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 地中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM ,FMABCDEF FE DCBA FABC DE D C B A 4321NFEDCBABD = CD ∠1 = ∠5ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o ∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o △EDF 和△MDF 中ED = MD ∠FDM = ∠EDF DF = DF∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 地中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 地中线∴BD = CD在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD规律24.截长补短作辅助线地方式截长法:在较长地线段上截取一款线段等于较短线段。
做辅助线的基本原则
做辅助线的基本原则
如何添加辅助线——基本原则
原则1:集中条件
添加的辅助线应有利于将已知条件和待求、待证结论的有关因素集中到同一个三角形中、两个相关(全等)的三角形中,只有有关因素相对集中,才好便于联系与比较,才能充分应用有关的几何定理,使推理过程取得突破。
原则2:补全图形
添加的辅助线应当构成新图形,利于挖掘隐含的已知条件,以便应用某一基本图形,充分发挥已知条件作用。
每个几何定理都有与它相对应的几何图形,我们把它叫作基本图形,添辅助线往往是把不完整的基本图形补完整。
因此“添线"也可以叫作“补图"。
如基本图形如:平行线,等腰三角形,出现等腰三角形底边上的中点添底边上的中线出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
直角三角形斜边上中线基本图形,出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线的直角三角形斜边上中线基本图形。
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径。
平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
原则3:构造条件
如作平行线、作垂线、作角平分线、作中线、截取线段相等、构造
角相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何中,同学们最头疼的就是做辅助线了,所以,今天数姐整理了做辅助线的102条规律,从此,再也不怕了!规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n -1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.③如果没有相等的线段代换,可设法作辅助线构造全等三角形.规律26.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等.规律27.三角形一边的两端点到这边的中线所在的直线的距离相等.规律28.条件不足时延长已知边构造三角形.规律29.连接四边形的对角线,把四边形问题转化成三角形来解决问题.规律30.有和角平分线垂直的线段时,通常把这条线段延长。
可归结为“角分垂等腰归”.规律31.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.规律32.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.规律33.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.规律34.有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线⑵有底边中点时,常作底边中线⑶将腰延长一倍,构造直角三角形解题⑷常过一腰上的某一已知点做另一腰的平行线⑸常过一腰上的某一已知点做底的平行线⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形规律35.有二倍角时常用的辅助线⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角⑵平分二倍角⑶加倍小角规律36.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.规律37.有垂直时常构造垂直平分线.规律38.有中点时常构造垂直平分线.规律39.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.规律40.条件中出现特殊角时常作高把特殊角放在直角三角形中.四边形部分规律41.平行四边形的两邻边之和等于平行四边形周长的一半.规律42.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.规律43.有平行线时常作平行线构造平行四边形规律44.有以平行四边形一边中点为端点的线段时常延长此线段.规律45.平行四边形对角线的交点到一组对边距离相等.规律46.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.规律47.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.规律48.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等.规律49.平行四边形四个内角平分线所围成的四边形为矩形.规律50.有垂直时可作垂线构造矩形或平行线.规律51.直角三角形常用辅助线方法:⑴作斜边上的高⑵作斜边中线,当有下列情况时常作斜边中线:①有斜边中点时②有和斜边倍分关系的线段时规律52.正方形一条对角线上一点到另一条对角线上的两端距离相等.规律53.有正方形一边中点时常取另一边中点.规律54.利用正方形进行旋转变换旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分绕相等邻边的公共端点旋转到另一位置的引辅助线方法.旋转变换主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件.旋转变换经常用于等腰三角形、等边三角形及正方形中.规律55.有以正方形一边中点为端点的线段时,常把这条线段延长,构造全等三角形.规律56.从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形.规律57.从梯形同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个三角形.规律58.从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.规律59.延长梯形两腰使它们交于一点,把梯形转化成三角形.规律60.有梯形一腰中点时,常过此中点作另一腰的平行线,把梯形转化成平行四边形.规律61. 有梯形一腰中点时,也常把一底的端点与中点连结并延长与另一底的延长线相交,把梯形转换成三角形.规律62.梯形有底的中点时,常过中点做两腰的平行线.规律63. 任意四边形的对角线互相垂直时,它们的面积都等于对角线乘积的一半.规律64.有线段中点时,常过中点作平行线,利用平行线等分线段定理的推论证题.规律65.有下列情况时常作三角形中位线.⑴有一边中点;⑵有线段倍分关系;⑶有两边(或两边以上)中点.规律66.有下列情况时常构造梯形中位线⑴有一腰中点⑵有两腰中点⑶涉及梯形上、下底和规律67.连结任意四边形各边中点所得的四边形为平行四边形.规律68.连结对角线相等的四边形中点所得的四边形为菱形.规律69.连结对角线互相垂直的四边形各边中点所得的四边形为矩形.规律70.连结对角线互相垂直且相等的四边形各边中点所得的四边形为正方形.规律71.连结平行四边形、矩形、菱形、正方形、等腰梯形各边中点所得的四边形分别为平行四边形、菱形、矩形、正方形、菱形.规律72.等腰梯形的对角线互相垂直时,梯形的高等于两底和的一半(或中位线的长).规律73.等腰梯形的对角线与底构成的两个三角形为等腰三角形.规律74.如果矩形对角线相交所成的钝角为120o,则矩形较短边是对角线长的一半.规律75.梯形的面积等于一腰的中点到另一腰的距离与另一腰的乘积.规律76.若菱形有一内角为120°,则菱形的周长是较短对角线长的4倍.规律77.当图形中有叉线(基本图形如下)时,常作平行线.规律78.有中线时延长中线(有时也可在中线上截取线段)构造平行四边形.规律79.当已知或求证中,涉及到以下情况时,常构造直角三角形.⑴有特殊角时,如有30°、45°、60°、120°、135°角时.⑵涉及有关锐角三角函数值时.构造直角三角形经常通过作垂线来实现.规律80. 0°、30°、45°、60°、90°角的三角函数值表另外:0°、30°、45°、60°、90°的正弦、余弦、正切值也可用下面的口诀来记忆:0°可记为北京电话区号不存在,即:010不存在,90°正好相反30°、45°、60°可记为:1、2、3、3、2、1,3、9、27,弦比2,切比3,分子根号别忘添.其中余切值可利用正切与余切互为倒数求得.规律81. 同角三角函数之间的关系:(1).平方关系:(2).倒数关系:(3).商数关系:规律82. 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.规律83. 任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值.规律84.三角形的面积等于任意两边与它们夹角正弦之积的一半.规律85.等腰直角三角形斜边的长等于直角边的倍.规律86.在含有30o角的直角三角形中,60o角所对的直角边是30o角所对的直角边的倍.(即30o角所对的直角边是几,另一条直角边就是几倍.)规律87.直角三角形中,如果较长直角边是较短直角边的2倍,则斜边是较短直角边的倍.规律88.圆中解决有关弦的问题时,常常需要作出圆心到弦的垂线段(即弦心距)这一辅助线,一是利用垂径定理得到平分弦的条件,二是构造直角三角形,利用勾股定理解题.规律89.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.规律90.有弦中点时常连弦心距规律91.证明弦相等或已知弦相等时常作弦心距.规律92.有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:⑴连结过弧中点的半径⑵连结等弧所对的弦⑶连结等弧所对的圆心角规律93.圆内角的度数等于它所对的弧与它对顶角所对的弧的度数之和的一半.规律94.圆外角的度数等于它所截两条弧的度数之差的一半.规律95.有直径时常作直径所对的圆周角,再利用直径所对的圆周角为直角证题.规律96.有垂直弦时也常作直径所对的圆周角.规律97.有等弧时常作辅助线有以下几种:⑴作等弧所对的弦⑵作等弧所对的圆心角⑶作等弧所对的圆周角规律98.有弦中点时,常构造三角形中位线.规律99.圆上有四点时,常构造圆内接四边形.规律100.两圆相交时,常连结两圆的公共弦规律101.在证明直线和圆相切时,常有以下两种引辅助线方法:⑴当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可.⑵如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可.规律102.当已知条件中有切线时,常作过切点的半径,利用切线的性质定理证题.。